JP2020109199A - Ni-BASED ALLOY, Ni-BASED ALLOY INGOT, Ni-BASED ALLOY HOT-ROLLING SLAB AND Ni-BASED ALLOY SHEET - Google Patents

Ni-BASED ALLOY, Ni-BASED ALLOY INGOT, Ni-BASED ALLOY HOT-ROLLING SLAB AND Ni-BASED ALLOY SHEET Download PDF

Info

Publication number
JP2020109199A
JP2020109199A JP2019000319A JP2019000319A JP2020109199A JP 2020109199 A JP2020109199 A JP 2020109199A JP 2019000319 A JP2019000319 A JP 2019000319A JP 2019000319 A JP2019000319 A JP 2019000319A JP 2020109199 A JP2020109199 A JP 2020109199A
Authority
JP
Japan
Prior art keywords
based alloy
scale
content
hot
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019000319A
Other languages
Japanese (ja)
Other versions
JP6539795B1 (en
Inventor
茂 平田
Shigeru Hirata
茂 平田
和人 瀧本
Kazuto Takimoto
和人 瀧本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2019000319A priority Critical patent/JP6539795B1/en
Application granted granted Critical
Publication of JP6539795B1 publication Critical patent/JP6539795B1/en
Publication of JP2020109199A publication Critical patent/JP2020109199A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

To provide an Ni-based alloy, wherein, even though it is a high-Nb-content Ni-based alloy that contains Nb of 1.5 mass% or more in an Ni-based alloy having excellent hot workability, cracking resistance and corrosion resistance, it is possible to prevent the alloy surface from being dented or scratched when the oxidized scale occurring in a heat processing step is pushed in, and to give a good yield before and after the heat processing, offering excellent scale peelability.SOLUTION: An Ni-based alloy having excellent scale peelability comprises, in mass%, carbon (C): 0.001-0.045%, silicon (Si): 0.05-1.00%, manganese (Mn): 0.05-1.00%, phosphorus (P): 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14-24%, niobium (Nb): 1.5-4.0%, iron (Fe): 3-25%, aluminum (Al): 0.01-0.20%, titanium (Ti): 0.001-0.20%, nitrogen (N): 0.003-0.020%, boron (B): 0.0010-0.0100%, oxygen (O): 0.0002-0.0020%, molybdenum (Mo) and/or tungsten (W): 0.005-0.25%, with the balance being nickel (Ni) and inevitable impurities, satisfying the relation of the following formula (where each element symbol denotes a content of the element (mass%) in the Ni-based alloy). 4.2×Mo+3.6×W+355×B≥0.60.SELECTED DRAWING: None

Description

本発明は、耐応力腐食割れ、耐粒界腐食性に優れたNi基合金であって、特に、熱間鍛造等の熱間加工工程により生成した酸化スケールが押し込まれることに起因して生じる凹み、疵等の表面欠陥を抑制できる、スケール剥離性に優れるNi基合金、Ni基合金塊、Ni基合金熱間圧延用スラブ及びNi基合金板に関するものである。 The present invention is a Ni-based alloy excellent in stress corrosion cracking resistance and intergranular corrosion resistance, and in particular, a dent caused by the oxide scale produced by a hot working process such as hot forging being pressed. The present invention relates to a Ni-base alloy, a Ni-base alloy ingot, a slab for hot rolling of a Ni-base alloy, and a Ni-base alloy plate which can suppress surface defects such as scratches and have excellent scale releasability.

Ni基合金は、耐食性、耐熱性に優れるため厳しい使用環境で適用されている。Ni基合金のうち、例えば、JIS NCF 600相当材は、優れた耐応力腐食割れ性、耐粒界腐食性を具備しているため、原子炉の炉心材として使用されている。さらに厳しい環境の場合には、通常、Nb等を添加し、固溶する炭素を炭化物として固着したNi基合金が適用されている。 Ni-based alloys have excellent corrosion resistance and heat resistance, and are therefore used in severe operating environments. Among Ni-based alloys, for example, JIS NCF 600 equivalent material has excellent stress corrosion cracking resistance and intergranular corrosion resistance, and is therefore used as a core material of a nuclear reactor. In a more severe environment, a Ni-based alloy in which Nb or the like is added and solid solution carbon is fixed as a carbide is usually applied.

しかしながら、Nbを添加したNi基合金は熱間加工性に問題があった。そこで、特許文献1では、NbCの溶体化熱処理が提案されている。また、特許文献2では、B添加およびO含有量の低減による粒界強化の改善が提案されている。しかしながら、いずれも一定の効果はあるものの、耐応力腐食割れ、耐粒界腐食性に改善の余地があった。そこで、特許文献3では、熱間加工性に優れ、耐応力腐食割れに優れたNi基合金、特許文献4では、Bを含有するスラブに表面欠陥を発生させないように熱間圧延し厚板とするNi基合金熱間圧延板の製造方法が提案されている。特に、特許文献3、4では、熱間加工性、耐割れ性、耐食性に優れていた。 However, the Ni-based alloy containing Nb has a problem in hot workability. Then, in patent document 1, the solution heat treatment of NbC is proposed. Further, Patent Document 2 proposes improvement of grain boundary strengthening by addition of B and reduction of O content. However, although all have a certain effect, there is room for improvement in stress corrosion cracking resistance and intergranular corrosion resistance. Therefore, in Patent Document 3, a Ni-based alloy having excellent hot workability and excellent in stress corrosion cracking resistance is disclosed. In Patent Document 4, a slab containing B is hot-rolled so as to prevent surface defects from being formed into a thick plate. A method for manufacturing a hot-rolled Ni-based alloy sheet has been proposed. In particular, in Patent Documents 3 and 4, the hot workability, crack resistance and corrosion resistance were excellent.

一方で、上記特許文献のNi基合金では、熱間鍛造等の熱間加工工程で生成した酸化スケールがNi基合金の表面に一部残存し、そのまま、Ni基合金に押し込まれることにより、Ni基合金の表面に凹みや疵等の表面欠陥が発生することがあった。一部残存した酸化スケールがNi基合金に押し込まれて形成される凹みや疵等の表面欠陥は、当該部分を研削除去することで品質上は対応可能である。 On the other hand, in the Ni-based alloy of the above-mentioned patent document, the oxide scale generated in the hot working process such as hot forging partially remains on the surface of the Ni-based alloy and is directly pushed into the Ni-based alloy, so that Ni Surface defects such as dents and flaws sometimes occurred on the surface of the base alloy. Surface defects such as dents and scratches formed by partially remaining oxide scale being pressed into the Ni-based alloy can be dealt with in terms of quality by grinding and removing the part.

しかし、例えば、Ni基合金が原子炉用材料として使用される場合には、極めて高い品質が要求されるので、上記した凹みや疵等の表面欠陥を確実に除去することが必要な場合がある。上記した凹みや疵等の表面欠陥を確実に除去するために、研削等の工程を実施すると、歩留まりが低下し、また、余分な工程が追加されることとなり、Ni基合金板の製造が煩雑化し、製造コストも上昇することとなる。 However, for example, when a Ni-based alloy is used as a material for a nuclear reactor, extremely high quality is required, and therefore it may be necessary to reliably remove the above-mentioned surface defects such as dents and flaws. .. In order to reliably remove the above-mentioned surface defects such as dents and scratches, if a step such as grinding is carried out, the yield will be reduced, and an extra step will be added, which makes the production of the Ni-based alloy plate complicated. And the manufacturing cost will increase.

特開昭63−53235号公報JP-A-63-53235 特開昭61−84348号公報JP-A-61-84348 特許第4993327号公報Japanese Patent No. 499327 特許第4414588号公報Japanese Patent No. 4414588

上記事情に鑑み、本発明は、熱間加工性、耐割れ性及び耐腐食性に優れた、Ni基合金中にNbが1.5質量%以上含まれる高Nb含有Ni基合金であっても、熱間加工工程で生成した酸化スケールの押し込みによる合金表面の凹みや疵等の表面欠陥の発生を防止でき、熱間加工前後で優れた歩留まりを得ることができる、スケール剥離性に優れるNi基合金を提供することを目的とする。 In view of the above circumstances, the present invention provides a high Nb-containing Ni-based alloy that is excellent in hot workability, crack resistance, and corrosion resistance, and that contains Nb in an amount of 1.5% by mass or more. , Ni base which is excellent in scale releasability, which can prevent generation of surface defects such as dents and scratches on the alloy surface due to indentation of oxide scale generated in the hot working process, and can obtain excellent yield before and after hot working. The purpose is to provide an alloy.

