JP2006152444A - MELTING AND MANUFACTURING METHOD OF Ti-ADDED ULTRA-LOW CARBON STEEL - Google Patents
MELTING AND MANUFACTURING METHOD OF Ti-ADDED ULTRA-LOW CARBON STEEL Download PDFInfo
- Publication number
- JP2006152444A JP2006152444A JP2006000008A JP2006000008A JP2006152444A JP 2006152444 A JP2006152444 A JP 2006152444A JP 2006000008 A JP2006000008 A JP 2006000008A JP 2006000008 A JP2006000008 A JP 2006000008A JP 2006152444 A JP2006152444 A JP 2006152444A
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- steel
- oxide
- less
- low carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
本発明は、含Ti極低炭素鋼の溶製方法に関し、とくにAl,Si,Mnの使用が制約されるような極低炭素Ti脱酸鋼を連続鋳造する際にもタンディッシュノズルにおいてノズル詰まりを起こすことがなく、また、製品中の非金属介在物性の欠陥が少なく、しかも、発錆の少ない含Ti極低炭素冷延鋼板を製造するのに有利な溶製方法を提案する。 The present invention relates to a method for melting Ti-containing ultra-low carbon steel, and in particular, nozzle clogging in a tundish nozzle even when continuously casting ultra-low carbon Ti deoxidized steel in which the use of Al, Si, Mn is restricted. In addition, the present invention proposes a melting method that is advantageous for producing a Ti-containing ultra-low carbon cold-rolled steel sheet that does not cause defects, has few non-metallic inclusion defects in the product, and has little rusting.
冷延用極低炭素Ti脱酸鋼, とくに含Ti極低炭素冷延鋼板は、当初、特公昭44−18066号公報に開示されているように、脱ガス後にAlを用いずにFeTiで脱酸する方式のTi脱酸鋼を製造するものであった。しかし、近年では、含Ti極低炭素鋼を低コストで安定して製造するために、Alを0.005wt%以上添加するAl脱酸鋼が主流となっている。 As disclosed in Japanese Examined Patent Publication No. 44-18066, ultra-low carbon Ti deoxidized steel for cold rolling, particularly Ti-containing ultra-low carbon cold-rolled steel sheet, was initially degassed with FeTi without using Al as disclosed in This was to produce a Ti-deoxidized steel of an acid type. However, in recent years, Al deoxidized steel to which Al is added in an amount of 0.005 wt% or more has become mainstream in order to stably produce Ti-containing ultra-low carbon steel at low cost.
ところで、このAlによる脱酸では、ガス攪拌やRH脱ガス装置において生成する酸化物を凝集,
合体させて分離浮上を図る方法が取られているが、鋳片には不可避的にAlの酸化物(Al2O3)が残留する。しかも、残留Al2O3は、クラスター状の形状になるため、溶鋼に対する見掛け比重が小さく分離浮上しにくいため、鋼中には数100μm以上のクラスター状介在物が残留しやすくなる。このようにして生成するクラスターがもし、連続鋳造時に鋳片表層部に捕捉された場合、ヘゲ,スリーバのような表面欠陥になり、冷延鋼板の表面清浄を損なうことになる。また、Al脱酸で生成した固相のAl2O3は、連続鋳造において、タンディッシュからモールドへ注入するために使用するイマージョンノズルの内壁に付着堆積し、ノズルの閉塞を起こすという問題もあった。
By the way, in this deoxidation with Al, the oxides produced in the gas agitation and RH degassing apparatus are agglomerated,
Although the method of combining and trying to separate and float is taken, Al oxide (Al 2 O 3 ) inevitably remains in the slab. Moreover, since the residual Al 2 O 3 has a cluster shape, the apparent specific gravity with respect to the molten steel is small and it is difficult to separate and float, so that cluster-like inclusions of several hundred μm or more are likely to remain in the steel. If the clusters generated in this way are trapped in the surface part of the slab during continuous casting, surface defects such as hege and sliver will occur and the surface cleanliness of the cold-rolled steel sheet will be impaired. In addition, the solid phase Al 2 O 3 produced by Al deoxidation adheres and accumulates on the inner wall of an immersion nozzle used for injection from the tundish into the mold in continuous casting, causing the nozzle to be clogged. It was.
このように、Al脱酸鋼の場合、多くの課題があるため、最近では、Alを添加せずTiで脱酸するケースも多くなってきている。というのは、Ti脱酸の場合、Al脱酸に比べると到達酸素濃度が高く、介在物量は多いが、Al脱酸に比べるとクラスター状の酸化物は生成しにくく、5〜20μm程度の酸化物が鋼中に分散した状態で存在するようになるからである。従って、このTi脱酸では、クラスター状介在物による表面欠陥は減少する。しかしながら、Ti濃度が0.010wt%以上でTi/Al≧5の極低炭素鋼では、Ti酸化物は溶鋼中では固相状態になるから、連続鋳造時において地金を取り込んだ形でタンディッシュノズルの内面に付着成長する結果、ノズル閉塞の原因となる。 Thus, since there are many problems in the case of Al deoxidized steel, recently, there are many cases where deoxidation is performed with Ti without adding Al. This is because, in the case of Ti deoxidation, the concentration of oxygen reached is higher than that of Al deoxidation and the amount of inclusions is large, but compared to Al deoxidation, cluster-like oxides are less likely to be formed and oxidation of about 5 to 20 μm. This is because the object comes to be dispersed in the steel. Therefore, in this Ti deoxidation, surface defects due to cluster inclusions are reduced. However, in ultra-low carbon steel with Ti concentration of 0.010 wt% or more and Ti / Al ≧ 5, Ti oxide is in a solid phase in molten steel, so the tundish is in the form of taking in metal during continuous casting. As a result of adhesion and growth on the inner surface of the nozzle, the nozzle is blocked.
