JP2003183722A - Method for smelting high cleanliness steel - Google Patents

Method for smelting high cleanliness steel

Info

Publication number
JP2003183722A
JP2003183722A JP2001376950A JP2001376950A JP2003183722A JP 2003183722 A JP2003183722 A JP 2003183722A JP 2001376950 A JP2001376950 A JP 2001376950A JP 2001376950 A JP2001376950 A JP 2001376950A JP 2003183722 A JP2003183722 A JP 2003183722A
Authority
JP
Japan
Prior art keywords
molten steel
steel
ferroalloy
cold material
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001376950A
Other languages
Japanese (ja)
Other versions
JP3709840B2 (en
Inventor
Yoshiyuki Tanaka
芳幸 田中
Mamoru Suda
守 須田
Hiroshi Nomura
寛 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001376950A priority Critical patent/JP3709840B2/en
Publication of JP2003183722A publication Critical patent/JP2003183722A/en
Application granted granted Critical
Publication of JP3709840B2 publication Critical patent/JP3709840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for smelting high cleanliness steel, which can stably remove non-metallic inclusions in molten steel in a shorter time than ever, by using RH vacuum degassing treatment. <P>SOLUTION: In the method for smelting the high cleanliness steel, which sets a ladle of holding the molted steel tapped out from a converter, in a RH vacuum degassing tank, and adds a ferroalloy and a cold charge for adjusting ingredients, into the molten steel under a reduced pressure, to reflux the molten steel between the ladle and the degassifying tank, this method is characterized by setting an adding amount of the above ferroalloy and the cold charge, so that the ferroalloy can satisfy the expression: Wa×Ca/1000≤0.5, and the cold charge satisfies the expression: Wa×Ca/1000≤0.5, [wherein Wa is a total added amount of the ferroalloy (kg/molten steel ton); Ca is concentration of [O] in the ferroalloy (ppm); Wc is the total added amount of the cold charge (kg/ molten steel ton); and Cc is the concentration of [O] in the cold charge (ppm)]. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高清浄度鋼の溶製
方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing high cleanliness steel.

【0002】[0002]

【従来の技術】自動車のベアリングやクランクシャフト
等に用いられる鋼材は、繰り返し応力にさらされるた
め、金属疲労破壊の起点となる非金属介在物の極めて少
ない所謂「高清浄度鋼」とすることが要求される。この
ような高清浄度鋼を製造するには、一般に二次精錬と呼
ばれる手段が採用されている。例えば、特公平6−45
818号公報は、転炉−真空脱ガス処理−連続鋳造を順
次経て軸受鋼を溶製するに際し、真空脱ガス処理前の転
炉内溶鋼に炭材及びCr合金鉄を投入し、さらに転炉出
鋼中にCaO−CaF2系合成スラグを添加し、真空脱
ガス処理槽(以下、単に脱ガス槽という)にて少なくと
も30分以上継続して真空脱ガス処理を行うことによ
り、非金属介在物の低減を図っている。
2. Description of the Related Art Steel materials used for bearings and crankshafts of automobiles are repeatedly exposed to stress, so that they may be so-called "high-cleanliness steel" with very few non-metallic inclusions that are the starting points of metal fatigue fracture. Required. In order to manufacture such a high cleanliness steel, a means generally called secondary refining is adopted. For example, Japanese Patent Publication No. 6-45
Japanese Patent No. 818 discloses that when a bearing steel is melted through a sequence of converter-vacuum degassing-continuous casting, carbonaceous material and Cr alloy iron are added to the molten steel in the converter before vacuum degassing, and further the converter is used. By adding CaO-CaF 2 -based synthetic slag to the tapped steel and continuously performing vacuum degassing for at least 30 minutes in a vacuum degassing tank (hereinafter simply referred to as degassing tank), non-metallic intervention We are trying to reduce things.