発明者らは、上記課題を解決するために鋭意検討を重ね、上記課題を解決するには、酸化スケールがNi基合金から剥離して容易に割れる組成、構造にすればよいと考えた。一方で、酸化スケールはNi基合金の酸化の進行を抑制する作用もあり、酸化スケールのNi基合金に対する密着性があまりに低下してしまうと、熱間加工時の酸化作用によってNi基合金のロスが大きくなり、歩留りが低下してしまう恐れがあった。そこで、加熱時には、Ni基合金に対して従来に近い酸化スケールの密着状態を維持しつつ、鍛造等の加工時には、酸化スケールに容易に多くの割れが導入されてNi基合金から剥離するような酸化スケールを得ることを目的に検討を進めた。酸化スケールの組成、構造は添加元素の影響を受けることから、添加元素の組成の観点から、加熱時には酸化スケールの密着性を維持しつつ、鍛造等の加工時には剥離性を有する酸化スケールを形成させることを見出すこととした。 The inventors of the present invention have made extensive studies to solve the above-mentioned problems, and thought that in order to solve the above-mentioned problems, the oxide scale should have a composition and structure that can be easily separated from the Ni-based alloy and cracked. On the other hand, the oxide scale also has an action of suppressing the progress of oxidation of the Ni-based alloy, and if the adhesion of the oxide scale to the Ni-based alloy is too low, the oxidation action during hot working causes loss of the Ni-based alloy. And the yield may decrease. Therefore, during heating, while maintaining a close adherence of the oxide scale to the Ni-based alloy, which is similar to the conventional state, during processing such as forging, many cracks are easily introduced into the oxide-scale and peel off from the Ni-based alloy. The study was advanced with the aim of obtaining an oxide scale. Since the composition and structure of the oxide scale is affected by the additive element, from the viewpoint of the composition of the additive element, while maintaining the adhesion of the oxide scale during heating, it forms an oxide scale that has peeling properties during processing such as forging. I decided to find a thing.

そこで、発明者らは、高Nb含有Ni基合金について、加熱時における酸化スケールの密着性及び加工時における剥離性と合金組成との関係に注目した。その結果、加熱時における酸化スケールの剥離性を向上させる添加元素は、Mo、W、Bの3つであり、特にBの剥離性向上の効果は顕著で、微量の添加にも関わらず、加工時における優れた剥離性が確認された。さらに、熱間加工時にNi基合金が酸化されることによる重量変化は、Al、Tiの効果で従来と略同程度を維持でき、酸化作用によるNi基合金のロスも従来と同程度となることを見出した。 Therefore, the inventors have paid attention to the relationship between the adhesiveness of the oxide scale during heating and the peelability during processing and the alloy composition of the high Nb-containing Ni-based alloy. As a result, the additional elements that improve the peelability of the oxide scale during heating are Mo, W, and B, and the effect of improving the peelability of B is particularly remarkable. Excellent peelability was confirmed. Further, the weight change due to the oxidation of the Ni-based alloy during hot working can be maintained at about the same level as before due to the effect of Al and Ti, and the loss of the Ni-based alloy due to the oxidation effect will also be at the same level as before. Found.

上記効果のメカニズムは不明であるが、Mo、W、Bは、高温の酸化雰囲気にさらされると昇華しガス化することから、Mo、W、Bのガス成分が酸化スケール/母相間に微量存在し、鍛造等の加工時の剥離を促進しているか、またはMo、W、Bは、ガスとして酸化スケールを透過して放出されることでガスの流路が形成された、割れ易い酸化スケールとなったことが考えられる。 Although the mechanism of the above effect is unknown, Mo, W, and B sublimate and gasify when exposed to a high-temperature oxidizing atmosphere, so that the gas components of Mo, W, and B are present in trace amounts between the oxide scale/mother phase. However, it promotes peeling at the time of processing such as forging, or Mo, W, and B are fragile oxide scales in which a gas flow path is formed by being released as gas through the oxide scales. It is possible that

本発明の構成の要旨は、以下の通りである。
[1]質量%で、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜1.00%、マンガン(Mn):0.05〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.20%、チタン(Ti):0.001〜0.20%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、モリブデン(Mo)及び/またはタングステン(W):0.005〜0.25%、残部ニッケル(Ni)並びに不可避的不純物からなり、
下記式(式中、各元素の表記は、Ni基合金中における該元素の含有量(質量%)を意味する。)の関係を満たすことを特徴とするスケール剥離性に優れるNi基合金。
4.2×Mo+3.6×W+355×B≧0.60
[2]質量%で、ホウ素(B):0.0010〜0.008%、モリブデン(Mo)及び/またはタングステン(W):0.008〜0.21%であることを特徴とする[1]に記載のスケール剥離性に優れるNi基合金。
[3]下記式(式中、各元素の表記は、Ni基合金中における該元素の含有量(質量%)を意味する。)の関係を満たすことを特徴とする[1]または[2]に記載のスケール剥離性に優れるNi基合金。
4.2×Mo+3.6×W+355×B≧1.00
[4][1]乃至[3]のいずれか1つに記載のNi基合金からなるNi基合金塊。
[5][4]に記載のNi基合金塊が熱間鍛造されたNi基合金熱間圧延用スラブ。
[6][5]に記載のNi基合金熱間圧延用スラブが熱間圧延されたNi基合金板。
The gist of the configuration of the present invention is as follows.
[1]% by mass, carbon (C): 0.001 to 0.045%, silicon (Si): 0.05 to 1.00%, manganese (Mn): 0.05 to 1.00%, phosphorus (P): 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14 to 24%, niobium (Nb): 1.5 to 4.0%, iron (Fe): 3 to 25%, aluminum (Al): 0.01 to 0.20%, titanium (Ti): 0.001 to 0.20%, nitrogen (N): 0.003 to 0.020%, boron (B ): 0.0010 to 0.0100%, oxygen (O): 0.0002 to 0.0020%, molybdenum (Mo) and/or tungsten (W): 0.005 to 0.25%, balance nickel (Ni) ) And inevitable impurities,
A Ni-based alloy having excellent scale releasability, which satisfies the relationship of the following formula (wherein the notation of each element means the content (mass%) of the element in the Ni-based alloy).
4.2×Mo+3.6×W+355×B≧0.60
[2] Boron (B): 0.0010 to 0.008% and molybdenum (Mo) and/or tungsten (W): 0.008 to 0.21% by mass% [1] ] The Ni-based alloy excellent in scale releasability according to [1].
[3] [1] or [2] characterized by satisfying the following equation (wherein the notation of each element means the content (mass %) of the element in the Ni-based alloy)): A Ni-based alloy having excellent scale releasability according to 1.
4.2×Mo+3.6×W+355×B≧1.00
[4] A Ni-based alloy ingot made of the Ni-based alloy according to any one of [1] to [3].
[5] A slab for hot rolling of a Ni-based alloy obtained by hot forging the Ni-based alloy ingot according to [4].
[6] A Ni-base alloy sheet obtained by hot-rolling the slab for hot-rolling Ni-base alloy according to [5].

本発明のNi基合金によれば、熱間加工性、耐割れ性及び耐腐食性に優れた、Ni基合金中にNbが1.5質量%以上含まれる高Nb含有Ni基合金であっても、熱間加工工程で生成した酸化スケールの押し込みによる合金表面の凹みや疵等の表面欠陥の発生を防止でき、熱間加工前後で優れた歩留まりを得ることができる、スケール剥離性に優れるNi基合金を得ることができる。従って、欠陥のない良好な表面状態となった高Nb含有Ni基合金について、熱間加工後の歩留まりの低下を防止し、また余分な工程を追加することなく、凹みや疵等の微細な欠陥発生も防止された表面状態を得ることができる。 The Ni-based alloy of the present invention is a high Nb-containing Ni-based alloy that is excellent in hot workability, crack resistance and corrosion resistance, and that contains 1.5% by mass or more of Nb. Also, it is possible to prevent the generation of surface defects such as dents and scratches on the alloy surface due to the indentation of the oxide scale generated in the hot working step, and to obtain an excellent yield before and after hot working. A base alloy can be obtained. Therefore, for a high Nb-containing Ni-based alloy having a good surface condition without defects, it is possible to prevent a decrease in yield after hot working, and to add fine defects such as dents and scratches without adding an extra step. It is possible to obtain a surface state in which generation is prevented.

Ni基合金の成分組成の関係式の値と残存スケール面積率(%)との関係を表すグラフである。It is a graph showing the relationship between the value of the relational expression of the component composition of the Ni-based alloy and the residual scale area ratio (%).

