JP6554243B1 - Ni-based alloy and method for producing slab for hot rolling using Ni-based alloy - Google Patents

Ni-based alloy and method for producing slab for hot rolling using Ni-based alloy Download PDF

Info

Publication number
JP6554243B1
JP6554243B1 JP2019000317A JP2019000317A JP6554243B1 JP 6554243 B1 JP6554243 B1 JP 6554243B1 JP 2019000317 A JP2019000317 A JP 2019000317A JP 2019000317 A JP2019000317 A JP 2019000317A JP 6554243 B1 JP6554243 B1 JP 6554243B1
Authority
JP
Japan
Prior art keywords
based alloy
forging
content
less
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019000317A
Other languages
Japanese (ja)
Other versions
JP2020109197A (en
Inventor
茂 平田
茂 平田
和人 瀧本
和人 瀧本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2019000317A priority Critical patent/JP6554243B1/en
Application granted granted Critical
Publication of JP6554243B1 publication Critical patent/JP6554243B1/en
Publication of JP2020109197A publication Critical patent/JP2020109197A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)

Abstract

【課題】本発明は、大角型Ni基合金塊においても、熱間鍛造工程の初期の工程における割れの発生を防止できるNi基合金及び該Ni基合金を用いた熱間圧延用スラブの製造方法を提供することを目的とする。【解決手段】質量%で、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜1.00%、マンガン(Mn):0.05〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.20%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、残部ニッケル(Ni)及び不可避的不純物からなり、Nb/B値が500以上であることを特徴とするNi基合金。【選択図】なしThe present invention relates to a Ni-based alloy capable of preventing the occurrence of cracks in the initial stage of the hot forging process even in a large square Ni-based alloy ingot, and a method for producing a slab for hot rolling using the Ni-based alloy The purpose is to provide. SOLUTION: In mass%, carbon (C): 0.001 to 0.045%, silicon (Si): 0.05 to 1.00%, manganese (Mn): 0.05 to 1.00%, Phosphorus (P): 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14-24%, niobium (Nb): 1.5-4.0%, iron (Fe) : 3-25%, Aluminum (Al): 0.01-0.20%, Nitrogen (N): 0.003-0.020%, Boron (B): 0.0010-0.0100%, Oxygen ( O): A Ni-based alloy comprising 0.0002 to 0.0020%, the balance nickel (Ni) and unavoidable impurities, and an Nb / B value of 500 or more. [Selection figure] None

Description

本発明は、耐応力腐食割れ、耐粒界腐食性に優れたNi基合金に関する。特に、鍛造工程において、割れ、欠けを抑制できる製造性に優れるNi基合金、該Ni基合金を用いた熱間圧延用スラブの製造方法に関するものである。   The present invention relates to a Ni-based alloy having excellent stress corrosion cracking resistance and intergranular corrosion resistance. In particular, the present invention relates to a Ni-based alloy excellent in manufacturability capable of suppressing cracking and chipping in a forging process, and a method for manufacturing a hot rolling slab using the Ni-based alloy.

Ni基合金は、耐食性、耐熱性に優れるため厳しい使用環境で適用されている。Ni基合金のうち、例えば、JIS NCF 600相当材は、優れた耐応力腐食割れ性、耐粒界腐食性を具備しているため、原子炉の炉心材として使用されている。さらに厳しい環境の場合には、通常、Nb等を添加し、固溶する炭素を炭化物として固着した合金が適用されている。   Ni-based alloys have excellent corrosion resistance and heat resistance, and are therefore applied in harsh usage environments. Among the Ni-based alloys, for example, JIS NCF 600 equivalent materials are used as core materials of nuclear reactors because they have excellent resistance to stress corrosion cracking and intergranular corrosion resistance. In a more severe environment, an alloy is generally used in which Nb or the like is added and solid solution carbon is fixed as a carbide.

しかしながら、Nbを添加したNi基合金は熱間加工性に問題があった。そこで、特許文献1では、NbCの溶体化熱処理が提案されている。また、特許文献2では、B添加およびO含有量の低減による粒界強化の改善が提案されている。しかしながら、いずれも一定の効果はあるものの、耐応力腐食割れ、耐粒界腐食性に改善の余地があった。   However, the Ni-based alloy to which Nb is added has a problem in hot workability. Therefore, Patent Document 1 proposes a solution heat treatment of NbC. Patent Document 2 proposes improvement of grain boundary strengthening by adding B and reducing the O content. However, although both have certain effects, there is room for improvement in stress corrosion cracking resistance and intergranular corrosion resistance.

そこで、特許文献3では、熱間加工性に優れ、耐応力腐食割れに優れたNi基合金、特許文献4では、Bを含有するスラブに表面欠陥を発生させないように熱間圧延し厚板とするNi基合金熱間圧延板の製造方法が提案されている。   Therefore, in Patent Document 3, a Ni-based alloy excellent in hot workability and excellent in stress corrosion cracking, and in Patent Document 4, hot rolled so as not to generate surface defects in a slab containing B and A method of manufacturing a Ni-based alloy hot-rolled sheet is proposed.

一方で、特許文献3、4でも、大角型合金塊とした場合に、製造が継続できないほどではないが、時折、熱間鍛造工程で割れが発生することがあった。従って、特に、大角型合金塊とした場合に、割れを更に改善させることが求められている。熱間鍛造工程での割れは、熱間鍛造工程の初期の工程である据込み鍛造後には発生しており、次工程のプレス加工で割れが拡大していることが判明した。また、この割れは、プレス加工以降の工程では、進展しない、すなわち、拡大しないことが判明した。従って、特に、大角型合金塊とした場合には、耐割れ性をさらに向上させるために、熱間鍛造工程の初期の工程である据込み鍛造における割れの発生を防止することが求められている。   On the other hand, even in Patent Documents 3 and 4, when the large-angle alloy ingot is used, cracks sometimes occur in the hot forging process, although the manufacturing cannot be continued. Therefore, especially when it is a large square type alloy lump, it is required to further improve cracking. The cracks in the hot forging process occurred after upset forging which is the initial process of the hot forging process, and it was found that the cracks were expanded in the press working of the next process. Further, it was found that this crack does not progress, that is, does not expand in the processes after press working. Therefore, particularly in the case of a large-angle alloy ingot, in order to further improve the crack resistance, it is required to prevent the occurrence of cracking in upset forging, which is an initial step of the hot forging step. .

特開昭63−53235号公報Japanese Patent Application Laid-Open No. 63-53235 特開昭61−84348号公報Japanese Patent Application Laid-Open No. 61-84348 特許第4993327号公報Patent No. 4,993,327 特許第4414588号公報Patent No. 4414588 gazette

上記事情に鑑み、本発明は、大角型Ni基合金塊においても、熱間鍛造工程の初期の工程における割れの発生を防止できるNi基合金及び該Ni基合金を用いた熱間圧延用スラブの製造方法を提供することを目的とする。   In view of the above circumstances, the present invention provides a Ni-based alloy and a slab for hot rolling using the Ni-based alloy, which can prevent the occurrence of cracking in the initial step of the hot forging process even in a large angle Ni-based alloy ingot. The purpose is to provide a manufacturing method.