例えば、特公昭56−29730号公報にも記載されているように、C≧0.50wt%の高炭素鋼の場合、Ti≦0.015wt%であってもノズル閉塞の発生は少ない。しかし、C<0.50wt%の極低炭素鋼では、Ti濃度が0.010wt%にしても脱酸前の初期酸素濃度が高いために生成酸化物量が多く、かつ凝固温度も高いため、ノズル閉塞が発生する。とくに、優れた深絞り性を確保のために、0.010wt%以上のTiを含有させるような場合、一般には、タンディッシュノズルの閉塞は避けられないのが実情である。 For example, as described in Japanese Patent Publication No. 56-29730, in the case of high carbon steel with C ≧ 0.50 wt%, the occurrence of nozzle clogging is small even when Ti ≦ 0.015 wt%. However, in an extremely low carbon steel with C <0.50 wt%, even if the Ti concentration is 0.010 wt%, since the initial oxygen concentration before deoxidation is high, the amount of generated oxide is large and the solidification temperature is also high. Blockage occurs. In particular, in order to ensure excellent deep drawability, in the case where 0.010 wt% or more of Ti is contained, in general, clogging of the tundish nozzle is unavoidable.
このような問題点を解決する方法として、従来、特開平8−281391号公報では、AlレスTi脱酸鋼において、タンディッシュノズルの閉塞の防止策として、ノズルを通過する溶鋼の酸素量を制限することにより、ノズル内面に成長するTi2O3の成長を防止する方法を提案している。しかし、Ti脱酸鋼の場合、酸素濃度は30ppm程度であり、この場合、800トン程度までしか鋳造できず、また、閉塞の進行とともにモールド内の湯面のレベル制御が不安定になるため、根本的な解決にはなっていない。 As a method for solving such a problem, conventionally, in Japanese Patent Laid-Open No. 8-281391, in Al-less Ti deoxidized steel, the oxygen amount of the molten steel passing through the nozzle is limited as a measure for preventing the tundish nozzle from being blocked. Thus, a method for preventing the growth of Ti 2 O 3 growing on the inner surface of the nozzle is proposed. However, in the case of Ti deoxidized steel, the oxygen concentration is about 30 ppm. In this case, it can only be cast up to about 800 tons, and the level control of the hot water surface in the mold becomes unstable as the blockage proceeds, It is not a fundamental solution.
また、特開平8−281390号公報では、AlレスTi脱酸鋼においてタンディッシュノズルの閉塞の防止策として、溶鋼Si濃度の適正化と、介在物組成をTi3O5−SiO2形にすることにより、ノズル内面に成長するTi2O3の成長を防止する方法を提案している。しかし、Siの増加は材質の硬化を招き、また、めっき性が悪化するため、望ましい方法とは言えず、ノズル閉塞の防止に対する根本的な解決にはなっていない。 In JP-A-8-281390, as measures for preventing clogging of a tundish nozzle in Al-less Ti deoxidized steel, optimization of molten steel Si concentration and inclusion composition are made to be in the Ti 3 O 5 —SiO 2 form. Thus, a method for preventing the growth of Ti 2 O 3 growing on the inner surface of the nozzle has been proposed. However, the increase in Si leads to hardening of the material and deteriorates the plating property. Therefore, it is not a desirable method and is not a fundamental solution for preventing nozzle clogging.
また、特公平7−47764号公報では、Mn:0.03〜1.5wt%、Ti:0.02〜1.5wt%となるように脱酸し、鋼中の介在物をMnO:17〜31wt%のMnO−Ti系酸化物からなる低融点組成の介在物とした非時効性冷延鋼板を提案している。たしかに、この技術については、溶鋼中において液相状態である低融点組成のMnO−Ti系酸化物を介在物として生成させるので、この介在物を含んだ溶鋼をタンディッシュノズルに通過させてもノズルに付着することなくモールドに注入でき、タンディッシュノズルの閉塞防止には有効であると言える。 In Japanese Patent Publication No. 7-47764, deoxidation is performed so that Mn is 0.03 to 1.5 wt% and Ti is 0.02 to 1.5 wt%, and inclusions in the steel are changed to MnO: 17 to A non-aging cold-rolled steel sheet as an inclusion having a low melting point composition composed of 31 wt% MnO—Ti-based oxide is proposed. Certainly, with this technology, since a MnO-Ti-based oxide having a low melting point composition that is in a liquid phase in the molten steel is generated as inclusions, even if the molten steel containing these inclusions is passed through a tundish nozzle, the nozzle It can be injected into the mold without adhering to the surface, and it can be said that it is effective in preventing the tundish nozzle from being blocked.
しかしながら、この技術の実施に当たって、MnOを17〜31wt%含有するMnO−Ti系酸化物を得るためには、溶鋼中のMn濃度とTi濃度の関係において、MnおよびTiと酸素との親和力の違いから、溶鋼中のMnとTiの濃度比を、wt%Mn/wt%Ti≧100とする必要がある (森岡泰行, 森田一樹ら:鉄と鋼,81(1995),p40)。したがって、鋼中のTi濃度が0.010wt%の場合、MnOを17〜31wt%含有するMnO−Ti系酸化物を得るためには、Mn濃度は1.0wt%以上が必要となる。しかし、Mn含有量が1.0wt%を超えると材質が硬化し、また、Ti含有量が0.010wt%未満だと優れた深絞り性が得られないという問題がある。したがって、介在物を、MnO:17〜31wt%含有するMnO−Ti系酸化物にすることは、実際には困難である。 However, in carrying out this technique, in order to obtain a MnO—Ti-based oxide containing 17 to 31 wt% of MnO, the difference in affinity between Mn, Ti and oxygen in the relationship between the Mn concentration and the Ti concentration in molten steel Therefore, the concentration ratio of Mn and Ti in the molten steel needs to be wt% Mn / wt% Ti ≧ 100 (Yasuyuki Morioka, Kazuki Morita et al .: Iron and Steel, 81 (1995), p40). Therefore, when the Ti concentration in the steel is 0.010 wt%, in order to obtain a MnO—Ti-based oxide containing 17 to 31 wt% of MnO, the Mn concentration needs to be 1.0 wt% or more. However, when the Mn content exceeds 1.0 wt%, the material is cured, and when the Ti content is less than 0.010 wt%, there is a problem that excellent deep drawability cannot be obtained. Therefore, it is actually difficult to make the inclusion into a MnO—Ti-based oxide containing MnO: 17 to 31 wt%.