次に、本発明のスケール剥離性に優れるNi基合金について詳細を説明する。本発明のスケール剥離性に優れるNi基合金は、質量%(以下、Ni基合金の各成分の含有量である質量%を、単に「%」という。)で、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜1.00%、マンガン(Mn):0.05〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.20%、チタン(Ti):0.001〜0.20%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、モリブデン(Mo)及び/またはタングステン(W):0.005〜0.25%、残部ニッケル(Ni)並びに不可避的不純物からなり、下記式(式中、各元素の表記は、Ni基合金中における該元素の含有量(質量%)を意味する。)の関係を満たすことを特徴とするスケール剥離性に優れるNi基合金。
4.2×Mo+3.6×W+355×B≧0.60
Next, the Ni-based alloy excellent in scale releasability of the present invention will be described in detail. The Ni-based alloy excellent in scale releasability of the present invention is mass% (hereinafter, mass% which is the content of each component of the Ni-based alloy is simply referred to as “%”), and carbon (C): 0.001. -0.045%, silicon (Si): 0.05-1.00%, manganese (Mn): 0.05-1.00%, phosphorus (P): 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14 to 24%, niobium (Nb): 1.5 to 4.0%, iron (Fe): 3 to 25%, aluminum (Al): 0.01 to 0. .20%, titanium (Ti): 0.001 to 0.20%, nitrogen (N): 0.003 to 0.020%, boron (B): 0.0010 to 0.0100%, oxygen (O). : 0.0002 to 0.0020%, molybdenum (Mo) and/or tungsten (W): 0.005 to 0.25%, balance nickel (Ni) and unavoidable impurities. The description of the element means the content (mass %) of the element in the Ni-based alloy.) A Ni-based alloy having excellent scale releasability, which is characterized by satisfying the relationship.
4.2×Mo+3.6×W+355×B≧0.60

C:0.001〜0.045%
スケール剥離性に優れるNi基合金中のCは、オーステナイト相を安定化し、室温での機械的強度を確保するために必須の元素である。このためには、0.001%以上の含有量が必要である。一方で、過剰量の添加はNbとCを主成分とする化合物(炭化物)を生成させ、その近傍にCr欠乏部を形成し、耐食性を著しく低下させる。また、NbとCを主成分とする化合物が増えて、割れを発生させて、耐割れ性を低下させる。このため、含有量の上限は0.045%とする。含有量の好ましい下限は0.003%、特に好ましい下限は0.005%である。また、含有量の好ましい上限は0.040%、特に好ましい上限は0.035%である。
C: 0.001-0.045%
C in the Ni-based alloy, which is excellent in scale releasability, is an essential element for stabilizing the austenite phase and ensuring mechanical strength at room temperature. For this purpose, the content of 0.001% or more is required. On the other hand, addition of an excessive amount forms a compound (carbide) containing Nb and C as main components, forms a Cr-deficient portion in the vicinity thereof, and significantly reduces corrosion resistance. Further, the amount of the compound containing Nb and C as the main components is increased to cause cracking and reduce the crack resistance. Therefore, the upper limit of the content is 0.045%. The preferable lower limit of the content is 0.003%, and the particularly preferable lower limit is 0.005%. The preferable upper limit of the content is 0.040%, and the particularly preferable upper limit is 0.035%.

Si:0.05〜1.00%
スケール剥離性に優れるNi基合金中のSiは、脱酸を行なうのに必須の元素であり、さらに、耐応力腐食割れ性を向上させるのに必要である。この効果は、0.05%以上の添加により得られる。一方で、過剰量の添加は、介在物の増加、これに関連して表面欠陥の発生を招く。このため、含有量の上限は1.00%とする。含有量の好ましい下限は0.08%、特に好ましい下限は0.10%である。また、含有量の好ましい上限は0.80%、特に好ましい上限は0.60%である。
Si: 0.05-1.00%
Si in the Ni-based alloy, which is excellent in scale releasability, is an essential element for deoxidizing and is necessary for improving the stress corrosion cracking resistance. This effect is obtained by adding 0.05% or more. On the other hand, the addition of an excessive amount causes an increase in inclusions and, in connection with this, the occurrence of surface defects. Therefore, the upper limit of the content is 1.00%. The preferable lower limit of the content is 0.08%, and the particularly preferable lower limit is 0.10%. The preferable upper limit of the content is 0.80%, and the particularly preferable upper limit is 0.60%.

Mn:0.05〜1.00%
スケール剥離性に優れるNi基合金中のMnは、Siと同じく脱酸を行なうのに必須の元素であり、オーステナイト相の安定にも寄与する。特に、添加による硬さの上昇が小さく、機械的強度を適正化しつつ、オーステナイト相の安定を確保できる元素である。さらに、酸化スケールに作用して、酸化スケールの効率的な剥離に寄与し、酸化スケールの押し込みによるNi基合金表面の凹みや疵の発生を抑制する。このため、少なくとも0.05%以上の添加が必要である。一方で、過剰量の添加は、耐食性を低下させるため、含有量の上限は1.00%とする。含有量の好ましい下限は、0.08%、特に好ましい下限は0.10%である。また、含有量の好ましい上限は0.80%、特に好ましい上限は0.60%である。
Mn: 0.05-1.00%
Mn in the Ni-based alloy, which is excellent in scale releasability, is an essential element for performing deoxidation like Si, and also contributes to the stability of the austenite phase. In particular, it is an element that has a small increase in hardness due to addition and can secure the stability of the austenite phase while optimizing the mechanical strength. Furthermore, it acts on the oxide scale, contributes to efficient exfoliation of the oxide scale, and suppresses the occurrence of dents and flaws on the surface of the Ni-based alloy due to the indentation of the oxide scale. Therefore, addition of at least 0.05% is necessary. On the other hand, addition of an excessive amount reduces corrosion resistance, so the upper limit of the content is 1.00%. The preferable lower limit of the content is 0.08%, and the particularly preferable lower limit is 0.10%. The preferable upper limit of the content is 0.80%, and the particularly preferable upper limit is 0.60%.

P:0.015%以下
スケール剥離性に優れるNi基合金中のPは、粒界に偏析し、耐食性、熱間加工性を低下させてしまう元素である。このため、その上限は厳しく限定する必要がある。本発明では0.015%以下に制限する。含有量の好ましい上限は0.012%、特に好ましい上限は、0.010%である。また、含有量の下限は0%に近いほど好ましいが、例えば、0.001%が挙げられる。
P: 0.015% or less P in the Ni-based alloy, which is excellent in scale releasability, is an element that segregates at grain boundaries and reduces corrosion resistance and hot workability. Therefore, the upper limit must be strictly limited. In the present invention, it is limited to 0.015% or less. The preferable upper limit of the content is 0.012%, and the particularly preferable upper limit is 0.010%. Further, the lower limit of the content is more preferable as it approaches 0%, but for example, 0.001% can be mentioned.

S:0.0030%以下
スケール剥離性に優れるNi基合金中のSは、粒界に偏析して低融点化合物を形成し、熱間加工性の低下を招く元素であり、極力低減すべきである。このため、その上限は厳しく限定する必要がある。本発明では0.0030%以下に制限する。好ましくは0.0025%以下、特に好ましくは0.0020%以下である。また、含有量の下限は0%に近いほど好ましいが、例えば、0.0001%が挙げられる。
S: 0.0030% or less S in the Ni-based alloy, which is excellent in scale releasability, is an element that segregates at grain boundaries to form a low-melting point compound and causes deterioration of hot workability, and should be reduced as much as possible. is there. Therefore, the upper limit must be strictly limited. In the present invention, it is limited to 0.0030% or less. It is preferably 0.0025% or less, and particularly preferably 0.0020% or less. Further, the lower limit of the content is more preferable as it approaches 0%, but, for example, 0.0001% can be mentioned.

Cr:14〜24%
スケール剥離性に優れるNi基合金中のCrは、耐食性の向上に寄与する重要な元素であり、厳しい環境に使用するのに必須の元素である。このため、少なくとも14%の添加は必要である。一方で、24%を越えて含有すると、高温での機械的強度が高くなり加工が困難となる。さらに、オーステナイト相の不安定化を招き、炭化物の析出も促進する。このため、含有量の上限は24%とする。含有量の好ましい下限は15.0%、特に好ましい下限は15.5%である。また、含有量の好ましい上限は23.0%、特に好ましい上限は22.0%である。
Cr: 14-24%
Cr in the Ni-based alloy, which is excellent in scale releasability, is an important element that contributes to the improvement of corrosion resistance, and is an element essential for use in severe environments. For this reason, addition of at least 14% is necessary. On the other hand, if the content exceeds 24%, the mechanical strength at high temperature becomes high and processing becomes difficult. Further, it causes instability of the austenite phase and promotes precipitation of carbides. Therefore, the upper limit of the content is 24%. The preferable lower limit of the content is 15.0%, and the particularly preferable lower limit is 15.5%. The preferable upper limit of the content is 23.0%, and the particularly preferable upper limit is 22.0%.