【0003】また、真空脱ガス処理を用いず、非金属介
在物を遠心分離する技術もあり、例えば、特開平3−1
10059号公報は、第1容器で溶融金属に水平回転流
を与えた後、第2容器で溶融金属を加熱することを基本
とした技術を提案している。
There is also a technique of centrifuging non-metallic inclusions without using vacuum degassing treatment, for example, Japanese Patent Laid-Open No. 3-1.
Japanese Laid-Open Patent Publication No. 10059 proposes a technique based on heating a molten metal in a second container after applying a horizontal rotating flow to the molten metal in a first container.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記特
開平3−110059号公報記載の技術は、まず溶融金
属に水平回転流を与え、しかる後その溶融金属を加熱す
るものであり、別途大掛かりな電磁誘導加熱装置を必要
とし、設備費が過大になるという問題があった。また、
特公平6−45818号公報記載の技術では、既存のR
H真空脱ガス槽を利用して比較的手軽に処理ができる反
面、十分満足がいく程度に非金属介在物の分離、除去が
できるとは言えない。つまり、非金属介在物の分離、除
去量がばらつき、安定していないのが現状である。ま
た、この技術による処理では、通常40分以上と長い処
理時間を要していた。
However, in the technique described in Japanese Patent Laid-Open No. 3-110059, the molten metal is first supplied with a horizontal rotary flow, and then the molten metal is heated. There is a problem that an induction heating device is required and the equipment cost becomes excessive. Also,
In the technique described in Japanese Patent Publication No. 6-45818, the existing R
Although the H vacuum degassing tank can be used to perform the treatment relatively easily, it cannot be said that the non-metallic inclusions can be separated and removed to a sufficiently satisfactory level. In other words, the current situation is that the amount of separation and removal of non-metallic inclusions varies and is not stable. Further, the processing by this technique usually requires a long processing time of 40 minutes or more.

【0005】本発明は、かかる事情に鑑み、RH真空脱
ガス処理を利用して、従来より短い時間で溶鋼中の非金
属介在物を安定して除去可能な高清浄度鋼の溶製方法を
提供することを目的としている。
In view of the above circumstances, the present invention provides a method for producing high-cleanliness steel capable of stably removing non-metallic inclusions in molten steel in a shorter time than before by utilizing RH vacuum degassing treatment. It is intended to be provided.

【0006】[0006]

【課題を解決するための手段】発明者は、上記目的を達
成するため鋭意研究を重ね、その成果を本発明に具現化
した。
Means for Solving the Problems The inventor has conducted extensive studies in order to achieve the above object, and realized the results in the present invention.

【0007】すなわち、本発明は、転炉から出鋼した溶
鋼を保持した取鍋をRH真空脱ガス槽にセットし、減圧
下で該溶鋼に成分調整用の合金鉄及び冷材を添加して、
該溶鋼を取鍋と脱ガス槽との間で還流させる高清浄度鋼
の溶製方法において、前記合金鉄及び冷材の添加を、次
式を満足するように設定することを特徴とする高清浄度
鋼の溶製方法である。
That is, according to the present invention, a ladle holding molten steel discharged from a converter is set in an RH vacuum degassing tank, and alloy iron and a cold material for component adjustment are added to the molten steel under reduced pressure. ,
In a method for producing high-cleanliness steel in which the molten steel is refluxed between a ladle and a degassing tank, the addition of the alloy iron and the cold material is set to satisfy the following formula: This is a method of melting cleanliness steel.