さらに、特開平8−28139号公報では、AlレスTi脱酸鋼において、タンディッシュノズル閉塞の防止策として、ノズル部材にCaO・ZrO2粒を含有する耐火物を用いることにより、溶鋼中のTi3O5がノズルに捕捉された場合、TiO2−SiO2−Al2O3−CaO−ZrO2系の低融点介在物となるようにしてその成長を防止する方法を提案している。しかしながら、この技術では、溶鋼中の酸素濃度のバラツキにより、酸素が高いと付着介在物中のTiO2濃度が高くなり、十分に低融点化されないため、ノズル閉塞の改善にはつながらず、一方で酸素濃度が低いとノズルが溶損する問題があり、十分な対策にはなっていない。 Furthermore, in JP-A-8-28139, in Al-less Ti deoxidized steel, as a measure for preventing tundish nozzle clogging, a refractory containing CaO · ZrO 2 particles is used for the nozzle member, thereby allowing Ti in molten steel. When 3 O 5 is trapped by the nozzle, a method of preventing its growth by forming a low melting point inclusion of TiO 2 —SiO 2 —Al 2 O 3 —CaO—ZrO 2 is proposed. However, in this technique, due to the variation in the oxygen concentration in the molten steel, if the oxygen is high, the TiO 2 concentration in the adhering inclusions will be high and the melting point will not be sufficiently lowered. If the oxygen concentration is low, there is a problem that the nozzle is melted, which is not a sufficient countermeasure.
本発明の目的は、連続鋳造時にノズル閉塞を招くことなく鋳造するのに好適な含Ti極低炭素鋼を溶製する方法を提案する。
本発明の他の目的は、表面清浄に優れた含Ti極低炭素冷延鋼板を得るのに有利な溶製する方法を提案することにある。
本発明のさらに他の目的は、発錆が少なく表面欠陥の少ない自動車用薄鋼板を得るのに有利な溶製方法を提案することにある。
The object of the present invention is to propose a method for melting Ti-containing ultra-low carbon steel suitable for casting without causing nozzle clogging during continuous casting.
Another object of the present invention is to propose a method of melting that is advantageous for obtaining a Ti-containing ultra-low carbon cold-rolled steel sheet excellent in surface cleaning.
Still another object of the present invention is to propose a melting method that is advantageous for obtaining a thin steel sheet for automobiles with less rusting and less surface defects.
発明者らは、従来技術が抱えている上述した問題点を解決するために実験,研究を重ねた結果、以下に述べるような要旨構成で示すことができる含Ti極低炭素鋼の溶製方法を開発するに至った。
即ち、本発明は、Cが0.020wt%以下で、Tiを0.010wt%以上含有する極低炭素Ti脱酸鋼を溶製するに当たり、転炉出鋼後の溶鋼をまず真空脱ガス装置によって脱炭処理し、次いで、脱炭処理後の溶鋼中にTi含有合金を添加して脱酸することにより、Al≦(wt%Ti)/5を満足する組成の脱酸溶鋼とし、その後、該脱酸溶鋼中にCa≧10wt%およびREM≧5wt%の1種または2種とFe,Al,SiおよびTiのうちから選ばれる1種または2種以上とを含有する介在物組成調整用合金を添加することにより、該溶鋼中の酸化物組成を、Ti酸化物:90wt%以下、CaO、REM酸化物のいずれか少なくとも1種:10wt%以上50wt%以下、Al2O3:70wt%以下に調整することを特徴とする含Ti極低炭素鋼の溶製方法である。
As a result of repeated experiments and researches to solve the above-mentioned problems of the prior art, the inventors have made a method for melting Ti-containing ultra-low carbon steel that can be represented by the gist configuration as described below. Led to the development.
That is, in the present invention, in melting ultra-low carbon Ti deoxidized steel containing 0.010 wt% or more of C with 0.020 wt% or less, the molten steel after the converter steel is first vacuum degassed. And then deoxidizing by adding a Ti-containing alloy to the molten steel after the decarburizing treatment to obtain a deoxidized molten steel having a composition satisfying Al ≦ (wt% Ti) / 5, An inclusion composition adjusting alloy containing one or two of Ca ≧ 10 wt% and REM ≧ 5 wt% and one or more selected from Fe, Al, Si and Ti in the deoxidized molten steel Is added to the oxide composition in the molten steel, Ti oxide: 90 wt% or less, at least one of CaO and REM oxide: 10 wt% or more and 50 wt% or less, Al 2 O 3 : 70 wt% or less Features to adjust to This is a method for melting Ti-containing ultra-low carbon steel.
本発明においては、脱炭処理後の溶鋼を、Ti含有合金による脱酸処理に先立って、Al,Si,Mnのいずれかにて予備脱酸することにより、溶鋼中の溶存酸素濃度を予め200ppm以下にすること、Ti脱酸処理後に、5〜20μm程度の大きさのTi酸化物を溶鋼中に分散した状態で生成させることがより好ましい実施態様となる。なお、本発明は、不可避に混入するSiO2,MgOを5wt%以下の範囲内で含有するものであってもよい。 In the present invention, the molten steel after decarburization is predeoxidized with any of Al, Si, and Mn prior to the deoxidation treatment with the Ti-containing alloy, so that the dissolved oxygen concentration in the molten steel is 200 ppm in advance. It is a more preferable embodiment that the Ti oxide having a size of about 5 to 20 μm is dispersed in the molten steel after the Ti deoxidation treatment. The present invention is a SiO 2, MgO mixed in unavoidable or may be contained within the following 5 wt%.
以上述べたように、本発明にかかる溶製方法によれば、連続鋳造時におけるイマージョンノズルの閉塞は起こらず、また、圧延,焼鈍,めっき処理を施した冷延自動車用薄鋼板にした場合、表面清浄に優れ、発錆が少なく、非金属介在物に起因する表面欠陥もほとんど無い含Ti極低炭素鋼を容易に得ることができるようになる。 As described above, according to the melting method according to the present invention, the clogging of the immersion nozzle does not occur at the time of continuous casting, and when the steel sheet for cold rolled automobile subjected to rolling, annealing, plating treatment is used, A Ti-containing ultra-low carbon steel having excellent surface cleanliness, little rusting, and almost no surface defects due to nonmetallic inclusions can be easily obtained.