Nb:1.5〜4.0%
スケール剥離性に優れるNi基合金中のNbは、CおよびNを炭化物、窒化物または炭窒化物として析出させて耐食性を向上させる効果がある。この効果を得るには、少なくとも1.5%以上の添加が必要である。一方で、含有量が多すぎると過剰に析出した析出物により粒界脆性を生じさせる場合があるので、含有量の上限は4.0%とする。含有量の好ましい下限は2.0%、特に好ましい下限は2.1%である。また、含有量の好ましい上限は3.7%、特に好ましい上限は3.2%である。
Nb: 1.5-4.0%
Nb in the Ni-based alloy, which is excellent in scale releasability, has the effect of precipitating C and N as carbides, nitrides, or carbonitrides to improve corrosion resistance. In order to obtain this effect, it is necessary to add at least 1.5% or more. On the other hand, if the content is too large, grain boundary brittleness may occur due to excessively precipitated precipitates, so the upper limit of the content is 4.0%. The preferable lower limit of the content is 2.0%, and the particularly preferable lower limit is 2.1%. Moreover, the preferable upper limit of the content is 3.7%, and the particularly preferable upper limit is 3.2%.

Fe:3〜25%
スケール剥離性に優れるNi基合金中のFeは、靭性の向上に寄与する成分である。この効果を得るには少なくとも3%の添加が必要である。一方で、含有量が25%を越えると耐食性を低下させる。このため、含有量の上限は25%とする。含有量の好ましい下限は5%、特に好ましい下限は6%である。また、含有量の好ましい上限は23%、特に好ましい上限は21%である。
Fe: 3 to 25%
Fe in the Ni-based alloy, which is excellent in scale releasability, is a component that contributes to improvement in toughness. To obtain this effect, at least 3% must be added. On the other hand, if the content exceeds 25%, the corrosion resistance decreases. Therefore, the upper limit of the content is 25%. The preferable lower limit of the content is 5%, and the particularly preferable lower limit is 6%. The preferable upper limit of the content is 23%, and the particularly preferable upper limit is 21%.

Al:0.01〜0.20%
スケール剥離性に優れるNi基合金中のAlは、脱酸を行なうのに必須の元素であり、また、Tiとともに酸化を抑制する効果がある。この効果を得るには少なくとも0.01%以上の添加が必要である。一方で、0.20%を越えて添加すると、熱間加工性を低下させて、Ni基合金の母材中に介在物を多数形成し、耐食性が低下するようになる。このため、含有量の上限は0.20%とする。含有量の好ましい下限は0.02%、特に好ましい下限は0.03%である。また、含有量の好ましい上限は0.18%、特に好ましい上限は0.16%である。
Al: 0.01 to 0.20%
Al in the Ni-based alloy, which is excellent in scale releasability, is an essential element for deoxidizing, and also has an effect of suppressing oxidation together with Ti. In order to obtain this effect, it is necessary to add at least 0.01% or more. On the other hand, if added in excess of 0.20%, the hot workability is deteriorated, a large number of inclusions are formed in the base material of the Ni-based alloy, and the corrosion resistance is deteriorated. Therefore, the upper limit of the content is 0.20%. The preferable lower limit of the content is 0.02%, and the particularly preferable lower limit is 0.03%. The preferable upper limit of the content is 0.18%, and the particularly preferable upper limit is 0.16%.

Ti:0.001〜0.20%
スケール剥離性に優れるNi基合金中のTiは、脱酸に寄与する元素であり、Alとともに酸化を抑制する効果がある。本発明では、B、Moなどの添加により熱間加工時のスケール剥離性を向上させているが、加熱時、つまり加熱条件下にて静的に保持している段階では耐酸化性を保持することでNi基合金のロスを抑制することが好ましい。加熱条件下にて静的に保持する際の耐酸化性を維持するために、少なくとも0.001%以上の添加が必要である。一方で、0.20%を越えて添加すると、熱間加工性を低下させて、Ni基合金の母材中に介在物を多数形成し、耐食性が低下するようになる。このため、含有量の上限は0.20%とする。含有量の好ましい下限は0.002%、特に好ましい下限は0.003%である。また、含有量の好ましい上限は0.18%、特に好ましい上限は0.16%である。
Ti: 0.001 to 0.20%
Ti in the Ni-based alloy, which is excellent in scale releasability, is an element that contributes to deoxidation and has an effect of suppressing oxidation together with Al. In the present invention, addition of B, Mo, etc. improves scale peelability during hot working, but retains oxidation resistance during heating, that is, at the stage of statically holding under heating conditions. Therefore, it is preferable to suppress the loss of the Ni-based alloy. In order to maintain the oxidation resistance when statically held under heating conditions, it is necessary to add at least 0.001% or more. On the other hand, if added in excess of 0.20%, the hot workability is deteriorated, a large number of inclusions are formed in the base material of the Ni-based alloy, and the corrosion resistance is deteriorated. Therefore, the upper limit of the content is 0.20%. The preferable lower limit of the content is 0.002%, and the particularly preferable lower limit is 0.003%. The preferable upper limit of the content is 0.18%, and the particularly preferable upper limit is 0.16%.

N:0.003〜0.020%
スケール剥離性に優れるNi基合金中のNは、室温での機械的強度を向上させ、オーステナイト相の安定度を増し、さらに耐食性も向上させる。このため、0.003%以上の添加が必要である。一方で、Nbと化合物を形成することから有効なNb量を低減させ、ブローホールが生じやすくなる。このため、含有量の上限は0.020%とする。含有量の好ましい下限は0.005%、特に好ましい下限は0.008%である。また、含有量の好ましい上限は0.014%、特に好ましい上限は0.012%である。
N: 0.003 to 0.020%
N in the Ni-based alloy, which is excellent in scale releasability, improves the mechanical strength at room temperature, increases the stability of the austenite phase, and further improves the corrosion resistance. Therefore, it is necessary to add 0.003% or more. On the other hand, since a compound is formed with Nb, the effective amount of Nb is reduced and blowholes are easily generated. Therefore, the upper limit of the content is 0.020%. The preferable lower limit of the content is 0.005%, and the particularly preferable lower limit is 0.008%. The preferable upper limit of the content is 0.014%, and the particularly preferable upper limit is 0.012%.

B:0.0010〜0.0100%
スケール剥離性に優れるNi基合金中のBは、熱間加工性を改善する重要な元素である。熱間鍛造や熱間圧延等の熱間加工において、酸化スケールのNi基合金からの剥離を促進し、酸化スケールの押し込みに起因する凹みや疵等の表面欠陥の発生を確実に抑制する。上記の効果を得るには少なくとも0.0010%の添加が必要である。一方で、0.0100%を越えて含有すると、かえって熱間加工性が低下し、熱間鍛造、熱間圧延時に割れが発生する。よって、含有量の上限は0.0100%とする。含有量の好ましい下限は0.0012%、特に好ましい下限は0.0015%である。また、含有量の好ましい上限は0.0080%、特に好ましい上限は0.0070%である。
B: 0.0010 to 0.0100%
B in the Ni-based alloy, which is excellent in scale releasability, is an important element that improves hot workability. In hot working such as hot forging and hot rolling, separation of the oxide scale from the Ni-based alloy is promoted, and occurrence of surface defects such as dents and scratches due to indentation of the oxide scale is reliably suppressed. To obtain the above effect, addition of at least 0.0010% is necessary. On the other hand, if the content exceeds 0.0100%, the hot workability is rather deteriorated, and cracking occurs during hot forging and hot rolling. Therefore, the upper limit of the content is 0.0100%. The preferable lower limit of the content is 0.0012%, and the particularly preferable lower limit is 0.0015%. The preferable upper limit of the content is 0.0080%, and the particularly preferable upper limit is 0.0070%.

O:0.0002〜0.0020%
スケール剥離性に優れるNi基合金中のOは、溶解、精錬工程でN量の低減を容易とする。このため、少なくとも0.0002%以上の含有が必要である。一方で、Oは、Al、Ti、Si、Mnと結合し、脱酸生成物を生成する。0.0020%を越えて含有する場合、脱酸生成物による耐食性の低下、表面疵の原因となる。このため、含有量の上限は0.0020%とする。含有量の好ましい下限は0.0003%、特に好ましい下限は0.0004%である。また、含有量の好ましい上限は0.0019%、特に好ましい上限は0.0018%である。
O: 0.0002 to 0.0020%
O in the Ni-based alloy, which is excellent in scale releasability, facilitates the reduction of the N content in the melting and refining processes. Therefore, it is necessary to contain at least 0.0002% or more. On the other hand, O combines with Al, Ti, Si, and Mn to form a deoxidized product. If it is contained in excess of 0.0020%, it may cause deterioration of corrosion resistance and surface defects due to deoxidized products. Therefore, the upper limit of the content is 0.0020%. The preferable lower limit of the content is 0.0003%, and the particularly preferable lower limit is 0.0004%. The preferable upper limit of the content is 0.0019%, and the particularly preferable upper limit is 0.0018%.