【0008】合金鉄:Wa×Ca/1000≦0.5 冷材 :Wa×Ca/1000≦0.5 但し、Wa;合金鉄添加量合計(kg/溶鋼t当た
り)、Ca;合金鉄中[O]濃度(ppm)、Wc;冷材
添加量合計(kg/溶鋼t当たり)、Cc;冷材中[O]
濃度(ppm) また、本発明は、前記合金鉄及び冷材を、予めそれらが
含有する酸素濃度に応じて選別し、溶製目的に合うもの
を選択して使用することを特徴とする高清浄度鋼の溶製
方法である。
Iron alloy: Wa × Ca / 1000 ≦ 0.5 Cold material: Wa × Ca / 1000 ≦ 0.5 However, Wa: total alloy iron addition amount (kg / per molten steel t), Ca: in alloy iron [ O] concentration (ppm), Wc; total addition amount of cold material (kg / per molten steel t), Cc; in cold material [O]
Concentration (ppm) Further, the present invention is characterized in that the alloy iron and the cold material are preliminarily selected according to the oxygen concentration contained in them, and the one suitable for the melting purpose is selected and used. This is a method of melting grade steel.

【0009】本発明では、高清浄度鋼を製造するにあた
り、成分調整で添加する合金鉄や冷材中の酸素含有量に
着目し、溶製に際しては、前記式を満足するように、で
きるだけ酸素濃度の低いものを優先的に選択して使用す
るようにしたので、RH真空脱ガス槽での合金鉄添加後
の精錬時間を必要以上にかけることなく、鋼中の酸素含
有量を低減し、安定した溶鋼の高清浄度化が達成できる
ようになる。
In the present invention, attention is paid to the oxygen content in the alloy iron and the cold material added in the composition adjustment in producing the high cleanliness steel. Since the one with a low concentration was preferentially selected and used, the oxygen content in the steel was reduced without spending an excessive amount of refining time after the ferroalloy was added in the RH vacuum degassing tank, Stable high cleanliness of molten steel can be achieved.

【0010】[0010]

【発明の実施の形態】以下、発明をなすに至った経緯を
まじえ、本発明の実施の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below, including the background of the invention.

【0011】まず、発明者は、非金属介在物の形成を促
進させるのは溶鋼中に存在する酸素であることから、従
来より使用している合金鉄や鉄スクラップで代表させる
冷材の酸素含有量をロット毎に調査した。その結果、各
ロットの酸素含有量は、図2及び図3の度数分布に示す
ように、かなり広い範囲でばらついていることがわかっ
た。これは、合金鉄については、合金鉄の製造条件や種
類により酸素含有量が変動し、冷材については、その発
生源(鉄鋼製品屑を裁断したもの等)や保存状態で酸素
含有量が異なるためである。
First, since the inventor promotes the formation of non-metallic inclusions by the oxygen existing in the molten steel, the oxygen content of the cold material represented by ferroalloy or iron scrap which has been conventionally used is contained. The amount was investigated lot by lot. As a result, it was found that the oxygen content of each lot fluctuates in a fairly wide range as shown in the frequency distributions of FIGS. This is because for ferroalloys, the oxygen content varies depending on the ferroalloy manufacturing conditions and types, and for cold materials, the oxygen content varies depending on the source (such as cut steel product scraps) and storage conditions. This is because.

【0012】そこで、発明者は、軸受鋼の溶製におい
て、溶鋼中の酸素含有量がどの程度であれば、確実に安
定して非金属介在物が分離除去できるかを二次精錬(R
H真空脱ガス槽を利用)による試験操業において検討す
ることにした。その検討結果の一例(○印)を溶鋼中酸
素濃度の経時変化として図1に示すが、通常使用してい
た酸素濃度の合金鉄や冷材を添加すると、その都度、溶
鋼中の酸素濃度が増加していることがわかる。この合金
鉄や冷材の添加に伴う溶鋼中の酸素濃度の増加により、
脱ガス処理時間に影響を与え、目標の清浄度(=酸素濃
度)にするための脱ガス処理時間が延長し、結局40分
以上の処理時間が必要となることが明らかになった。
In view of this, the inventor has conducted secondary refining (R) to determine how much oxygen content in molten steel can be reliably and stably separated and removed of non-metallic inclusions in the production of bearing steel.
It was decided to examine it in a test operation using the H vacuum degassing tank). An example of the examination results (marked with ○) is shown in Fig. 1 as the change over time in the oxygen concentration in the molten steel. When alloyed iron or a cold material with an oxygen concentration that is normally used is added, the oxygen concentration in the molten steel changes each time. You can see that it is increasing. Due to the increase in the oxygen concentration in the molten steel with the addition of this ferroalloy or cold material,
It has been clarified that the degassing treatment time is affected and the degassing treatment time for attaining the target cleanliness (= oxygen concentration) is extended, and eventually a treatment time of 40 minutes or more is required.