本発明は、Cが0.020wt%以下で、Ti≧0.010wt%を含有するTi脱酸極低炭素鋼を処理対象とし、とりわけ脱酸処理に当たってはAl量に応じてTiの添加量を調整し、かつ溶鋼中の介在物の組成ならびに形態を制御するようにした点に特徴がある。 The present invention treats Ti deoxidized ultra-low carbon steel having C of 0.020 wt% or less and containing Ti ≧ 0.010 wt%, and in particular, in the deoxidation treatment, the amount of Ti added depends on the amount of Al. It is characterized in that it is adjusted and the composition and form of inclusions in the molten steel are controlled.
即ち、本発明は第1に、RH真空脱ガス装置にて脱炭処理した溶鋼中に、Ti−Fe合金を添加して脱酸する際に、脱酸溶鋼の組成をAl≦(wt%Ti)/5を満足するように調整することに特徴がある。この点、上記の調整範囲を外れると、Ti脱酸ではなくAl脱酸となり、Al2O3クラスターが大量に生成する。
本発明では、介在物をTi酸化物を主体とした酸化物にて構成し、鋼中に5〜20μm程度の大きさのTi酸化物が分散した状態で存在させることにより、冷延用鋼板の介在物性表面欠陥を防止する。
That is, according to the present invention, first, when a Ti—Fe alloy is added and deoxidized in molten steel decarburized by an RH vacuum degassing apparatus, the composition of the deoxidized molten steel is Al ≦ (wt% Ti ) / 5 is characterized by adjustment. In this respect, if the adjustment range is not exceeded, Ti is not deoxidized but Al is deoxidized, and a large amount of Al 2 O 3 clusters are generated.
In the present invention, the inclusion is composed of an oxide mainly composed of Ti oxide, and the Ti oxide having a size of about 5 to 20 μm is dispersed in the steel so that the steel sheet for cold rolling is used. Prevents inclusion surface defects.
ただし、このTiの含有量がTi<0.010wt%では、C≦0.020wt%の極低炭素鋼の場合、深絞り性の確保が難しくなり、また、脱酸素能力が弱く、全酸素濃度が高くなる。一方、このTi濃度は、TiNの大量の生成によるイマージョンノズルの防止を図るには、0.15wt%以下が望ましい。従って、好ましいTi含有量は、Ti=0.010〜0.15wt%となる。 However, when the Ti content is Ti <0.010 wt%, in the case of an ultra-low carbon steel with C ≦ 0.020 wt%, it is difficult to ensure deep drawability, and the deoxygenation ability is weak, and the total oxygen concentration Becomes higher. On the other hand, the Ti concentration is preferably 0.15 wt% or less in order to prevent the immersion nozzle due to the generation of a large amount of TiN. Therefore, a preferable Ti content is Ti = 0.0.10 to 0.15 wt%.
本発明において、転炉出鋼後の溶製を真空脱ガス装置による精錬に当たって脱炭処理し、その脱炭処理後の脱酸処理の方法として、まず、Fe−Ti等のTi含有合金により溶鋼脱酸を行い、主としてTi酸化物からなる介在物を生成させる。その結果、介在物はAlで脱酸した時のようなクラスター状にならず、5〜20μm程度の大きさとなって鋼中に分散した状態で存在する。これに対してもし、Al濃度が0.005wt%を超えるまでAlで脱酸すると、巨大なAl2O3クラスターが生成するので、たとえその後に上記Ti含有合金を添加してTi濃度を増加させても十分な還元ができず、鋼中にクラスター状介在物として残存する。このような理由で本発明では、溶鋼をまずTiで脱酸し、Ti2O3≧80wt%のTi酸化物を生成させる必要がある。 In the present invention, the molten steel after the converter steel is decarburized by refining with a vacuum degassing device, and as a deoxidation method after the decarburization treatment, first, the molten steel is made of a Ti-containing alloy such as Fe-Ti. Deoxidation is performed to generate inclusions mainly composed of Ti oxide. As a result, the inclusions do not form a cluster as in the case of deoxidation with Al, and have a size of about 5 to 20 μm and are dispersed in the steel. On the other hand, when deoxidizing with Al until the Al concentration exceeds 0.005 wt%, a huge Al 2 O 3 cluster is formed, so that the Ti concentration is increased by adding the Ti-containing alloy thereafter. However, it cannot be sufficiently reduced and remains as cluster inclusions in the steel. For this reason, in the present invention, it is necessary to first deoxidize the molten steel with Ti to produce Ti oxide with Ti 2 O 3 ≧ 80 wt%.
このTi脱酸により生成したTi2O3≧80wt%のTi酸化物は、5〜20μm程度の大きさで鋼中に分散していて、クラスター状に巨大化しない。そのため、本発明方法に従って得られる冷延用鋼板においては、クラスター状介在物による表面欠陥がほとんど見当たらない。しかしながら、Ti酸化物は溶鋼中では固相状態であり、また、極低炭素鋼は鋼の凝固温度が高いために、連続鋳造時、このTi酸化物はタンディッシュのノズル内面に地金を取り込んだ形で成長し、ノズルの閉塞を招く。 Ti oxide of Ti 2 O 3 ≧ 80 wt% generated by this Ti deoxidation is dispersed in the steel with a size of about 5 to 20 μm and does not grow into a cluster. Therefore, in the steel sheet for cold rolling obtained according to the method of the present invention, there are almost no surface defects due to cluster inclusions. However, since Ti oxide is in a solid state in molten steel, and ultra-low carbon steel has a high solidification temperature of steel, this Ti oxide takes in the metal on the inner surface of the tundish nozzle during continuous casting. It grows in an oval shape and causes nozzle clogging.