Mo及び/またはW:0.005〜0.25%
スケール剥離性に優れるNi基合金中のMo、Wは、耐食性の向上、特に耐孔食性、耐隙間腐食性を向上させ、また、粒界腐食性の向上にも寄与する。さらに、酸化スケールに作用し、熱間加工時の酸化スケールのNi基合金からの剥離を促進し、酸化スケールの押し込みに起因する凹みや疵等の表面欠陥の発生を確実に抑制する。これらの効果を得るには少なくともMo、Wのいずれか1種を0.005%、またはMo、Wともに、それぞれ、0.005%の添加が必要である。一方で、Mo及び/またはWの過剰の添加は、Ni基合金の耐酸化性の低下や酸化の促進となるので、熱間加工前の加熱時の酸化が促進されて熱間加工後の酸化スケールの剥離による歩留りの低下、すなわち、Ni基合金のロスが大きくなり、コスト増となってしまう。このため、Mo及び/またはWの含有量の上限はMo、Wのいずれか1種を0.25%、またはMo、Wともに、それぞれ、0.25%とする。Mo及び/またはWの含有量の好ましい下限はMo、Wのいずれか1種を0.008%、またはMo、Wともに、それぞれ、0.008%、特に好ましい上記下限は0.010%である。また、Mo及び/またはWの含有量の好ましい上限はMo、Wのいずれか1種を0.21%、またはMo、Wともに、それぞれ、0.21%、特に好ましい上記上限は0.18%である。
Mo and/or W: 0.005-0.25%
Mo and W in the Ni-based alloy, which are excellent in scale releasability, improve corrosion resistance, particularly pitting corrosion resistance and crevice corrosion resistance, and also contribute to intergranular corrosion resistance. Further, it acts on the oxide scale, promotes peeling of the oxide scale from the Ni-based alloy during hot working, and surely suppresses the occurrence of surface defects such as dents and scratches due to indentation of the oxide scale. To obtain these effects, it is necessary to add at least one of Mo and W by 0.005%, or both Mo and W by 0.005%. On the other hand, excessive addition of Mo and/or W lowers the oxidation resistance of the Ni-based alloy and promotes the oxidation, so that the oxidation during heating before hot working is promoted and the oxidation after hot working is accelerated. The yield due to scale peeling decreases, that is, the loss of the Ni-based alloy increases, resulting in an increase in cost. Therefore, the upper limit of the content of Mo and/or W is 0.25% for either one of Mo and W, or 0.25% for both Mo and W. A preferable lower limit of the content of Mo and/or W is 0.008% of any one of Mo and W, or 0.008% of each of Mo and W, and the particularly preferable lower limit is 0.010%. .. The preferable upper limit of the content of Mo and/or W is 0.21% of any one of Mo and W, or 0.21% of each of Mo and W, and the particularly preferable upper limit is 0.18%. Is.

本発明のスケール剥離性に優れるNi基合金では、上記成分以外の残部はNi及び不可避的不純物である。本発明のスケール剥離性に優れるNi基合金では、主成分としてNiが含有されている。 In the Ni-based alloy excellent in scale releasability of the present invention, the balance other than the above components is Ni and inevitable impurities. The Ni-based alloy excellent in scale releasability of the present invention contains Ni as a main component.

下記式
4.2×Mo+3.6×W+355×B≧0.60
酸化スケール剥離性に影響する元素について、その影響の程度を回帰分析により式として表したものである。上記式の値が0.60以上であると、熱間加工時における酸化スケール剥離性が向上して、熱間加工性、耐割れ性及び耐腐食性に優れた、Ni基合金中にNbが1.5質量%以上含まれる高Nb含有Ni基合金であっても、熱間加工時に効果的に酸化スケールがNi基合金から剥離する。よって、上記式の値が0.60以上となるように、Ni基合金の成分組成をコントロールする必要がある。上記式の値は、熱間加工時における酸化スケール剥離性と歩留まりをさらに向上させる点から0.80以上が好ましく、1.00以上がより好ましく、1.40以上が特に好ましい。一方で、上記式の値の上限値は、特に限定されないが、例えば、5.50が挙げられる。
The following formula 4.2×Mo+3.6×W+355×B≧0.60
Regarding the elements that affect the oxide scale releasability, the degree of the effect is expressed as a formula by regression analysis. When the value of the above equation is 0.60 or more, the oxide scale peeling property during hot working is improved, and Nb is contained in the Ni-based alloy excellent in hot workability, crack resistance and corrosion resistance. Even with a high Nb-containing Ni-based alloy that is contained in an amount of 1.5 mass% or more, the oxide scale is effectively separated from the Ni-based alloy during hot working. Therefore, it is necessary to control the component composition of the Ni-based alloy so that the value of the above formula becomes 0.60 or more. The value of the above formula is preferably 0.80 or more, more preferably 1.00 or more, and particularly preferably 1.40 or more from the viewpoint of further improving the oxide scale peeling property and the yield during hot working. On the other hand, the upper limit of the value of the above formula is not particularly limited, but may be, for example, 5.50.

上記式の特定方法は、以下の通りである。
Ni−20%Cr−2.3%Nb−7%Feを基本組成とし、これに上記各種元素の添加量を変化させたNi基合金を溶製し、10mmt×100mm×150mmに切断した。その後、切断したNi基合金のすべての表面を湿式研磨♯120で仕上げて試験片とした。得られた試験片を、予め1200℃に加熱した加熱装置に入れ、3時間保持して加熱処理をし、Ni基合金表面に酸化スケールを形成させた。加熱処理後、加熱装置から試験片を取り出して油圧ハンマーで15%変形させて、酸化スケールの剥離の有無を評価した。酸化スケールの剥離の有無の評価は、試験片表面をデジタル顕微鏡(倍率10倍)にて、20mm×20mmの面積を計20箇所観察し、酸化スケールが残存していると判断した箇所の面積を多角形で近似して、酸化スケールの合計面積を算出した。酸化スケールが残存していた箇所の合計面積を観察面積で除し、さらに100を乗じた値を残存スケール面積率(%)とした。
The method of specifying the above formula is as follows.
Ni-20%Cr-2.3%Nb-7%Fe was used as a basic composition, and a Ni-based alloy in which the addition amount of each of the above various elements was changed was melted and cut into 10 mmt×100 mm×150 mm. Then, all surfaces of the cut Ni-based alloy were finished by wet polishing #120 to obtain test pieces. The obtained test piece was put in a heating device which was previously heated to 1200° C., and was held for 3 hours to be heat-treated to form an oxide scale on the surface of the Ni-based alloy. After the heat treatment, the test piece was taken out of the heating device and deformed by 15% with a hydraulic hammer to evaluate the presence or absence of peeling of the oxide scale. The evaluation of the presence or absence of peeling of the oxide scale was carried out by observing a 20 mm×20 mm area on the surface of the test piece with a digital microscope (magnification: 10 times) at a total of 20 locations, and determining the area of the area where the oxide scale remained. The total area of the oxide scale was calculated by approximation with a polygon. The total area of the places where the oxide scale remained was divided by the observed area, and the value obtained by multiplying by 100 was taken as the residual scale area ratio (%).

試験片を変形させた後でも酸化スケールが剥離せずに残存している面積で比較すると、特定の元素をわずかに含有しているものが、酸化スケールが試験片から円滑に剥離することが判明し、また、残存スケール面積率が30%以下であれば、酸化スケールの押し込みによる凹みや疵等の表面欠陥は認められなかった。上記試験の結果、特に、酸化スケール剥離性の効果が認められた元素は、Mo、W、Bであり、Mo、W、Bのうち、特にBの効果は顕著で、微量の添加にも関わらず、酸化スケール剥離性の効果が確認された。さらに、Ni基合金が酸化されることによる重量変化は、Al、Tiの効果で従来と略同程度を維持でき、酸化作用によるNi基合金のロスも従来と同程度となることを見出した。 Even after deforming the test piece, when comparing the area where the oxide scale did not peel and remained, it was found that the oxide scale slightly peeled from the test piece even if it contained a small amount of a specific element. If the residual scale area ratio was 30% or less, surface defects such as dents and scratches due to indentation of the oxide scale were not recognized. As a result of the above-mentioned test, the elements in which the effect of the oxide scale releasability is recognized are Mo, W, and B. Among Mo, W, and B, the effect of B is particularly remarkable, and even if a small amount is added, The effect of oxide scale releasability was confirmed. Furthermore, it has been found that the weight change due to the oxidation of the Ni-based alloy can be maintained at about the same level as in the conventional case due to the effect of Al and Ti, and the loss of the Ni-based alloy due to the oxidation effect is also at the same level as in the conventional case.

上記試験結果から、Ni基合金の変形による酸化スケール剥離性への添加元素の影響度合いが明らかとなり、重回帰分析により求めたのが、4.2×Mo+3.6×W+355×Bで表されるNi基合金の成分組成の関係式であり、4.2×Mo+3.6×W+355×Bを0.6以上とすることで、熱間加工工程で生成した酸化スケールの押し込みによるNi基合金表面の凹みや疵の発生を防止できることが判明した。 From the above test results, the degree of influence of the additional element on the oxide scale peeling property due to the deformation of the Ni-based alloy was clarified, and the value obtained by multiple regression analysis was expressed as 4.2×Mo+3.6×W+355×B. It is a relational expression of the component composition of the Ni-based alloy, and by setting 4.2×Mo+3.6×W+355×B to 0.6 or more, the Ni-based alloy surface of the Ni-based alloy surface due to indentation of the oxide scale generated in the hot working step is It was found that the occurrence of dents and flaws can be prevented.

上記Ni基合金の成分組成の関係式の値と残存スケール面積率(%)との関係を表すグラフを図1に示す。図1から、上記式の値が0.60以上であることで効果的にNi基合金の変形による酸化スケール剥離性が得られることがわかる。なお、図1の点線は、残存スケール面積率30%を示す。 A graph showing the relationship between the value of the relational expression of the component composition of the Ni-based alloy and the residual scale area ratio (%) is shown in FIG. From FIG. 1, it is understood that when the value of the above formula is 0.60 or more, the oxide scale peeling property due to the deformation of the Ni-based alloy can be effectively obtained. The dotted line in FIG. 1 indicates the residual scale area ratio of 30%.

本発明のスケール剥離性に優れるNi基合金によれば、熱間加工性、耐割れ性及び耐腐食性に優れた、Ni基合金中にNbが1.5質量%以上含まれる高Nb含有Ni基合金であっても、熱間加工工程で生成した酸化スケールの押し込みによる合金表面の凹みや疵の発生を防止でき、また、熱間加工前後で優れた歩留まりを得ることができる、スケール剥離性に優れるNi基合金を得ることができる。従って、欠陥のない良好な表面状態となった高Nb含有Ni基合金について、熱間加工後の歩留まりの低下を防止し、また余分な工程を追加することなく、熱間加工後であっても凹みや疵等の微細な欠陥発生も防止された表面状態を得ることができる。 According to the Ni-based alloy excellent in scale releasability of the present invention, the high Nb-containing Ni containing 1.5% by mass or more of Nb in the Ni-based alloy is excellent in hot workability, crack resistance and corrosion resistance. Even for base alloys, it is possible to prevent the occurrence of dents and flaws on the alloy surface due to the indentation of the oxide scale generated in the hot working process, and to obtain excellent yield before and after hot working. It is possible to obtain a Ni-based alloy having excellent properties. Therefore, with respect to the high Nb-containing Ni-based alloy having a good surface condition without defects, it is possible to prevent a decrease in yield after hot working, and to perform even after hot working without adding an extra step. It is possible to obtain a surface state in which the generation of minute defects such as dents and scratches is prevented.

また、本発明のスケール剥離性に優れるNi基合金が、Ni基合金塊であり、該Ni基合金塊が熱間鍛造されてNi基合金熱間圧延用スラブとすることで、酸化スケールの押し込みによる合金表面の微細な凹みや疵の発生も防止でき、また、熱間鍛造前後で優れた歩留まりを有するNi基合金熱間圧延用スラブを得ることができる。また、Ni基合金熱間圧延用スラブが熱間圧延等にて圧延されることで、酸化スケールの押し込みによる合金表面の微細な凹みや疵の発生も防止でき、また、圧延前後で優れた歩留まりを有するNi基合金板を得ることができる。 Further, the Ni-based alloy excellent in scale releasability of the present invention is a Ni-based alloy ingot, and the Ni-based alloy ingot is subjected to hot forging to form a Ni-based alloy hot rolling slab, thereby pushing in oxide scale. It is possible to prevent the generation of fine dents and flaws on the alloy surface due to the above, and it is possible to obtain a slab for hot rolling of a Ni-based alloy that has an excellent yield before and after hot forging. In addition, by rolling the Ni-based alloy hot rolling slab by hot rolling, etc., it is possible to prevent the generation of fine dents and flaws on the alloy surface due to the indentation of the oxide scale, and also to improve the yield before and after rolling. It is possible to obtain a Ni-based alloy plate having

このため、本発明のNi基合金は、例えば、要求品質が厳しい原子炉用材料に適用することができ、また、原子炉用材料を安価に製造できる。 Therefore, the Ni-based alloy of the present invention can be applied to, for example, materials for nuclear reactors with strict quality requirements and can be manufactured at low cost.

次に、本発明の実施例を説明するが、本発明はその趣旨を超えない限り、これらの実施例に限定されるものではない。 Next, examples of the present invention will be described, but the present invention is not limited to these examples unless the gist thereof is exceeded.

実施例1〜19、比較例1〜13
Ni基合金の合金塊の製造
まず、60t電気炉にて、スクラップ、ニッケル、クロム、ニオブなどの所定の原料を所定量投入して溶解後、AOD(Argon Oxygen Decarburization)またはVOD(Vacuum Oxygen Decarburization)にて、酸素とArの混合ガスを吹き込み脱炭した。その後、フェロシリコン合金および/またはアルミニウムを添加して、Cr還元し、その後、石灰石、蛍石を添加して、脱酸、脱硫を実施した。その後、いわゆる普通造塊法で、鋳型の下側から溶湯を注入して平角型Ni基合金塊へと鋳造して、下記表1に示す各種成分組成を有する実施例1〜19及び比較例1〜13のNi基合金を得た。平角型Ni基合金塊の質量は8トンであり、注入側が280mm×850mm、押湯側が550mm×1100mmの断面寸法であった。鋳造後に冷却固化したNi基合金塊を加熱し、1030℃にて2時間、保持した後、1200℃に再加熱して20%の据込み鍛造(熱間鍛造)を行って、サンプルであるNi基合金を製造した。なお、表1中の各成分の含有量は、質量%を意味し、残部はニッケル(Ni)並びに不可避的不純物からなる。また、下記表1中、下線を付した数値は、本発明の範囲外の数値であることを意味する。
Examples 1 to 19 and Comparative Examples 1 to 13
Production of Ni-based alloy ingot First, in a 60t electric furnace, a predetermined amount of a predetermined raw material such as scrap, nickel, chromium, and niobium is charged and melted, and then AOD (Argon Oxygen Decarburization) or VOD (Vacuum Oxygen Decarburization). At this point, a mixed gas of oxygen and Ar was blown to decarburize. Then, ferrosilicon alloy and/or aluminum was added to reduce Cr, and then limestone and fluorite were added to perform deoxidation and desulfurization. Then, in a so-called normal ingot making method, molten metal was injected from the lower side of the mold to cast into a rectangular Ni-based alloy ingot, and Examples 1 to 19 and Comparative Example 1 having various component compositions shown in Table 1 below. ~13 Ni-based alloys were obtained. The mass of the rectangular Ni-based alloy ingot was 8 tons, and the cross-sectional dimensions were 280 mm×850 mm on the injection side and 550 mm×1100 mm on the feeder side. The Ni-based alloy ingot, which has been cooled and solidified after casting, is heated and held at 1030° C. for 2 hours, and then reheated to 1200° C. to perform 20% upset forging (hot forging) to obtain a sample Ni. A base alloy was produced. The content of each component in Table 1 means% by mass, and the balance is nickel (Ni) and inevitable impurities. Further, in Table 1 below, the underlined numerical values mean values outside the scope of the present invention.

Figure 2020109199
Figure 2020109199

評価
(1)残存スケール面積
得られたNi基合金から10mm厚×100mm幅×150mm長さの試験片を切り出し、表面を湿式研磨♯120で仕上げて試験片とし、該試験片表面をデジタル顕微鏡(株式会社キーエンス製、VHX−2000、倍率10倍)で20mm×20mmの面積を計10箇所観察し、酸化スケールが残存していると判断した箇所の面積を多角形で近似して、酸化スケールの合計面積(A1)を算出した。酸化スケールの合計面積(A1)と観察面積の合計(A2)から、(A1/A2)×100にて残存スケール面積率(%)を算出し、以下の3段階で評価した。
◎:残存スケール面積率が20%以下
○:残存スケール面積率が20%超30%以下
×:残存スケール面積率が30%超
Evaluation (1) Residual scale area A test piece of 10 mm thickness x 100 mm width x 150 mm length was cut out from the obtained Ni-based alloy, the surface was finished by wet polishing #120 to obtain a test piece, and the surface of the test piece was digital microscope ( A total of 10 areas of 20 mm x 20 mm were observed with a VHX-2000 manufactured by Keyence Co., Ltd. (magnification: 10 times), and the area of the area where it was judged that the oxide scale remained was approximated by a polygon to obtain an oxide scale. The total area (A1) was calculated. From the total area (A1) of the oxidized scale and the total area (A2) of the observed area, the residual scale area ratio (%) was calculated by (A1/A2)×100 and evaluated in the following three stages.
◎: Remaining scale area ratio is 20% or less ○: Remaining scale area ratio is more than 20% and 30% or less ×: Remaining scale area ratio is more than 30%

(2)熱間鍛造前後の歩留まり
上記のように冷却固化したNi基合金塊について、熱間鍛造前の質量(a)と、熱間鍛造後に酸化スケールの除去及び酸化スケールの押し込みに起因する欠陥の除去を行った後の質量(b)とを、それぞれ測定し、(b/a)×100にて歩留まり(%)を算出し、以下の3段階で評価した。
◎:歩留まり99%以上
○:歩留まり96%以上99%未満
×:歩留まり96%未満
(2) Yield before and after hot forging Regarding the Ni-based alloy ingot solidified by cooling as described above, the mass (a) before hot forging and the defects caused by the removal of oxide scale and the indentation of oxide scale after hot forging The mass (b) after the removal of the above was measured, and the yield (%) was calculated by (b/a)×100, and evaluated in the following three stages.
◎: Yield 99% or more ○: Yield 96% or more and less than 99% ×: Yield less than 96%

残存スケール面積及び熱間鍛造前後の歩留まりの評価結果を下記表2に示す。 Table 2 below shows the evaluation results of the residual scale area and the yield before and after hot forging.

Figure 2020109199
Figure 2020109199

上記表2から、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜1.00%、マンガン(Mn):0.05〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.20%、チタン(Ti):0.001〜0.20%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、モリブデン(Mo)及び/またはタングステン(W):0.005〜0.25%、残部ニッケル(Ni)並びに不可避的不純物からなり、下記式(式中、各元素の表記は、Ni基合金中における該元素の含有量(質量%)を意味する。)
4.2×Mo+3.6×W+355×B≧0.60
の関係を満たす実施例1〜19のNi基合金では、残存スケール面積が○評価以上、熱間鍛造前後の歩留まりも○評価以上と、熱間鍛造において残存スケール面積を低減しつつ、熱間鍛造前後の歩留まりも向上した。従って、実施例1〜19のNi基合金では、熱間加工で生成した酸化スケールの押し込みによる合金表面の凹みや疵の発生を防止でき、熱間加工前後で優れた歩留まりを得ることができることが判明した。
From Table 2 above, carbon (C): 0.001 to 0.045%, silicon (Si): 0.05 to 1.00%, manganese (Mn): 0.05 to 1.00%, phosphorus (P ): 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14 to 24%, niobium (Nb): 1.5 to 4.0%, iron (Fe): 3 to. 25%, aluminum (Al): 0.01 to 0.20%, titanium (Ti): 0.001 to 0.20%, nitrogen (N): 0.003 to 0.020%, boron (B): 0.0010 to 0.0100%, oxygen (O): 0.0002 to 0.0020%, molybdenum (Mo) and/or tungsten (W): 0.005 to 0.25%, balance nickel (Ni) and It consists of unavoidable impurities and has the following formula (in the formula, the notation of each element means the content (mass %) of the element in the Ni-based alloy).
4.2×Mo+3.6×W+355×B≧0.60
In the Ni-based alloys of Examples 1 to 19 satisfying the relationship of, the residual scale area is ◯ or more, and the yield before and after hot forging is also ◯ or more, and the hot forging is performed while reducing the residual scale area in the hot forging. The front and rear yields have also improved. Therefore, in the Ni-based alloys of Examples 1 to 19, it is possible to prevent the occurrence of dents and flaws on the alloy surface due to the indentation of the oxide scale produced by hot working, and it is possible to obtain an excellent yield before and after hot working. found.

特に、上記式の値が1.00以上である実施例1、2、4、5、7、8、10〜17、19では、残存スケール面積率がより低減しつつ歩留まりがより向上し、上記式の値が1.15以上である実施例2、4、5、7、8、10〜17、19では、残存スケール面積率がさらに低減しつつ歩留まりがさらに向上した。また、上記式の値が1.40以上である実施例2、4、5、7、8、11〜15、17、19では、特に優れた残存スケール面積率と歩留まりを得ることができた。 In particular, in Examples 1, 2, 4, 5, 7, 8, 10, 17 and 19 in which the value of the above formula is 1.00 or more, the residual scale area ratio is further reduced and the yield is further improved. In Examples 2, 4, 5, 7, 8, 10 to 17, 19 in which the value of the expression is 1.15 or more, the yield was further improved while the residual scale area ratio was further reduced. Further, in Examples 2, 4, 5, 7, 8, 11 to 15, 17, and 19 in which the value of the above formula is 1.40 or more, particularly excellent residual scale area ratio and yield could be obtained.

これに対し、Bが0.0010%未満、Mo及びWが0.005%未満、上記式の値が0.60未満である比較例1、Bが0.0010%未満、上記式の値が0.60未満である比較例2、3、4、Mo及びWが0.005%未満、上記式の値が0.60未満である比較例5、上記式の値が0.60未満である比較例6、Mo及びWが0.005%未満である比較例7は、残存スケール面積が×評価、熱間鍛造前後の歩留まりも×評価であった。 On the other hand, B is less than 0.0010%, Mo and W are less than 0.005%, the value of the above formula is less than 0.60, Comparative Example 1, B is less than 0.0010%, and the value of the above formula is Comparative Examples 2, 3, 4, Mo and W of less than 0.60, less than 0.005%, Comparative Example 5 of which the value of the above formula is less than 0.60, Values of the above formula are less than 0.60 In Comparative Example 6 and Comparative Example 7 in which Mo and W were less than 0.005%, the residual scale area was evaluated x, and the yield before and after hot forging was evaluated x.

Mo及びWが0.25%超である比較例8、Moが0.25%超である比較例9、Wが0.25%超である比較例10、Alが0.01%未満である比較例11、Tiが0.001%未満である比較例12、Bが0.0100%超である比較例13では、残存スケール面積が○評価以上であったが、熱間鍛造前後の歩留まりが×評価となり、熱間鍛造前後における歩留まりを得ることができなかった。 Comparative example 8 in which Mo and W are more than 0.25%, comparative example 9 in which Mo is more than 0.25%, comparative example 10 in which W is more than 0.25%, and Al is less than 0.01%. In Comparative Example 11, Comparative Example 12 in which Ti is less than 0.001%, and Comparative Example 13 in which B is more than 0.0100%, the residual scale area was ◯ or more, but the yield before and after hot forging was The evaluation was x, and the yields before and after hot forging could not be obtained.

本発明では、熱間加工工程で生成した酸化スケールの押し込みによる合金表面の凹みや疵の発生を防止でき、また熱間加工前後で優れた歩留まりを得ることができるので、広汎な分野で利用可能であり、例えば、要求品質が厳しい原子炉用材料として適用することができる。 In the present invention, it is possible to prevent the occurrence of dents and scratches on the alloy surface due to the indentation of the oxide scale generated in the hot working step, and it is possible to obtain an excellent yield before and after hot working, so it can be used in a wide range of fields. Therefore, for example, it can be applied as a material for a nuclear reactor which has a strict required quality.

本発明の構成の要旨は、以下の通りである。
[1]質量%で、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜1.00%、マンガン(Mn):0.05〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.20%、チタン(Ti):0.001〜0.20%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、モリブデン(Mo)及び/またはタングステン(W)をそれぞれ0.005〜0.25%、残部ニッケル(Ni)並びに不可避的不純物からなり、
下記式(式中、各元素の表記は、Ni基合金中における該元素の含有量(質量%)を意味する。)の関係を満たすことを特徴とするスケール剥離性に優れるNi基合金。
4.2×Mo+3.6×W+355×B≧0.60
[2]質量%で、ホウ素(B):0.0010〜0.008%、モリブデン(Mo)及び/またはタングステン(W):0.008〜0.21%であることを特徴とする[1]に記載のスケール剥離性に優れるNi基合金。
[3]下記式(式中、各元素の表記は、Ni基合金中における該元素の含有量(質量%)を意味する。)の関係を満たすことを特徴とする[1]または[2]に記載のスケール剥離性に優れるNi基合金。
4.2×Mo+3.6×W+355×B≧1.00
[4][1]乃至[3]のいずれか1つに記載のNi基合金からなるNi基合金塊。 [5][4]に記載のNi基合金塊が熱間鍛造されたNi基合金熱間圧延用スラブ。
[6][5]に記載のNi基合金熱間圧延用スラブが熱間圧延されたNi基合金板。
The gist of the configuration of the present invention is as follows.
[1]% by mass, carbon (C): 0.001 to 0.045%, silicon (Si): 0.05 to 1.00%, manganese (Mn): 0.05 to 1.00%, phosphorus (P): 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14 to 24%, niobium (Nb): 1.5 to 4.0%, iron (Fe): 3 to 25%, aluminum (Al): 0.01 to 0.20%, titanium (Ti): 0.001 to 0.20%, nitrogen (N): 0.003 to 0.020%, boron (B ): 0.0010 to 0.0100%, oxygen (O): 0.0002 to 0.0020%, molybdenum (Mo) and/or tungsten (W) 0.005 to 0.25%, and the balance nickel ( Ni) and inevitable impurities,
A Ni-based alloy having excellent scale releasability, which satisfies the relationship of the following formula (wherein the notation of each element means the content (mass%) of the element in the Ni-based alloy).
4.2×Mo+3.6×W+355×B≧0.60
[2] Boron (B): 0.0010 to 0.008% and molybdenum (Mo) and/or tungsten (W): 0.008 to 0.21% by mass% [1] ] The Ni-based alloy excellent in scale releasability according to [1].
[3] [1] or [2] characterized by satisfying the following equation (wherein the notation of each element means the content (mass %) of the element in the Ni-based alloy)): A Ni-based alloy having excellent scale releasability according to 1.
4.2×Mo+3.6×W+355×B≧1.00
[4] A Ni-based alloy ingot made of the Ni-based alloy according to any one of [1] to [3]. [5] A slab for hot rolling of a Ni-based alloy obtained by hot forging the Ni-based alloy ingot according to [4].
[6] A Ni-base alloy sheet obtained by hot-rolling the slab for hot-rolling Ni-base alloy according to [5].

Claims (6)

質量%で、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜1.00%、マンガン(Mn):0.05〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.20%、チタン(Ti):0.001〜0.20%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、モリブデン(Mo)及び/またはタングステン(W):0.005〜0.25%、残部ニッケル(Ni)並びに不可避的不純物からなり、
下記式(式中、各元素の表記は、Ni基合金中における該元素の含有量(質量%)を意味する。)の関係を満たすことを特徴とするスケール剥離性に優れるNi基合金。
4.2×Mo+3.6×W+355×B≧0.60
In mass%, carbon (C): 0.001 to 0.045%, silicon (Si): 0.05 to 1.00%, manganese (Mn): 0.05 to 1.00%, phosphorus (P) : 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14 to 24%, niobium (Nb): 1.5 to 4.0%, iron (Fe): 3 to 25 %, aluminum (Al): 0.01 to 0.20%, titanium (Ti): 0.001 to 0.20%, nitrogen (N): 0.003 to 0.020%, boron (B): 0 0.0010 to 0.0100%, oxygen (O): 0.0002 to 0.0020%, molybdenum (Mo) and/or tungsten (W): 0.005 to 0.25%, balance nickel (Ni) and unavoidable It consists of
A Ni-based alloy having excellent scale releasability, which satisfies the relationship of the following formula (wherein the notation of each element means the content (mass%) of the element in the Ni-based alloy).
4.2×Mo+3.6×W+355×B≧0.60
質量%で、ホウ素(B):0.0010〜0.008%、モリブデン(Mo)及び/またはタングステン(W):0.008〜0.21%であることを特徴とする請求項1に記載のスケール剥離性に優れるNi基合金。 The boron (B): 0.0010 to 0.008% and the molybdenum (Mo) and/or the tungsten (W): 0.008 to 0.21% in mass%. Ni-based alloy with excellent scale releasability. 下記式(式中、各元素の表記は、Ni基合金中における該元素の含有量(質量%)を意味する。)の関係を満たすことを特徴とする請求項1または2に記載のスケール剥離性に優れるNi基合金。
4.2×Mo+3.6×W+355×B≧1.00
The scale exfoliation according to claim 1 or 2, wherein the following formula (wherein the notation of each element means the content (mass %) of the element in the Ni-based alloy) is satisfied. Ni-based alloy with excellent properties.
4.2×Mo+3.6×W+355×B≧1.00
請求項1乃至3のいずれか1項に記載のNi基合金からなるNi基合金塊。 A Ni-based alloy ingot made of the Ni-based alloy according to claim 1. 請求項4に記載のNi基合金塊が熱間鍛造されたNi基合金熱間圧延用スラブ。 A slab for hot rolling of a Ni-base alloy obtained by hot forging the Ni-base alloy ingot according to claim 4. 請求項5に記載のNi基合金熱間圧延用スラブが熱間圧延されたNi基合金板。 A Ni-based alloy sheet obtained by hot-rolling the slab for hot rolling of the Ni-based alloy according to claim 5.
JP2019000319A 2019-01-04 2019-01-04 Ni-based alloy, Ni-based alloy ingot, slab for Ni-based alloy hot rolling and Ni-based alloy sheet Active JP6539795B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019000319A JP6539795B1 (en) 2019-01-04 2019-01-04 Ni-based alloy, Ni-based alloy ingot, slab for Ni-based alloy hot rolling and Ni-based alloy sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019000319A JP6539795B1 (en) 2019-01-04 2019-01-04 Ni-based alloy, Ni-based alloy ingot, slab for Ni-based alloy hot rolling and Ni-based alloy sheet

Publications (2)

Publication Number Publication Date
JP6539795B1 JP6539795B1 (en) 2019-07-03
JP2020109199A true JP2020109199A (en) 2020-07-16

Family

ID=67144653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019000319A Active JP6539795B1 (en) 2019-01-04 2019-01-04 Ni-based alloy, Ni-based alloy ingot, slab for Ni-based alloy hot rolling and Ni-based alloy sheet

Country Status (1)

Country Link
JP (1) JP6539795B1 (en)

Also Published As

Publication number Publication date
JP6539795B1 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
JP6075349B2 (en) Ferritic stainless steel
ZA200307871B (en) Method of producing stainless steels having improved corrosion resistance.
TWI625398B (en) Ferrous iron-based stainless steel
JPWO2016159011A1 (en) Exhaust system parts
JP6990337B1 (en) Ni-based alloy with excellent surface properties and its manufacturing method
JP6142837B2 (en) Stainless steel with a structure consisting of two phases: ferrite phase and martensite phase
US11603585B2 (en) Austenitic stainless alloy
JP6908179B2 (en) Ferritic stainless steel
JP6554243B1 (en) Ni-based alloy and method for producing slab for hot rolling using Ni-based alloy
JP2019173087A (en) Martensitic stainless hot rolled steel sheet, manufacturing method of disc brake rotor using the steel sheet
JP2018115385A (en) Austenite stainless steel plate for exhaust parts, method for producing the same, exhaust part, and method for producing the same
JP6539795B1 (en) Ni-based alloy, Ni-based alloy ingot, slab for Ni-based alloy hot rolling and Ni-based alloy sheet
JP6539794B1 (en) Ni-based alloy and Ni-based alloy sheet
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
JP2022026809A (en) HIGH CORROSION RESISTANT Ni-Cr-Mo-N ALLOY EXCELLENT IN PHASE STABILITY
US2677610A (en) High temperature alloy steel and articles made therefrom
CN111004981A (en) XL3303-33 bar and production process thereof
JP7009666B1 (en) Ni—Cr—Mo alloy for welded pipes with excellent workability and corrosion resistance
JP3200148B2 (en) Method for producing austenitic stainless steel excellent in workability and resistance to time cracking
JP6954976B2 (en) High oxidation resistance Ni-Cr-Al alloy with excellent laser cutting properties and its manufacturing method
CN113265582B (en) Fe-Ni-Cr-Mo-Cu alloy
JP7334700B2 (en) Thick steel plate and its manufacturing method
TWI722377B (en) Fertilizer stainless steel
JP6617858B1 (en) Ferritic stainless steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190124

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190124

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190610

R150 Certificate of patent or registration of utility model

Ref document number: 6539795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250