【0013】これに対し、発明者は、成分調整で添加す
る合金鉄や冷材の酸素含有量に着目し、種々の酸素濃度
の合金鉄及び冷材を使用して実験を繰り返し、以下の関
係式(1)、(2)を満たせば、添加時に溶鋼中の酸素
濃度の増加に影響を及ぼさないことを見出した。
On the other hand, the inventor paid attention to the oxygen content of the ferro-alloy and the cold material added by adjusting the composition, repeated the experiment by using ferro-alloy and the cold material with various oxygen concentrations, and It has been found that if the formulas (1) and (2) are satisfied, it does not affect the increase of the oxygen concentration in the molten steel at the time of addition.

【0014】 合金鉄:Wa×Ca/1000≦0.5 (1) 冷材 :Wa×Ca/1000≦0.5 (2) 但し、Wa;合金鉄添加量合計(kg/溶鋼t当た
り)、Ca;合金鉄中[O]濃度(ppm)、Wc;冷材
添加量合計(kg/溶鋼t当たり)、Cc;冷材中[O]
濃度(ppm) この検討結果の一例を溶鋼中酸素濃度の経時変化として
図1に示す。なお、この実験例(■印で示す)でも、合
金鉄及び冷材の添加量、添加タイミングは、前記した従
来例(○印)の場合と同じにしている。その結果、合金
鉄等が含有する酸素含有量が上記(1)及び(2)の関
係を満たせば、処理中に溶鋼の酸素濃度が増加せず、目
標酸素濃度(図1では、8ppm)到達までのRH脱ガ
ス処理が30分未満ででき、必要以上に処理時間を長く
かける必要がないことが明らかになった。そこで、この
関係の利用を要件に、前記したような本発明を完成させ
たのである。
Iron alloy: Wa × Ca / 1000 ≦ 0.5 (1) Cold material: Wa × Ca / 1000 ≦ 0.5 (2) where Wa: total iron alloy addition (kg / per molten steel t), Ca: [O] concentration (ppm) in ferroalloy, Wc: total addition amount of cold material (kg / per molten steel t), Cc: [O] in cold material
Concentration (ppm) An example of the results of this study is shown in Fig. 1 as the change over time in the oxygen concentration in the molten steel. In this experimental example (indicated by a black square), the addition amounts and timings of the ferroalloy and the cooling material are the same as those in the above-described conventional example (a white circle). As a result, if the oxygen content contained in the ferroalloy satisfies the relationship of (1) and (2) above, the oxygen concentration of the molten steel does not increase during the treatment and the target oxygen concentration (8 ppm in FIG. 1) is reached. It was revealed that the RH degassing treatment up to 30 minutes can be performed in less than 30 minutes, and it is not necessary to take the treatment time longer than necessary. Therefore, the present invention as described above has been completed with the requirement of utilizing this relationship.

【0015】また、本発明の実施に際しては、予め転炉
からの出鋼時に成分調整のため添加する合金鉄にも上記
低酸素含有品を選択して使用すると、真空脱ガスする前
の溶鋼中の酸素濃度が低減でき、さらに脱ガス処理時間
の短縮が可能となる。
Further, in the practice of the present invention, when the above-mentioned low oxygen content product is selected and used as the alloy iron to be added for adjusting the composition at the time of tapping from the converter, the molten steel before vacuum degassing is selected. It is possible to reduce the oxygen concentration and to shorten the degassing treatment time.