そこで、本発明においては、Ti合金により脱酸した後に、10wt%以上のCa,5wt%以上のREM(希土類元素) のいずれか少なくとも1種を含有するFe,Al,SiおよびTiのうちから選ばれる1種または2種以上を含有する介在物組成調整用合金を添加し、溶鋼中の酸化物組成を、Ti酸化物が90wt%以下でCaO,REM酸化物の1種以上が10wt%以上50wt%以下、Al2O3が70wt%以下のTi酸化物を含有する低融点の介在物組成とする。その結果、タンディッシュノズルへのTi酸化物の付着を効果的に防止することができるようになる。 Therefore, in the present invention, after deoxidation with a Ti alloy, Fe, Al, Si and Ti containing at least one of 10 wt% or more of Ca, 5 wt% or more of REM (rare earth element) are selected. The inclusion composition adjusting alloy containing one kind or two kinds or more is added, and the oxide composition in the molten steel is 90 wt% or less of Ti oxide and one or more kinds of CaO and REM oxides are 10 wt% or more and 50 wt%. %, And a low melting point inclusion composition containing a Ti oxide containing 70 wt% or less of Al 2 O 3 . As a result, adhesion of Ti oxide to the tundish nozzle can be effectively prevented.
以下、本発明において添加する介在物組成調整用合金の組成限定の理由を説明する。まず、図1は、本発明法の下で溶鋼中に生成させる酸化物の好ましい組成の範囲を示すものである。この図からわかるように、本発明において、脱酸処理後の溶鋼中に上記介在物組成調整用合金を添加して介在物制御を行うことにより、溶鋼中の介在物(酸化物)の組成を、Ti酸化物≦90wt%、CaO,REM酸化物:10〜50wt%、Al2O3≦70wt%にすることが良いことがわかる。以下にこの点についてさらに詳しく説明する。 Hereinafter, the reason for limiting the composition of the inclusion composition adjusting alloy added in the present invention will be described. First, FIG. 1 shows the range of the preferable composition of the oxide produced | generated in molten steel under the method of this invention. As can be seen from this figure, in the present invention, the inclusion composition control is performed by adding the inclusion composition adjusting alloy to the molten steel after the deoxidation treatment, thereby controlling the inclusion (oxide) composition in the molten steel. It can be seen that Ti oxide ≦ 90 wt%, CaO, REM oxide: 10 to 50 wt%, Al 2 O 3 ≦ 70 wt%. This point will be described in more detail below.
Ti合金を用いて脱酸した後に添加するFe,Al,Si,Tiのうちの少なくともいずれか一種を含有するCa−REM系介在物組成調整用合金中のCa濃度が10wt%未満、Ce,La等のREMが5wt%未満で、酸化物中のTi2O3濃度が90wt%以上、CaO,REM酸化物(La2O3,Ce2O3等)の濃度が10wt%未満となり、介在物の融点は充分に低下しない。その結果、介在物は鋼中においてクラスター状にはならないが、ノズル内面に付着し閉塞の原因となる。 The Ca concentration in the Ca-REM-based inclusion composition adjusting alloy containing at least one of Fe, Al, Si, and Ti added after deoxidation using a Ti alloy is less than 10 wt%, Ce, La When the REM is less than 5 wt%, the Ti 2 O 3 concentration in the oxide is 90 wt% or more, and the concentration of CaO, REM oxide (La 2 O 3 , Ce 2 O 3, etc.) is less than 10 wt%. The melting point of does not decrease sufficiently. As a result, inclusions do not form clusters in the steel, but adhere to the inner surface of the nozzle and cause clogging.
上記介在物組成調整用合金の添加による、溶鋼中酸化物の組成は、Ti2O3が80wt%以下、CaO,REM酸化物(La2O3,Ce2O3等)は10wt%以上にすることが望ましい。しかし、溶鋼中の介在物中のCaO,REM酸化物(La2O3,Ce2O3等)の濃度が50wt%を超えると、介在物が液相状態で硫黄を含有しやすくなる。その結果、液相介在物が固まる際に介在物の周囲にCaS,REM硫化物(LaS,CeS)を生成し、鋼板での発錆の起点となり、鋼板の発錆量が著しく増加する知見が得られている。したがって、介在物中のCaO,REM酸化物(La2O3,Ce2O3等)の濃度は50wt%以下にする必要がある。なお、REM酸化物(La2O3,Ce2O3)の比重は他の酸化物に比べ大きいために、このREM酸化物が50wt%を超えると介在物の溶鋼中での浮上性が悪くなり、鋼中の全酸素濃度が高く、冷延鋼板での清浄性を悪化する。 The composition of the oxide in molten steel by adding the inclusion composition adjusting alloy is such that Ti 2 O 3 is 80 wt% or less, and CaO, REM oxide (La 2 O 3 , Ce 2 O 3, etc.) is 10 wt% or more. It is desirable to do. However, when the concentration of CaO, REM oxide (La 2 O 3 , Ce 2 O 3, etc.) in the inclusions in the molten steel exceeds 50 wt%, the inclusions easily contain sulfur in a liquid phase state. As a result, when the liquid phase inclusions solidify, CaS, REM sulfide (LaS, CeS) is generated around the inclusions, which becomes the starting point of rusting in the steel sheet, and the knowledge that the rusting amount of the steel sheet increases remarkably Has been obtained. Therefore, the concentration of CaO, REM oxide (La 2 O 3 , Ce 2 O 3 etc.) in the inclusions needs to be 50 wt% or less. Since the specific gravity of REM oxide (La 2 O 3 , Ce 2 O 3 ) is larger than that of other oxides, if this REM oxide exceeds 50 wt%, the floatability of inclusions in molten steel is poor. Therefore, the total oxygen concentration in the steel is high, and the cleanliness in the cold-rolled steel sheet is deteriorated.
次に、介在物中のAl2O3濃度は70wt%を超えると、高融点組成となり、ノズル閉塞が起きるだけでなく、介在物はクラスター状になり、製品板での非金属介在物性の欠陥が増加する。 Next, when the Al 2 O 3 concentration in the inclusion exceeds 70 wt%, the composition has a high melting point and not only nozzle clogging occurs, but also the inclusions are clustered, resulting in defects in nonmetallic inclusion physical properties in the product plate. Will increase.