発明者らは、上記課題を解決するために鋭意検討を重ね、上記問題を解決するには、据込み鍛造の1パス目の圧下率を小さくすると割れが防止できるのでは、と考えた。その結果、5%圧下後に割れは目視されなかった。しかしながら、鍛造を追加して工程を進めたところ、割れが確認された。結果として、圧下率を5%と小さくしても割れは防止できなかった。そこで、5%圧下後のNi基合金塊を研削、浸透探傷試験を実施したところ、微細な割れが部分的に確認された。さらに、熱間鍛造する前、つまり、昇温、加熱しただけのNi基合金塊についても浸透探傷試験を実施したところ、微細な割れが部分的に観察された。これに対し、鋳造を行ったままのNi基合金塊には割れは確認されなかった。つまり、熱間鍛造工程前のNi基合金塊を加熱する工程で、割れが発生したものと考えた。   The inventors repeatedly studied earnestly in order to solve the above-mentioned problem, and considered that the crack could be prevented if the rolling reduction in the first pass of upset forging was reduced in order to solve the above-mentioned problem. As a result, no cracks were visible after 5% reduction. However, when forging was added and the process proceeded, cracks were confirmed. As a result, cracking could not be prevented even when the rolling reduction was reduced to 5%. Therefore, when the Ni-based alloy ingot after 5% reduction was ground and subjected to a penetration flaw detection test, fine cracks were partially confirmed. Further, when a penetration flaw detection test was performed on a Ni-based alloy ingot which had just been heated and heated, that is, a fine crack was partially observed. In contrast, no cracks were observed in the as-cast Ni-based alloy ingot. That is, it was considered that cracking occurred in the process of heating the Ni-based alloy ingot before the hot forging process.

そこで、Ni基合金塊について割れ部の断面ミクロ組織を観察したところ、Ni基合金塊の粗柱状晶の粒界に割れがあり、そこに析出物が確認された。この析出物を分析したところ、NbとCを主成分とする化合物(炭化物)であったが、これ以外にBの存在が確認された。そこで、Nb量、B量、加熱条件の割れにおよぼす影響を検討した結果、割れを抑制するための成分としては、Nb/B量の制御が必要であることが判明した。また、熱間鍛造工程前のNi基合金の加熱条件としては、1000〜1049℃で少なくとも1時間以上保持し、Bを含むNbCの固溶をより促進することが必要であることを見出した。   Then, when the cross-sectional microstructure of the crack part was observed about the Ni base alloy lump, there was a crack in the grain boundary of the coarse columnar crystal of the Ni base alloy lump, and a precipitate was confirmed there. When this precipitate was analyzed, it was a compound (carbide) containing Nb and C as main components, but the presence of B was also confirmed. Thus, as a result of examining the influence of Nb content, B content, and heating conditions on cracking, it was found that the Nb / B content must be controlled as a component for suppressing cracking. Moreover, as a heating condition of the Ni-based alloy before the hot forging step, it was found that it is necessary to hold at 1000 to 1049 ° C. for at least one hour or more to further promote the solid solution of NbC containing B.

本発明の構成の要旨は、以下の通りである。
[1]質量%で、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜1.00%、マンガン(Mn):0.05〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.20%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、残部Ni及び不可避的不純物からなり、Nb/B値が500以上であることを特徴とするNi基合金。
[2]前記Nb/B値が、650以上であることを特徴とする[1]に記載のNi基合金。
[3]質量%で、炭素(C):0.005〜0.035%、ニオブ(Nb):2.1〜3.2%、ホウ素(B):0.0010〜0.0070%であることを特徴とする[1]または[2]に記載のNi基合金。
[4]質量5000Kg超であり、少なくとも1つの面が四角形であることを特徴とする[1]乃至[3]のいずれか1つに記載のNi基合金。
[5]質量%で、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜1.00%、マンガン(Mn):0.05〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.20%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸(O):0.0002〜0.0020%、残部ニッケル(Ni)及び不可避的不純物からなり、Nb/B値が500以上、質量5000Kg超、且つ少なくとも1つの面が四角形であるNi基合金を、1000〜1049℃で1時間以上保持したのち、再度昇温して1100〜1250℃に加熱して、5〜20%の据込み鍛造を行い、更に、1150〜1250℃の範囲に加熱して、プレス毎の圧下率を5〜15%の範囲として鍛造する第1プレス工程と、
前記第1プレス工程を実施した鋳塊を、1200〜1300℃の範囲に加熱して、800〜1300℃の温度範囲に保ちながら、プレス毎の圧下率を5〜85%の範囲として鍛造するまでの一工程を1回以上行う第2プレス工程と、
前記第2プレス工程を実施した鋳塊を、1050〜1230℃に加熱して合計圧下率を10%以上としてプレス加工を行う第3プレス工程と、
を含む熱間圧延用スラブの製造方法。
The summary of the configuration of the present invention is as follows.
[1] By mass%, carbon (C): 0.001 to 0.045%, silicon (Si): 0.05 to 1.00%, manganese (Mn): 0.05 to 1.00%, phosphorus (P): 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14-24%, niobium (Nb): 1.5-4.0%, iron (Fe): 3 to 25%, aluminum (Al): 0.01 to 0.20%, nitrogen (N): 0.003 to 0.020%, boron (B): 0.0010 to 0.0100%, oxygen (O 2.) A Ni-based alloy comprising 0.0002 to 0.0020%, the balance Ni and unavoidable impurities, and having an Nb / B value of 500 or more.
[2] The Ni-based alloy according to [1], wherein the Nb / B value is 650 or more.
[3] By mass%, carbon (C): 0.005-0.035%, niobium (Nb): 2.1-3.2%, boron (B): 0.0010-0.0070% Ni base alloy as described in [1] or [2] characterized by the above.
[4] The Ni-based alloy according to any one of [1] to [3], wherein the mass is greater than 5000 kg and at least one surface is a quadrangle.
[5] By mass%, carbon (C): 0.001 to 0.045%, silicon (Si): 0.05 to 1.00%, manganese (Mn): 0.05 to 1.00%, phosphorus (P): 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14-24%, niobium (Nb): 1.5-4.0%, iron (Fe): 3 to 25%, aluminum (Al): 0.01 to 0.20%, nitrogen (N): 0.003 to 0.020%, boron (B): 0.0010 to 0.0100%, acid (O ): 0.0002 to 0.0020%, a balance of nickel (Ni) and inevitable impurities, an Nb / B value of 500 or more, a mass of more than 5000 kg, and at least one surface of a quadrilateral Ni-based alloy is 1000 After holding at -1049 ° C for 1 hour or more, the temperature is raised again to 1100-1250 ° C A first press step for performing upsetting forging of 5 to 20%, further heating to a range of 1150 to 1250 ° C., and forging with a rolling reduction per press of 5 to 15%;
Until the ingot subjected to the first pressing step is heated to a range of 1200 to 1300 ° C. and kept in a temperature range of 800 to 1300 ° C., forging with a reduction ratio of each press of 5 to 85%. A second pressing step of performing one step one or more times;
A third pressing step in which the ingot subjected to the second pressing step is heated to 1050 to 1230 ° C. and the total rolling reduction is set to 10% or more, and the pressing is performed;
A method of producing a slab for hot rolling comprising:

本発明のNi基合金によれば、昇温時に温度差が生じやすい大角型Ni基合金塊であっても、割れ、欠けの発生を防止できる。また、本発明のNi基合金を適用することで、大角型Ni基合金塊であっても、割れ、欠けの発生を防止した熱間圧延用スラブを製造することができる。このため、本発明のNi基合金は、要求品質が厳しい原子炉用材料に適用することができる。   According to the Ni-based alloy of the present invention, it is possible to prevent the occurrence of cracking and chipping even in a large-angle Ni-based alloy lump that tends to cause a temperature difference when the temperature is raised. Further, by applying the Ni-based alloy of the present invention, it is possible to manufacture a slab for hot rolling that prevents generation of cracks and chips even in a large-angle Ni-based alloy lump. For this reason, the Ni-based alloy of the present invention can be applied to a nuclear reactor material having strict required quality.