【0016】[0016]

【実施例】自動車用軸受鋼の基本組成(C:1質量%、
Si:0.25質量%,Mn:0.4質量%,Cr:
1.5質量%,Mo:0.02質量%)を有する溶鋼を
転炉(容量:180トン)で多数チャージにわたり精錬
し,二次精錬としてRH真空脱ガス処理(処理方法は周
知なので、説明を省略)を行った。このRH真空脱ガス
処理に際し、本発明に係る高清浄度鋼の溶製方法を適用
し、非金属介在物の低減を図った。その低減効果は、得
られた溶鋼を連続鋳造して鋼鋳片とし、それからサンプ
リングした試料の単位断面積(1cm2当たり)に肉眼
で観察される直径10μm以上の非金属介在物数を計数
することで評価した。
[Example] Basic composition of automobile bearing steel (C: 1% by mass,
Si: 0.25 mass%, Mn: 0.4 mass%, Cr:
Molten steel having 1.5 mass% and Mo: 0.02 mass% is smelted in a converter (capacity: 180 tons) over a large number of charges, and RH vacuum degassing treatment is performed as secondary smelting. Omitted). At the time of this RH vacuum degassing treatment, the melting method of the high cleanliness steel according to the present invention was applied to reduce non-metallic inclusions. The reducing effect is to count the number of non-metallic inclusions with a diameter of 10 μm or more visually observed in the unit cross-sectional area (per 1 cm 2 ) of a sample sampled by continuously casting the obtained molten steel into a steel slab. It was evaluated by that.

【0017】表1に、添加した合金鉄や冷材の種類、酸
素含有量、添加量、添加時期、溶鋼温度等の操業条件
と、それら操業条件に対応する非金属介在物数及びRH
真空脱ガス処理時間を示す。表1より、本発明によれ
ば、清浄度鋼としての基準である0.3/cm2の非金
属介在物数の基準をクリアすることが明らかである。ま
た、そのRH真空脱ガス処理に要した時間は、安定して
おり、従来に比べて格段と短縮されることも確認でき
た。
Table 1 shows the operating conditions such as the type of ferroalloy or cold material added, the oxygen content, the amount added, the timing of addition, the molten steel temperature, the number of non-metallic inclusions and RH corresponding to these operating conditions.
The vacuum degassing treatment time is shown. From Table 1, it is clear that according to the present invention, the standard for the number of non-metallic inclusions of 0.3 / cm 2 which is the standard for cleanliness steel is cleared. It was also confirmed that the time required for the RH vacuum degassing process was stable and was significantly shortened compared to the conventional case.

【0018】[0018]

【表1】 [Table 1]

【0019】なお、本発明例である本発明1〜4では、
前記関係式によれば酸素量がそれぞれ90、108、8
1、84ppm以下が必要とされるが、80ppm以下
の合金鉄を選択、使用した。同様に、冷材も本発明1〜
4では、酸素量がそれぞれ142、178、185、1
47ppm以下が必要とされるが、それぞれその値を下
回るものを選択した。一方、従来例1及び2で使用され
ている合金鉄、冷材の酸素含有量は、図2及び図3に示
しているように、通常に用いられている平均的な酸素量
を有するものである。なお、上記実施例は、軸受鋼に対
する適用であるが、本発明は、高清浄化が必要な耐HI
C(水素誘起割れ性)鋼等へも同様に適用できることを
確認している。
In the present inventions 1 to 4, which are examples of the present invention,
According to the above relational expression, the oxygen amounts are 90, 108 and 8 respectively.
Although an amount of 1,84 ppm or less is required, an alloy iron of 80 ppm or less was selected and used. Similarly, the cold material is also the present invention 1 to
4, the oxygen amount was 142, 178, 185, 1 respectively.
47 ppm or less is required, but those below that value were selected. On the other hand, the oxygen content of the ferroalloy and the cold material used in Conventional Examples 1 and 2 has an average oxygen content that is normally used, as shown in FIGS. 2 and 3. is there. In addition, although the above-mentioned embodiment is applied to bearing steel, the present invention is resistant to HI that requires high cleaning.
It has been confirmed that it can be similarly applied to C (hydrogen-induced cracking) steel and the like.