なお、本発明法の下では、Alで脱酸する従来方法に比べると、Ti合金の歩留りが悪く、しかも、Ca,REMを含有するため介在物組成調整用合金は高価である。このことから、かかる合金の溶鋼中への添加は、介在物の組成制御が可能な範囲でできるだけ少量で済むように行うのが経済的で好ましい。 Under the method of the present invention, the yield of the Ti alloy is poor compared to the conventional method of deoxidizing with Al, and the inclusion composition adjusting alloy is expensive because it contains Ca and REM. For this reason, it is economical and preferable to add such an alloy into the molten steel so as to be as small as possible within a range in which the composition of inclusions can be controlled.
次に、脱酸材の添加については、それの添加前の溶鋼中の溶存酸素濃度を200ppm以下になるようにして予備脱酸する。この予備脱酸は、真空中での溶鋼攪拌や、脱酸後のAl≦0.005wt%となるような少量のAlによる脱酸,SiやFeSi,MnやFeMnの添加によって行われる。 Next, about the addition of a deoxidation material, it preliminarily deoxidizes so that the dissolved oxygen concentration in the molten steel before the addition may become 200 ppm or less. This preliminary deoxidation is performed by stirring the molten steel in a vacuum, deoxidation with a small amount of Al so that Al ≦ 0.005 wt% after deoxidation, and addition of Si, FeSi, Mn, and FeMn.
次に、添加合金以外の成分の限定理由を以下に説明する。
C:0.020wt%を超えると、製品での深絞り性が確保できなくなるため、0.020wt%以下にする必要がある。
Si:0.20wt%を超えると、めっき性が劣化し表面清浄が悪化するので、0.20wt%以下にする必要がある。
Mn:1.0wt%を超えると材質が硬化するので1.0wt%以下にした。また、1.0wt%を超えると介在物はTi酸化物−MnOの低融点組成の介在物となり、本発明のような合金を添加する必要はなくなる。
S:0.050wt%を超えると、溶鋼中でCaSやREM硫化物が多くなり、深絞り性が確保できないだけでなく、製品である冷延鋼板において非常に錆が発生しやすくなる。
また、本発明においては、冷延板の材質の必要に応じてB,Nbの1種または2種をさらに含有することはなんら問題ない。
Next, the reasons for limiting the components other than the additive alloy will be described below.
C: If it exceeds 0.020 wt%, deep drawability in the product cannot be secured, so it is necessary to make it 0.020 wt% or less.
If it exceeds Si: 0.20 wt%, the plating properties deteriorate and the surface cleanliness deteriorates, so it is necessary to make it 0.20 wt% or less.
When Mn exceeds 1.0 wt%, the material is cured, so the content is set to 1.0 wt% or less. On the other hand, when the content exceeds 1.0 wt%, the inclusion becomes an inclusion having a low melting point composition of Ti oxide-MnO, and it is not necessary to add an alloy as in the present invention.
When S exceeds 0.050 wt%, CaS and REM sulfide increase in the molten steel, and not only deep drawability cannot be ensured but also rust is very easily generated in the cold-rolled steel sheet as a product.
Moreover, in this invention, it does not have any problem to further contain 1 type or 2 types of B and Nb according to the necessity of the material of a cold-rolled sheet.
実施例1
転炉出鋼後、300トンの溶鋼をRH真空脱ガス装置にて脱炭処理し、溶鋼の成分組成を、C=0.0035wt%,Si=0.02wt%,Mn=0.20wt%,P=0.015wt%,S=0.010wt%、温度を1600℃に調整した。この溶鋼中に、Alを0.5kg/トン添加し、溶鋼中の溶存酸素濃度を150ppmまで低下させた。この時の溶鋼中のAl濃度は0.003wt%であった。そしてこの溶鋼に、70wt%Ti−Fe合金を1.2kg/トン添加し脱酸した。その後、溶鋼中に20wt%Ca−10wt%REM−50wt%Ti−Fe合金を0.5kg/ton添加し、成分調整を行った。この処理後のTi濃度は、0.050wt%、Al濃度は0.003wt%であった。次に、2ストランドスラブ連続鋳造装置にて鋳造実験を行った。このときの、タンディッシュ内の介在物を調査した結果、65wt%Ti2O3−15wt%CaO−10wt%Ce2O3−10wt%Al2O3の球状介在物であった。鋳造後、イマージョンノズル内には付着物はほとんどなかった。このスラブを3.5mmまで熱間圧延し、0.8mmまで冷間圧延し、さらに、780℃で45sec間焼鈍を行った。この焼鈍板には非金属介在物性の欠陥は0.1個/1000m以下のコイルしか認められなかった。また、発錆は、従来のAl脱酸と同じく問題はなかった。
Example 1
After the converter steel is discharged, 300 tons of molten steel is decarburized with an RH vacuum degasser, and the composition of the molten steel is C = 0.0035 wt%, Si = 0.02 wt%, Mn = 0.20 wt%, P = 0.015 wt%, S = 0.010 wt%, and the temperature were adjusted to 1600 ° C. In this molten steel, 0.5 kg / ton of Al was added, and the dissolved oxygen concentration in the molten steel was reduced to 150 ppm. At this time, the Al concentration in the molten steel was 0.003 wt%. Then, the molten steel was deoxidized by adding 1.2 kg / ton of a 70 wt% Ti—Fe alloy. Thereafter, 20 kg% Ca-10 wt% REM-50 wt% Ti-Fe alloy was added to the molten steel at 0.5 kg / ton, and the components were adjusted. The Ti concentration after this treatment was 0.050 wt%, and the Al concentration was 0.003 wt%. Next, a casting experiment was performed using a two-strand slab continuous casting apparatus. As a result of investigating the inclusion in the tundish at this time, it was a spherical inclusion of 65 wt% Ti 2 O 3 -15 wt% CaO-10 wt% Ce 2 O 3 -10 wt% Al 2 O 3 . After casting, there was almost no deposit in the immersion nozzle. This slab was hot-rolled to 3.5 mm, cold-rolled to 0.8 mm, and further annealed at 780 ° C. for 45 seconds. In this annealed plate, only 0.1 / 1000 m or less non-metallic inclusion physical defects were observed. Also, rusting was not a problem as with conventional Al deoxidation.