次に、本発明のNi基合金について詳細を説明する。本発明のNi基合金は、質量%(以下、Ni基合金の各成分の含有量である質量%を、単に「%」という。)で、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜1.00%、マンガン(Mn):0.05〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.20%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、残部ニッケル(Ni)及び不可避的不純物からなり、Nb/B値が500以上である。   Next, the Ni-based alloy of the present invention will be described in detail. The Ni-based alloy of the present invention is in mass% (hereinafter, mass%, which is the content of each component of the Ni-based alloy, is simply referred to as “%”), and carbon (C): 0.001 to 0.045%. , Silicon (Si): 0.05 to 1.00%, manganese (Mn): 0.05 to 1.00%, phosphorus (P): 0.015% or less, sulfur (S): 0.0030% or less , Chromium (Cr): 14 to 24%, niobium (Nb): 1.5 to 4.0%, iron (Fe): 3 to 25%, aluminum (Al): 0.01 to 0.20%, nitrogen (N): 0.003 to 0.020%, Boron (B): 0.0010 to 0.0100%, Oxygen (O): 0.0002 to 0.0020%, balance nickel (Ni) and inevitable impurities And has an Nb / B value of 500 or more.

C:0.001〜0.045%
Ni基合金中のCは、オーステナイト相を安定化し、室温での機械的強度を確保するために必須の元素である。このためには、0.001%以上の含有量が必要である。一方で、過剰量の添加はNbとCを主成分とする化合物(炭化物)を生成させ、その近傍にCr欠乏部を形成し、耐食性を著しく低下させる。また、NbとCを主成分とする化合物が増えて、割れを発生させる。このため、含有量の上限は0.045%とする。含有量の好ましい下限は0.003%、特に好ましい下限は0.005%である。また、含有量の好ましい上限は0.040%、特に好ましい上限は0.035%である。
C: 0.001 to 0.045%
C in the Ni-based alloy is an essential element to stabilize the austenite phase and to ensure mechanical strength at room temperature. For this purpose, a content of 0.001% or more is required. On the other hand, addition of an excessive amount generates a compound (carbide) containing Nb and C as main components, forms a Cr-deficient portion in the vicinity thereof, and remarkably reduces corrosion resistance. Moreover, the compound which has Nb and C as a main component increases, and a crack is generated. Therefore, the upper limit of the content is 0.045%. The preferable lower limit of the content is 0.003%, and the particularly preferable lower limit is 0.005%. The upper limit of the content is preferably 0.040%, and particularly preferably 0.035%.

Si:0.05〜1.00%
Ni基合金中のSiは、脱酸を行なうのに必須の元素であり、さらに、耐応力腐食割れ性を向上させるのに必要である。この効果は、0.05%以上の添加により得られる。しかしながら、過剰量の添加は、介在物の増加、これに関連して表面欠陥の発生を招く。このため、含有量の上限は1.00%とする。含有量の好ましい下限は0.08%、特に好ましい下限は0.10%である。また、含有量の好ましい上限は0.80%、特に好ましい上限は0.60%である。
Si: 0.05-1.00%
Si in the Ni-based alloy is an essential element for deoxidation, and is further required to improve stress corrosion cracking resistance. This effect is obtained by addition of 0.05% or more. However, the addition of an excessive amount leads to the increase of inclusions and the associated generation of surface defects. Therefore, the upper limit of the content is 1.00%. A preferable lower limit of the content is 0.08%, and a particularly preferable lower limit is 0.10%. Moreover, the upper limit with preferable content is 0.80%, and an especially preferable upper limit is 0.60%.

Mn:0.05〜1.00%
Ni基合金中のMnは、Siと同じく脱酸を行なうのに必須の元素であり、オーステナイト相の安定にも寄与する。特に、添加による硬さ上昇が小さく、機械的強度を適正化しつつ、オーステナイト相の安定を確保できる元素である。このため、少なくとも0.05%以上の添加が必要である。しかしながら、過剰量の添加は、耐食性を低下させるため、含有量の上限は1.00%とする。含有量の好ましい下限は、0.08%、特に好ましい下限は0.10%である。また、含有量の好ましい上限は0.80%、特に好ましい上限は0.60%である。
Mn: 0.05-1.00%
Mn in the Ni-based alloy is, like Si, an element essential for deoxidation, and also contributes to the stability of the austenite phase. In particular, it is an element capable of securing the stability of the austenite phase while the increase in hardness due to the addition is small and the mechanical strength is optimized. For this reason, addition of at least 0.05% or more is necessary. However, the addition of an excessive amount reduces the corrosion resistance, so the upper limit of the content is 1.00%. A preferable lower limit of the content is 0.08%, and a particularly preferable lower limit is 0.10%. Moreover, the upper limit with preferable content is 0.80%, and an especially preferable upper limit is 0.60%.

P:0.015%以下
Ni基合金中のPは、粒界に偏析し、耐食性、熱間加工性を低下させてしまう元素である。このため、その上限は厳しく限定する必要がある。本発明では0.015%以下に制限する。含有量の好ましい上限は0.012%、特に好ましい上限は、0.010%である。また、含有量の下限は0%に近いほど好ましいが、例えば、0.001%が挙げられる。
P: 0.015% or less P in the Ni-based alloy is an element which segregates at grain boundaries and lowers corrosion resistance and hot workability. For this reason, the upper limit needs to be strictly limited. In the present invention, the content is limited to 0.015% or less. A preferable upper limit of the content is 0.012%, and a particularly preferable upper limit is 0.010%. Moreover, although the minimum of content is so preferable that it is near 0%, 0.001% is mentioned, for example.

S:0.0030%以下
Ni基合金中のSは、粒界に偏析して低融点化合物を形成し、熱間加工性の低下を招く元素であり、極力低減すべきである。このため、その上限は厳しく限定する必要がある。本発明では0.0030%以下に制限する。好ましくは0.0025%以下、特に好ましくは0.0020%以下である。また、含有量の下限は0%に近いほど好ましいが、例えば、0.0001%が挙げられる。
S: 0.0030% or less S in the Ni-based alloy is an element that segregates at the grain boundary to form a low-melting-point compound and causes a decrease in hot workability, and should be reduced as much as possible. For this reason, the upper limit needs to be strictly limited. In the present invention, the content is limited to 0.0030% or less. Preferably it is 0.0025% or less, especially preferably 0.0020% or less. Moreover, although the minimum of content is so preferable that it is near 0%, 0.0001% is mentioned, for example.

Cr:14〜24%
Ni基合金中のCrは、耐食性の向上に寄与する重要な元素であり、厳しい環境に使用するのに必須の元素である。このため、少なくとも14%の添加は必要である。しかしながら、24%を越えて含有すると、高温での機械的強度が高くなり加工が困難となる。さらに、オーステナイト相の不安定化を招き、炭化物の析出も促進する。このため、含有量の上限は24%とする。含有量の好ましい下限は15.0%、特に好ましい下限は15.5%である。また、含有量の好ましい上限は23.0%、特に好ましい上限は22.0%である。
Cr: 14-24%
Cr in the Ni-based alloy is an important element contributing to the improvement of the corrosion resistance, and an element essential for use in severe environments. For this reason, an addition of at least 14% is necessary. However, if it is contained in excess of 24%, the mechanical strength at high temperatures becomes high and processing becomes difficult. Furthermore, the austenite phase is destabilized and the precipitation of carbides is promoted. Therefore, the upper limit of the content is 24%. A preferable lower limit of the content is 15.0%, and a particularly preferable lower limit is 15.5%. The preferable upper limit of the content is 23.0%, and the particularly preferable upper limit is 22.0%.

Nb:1.5〜4.0%
Ni基合金中のNbは、CおよびNを炭化物、窒化物もしくは炭窒化物として析出させて耐食性を向上させる効果がある。この効果を得るには、少なくとも1.5%以上の添加が必要である。しかしながら、含有量が多すぎると過剰に析出した析出物により粒界脆性を生じさせる場合があるので、含有量の上限は4.0%とする。含有量の好ましい下限は2.0%、特に好ましい下限は2.1%である。また、含有量の好ましい上限は3.7%、特に好ましい上限は3.2%である。
Nb: 1.5-4.0%
Nb in the Ni-based alloy has the effect of precipitating C and N as carbides, nitrides or carbonitrides to improve the corrosion resistance. In order to obtain this effect, addition of at least 1.5% or more is necessary. However, if the content is too large, excessive precipitates may cause grain boundary brittleness, so the upper limit of the content is 4.0%. The preferable lower limit of the content is 2.0%, and the particularly preferable lower limit is 2.1%. The preferable upper limit of the content is 3.7%, and the particularly preferable upper limit is 3.2%.

Fe:3〜25%
Ni基合金中のFeは、靭性の向上に寄与する成分である。この効果を得るには少なくとも3%の添加が必要である。しかしながら、含有量が25%を越えると耐食性を低下させる。このため、含有量の上限は25%とする。含有量の好ましい下限は5%、特に好ましい下限は6%である。また、含有量の好ましい上限は23%、特に好ましい上限は21%である。
Fe: 3 to 25%
Fe in the Ni-based alloy is a component that contributes to improvement in toughness. At least 3% addition is required to achieve this effect. However, if the content exceeds 25%, the corrosion resistance is lowered. Therefore, the upper limit of the content is 25%. The preferable lower limit of the content is 5%, and the particularly preferable lower limit is 6%. The preferable upper limit of the content is 23%, and the particularly preferable upper limit is 21%.

Al:0.01〜0.20%
Ni基合金中のAlは、脱酸を行なうのに必須の元素であり、少なくとも0.01%以上の添加が必要である。しかしながら、0.20%を越えて添加すると、熱間加工性を劣化させ、母材中に介在物を多数形成し、耐食性が低下する傾向がある。このため、含有量の上限は0.20%とする。含有量の好ましい下限は0.02%、特に好ましい下限は0.03%である。また、含有量の好ましい上限は0.18%、特に好ましい上限は0.16%である。
Al: 0.01-0.20%
Al in the Ni-based alloy is an element essential for deoxidation, and addition of at least 0.01% or more is necessary. However, when it is added in excess of 0.20%, the hot workability is deteriorated, many inclusions are formed in the base material, and the corrosion resistance tends to be lowered. Therefore, the upper limit of the content is 0.20%. A preferable lower limit of the content is 0.02%, and a particularly preferable lower limit is 0.03%. The preferable upper limit of the content is 0.18%, and the particularly preferable upper limit is 0.16%.

N:0.003〜0.020%
Ni基合金中のNは、室温での機械的強度を向上させ、オーステナイト相の安定度を増し、さらに耐食性も向上させる。このため、0.003%以上の添加が必要である。しかしながら、Nbと化合物を形成することから有効なNb量を低減させ、ブローホールが生じやすくなる。このため、含有量の上限は0.020%とする。含有量の好ましい下限は0.005%、特に好ましい下限は0.008%である。また、含有量の好ましい上限は0.014%、特に好ましい上限は0.012%である。
N: 0.003-0.020%
N in the Ni-based alloy improves the mechanical strength at room temperature, increases the stability of the austenite phase, and further improves the corrosion resistance. For this reason, addition of 0.003% or more is required. However, the formation of a compound with Nb reduces the amount of Nb that is effective, and blow holes are likely to occur. Therefore, the upper limit of the content is 0.020%. A preferable lower limit of the content is 0.005%, and a particularly preferable lower limit is 0.008%. The preferable upper limit of the content is 0.014%, and the particularly preferable upper limit is 0.012%.

B:0.0010〜0.0100%
Ni基合金中のBは、熱間加工性を改善する重要な元素である。熱間鍛造、熱間圧延において、安定して割れを防止するには少なくとも0.0010%の添加が必要である。これに対し、0.0100%を越えて含有すると、かえって熱間加工性が低下する。よって、含有量の上限は0.0100%とする。含有量の好ましい下限は0.0015%、特に好ましい下限は0.0020%である。また、含有量の好ましい上限は0.0080%、特に好ましい上限は0.0070%である。
B: 0.0010 to 0.0100%
B in the Ni-based alloy is an important element that improves hot workability. In hot forging and hot rolling, at least 0.0010% of addition is required to stably prevent cracking. On the other hand, when it contains exceeding 0.0100%, hot workability will fall rather. Therefore, the upper limit of the content is 0.0100%. A preferable lower limit of the content is 0.0015%, and a particularly preferable lower limit is 0.0020%. Moreover, the upper limit with preferable content is 0.0080%, and an especially preferable upper limit is 0.0070%.

O:0.0002〜0.0020%
Ni基合金中のOは、溶解、精錬工程でN量の低減を容易とする。このため、少なくとも0.0002%以上の含有が必要である。しかしながら、OはAl、Ti、Si、Mnと結合し、脱酸生成物を生成する。0.0020%を越えて含有する場合、脱酸生成物による耐食性の低下、表面欠陥の原因となる。このため、含有量の上限は0.0020%とする。含有量の好ましい下限は0.0003%、特に好ましい下限は0.0004%である。また、含有量の好ましい上限は0.0019%、特に好ましい上限は0.0018%である。
O: 0.0002 to 0.0020%
O in the Ni-based alloy facilitates reduction of the N amount in the melting and refining processes. For this reason, it is necessary to contain at least 0.0002% or more. However, O combines with Al, Ti, Si, and Mn to produce a deoxidation product. When it is contained in excess of 0.0020%, the corrosion resistance is reduced due to the deoxidation product, which causes surface defects. For this reason, the upper limit of the content is made 0.0020%. A preferable lower limit of the content is 0.0003%, and a particularly preferable lower limit is 0.0004%. The preferable upper limit of the content is 0.0019%, and the particularly preferable upper limit is 0.0018%.

本発明のNi基合金では、上記成分以外の残部はNi及び不可避的不純物である。本発明のNi基合金では、主成分としてNiが含有されている。   In the Ni-based alloy of the present invention, the balance other than the above components is Ni and inevitable impurities. The Ni-based alloy of the present invention contains Ni as a main component.

Nb/B値が500以上
本発明のNi基合金中におけるNb/Bの値は、大角型Ni基合金塊を加熱し、据込み鍛造する際に発生する割れを防止するための指標である。Nb/Bの値が500未満の場合、Nb量に対しB量が過剰となり、NbとC、Bとの析出物が形成され、大角型Ni基合金塊に割れが発生する。このため、Nb/Bの値は500以上とする。Nb/Bの値の好ましい下限は600、特に好ましい下限は650である。また、Nb/Bの値の上限は、特に限定されないが、例えば、2000である。なお、本明細書中、「大角型」とは、質量5000Kg超、且つ少なくとも1つの面が四角形であることを意味する。
Nb / B value of 500 or more The value of Nb / B in the Ni-based alloy of the present invention is an index for preventing cracks that occur when the large-angle Ni-based alloy ingot is heated and upset. When the value of Nb / B is less than 500, the amount of B becomes excessive with respect to the amount of Nb, precipitates of Nb, C, and B are formed, and cracks occur in the large-angle Ni-based alloy ingot. Therefore, the value of Nb / B is set to 500 or more. A preferable lower limit of the value of Nb / B is 600, and a particularly preferable lower limit is 650. The upper limit of the value of Nb / B is not particularly limited, but is 2000, for example. In the present specification, "large-angle type" means that a mass is more than 5000 kg and at least one surface is a square.

本発明のNi基合金によれば、昇温時に温度差が生じやすい大角型Ni基合金塊であっても、割れ、欠けの発生を防止できる。従って、本発明のNi基合金は、例えば、要求品質が厳しい原子炉用材料として適用することができる。   According to the Ni-based alloy of the present invention, it is possible to prevent the occurrence of cracking and chipping even in a large-angle Ni-based alloy lump that tends to cause a temperature difference when the temperature is raised. Therefore, the Ni-based alloy of the present invention can be applied, for example, as a nuclear reactor material with strict required quality.

次に、本発明のNi基合金を用いて、特に、大角型Ni基合金塊の状態から、熱間圧延用スラブを製造する方法について、以下に説明する。本発明のNi基合金を用いて熱間圧延用スラブを製造する方法は、本発明のNi基合金塊に対し、第1プレス工程と、第2プレス工程と、第3プレス工程と、をこの順に実施する工程を含む。   Next, a method for producing a slab for hot rolling using the Ni-based alloy of the present invention, particularly from the state of a large-angle Ni-based alloy lump will be described below. The method of producing a slab for hot rolling using the Ni-based alloy of the present invention comprises a first pressing step, a second pressing step, and a third pressing step for the Ni-based alloy mass of the present invention. It includes the steps to be carried out in order.

第1プレス工程
第1プレス工程には、熱間鍛造工程の初期の工程である据込み鍛造の前に、本発明のNi基合金を、加熱処理後、再度昇温して1100〜1250℃に加熱して5〜20%の据込み鍛造を行い、次に、1150〜1250℃で据込み鍛造する工程を含む。
First Pressing Process In the first pressing process, the Ni-based alloy of the present invention is heated again after heating treatment to 1100 to 1250 ° C. before upsetting forging, which is the initial process of the hot forging process. Heat to 5 to 20% upset forging, and then include upset forging at 1150-1250 ° C.

本発明のNi基合金では、上記の通り、特に、大角型Ni基合金塊の状態で熱間鍛造を行う場合、熱間鍛造工程の初期の工程である据込み鍛造前の加熱工程、すなわち、熱間鍛造工程前のNi基合金を加熱する工程で、加熱条件によっては微細な割れが発生することがある。従って、据込み鍛造時の微細な割れも防止してNi基合金の特性をさらに向上させるためには、本発明のNi基合金を据込み鍛造する前の加熱条件を制御することが必要となる。   In the Ni-based alloy of the present invention, as described above, particularly, when hot forging is performed in the form of a large rectangular Ni-based alloy mass, the heating process before upset forging, which is the initial process of the hot forging process, In the step of heating the Ni-based alloy before the hot forging step, fine cracks may occur depending on the heating conditions. Therefore, it is necessary to control the heating conditions before upset forging the Ni based alloy of the present invention in order to prevent fine cracks during upset forging to further improve the characteristics of the Ni based alloy. .

据込み鍛造前の大角型Ni基合金塊の加熱条件は、加熱温度1000〜1049℃、加熱温度1000〜1049℃における保持時間を1時間以上とする。上記加熱条件とすることで、Ni基合金の凝固時に析出するBを含むNbCの固溶を促進して、Bを含むNbCの析出物を効率的に再固溶し無害化できる。   The heating conditions for the large-angle Ni-based alloy ingot before upset forging are a heating temperature of 1000 to 1049 ° C. and a holding time at a heating temperature of 1000 to 1049 ° C. of 1 hour or more. By setting the above heating conditions, solid solution of NbC containing B precipitated when solidifying the Ni-based alloy can be promoted, and precipitates of NbC containing B can be efficiently dissolved again and made harmless.

1000℃未満の加熱温度では、Bを含むNbCの析出物の再固溶が不十分であり、十分な無害化の効果が得られない。一方で、1049℃を越える加熱温度で保持すると、Bを含むNbCの析出物が再固溶するよりも前に、Ni基合金に部分的な溶解が生じてしまい、かえってNi基合金に割れを生じさせる。このため、加熱温度は1000〜1049℃とする。加熱温度の下限は1010℃が好ましく、1020℃が特に好ましい。また、加熱温度の上限は1047℃が好ましく、1045℃が特に好ましい。   When the heating temperature is less than 1000 ° C., the re-solution of the NbC precipitate containing B is insufficient, and a sufficient detoxifying effect cannot be obtained. On the other hand, when maintained at a heating temperature exceeding 1049 ° C., partial dissolution occurs in the Ni-based alloy before the NbC-containing precipitate containing B re-dissolves, and rather, the Ni-based alloy cracks. Make it happen. Therefore, the heating temperature is set to 1000 to 1049 ° C. The lower limit of the heating temperature is preferably 1010 ° C., particularly preferably 1020 ° C. Moreover, 1047 degreeC is preferable and the upper limit of heating temperature has especially preferable 1045 degreeC.

据込み鍛造前の大角型Ni基合金塊の加熱にあたり、Bを含むNbCの析出物の再固溶の効果を安定して得るためには、加熱温度1000〜1049℃における保持時間も制御する必要がある。上記保持時間は1.0時間以上が必要である。1.0時間未満では、Bを含むNbCの析出物の再固溶の効果が十分に得られない。上記保持時間は1.5時間以上が好ましく、2.0時間以上が特に好ましい。上記保持時間の上限は、特に限定されないが、例えば、生産効率の点から10時間以下が好ましい。   It is necessary to control the holding time at the heating temperature of 1000 to 1049 ° C in order to stably obtain the effect of the solid solution of the precipitate of NbC containing B on the heating of the large square Ni base alloy mass before upset forging. There is. The holding time needs to be 1.0 hour or more. If it is less than 1.0 hour, the effect of re-dissolution of the NbC precipitate containing B cannot be sufficiently obtained. The holding time is preferably 1.5 hours or more, and particularly preferably 2.0 hours or more. Although the upper limit of the said holding time is not specifically limited, For example, 10 hours or less are preferable from the point of production efficiency.

上記した据込み鍛造前の加熱後、本発明のNi基合金を再度昇温して1100〜1250℃に加熱して、5〜20%の据込み鍛造を行う。   After heating before the above-mentioned upset forging, the Ni-based alloy of the present invention is heated again and heated to 1100 to 1250 ° C. to perform upset forging of 5 to 20%.

次に、大角型Ni基合金塊をさらに鍛造する。このさらなる鍛造の場合、その加熱温度は、高い温度が好ましい。これは、大角型の合金塊では、鍛造の際に大きな圧下力が必要であるが、高温で加熱することで圧下力を低減でき、必要な圧下率を確保しやすいためである。上記から、大角型Ni基合金塊をさらに鍛造する際には、1150℃以上での加熱が必要である。しかしながら、大角型Ni基合金塊では、1250℃を超える加熱温度は、加熱、均熱の時間が長くなり過ぎて生産性を低下させ、また、凝固偏析部で局部的な溶融を生じさせる。よって、大角型Ni基合金塊をさらに鍛造する場合の加熱温度は1150〜1250℃とする。上記加熱温度の下限は1160℃が好ましく、1170℃が特に好ましい。また、上記加熱温度の上限は1240℃が好ましく、1230℃が特に好ましい。   Next, the large angle Ni-based alloy mass is further forged. In the case of this further forging, the heating temperature is preferably high. This is because a large-angle type alloy ingot requires a large rolling force during forging, but can be reduced by heating at a high temperature, and a necessary rolling reduction rate can be easily secured. From the above, when further forging the large square Ni-based alloy ingot, heating at 1150 ° C. or higher is necessary. However, in the large angle Ni base alloy ingot, the heating temperature exceeding 1250 ° C. makes the heating and soaking time too long to lower the productivity, and causes local melting in the solidification segregation portion. Therefore, the heating temperature when further forging the large-angle Ni-based alloy ingot is 1150 to 1250 ° C. The lower limit of the heating temperature is preferably 1160 ° C, particularly preferably 1170 ° C. Moreover, 1240 degreeC is preferable and the upper limit of the said heating temperature has especially preferable 1230 degreeC.

また、大角型Ni基合金塊をさらに鍛造する、さらなる鍛造の場合、プレス毎の圧下率を5〜15%の範囲とする。   Moreover, in the case of the further forging which further forges a large square type Ni base alloy ingot, the rolling reduction rate for every press shall be 5 to 15% of range.

第2プレス工程
第2プレス工程では、第1プレス工程を実施した鋳塊(Ni基合金塊)について、1200〜1300℃の範囲に加熱して、800〜1300℃の温度範囲に保ちながら、プレス毎の圧下率を5〜85%の範囲として鍛造するまでの一工程を、1回以上行う。
Second press step In the second press step, the ingot (Ni-based alloy ingot) subjected to the first press step is heated in the range of 1200 to 1300 ° C and kept in the temperature range of 800 to 1300 ° C while pressing. One step or more is performed one or more times until forging with a rolling reduction in each range of 5 to 85%.

第3プレス工程
第3プレス工程では、第2プレス工程を実施した鋳塊(Ni基合金塊)について、1050〜1230℃の範囲に加熱して、合計圧下率を10%以上としてプレス加工を行う。
Third Pressing Process In the third pressing process, the ingot (Ni-based alloy ingot) subjected to the second pressing process is heated to a range of 1050 to 1230 ° C., and the total rolling reduction is performed at 10% or more. .

本発明のNi基合金を適用し、上記第1〜第3プレス工程を実施することで、大角型Ni基合金塊であっても、割れ、欠けの発生を防止した熱間圧延用スラブを製造することができる。   By applying the Ni-based alloy of the present invention and carrying out the first to third pressing steps, a slab for hot rolling in which the occurrence of cracking or chipping is prevented even for a large-square Ni-based alloy mass is produced. can do.

次に、本発明の実施例を説明するが、本発明はその趣旨を超えない限り、これらの実施例に限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited to these examples as long as the gist thereof is not exceeded.

実施例1〜10、比較例1〜6のNi基合金の製造
60t電気炉にて、スクラップ、ニッケル、クロム、ニオブなどの所定の原料を所定量投入して溶解後、AOD(Argon Oxygen Decarburization)またはVOD(Vacuum Oxygen Decarburization)にて、酸素とArの混合ガスを吹き込み脱炭した。その後、フェロシリコン合金および/またはアルミニウムを添加して、Cr還元し、その後、石灰石、蛍石を添加して、脱酸、脱硫を実施した。その後、いわゆる普通造塊法で、鋳型の下側から溶湯を注入して大角型Ni基合金塊へと鋳造した。大角型Ni基合金塊の質量は8トンであり、注入側が280mm×850mm、押湯側が550mm×1100mmの断面寸法であった。実施例1〜10、比較例1〜6のNi基合金の成分組成を、下記表1に示す。
Manufacture of Ni-based alloys of Examples 1 to 10 and Comparative Examples 1 to 6 In a 60 t electric furnace, a predetermined amount of raw materials such as scrap, nickel, chromium, niobium, etc. are charged and melted, and then AOD (Argon Oxygen Decarburization) Or, at VOD (Vacuum Oxygen Decarburization), a mixed gas of oxygen and Ar was blown to decarburize. Thereafter, ferrosilicon alloy and / or aluminum were added to reduce Cr, and then limestone and fluorite were added to perform deoxidation and desulfurization. Thereafter, the so-called ordinary ingot casting method was performed by injecting a molten metal from the lower side of the mold and casting it into a large rectangular Ni-based alloy mass. The mass of the large angle Ni-based alloy block was 8 tons, and the cross-sectional dimensions were 280 mm × 850 mm on the injection side and 550 mm × 1100 mm on the feeder side. The component compositions of the Ni-based alloys of Examples 1 to 10 and Comparative Examples 1 to 6 are shown in Table 1 below.

鋳造した実施例1〜10、比較例1〜6のNi基合金の据込み鍛造前の加熱処理と据込み鍛造
鋳造後、冷却固化した大角型Ni基合金塊を加熱し、1030℃にて2時間保持した後、1200℃に再加熱して、20%の据込み鍛造を行った。
Heat treatment and upset forging of Ni-based alloys of Examples 1 to 10 and Comparative Examples 1 to 6 before casting and casting Forging After casting, the large-angle Ni-base alloy ingot cooled and solidified is heated to 2 at 1030 ° C. After holding for a time, it was reheated to 1200 ° C. to perform upset forging of 20%.

実施例1〜10、比較例1〜6のNi基合金の割れ
上記した加熱処理と据込み鍛造を実施した各大角型Ni基合金塊について、コーナー部近傍の平面を、1m×1mの面積で酸化スケールを研削除去し、酸化スケールを研削除去した部位に浸透探傷試験(株式会社タセト製 3液タイプ、洗浄液FR−Q、浸透液FP−S、現像液FD−S)を行って、割れの本数を検出し、以下の4段階で割れを評価した。
◎:割れが無い
○:割れの本数が1〜3本
△:割れの本数が4〜6本
×:割れの本数7本以上
Cracks of Ni-base alloys of Examples 1 to 10 and Comparative Examples 1 to 6 For each large square Ni-base alloy ingot subjected to the above heat treatment and upset forging, the plane in the vicinity of the corner portion is an area of 1 m × 1 m. Oxidation scale is ground and removed, and a penetrant flaw test (Taseto Co., Ltd., 3-liquid type, cleaning liquid FR-Q, permeating liquid FP-S, developer FD-S) is performed on the portion where the oxidized scale is ground and removed. The number was detected and the crack was evaluated in the following four steps.
:: no cracks ○: 1 to 3 cracks: Δ: 4 to 6 cracks ×: 7 or more cracks

割れの評価結果を下記表1に示す。   The evaluation results of the cracks are shown in Table 1 below.

Figure 0006554243
Figure 0006554243

上記表1から、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜1.00%、マンガン(Mn):0.05〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.20%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、残部Ni及び不可避的不純物からなり、Nb/B値が500以上である実施例1〜10では、割れの評価が△以上であった。従って、実施例1〜10では、割れが生じた場合でも、その程度は軽微であり、次工程への影響はなく、余工程の発生はないことが判明した。特に、Nb/B値が600以上である実施例3〜、8〜10では、割れの評価が○以上であり、より確実に割れの発生を防止できた。また、Nb/B値が750以上である実施例8〜10では、割れの評価が◎であり、割れが発生しなかった。 From Table 1 above, carbon (C): 0.001 to 0.045%, silicon (Si): 0.05 to 1.00%, manganese (Mn): 0.05 to 1.00%, phosphorus (P ): 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14-24%, niobium (Nb): 1.5-4.0%, iron (Fe): 3- 25%, aluminum (Al): 0.01-0.20%, nitrogen (N): 0.003-0.020%, boron (B): 0.0010-0.0100%, oxygen (O): In Examples 1 to 10 consisting of 0.0002 to 0.0020%, the balance Ni and unavoidable impurities and having an Nb / B value of 500 or more, the evaluation of cracking was Δ or more. Therefore, in Examples 1 to 10, even when cracking occurred, the degree was minor, and it was found that there was no influence on the next process, and that there was no occurrence of the remaining process. In particular, in Examples 3 to 5 and 8 to 10 in which the Nb / B value is 600 or more, the evaluation of cracking is ○ or more, and the occurrence of cracking could be prevented more reliably. Moreover, in Examples 8 to 10 in which the Nb / B value is 750 or more, the evaluation of cracking was ◎, and no cracking occurred.

一方で、Nb/B値が500以上であるが、Bの含有量が0.0010〜0.0100%の範囲外である比較例1、Nb/B値が500未満である比較例2〜6では、割れの評価が×と、割れの発生が多く、余工程の発生が必須であることが判明した。   On the other hand, Comparative Example 1 in which the Nb / B value is 500 or more but the B content is outside the range of 0.0010 to 0.0100%, and Comparative Examples 2 to 6 in which the Nb / B value is less than 500. Then, it was found that the evaluation of cracking was “x”, and there were many cracks, and the occurrence of the extra process was essential.

据込み鍛造前の加熱条件
次に、鋳造後、冷却固化した大角型Ni基合金塊の加熱条件を、上記した1030℃にて2時間保持に代えて、下記表2に示す加熱条件とした以外は、上記と同様にして割れの評価を行った。なお、Ni基合金として、実施例7を用いた。据込み鍛造前の加熱条件と割れの評価結果を下記表2に示す。
Heating conditions before upset forging Next, the heating conditions for the large-angle Ni-base alloy ingot after cooling and solidification were changed to the heating conditions shown in Table 2 below instead of holding at 1030 ° C. for 2 hours. In the same manner as above, evaluation of cracking was performed. Example 7 was used as the Ni-based alloy. The heating conditions before upset forging and the evaluation results of cracks are shown in Table 2 below.

Figure 0006554243
Figure 0006554243

上記表2に示すように、据込み鍛造前に加熱温度1000〜1049℃の範囲にて1時間以上保持した実施例7−1〜7−では、割れが△以上であった。従って、実施例7−1〜7−では、割れが生じた場合でも、その程度は軽微であり、次工程への影響はなく、余工程の発生はないことが判明した。また、据込み鍛造前の加熱温度が1000〜1045℃である実施例7−1〜7−4では、割れの評価が○以上であり、より確実に割れの発生を防止できた。 As shown in Table 2, in Example 7-1~7- 4 and held 1 hour or more at a range of heating temperature from 1000 to 1,049 ° C. prior upset it was cracked △ or more. Thus, in Example 7-1~7- 4, even when a crack occurs, the degree is slight, no influence on the next process, it was found that no generation of excess process. Moreover , in Examples 7-1 to 7-4 where the heating temperature before upset forging was 1000 to 1045 ° C., the evaluation of cracking was not less than ○, and the occurrence of cracking could be prevented more reliably.

一方で、据込み鍛造前に加熱処理を行っていない比較例7−1、据込み鍛造前の加熱温度が1080℃、1100℃、1050℃である比較例7−2、7−3、7−5、据込み鍛造前の加熱温度は1000〜1049℃の範囲であるが、保持時間が1時間未満である比較例7−4では、いずれも、割れの評価が×と、割れの発生が多く、余工程の発生が必須であることが判明した。   On the other hand, Comparative Example 7-1 in which the heat treatment is not performed before upset forging, and Comparative Examples 7-2, 7-3, 7- in which the heating temperature before upset forging is 1080 ° C., 1100 ° C., 1050 ° C. 5. The heating temperature before upset forging is in the range of 1000 to 1049 ° C., but in Comparative Example 7-4 in which the holding time is less than 1 hour, in all cases, the evaluation of cracking is x, and the occurrence of cracking is large It turned out that the occurrence of extra steps is essential.

さらなる鍛造
据込み鍛造前の加熱処理と据込み鍛造を実施した上記実施例7−3、7−4のNi基合金について、下記表3に示す加熱条件にてさらなる鍛造を行った。さらなる鍛造の加熱温度と割れの評価結果、圧下率15%の確保の有無を下記表3に示す。なお、表3では、圧下率15%を確保できた場合を「○」、圧下率15%を確保できなかった場合を「×」、さらなる鍛造を実施できなかった場合を「−」と表記した。
Further Forging Further forging was performed under the heating conditions shown in Table 3 below for the Ni-based alloys of Examples 7-3 and 7-4 that were subjected to the heat treatment and upset forging before upset forging. As a result of the evaluation of heating temperature and cracking of the further forging, the presence or absence of securing of the rolling reduction of 15% is shown in Table 3 below. In Table 3, a case where a reduction rate of 15% could be secured was indicated as “◯”, a case where the reduction rate of 15% could not be ensured as “x”, and a case where further forging could not be carried out as “−”. .

Figure 0006554243
Figure 0006554243

上記表3から、さらなる鍛造にあたり、1150〜1250℃の範囲に加熱した実施例7−3C、実施例7−4A、実施例7−4Bでは、さらなる鍛造後の割れの評価が○であり、確実に割れの発生を防止できた。また、圧下率15%を確保することもできた。   From Table 3 above, in Examples 7-3C, 7-4A, and 7-4B heated to a range of 1150 to 1250 ° C. for further forging, the evaluation of cracking after further forging is ○, which is certain Could prevent the occurrence of cracking. It was also possible to secure a rolling reduction of 15%.

一方で、さらなる鍛造にあたり、1130℃に加熱した比較例7−3Aでは、さらなる鍛造でも割れの評価は○であったが、圧下率15%を確保することができなかった。また、さらなる鍛造にあたり、1270℃に加熱した比較例7−3Bでは、さらなる鍛造にて割れが発生し、さらなる鍛造を実施できなかった。   On the other hand, in the further forging, in Comparative Example 7-3A heated to 1130 ° C., the evaluation of cracking was ○ even in the further forging, but the reduction rate of 15% could not be ensured. Moreover, in the further forging, in Comparative Example 7-3B heated to 1270 ° C., cracking occurred in further forging, and further forging could not be performed.

本発明のNi基合金では、昇温時に温度差が生じやすい大角型Ni基合金塊であっても、熱間鍛造工程の初期の工程における割れの発生を防止できるため、広汎な分野で利用可能であり、例えば、要求品質が厳しい原子炉用材料として適用することができる。   The Ni-based alloy of the present invention can be used in a wide range of fields because it is possible to prevent the occurrence of cracks in the initial process of the hot forging process even if it is a large square Ni-based alloy ingot that tends to cause a temperature difference during heating. For example, it can be applied as a material for nuclear reactors having strict required quality.

Claims (3)

質量%で、炭素(C):0.0050.035%、ケイ素(Si):0.05〜1.00%、マンガン(Mn):0.05〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):2.13.2%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.20%、窒素(N):0.003〜0.020%、ホウ素(B): 0.00220.0070%、酸素(O):0.0002〜0.0020%、残部ニッケル(Ni)及び不可避的不純物からなり、Nb/B値が650以上であることを特徴とするNi基合金。 In mass%, carbon (C): 0.005 to 0.035 %, silicon (Si): 0.05 to 1.00%, manganese (Mn): 0.05 to 1.00%, phosphorus (P) : 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14 to 24%, niobium (Nb): 2.1 to 3.2 %, iron (Fe): 3 to 25 %, aluminum (Al): 0.01 to 0.20%, nitrogen (N): 0.003-0.020%, boron (B): 0.0022 ~ 0.0070% , oxygen (O): 0 A Ni-based alloy comprising 0002 to 0.0020%, the balance nickel (Ni) and unavoidable impurities, and having an Nb / B value of 650 or more. 質量5000Kg超であり、少なくとも1つの面が四角形であることを特徴とする請求項1に記載のNi基合金。 The Ni-based alloy according to claim 1, which has a mass of more than 5000 kg and at least one face is a square. 質量%で、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜1.00%、マンガン(Mn):0.05〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.20%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、残部ニッケル(Ni)及び不可避的不純物からなり、Nb/B値が500以上、質量5000Kg超、且つ少なくとも1つの面が四角形であるNi基合金を、1000〜1049℃で1時間以上保持したのち、再度昇温して1100〜1250℃に加熱して、5〜20%の据込み鍛造を行い、更に、1150〜1250℃の範囲に加熱して、プレス毎の圧下率を5〜15%の範囲として鍛造する第1プレス工程と、
前記第1プレス工程を実施した鋳塊を、1200〜1300℃の範囲に加熱して、800〜1300℃の温度範囲に保ちながら、プレス毎の圧下率を5〜85%の範囲として鍛造するまでの一工程を1回以上行う第2プレス工程と、
前記第2プレス工程を実施した鋳塊を、1050〜1230℃に加熱して合計圧下率を10%以上としてプレス加工を行う第3プレス工程と、
を含む熱間圧延用スラブの製造方法。
In mass%, carbon (C): 0.001 to 0.045%, silicon (Si): 0.05 to 1.00%, manganese (Mn): 0.05 to 1.00%, phosphorus (P) : 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14 to 24%, niobium (Nb): 1.5 to 4.0%, iron (Fe): 3 to 25 %, Aluminum (Al): 0.01-0.20%, nitrogen (N): 0.003-0.020%, boron (B): 0.0010-0.0100%, oxygen (O): 0 A Ni-based alloy consisting of .0002 to 0.0020%, the balance nickel (Ni) and inevitable impurities, having an Nb / B value of 500 or more, a mass of more than 5000 kg, and at least one surface being a square is 1000 to 1049 ° C. Hold for 1 hour or more, and then warm again to 1100-1250 ° C. Heating, performing upset forging of 5 to 20%, further heating to a range of 1150 to 1250 ° C., and forging with a rolling reduction per press in a range of 5 to 15%;
Until the ingot subjected to the first pressing step is heated to a range of 1200 to 1300 ° C. and kept in a temperature range of 800 to 1300 ° C., forging with a reduction ratio of each press of 5 to 85%. A second pressing step of performing one step one or more times;
A third pressing step in which the ingot subjected to the second pressing step is heated to 1050 to 1230 ° C. and the total rolling reduction is set to 10% or more, and the pressing is performed;
A method of producing a slab for hot rolling comprising:
JP2019000317A 2019-01-04 2019-01-04 Ni-based alloy and method for producing slab for hot rolling using Ni-based alloy Active JP6554243B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019000317A JP6554243B1 (en) 2019-01-04 2019-01-04 Ni-based alloy and method for producing slab for hot rolling using Ni-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019000317A JP6554243B1 (en) 2019-01-04 2019-01-04 Ni-based alloy and method for producing slab for hot rolling using Ni-based alloy

Publications (2)

Publication Number Publication Date
JP6554243B1 true JP6554243B1 (en) 2019-07-31
JP2020109197A JP2020109197A (en) 2020-07-16

Family

ID=67473431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019000317A Active JP6554243B1 (en) 2019-01-04 2019-01-04 Ni-based alloy and method for producing slab for hot rolling using Ni-based alloy

Country Status (1)

Country Link
JP (1) JP6554243B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115852186A (en) * 2022-12-21 2023-03-28 四川钢研高纳锻造有限责任公司 Method for refining carbonitride in GH4169 alloy by controlling addition amount of return material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114058903B (en) * 2020-07-30 2022-06-14 宝武特种冶金有限公司 Nickel-iron-based alloy large-caliber thick-wall pipe and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115852186A (en) * 2022-12-21 2023-03-28 四川钢研高纳锻造有限责任公司 Method for refining carbonitride in GH4169 alloy by controlling addition amount of return material
CN115852186B (en) * 2022-12-21 2023-10-27 四川钢研高纳锻造有限责任公司 Method for refining carbonitride in GH4169 alloy by controlling addition amount of return material

Also Published As

Publication number Publication date
JP2020109197A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JP5296554B2 (en) Method for producing an internal combustion engine valve and the valve obtained by this method
KR20120075376A (en) Heat resistant cast steel, manufacturing method of heat resistant cast steel, casting parts of steam turbine and manufacturing method of casting parts of steam turbine
JP2021509446A (en) Steel materials for pressure vessels and their manufacturing methods
JP6818147B2 (en) High-strength, high-toughness thick steel sheet and its manufacturing method
JP2017057461A (en) Fe-Cr-Ni-BASED ALLOY EXCELLENT IN HIGH TEMPERATURE STRENGTH
EP4310216A1 (en) Steel for high-temperature carburized gear shaft and manufacturing method for steel
JP6554243B1 (en) Ni-based alloy and method for producing slab for hot rolling using Ni-based alloy
JP6142837B2 (en) Stainless steel with a structure consisting of two phases: ferrite phase and martensite phase
US20120055288A1 (en) Method of Making a High Strength, High Toughness, Fatigue Resistant, Precipitation Hardenable Stainless Steel and Product Made Therefrom
EP3168319A1 (en) Microalloyed steel for heat-forming high-resistance and high-yield-strength parts, and method for producing components made of said steel
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
JP6509187B2 (en) High strength cold rolled steel sheet excellent in bending workability and manufacturing method thereof
CN114635077A (en) Super austenitic stainless steel and preparation method thereof
CN111411264B (en) Ni-based alloy and Ni-based alloy sheet
CN111004981A (en) XL3303-33 bar and production process thereof
JP2011052243A (en) Method for manufacturing thick high-strength steel sheet superior in characteristics of stopping propagation of brittle crack
CN115537663B (en) High-silicon high-nitrogen non-quenched and tempered steel and preparation method thereof
JP6539795B1 (en) Ni-based alloy, Ni-based alloy ingot, slab for Ni-based alloy hot rolling and Ni-based alloy sheet
KR102497433B1 (en) Austenitic stainless steel with imporoved strength and corrosion resistance, and method for manufacturing the same
JP6950071B2 (en) Ni-Cr-Mo-Nb alloy
JP5996403B2 (en) Heat resistant steel and method for producing the same
JP2005139509A (en) High tensile strength steel having excellent weld heat affected zone toughness, and its production method
JP5371420B2 (en) Heat resistant cast steel and steam turbine main valves
JP3432713B2 (en) Structural steel plate with excellent strength and toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190124

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190124

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190304

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190705

R150 Certificate of patent or registration of utility model

Ref document number: 6554243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250