【0020】[0020]

【発明の効果】以上述べたように、本発明によれば、R
H真空脱ガス処理を利用して、従来より短い時間で溶鋼
中の非金属介在物が安定して除去できるようになる。
As described above, according to the present invention, R
By utilizing the H 2 vacuum degassing treatment, it becomes possible to stably remove non-metallic inclusions in molten steel in a shorter time than before.

【図面の簡単な説明】[Brief description of drawings]

【図1】RH処理中での溶鋼の酸素含有量の経時変化を
示す図である。
FIG. 1 is a diagram showing changes over time in the oxygen content of molten steel during RH treatment.

【図2】従来から使用している合金鉄のロット毎につい
て、酸素含有量の度数分布を調査した結果である。
FIG. 2 is a result of examining the frequency distribution of oxygen content for each lot of ferroalloys used conventionally.

【図3】従来から使用している冷材のロット毎につい
て、酸素含有量の度数分布を調査した結果である。
FIG. 3 is a result of examining the frequency distribution of the oxygen content for each lot of the cooling material that has been conventionally used.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野村 寛 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K013 AA07 BA08 BA09 BA14 CE01 CE06 FA02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroshi Nomura             1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama             Shi) Kawasaki Steel Co., Ltd. Mizushima Steel Works F-term (reference) 4K013 AA07 BA08 BA09 BA14 CE01                       CE06 FA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 転炉から出鋼した溶鋼を保持した取鍋を
RH真空脱ガス槽にセットし、減圧下で該溶鋼に成分調
整用の合金鉄及び冷材を添加して、該溶鋼を取鍋と脱ガ
ス槽との間で還流させる高清浄度鋼の溶製方法におい
て、 前記合金鉄及び冷材の添加を、次式を満足するように設
定することを特徴とする高清浄度鋼の溶製方法。 合金鉄:Wa×Ca/1000≦0.5 冷材 :Wa×Ca/1000≦0.5 但し、Wa;合金鉄添加量合計(kg/溶鋼t当た
り)、Ca;合金鉄中[O]濃度(ppm)、Wc;冷材
添加量合計(kg/溶鋼t当たり)、Cc;冷材中[O]
濃度(ppm)
1. A ladle holding molten steel discharged from a converter is set in an RH vacuum degassing tank, and alloy iron and a cold material for component adjustment are added to the molten steel under reduced pressure to remove the molten steel. In a method for producing high-cleanliness steel that is refluxed between a ladle and a degassing tank, the addition of the alloy iron and the cold material is set to satisfy the following formula: Method of melting. Iron alloy: Wa × Ca / 1000 ≦ 0.5 Cold material: Wa × Ca / 1000 ≦ 0.5 where Wa: total alloy iron addition amount (kg / per molten steel t), Ca: [O] concentration in alloy iron (Ppm), Wc; total addition amount of cold material (kg / per molten steel t), Cc: in cold material [O]
Concentration (ppm)
【請求項2】 前記合金鉄及び冷材を、予めそれらが含
有する酸素濃度に応じて選別し、溶製目的に合うものを
選択して使用することを特徴とする請求項1記載の高清
浄度鋼の溶製方法。
2. The high-cleanliness according to claim 1, wherein the ferroalloy and the cold material are preliminarily selected according to the oxygen concentration contained in them, and those suitable for the melting purpose are selected and used. Method of melting grade steel.
JP2001376950A 2001-12-11 2001-12-11 Method of melting high cleanliness steel Expired - Fee Related JP3709840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001376950A JP3709840B2 (en) 2001-12-11 2001-12-11 Method of melting high cleanliness steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001376950A JP3709840B2 (en) 2001-12-11 2001-12-11 Method of melting high cleanliness steel

Publications (2)