実施例2
転炉出鋼後、300トンの溶鋼をRH真空脱ガス装置にて脱炭処理し、C=0.0030wt%,Si=0.02wt%,Mn=0.25wt%,P=0.020wt%,S=0.012wt%に、温度を1600℃に調整した。この溶鋼中に、Alを0.5kg/ton添加し、溶鋼中の溶存酸素濃度を170ppmまで低下させた。この時の溶鋼中のAl濃度は0.002wt%であった。そしてこの溶鋼に、70wt%Ti−Fe合金を1.4kg/ton添加し脱酸した。その後、溶鋼中に20wt%Ca−15wt%REM−40wt%Al−Fe合金を0.3kg/ton添加し、成分調整を行った。この処理後のTi濃度は、0.030wt%、Al濃度は0.004wt%であった。次に、2ストランドスラブ連続鋳造装置にて鋳造を行った。このときの、タンディッシュ内の介在物を調査した結果、50wt%Ti2O3−15wt%CaO−10wt%Ce2O3−25wt%Al2O3の球状介在物であった。鋳造後、イマージョンノズル内には付着物はほとんどなかった。このスラブを3.5mmまで熱間圧延し、0.8mmまで冷間圧延し、さらに、780℃で45sec間焼鈍を行った。この焼鈍板には表面欠陥非金属介在物性の欠陥は0.02個/1000m以下のコイルしか認められなかった。また、発錆は、従来のAl脱酸と同じく問題はなかった。
Example 2
After converter steelmaking, 300 tons of molten steel was decarburized by RH vacuum degassing equipment, C = 0.030 wt%, Si = 0.02 wt%, Mn = 0.25 wt%, P = 0.020 wt% , S = 0.012 wt%, and the temperature was adjusted to 1600 ° C. In this molten steel, 0.5 kg / ton of Al was added, and the dissolved oxygen concentration in the molten steel was reduced to 170 ppm. At this time, the Al concentration in the molten steel was 0.002 wt%. The molten steel was deoxidized by adding 1.4 kg / ton of 70 wt% Ti—Fe alloy. Then, 0.3 kg / ton of 20 wt% Ca-15 wt% REM-40 wt% Al-Fe alloy was added in molten steel, and the component adjustment was performed. The Ti concentration after this treatment was 0.030 wt%, and the Al concentration was 0.004 wt%. Next, casting was performed using a 2-strand slab continuous casting apparatus. As a result of examining the inclusions in the tundish at this time, it was a spherical inclusion of 50 wt% Ti 2 O 3 -15 wt% CaO-10 wt% Ce 2 O 3 -25 wt% Al 2 O 3 . After casting, there was almost no deposit in the immersion nozzle. This slab was hot-rolled to 3.5 mm, cold-rolled to 0.8 mm, and further annealed at 780 ° C. for 45 seconds. In this annealed plate, only 0.02 pieces / 1000 m or less of defects having surface defects and nonmetallic inclusion physical properties were observed. Also, rusting was not a problem as with conventional Al deoxidation.
比較例1
転炉出鋼後、300トンの溶鋼をRH真空脱ガス装置にて脱炭処理し、C=0.0030wt%,Si=0.02wt%,Mn=0.20wt%,P=0.015wt%,S=0.010wt%に、温度を1600℃に調整した。この溶鋼中に、Alを0.7kg/ton添加し、溶鋼中の溶存酸素濃度を170ppmまで低下させた。この時の溶鋼中のAl濃度は0.003wt%であった。そしてこの溶鋼に、75wt%Ti−25wt%Fe合金を1.2kg/ton添加し脱酸および成分調整を行った。処理後のTi濃度は0.040wt%、Al濃度は0.002wt%であった。次に、この溶鋼を2ストランドスラブ連続鋳造装置にて鋳造を行った。このときの、タンディッシュ内の介在物を調査した結果、組成が90wt%Ti2O3−10wt%Al2O3の微小介在物が分散していた。鋳造後、イマージョンノズル内にはTi2O3−Al2O3の付着物が認められた。このスラブを3.5mmまで熱間圧延し、0.8mmまで冷間圧延し、さらに、780℃で45sec間焼鈍を行った。この焼鈍板には表面欠陥非金属介在物性の欠陥が0.05個/1000mのコイルに認められた。また、発錆は、従来のAl脱酸と同じく問題はなかった。
Comparative Example 1
After converter steelmaking, 300 tons of molten steel was decarburized by RH vacuum degassing equipment, C = 0.030 wt%, Si = 0.02 wt%, Mn = 0.20 wt%, P = 0.015 wt% , S = 0.010 wt%, and the temperature was adjusted to 1600 ° C. In this molten steel, Al was added at 0.7 kg / ton, and the dissolved oxygen concentration in the molten steel was reduced to 170 ppm. At this time, the Al concentration in the molten steel was 0.003 wt%. Then, 1.2 kg / ton of 75 wt% Ti-25 wt% Fe alloy was added to the molten steel to perform deoxidation and component adjustment. The Ti concentration after the treatment was 0.040 wt%, and the Al concentration was 0.002 wt%. Next, this molten steel was cast with a two-strand slab continuous casting apparatus. As a result of investigating the inclusions in the tundish at this time, fine inclusions having a composition of 90 wt% Ti 2 O 3 -10 wt% Al 2 O 3 were dispersed. After casting, deposits of Ti 2 O 3 —Al 2 O 3 were observed in the immersion nozzle. This slab was hot-rolled to 3.5 mm, cold-rolled to 0.8 mm, and further annealed at 780 ° C. for 45 seconds. On this annealed plate, defects of surface defects and non-metallic inclusions were found in the 0.05 / 1000 m coil. Also, rusting was not a problem as with conventional Al deoxidation.
比較例2
転炉出鋼後、300トンの溶鋼をRH真空脱ガス装置にて脱炭処理し、C=0.0030wt%,Mn=0.20wt%,P=0.015wt%,S=0.010wt%に、温度を1600℃に調整した。この溶鋼中に、Alを1.5kg/ton添加後75wt%Ti−25wt%Fe合金を0.5kg/ton添加し脱酸および成分調整を行った。処理後のTi濃度は0.040wt%、Al濃度は0.035wt%であった。次に、この溶鋼を2ストランドスラブ連続鋳造装置にて鋳造を行った。このときの、タンディッシュ内の介在物を調査した結果、5wt%Ti2O3−95wt%Al2O3のクラスター状の介在物であった。鋳造後、イマージョンノズル内にはAl2O3の付着物が認められた。このスラブを3.5mmまで熱間圧延し、0.8mmまで冷間圧延し、さらに、780℃で45sec間焼鈍を行った。この焼鈍板には表面欠陥非金属介在物性の欠陥が0.4個/1000mのコイルに認められた。
Comparative Example 2
After converter steelmaking, 300 tons of molten steel was decarburized by RH vacuum degassing equipment, C = 0.030 wt%, Mn = 0.20 wt%, P = 0.015 wt%, S = 0.010 wt% The temperature was adjusted to 1600 ° C. In this molten steel, Al was added at 1.5 kg / ton, and then 75 wt% Ti-25 wt% Fe alloy was added at 0.5 kg / ton to perform deoxidation and component adjustment. The Ti concentration after the treatment was 0.040 wt%, and the Al concentration was 0.035 wt%. Next, this molten steel was cast with a two-strand slab continuous casting apparatus. As a result of investigating the inclusion in the tundish at this time, it was a 5 wt% Ti 2 O 3 -95 wt% Al 2 O 3 cluster-like inclusion. After casting, deposits of Al 2 O 3 were observed in the immersion nozzle. This slab was hot-rolled to 3.5 mm, cold-rolled to 0.8 mm, and further annealed at 780 ° C. for 45 seconds. In this annealed plate, defects of surface defects and non-metallic inclusions were observed in 0.4 / 1000 m coils.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006000008A JP2006152444A (en) | 2006-01-04 | 2006-01-04 | MELTING AND MANUFACTURING METHOD OF Ti-ADDED ULTRA-LOW CARBON STEEL |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006000008A JP2006152444A (en) | 2006-01-04 | 2006-01-04 | MELTING AND MANUFACTURING METHOD OF Ti-ADDED ULTRA-LOW CARBON STEEL |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26439597A Division JP3896650B2 (en) | 1997-09-29 | 1997-09-29 | Method for producing Ti-containing ultra-low carbon steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006152444A true JP2006152444A (en) | 2006-06-15 |
Family
ID=36631070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006000008A Pending JP2006152444A (en) | 2006-01-04 | 2006-01-04 | MELTING AND MANUFACTURING METHOD OF Ti-ADDED ULTRA-LOW CARBON STEEL |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006152444A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008202080A (en) * | 2007-02-19 | 2008-09-04 | Jfe Steel Kk | Vacuum vessel structure and repairing method of vacuum-degassing facility |
JP2012233220A (en) * | 2011-04-28 | 2012-11-29 | Kobe Steel Ltd | Method for producing rem-added steel |
-
2006
- 2006-01-04 JP JP2006000008A patent/JP2006152444A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008202080A (en) * | 2007-02-19 | 2008-09-04 | Jfe Steel Kk | Vacuum vessel structure and repairing method of vacuum-degassing facility |
JP2012233220A (en) * | 2011-04-28 | 2012-11-29 | Kobe Steel Ltd | Method for producing rem-added steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101150141B1 (en) | Process for manufacturing the steel pipes excellent in sour resistance | |
KR100309192B1 (en) | Titanium killed steel sheet with good surface properties and a method of producing the same | |
JP5277556B2 (en) | Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab | |
CN113265583A (en) | Microalloy free-cutting non-adjusting steel for automobile crankshaft and production process thereof | |
JP3896650B2 (en) | Method for producing Ti-containing ultra-low carbon steel | |
TWI394843B (en) | Melt Method of Ti - containing Very Low Carbon Steel and Manufacturing Method of Ti - containing Very Low Carbon Steel Casting | |
JP7260731B2 (en) | High purity steel and its refining method | |
JP4280163B2 (en) | Low carbon steel sheet, low carbon steel slab and method for producing the same | |
US20120261085A1 (en) | Extremely low carbon steel plate excellent in surface characteristics, workability, and formability and a method of producing extremely low carbon cast slab | |
JP2010236030A (en) | Method for refining molten steel | |
JP6821993B2 (en) | Manufacturing method of low carbon steel thin wall slab | |
JP4780084B2 (en) | Titanium killed steel material with good surface properties and method for producing the same | |
JP4058809B2 (en) | Titanium killed steel with good surface properties and method for producing the same | |
JP2009113086A (en) | Method for continuously casting of extra-low carbon steel | |
JP2007327122A (en) | TREATMENT METHOD FOR MOLTEN IRON BY Nd AND Ca ADDITION | |
JP2000001718A (en) | Manufacture of low carbon steel | |
JP2006152444A (en) | MELTING AND MANUFACTURING METHOD OF Ti-ADDED ULTRA-LOW CARBON STEEL | |
JP3603513B2 (en) | Method for deoxidizing low carbon steel | |
JP6825507B2 (en) | Manufacturing method of low carbon steel thin wall slab and manufacturing method of low carbon steel thin wall slab and low carbon steel thin steel sheet | |
JP5056826B2 (en) | Steel for continuous casting and method for producing the same | |
JP3928264B2 (en) | Method for melting chromium-containing steel | |
JP3843590B2 (en) | Method for producing Ti deoxidized ultra-low carbon steel | |
JP3395699B2 (en) | Method for producing ferritic stainless steel | |
JP2019000903A (en) | Smelting method and continuous casting method of steel | |
JP4055252B2 (en) | Method for melting chromium-containing steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090407 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090811 |