Publication Number Publication Date
JP2003183722A true JP2003183722A (en) 2003-07-03
JP3709840B2 JP3709840B2 (en) 2005-10-26

Family

ID=27590765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001376950A Expired - Fee Related JP3709840B2 (en) 2001-12-11 2001-12-11 Method of melting high cleanliness steel

Country Status (1)

Country Link
JP (1) JP3709840B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111164A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk Method of melting ultra-clean steel
KR100847776B1 (en) * 2006-12-29 2008-07-23 주식회사 포스코 Refining method of vaccum degassing
EP1978124A1 (en) 2007-04-05 2008-10-08 Kabushiki Kaisha Kobe Seiko Sho Forging steel, forging and crankshaft
JP2020002408A (en) * 2018-06-26 2020-01-09 日本製鉄株式会社 Manufacturing method of steel
JP2020002407A (en) * 2018-06-26 2020-01-09 日本製鉄株式会社 Manufacturing method of steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111164A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk Method of melting ultra-clean steel
KR100847776B1 (en) * 2006-12-29 2008-07-23 주식회사 포스코 Refining method of vaccum degassing
EP1978124A1 (en) 2007-04-05 2008-10-08 Kabushiki Kaisha Kobe Seiko Sho Forging steel, forging and crankshaft
JP2020002408A (en) * 2018-06-26 2020-01-09 日本製鉄株式会社 Manufacturing method of steel
JP2020002407A (en) * 2018-06-26 2020-01-09 日本製鉄株式会社 Manufacturing method of steel
JP7119642B2 (en) 2018-06-26 2022-08-17 日本製鉄株式会社 steel manufacturing method
JP7119641B2 (en) 2018-06-26 2022-08-17 日本製鉄株式会社 steel manufacturing method

Also Published As

Publication number Publication date
JP3709840B2 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
JPH09263820A (en) Production of cluster-free aluminum killed steel
JP6937190B2 (en) Ni-Cr-Mo-Nb alloy and its manufacturing method
JP2009041046A (en) Steel for induction hardening, and its manufacturing method
JP5381243B2 (en) Method for refining molten steel
CN113046616B (en) Stainless steel excellent in surface properties and method for producing same
JP2003183722A (en) Method for smelting high cleanliness steel
JP3896650B2 (en) Method for producing Ti-containing ultra-low carbon steel
JP2007327122A (en) TREATMENT METHOD FOR MOLTEN IRON BY Nd AND Ca ADDITION
JP3627755B2 (en) Method for producing high cleanliness ultra low carbon steel with extremely low S content
JP3036362B2 (en) Manufacturing method of oxide dispersion steel
JP6825507B2 (en) Manufacturing method of low carbon steel thin wall slab and manufacturing method of low carbon steel thin wall slab and low carbon steel thin steel sheet
JP4034700B2 (en) Manufacturing method of high S free cutting steel with excellent machinability and high S free cutting steel
JP4710180B2 (en) Manufacturing method of high cleanliness steel
JP4609325B2 (en) Treatment method of molten iron by Nd addition
JP2002105527A (en) Method for producing high cleanliness steel
JPH11323426A (en) Production of high clean steel
JP2002327239A (en) Slab for thin steel sheet with few defect caused by inclusion, and manufacturing method therefor
JPH08225820A (en) Production of high carbon silicon killed steel
JP2000273525A (en) Production of high cleanliness steel
JP2001262218A (en) Method for producing high cleanliness steel
JPS5887234A (en) Refining method by vacuum melting
JP4227478B2 (en) Low carbon steel slab manufacturing method
RU2026386C1 (en) Method of preparing of ingot from stainless steel stabilized with titanium
JP2005272888A (en) Cold rolled steel sheet having excellent ductility, hot rolled steel sheet, and cast steel ingot
JP2006152444A (en) MELTING AND MANUFACTURING METHOD OF Ti-ADDED ULTRA-LOW CARBON STEEL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Effective date: 20050425

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050510

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees