JP2010236030A - Method for refining molten steel - Google Patents

Method for refining molten steel Download PDF

Info

Publication number
JP2010236030A
JP2010236030A JP2009085745A JP2009085745A JP2010236030A JP 2010236030 A JP2010236030 A JP 2010236030A JP 2009085745 A JP2009085745 A JP 2009085745A JP 2009085745 A JP2009085745 A JP 2009085745A JP 2010236030 A JP2010236030 A JP 2010236030A
Authority
JP
Japan
Prior art keywords
molten steel
rem
steel
refining
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009085745A
Other languages
Japanese (ja)
Other versions
JP5381243B2 (en
Inventor
Toshihiro Konno
智弘 今野
Yasuyuki Okada
泰行 岡田
Hiroshi Harada
寛 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009085745A priority Critical patent/JP5381243B2/en
Publication of JP2010236030A publication Critical patent/JP2010236030A/en
Application granted granted Critical
Publication of JP5381243B2 publication Critical patent/JP5381243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for refining molten steel with which a nozzle clogging in the time of continuous-casting caused by low melting point inclusion and the surface defect on a rolled steel sheet, can be prevented. <P>SOLUTION: A simple ladle-refining method, with which the molten steel in the ladle is refined while performing Ar gas stirring in the atmospheric pressure, is used. Rare-earth metal elements (REM) are added into the molten steel deoxidized with Al or Al-Si, and the additional quantity of the REM supplied into the molten steel is in the range of 5-20 ppm to the molten steel mass, and the REM-additional timing is after adjusting the finish-components, and the time from the starting of this addition to the finishing of this treatment, is performed at the timing of uniform mixing time or shorter. Then, the formed inclusions are made to be high melting point and harmless by forming the inclusion composition with mass ratio into 1-25% CaO, 8-95% Al<SB>2</SB>O<SB>3</SB>and 3-90% REM oxides. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱延鋼板や冷延鋼板に用いられるAl脱酸又はAl−Si脱酸による溶鋼の精錬方法に関するものである。   The present invention relates to a method for refining molten steel by Al deoxidation or Al-Si deoxidation used for hot-rolled steel sheets and cold-rolled steel sheets.

一般に熱延鋼板や冷延鋼板といった圧延鋼板は、転炉で溶製された未脱酸の溶鋼をAl又はAlとSiで脱酸して製造されている。Alを含む脱酸の際に発生するアルミナを主体とする介在物は、溶鋼からの除去が不十分な場合、連続鋳造時のノズル詰まりといった操業トラブルや、圧延段階での表面欠陥の原因となることが知られている。   In general, a rolled steel sheet such as a hot-rolled steel sheet or a cold-rolled steel sheet is manufactured by deoxidizing an undeoxidized molten steel melted in a converter with Al or Al and Si. Inclusions mainly composed of alumina generated during deoxidation containing Al cause operational troubles such as nozzle clogging during continuous casting and surface defects in the rolling stage when removal from molten steel is insufficient. It is known.

アルミナを溶鋼から除去する方法として、脱酸後のアルミナの浮上、分離時間をできるだけ長くとるように転炉での出鋼時に脱酸剤のAlを投入する方法や、CASをはじめとする簡易取鍋精錬法あるいはRH真空脱ガス精錬法などの取鍋精錬において溶鋼の強攪拌を行い、アルミナの浮上、分離を促進する方法が行われてきた。   As a method of removing alumina from molten steel, a method of introducing Al as a deoxidizer at the time of steel output in a converter so that the floatation and separation time of alumina after deoxidation is as long as possible, and simple measures such as CAS are taken. In ladle refining such as the pot refining method or the RH vacuum degassing refining method, a method of intensively stirring molten steel to promote the floating and separation of alumina has been performed.

ところが、これらの方法によるアルミナの浮上分離対策では限界があって、数100μm以上の介在物を完全に除去できないため、スリバー疵を防止できないという問題があった。   However, there is a limit to the measures for flotation separation of alumina by these methods, and there is a problem that sliver flaws cannot be prevented because inclusions of several hundred μm or more cannot be completely removed.

また、Caを添加して介在物全体をCaO−Al23系の低融点介在物に改質する方法が一般的に良く知られているが、通常Caを安価なCaSi合金で添加するため、Si上限の厳しい鋼板への適用は難しい。 Further, a method of adding Ca to modify the entire inclusions to CaO—Al 2 O 3 type low melting point inclusions is generally well known. However, since Ca is usually added as an inexpensive CaSi alloy. It is difficult to apply to steel plates with severe Si upper limit.

ノズル閉塞の問題を解決するために特許文献1、2ではアルミナのクラスタリングを防止するため、T.O量に応じてREMを適量添加しバインダーとなるFeOおよびFeO・Al23を還元する方法が開示されている。特許文献1では、酸化物系介在物をAl23とREM酸化物が主成分で、REM酸化物の含有量を重量%で0.5〜15%とする。この組成範囲において、Al23粒子同士の凝集合体を抑制でき、粗大なAl23クラスターの生成が防止できるとしている。また、特許文献3では連続鋳造までの酸素増加量を加味したREM添加方法が開示されている。 In order to solve the problem of nozzle clogging, Patent Documents 1 and 2 disclose T.A. A method is disclosed in which an appropriate amount of REM is added in accordance with the amount of O to reduce FeO and FeO.Al 2 O 3 serving as binders. In Patent Document 1, the oxide inclusions are mainly composed of Al 2 O 3 and REM oxide, and the content of REM oxide is 0.5 to 15% by weight. In this composition range, aggregation and coalescence of Al 2 O 3 particles can be suppressed, and generation of coarse Al 2 O 3 clusters can be prevented. Patent Document 3 discloses a REM addition method that takes into account the amount of oxygen increase up to continuous casting.

簡易取鍋精錬法とは、取鍋中の溶鋼を大気圧雰囲気においてArガス攪拌を行いつつ精錬する取鍋精錬法をいう。具体的には、非特許文献1に記載のように、取鍋内の溶鋼をアルゴンガス攪拌しつつ合金成分を添加する方法、SAB(Sealed Argon Bubbling)法、CAB(Capped Argon Bubbling)法、CAS(Composition Adjustment by Sealed Argon bubbling)法、浸漬ランスAr吹き込み法などが挙げられる。大気圧雰囲気で行うことが特徴であり、減圧下で精錬を行うRH真空脱ガス法などは含まれない。   The simple ladle refining method refers to a ladle refining method in which molten steel in a ladle is refined while stirring Ar gas in an atmospheric pressure atmosphere. Specifically, as described in Non-Patent Document 1, a method of adding an alloy component while stirring molten steel in a ladle with argon gas, a SAB (Sealed Argon Bubbling) method, a CAB (Capped Argon Bubbling) method, a CAS (Composition Adjustment by Sealed Argon bubbling) method, immersion lance Ar blowing method and the like. It is characterized by being performed in an atmospheric pressure atmosphere, and does not include the RH vacuum degassing method in which refining is performed under reduced pressure.

溶鋼から採取した試料中の非金属介在物粒子の量や組成を評価する方法としてコールドクルーシブル法が知られている。コールドクルーシブルとは、特許文献4に記載のように、円周方向に分割された水冷銅坩堝の周りに誘導加熱コイルが巻かれた装置である。高周波の交流電流をコイルに通電することで、ルツボによる誘導ロスなく、ルツボ内に高周波交流磁場を形成することができ、ルツボ内に配置された金属をピンチ力により浮揚させ、かつ誘導電流によるジュール発熱により溶解することができる。一方、溶鋼にピンチ力が作用する反作用として内部の介在物(絶縁物)には外向きの体積力が作用し、介在物は金属表面に寄せ集めることができる。そのようにして得られた介在物が集積した部分について、低倍のSEM−EDS分析を行うと介在物の平均組成を代表性よく求めることができる。   A cold crucible method is known as a method for evaluating the amount and composition of non-metallic inclusion particles in a sample collected from molten steel. Cold crucible is an apparatus in which an induction heating coil is wound around a water-cooled copper crucible divided in the circumferential direction as described in Patent Document 4. By applying a high-frequency AC current to the coil, a high-frequency AC magnetic field can be formed in the crucible without inductive loss due to the crucible. Can dissolve by exotherm. On the other hand, as a reaction of the pinch force acting on the molten steel, the outward volume force acts on the internal inclusions (insulators), and the inclusions can be collected on the metal surface. If the SEM-EDS analysis at a low magnification is performed on the portion where the inclusions thus obtained are accumulated, the average composition of the inclusions can be obtained with good representativeness.

特開2004−52076号公報JP 2004-52076 A 特開2004−52077号公報JP 2004-52077 A 特開2007−254819号公報JP 2007-254819 A 国際公開WO96/28729パンフレットInternational Publication WO96 / 28729 Pamphlet

日本鉄鋼協会編「第3版鉄鋼便覧II製銑・製鋼」昭和54年10月15日、丸善株式会社発行、第690〜691頁Edited by the Japan Iron and Steel Association, “Third Edition Steel Handbook II Steel Making and Steel Making”, published on Mar. 15, 1989, pages 690 to 691 S.Ueda, K.Morita and N.Sano: ISIJ-International, vol.38(1998), No.12, pp.1292-1296S. Ueda, K. Morita and N. Sano: ISIJ-International, vol. 38 (1998), No. 12, pp. 1292-1296

特許文献1〜3のいずれの方法も、アルミナのクラスタリング防止、バインダー介在物の還元を目的としたものであり、本課題を解決する手段しては十分ではない。   None of the methods disclosed in Patent Documents 1 to 3 is intended to prevent clustering of alumina and reduce binder inclusions, and is not sufficient as a means for solving this problem.

簡易取鍋精錬法では、溶鋼攪拌を目的として取鍋底からアルゴンガス吹き込みを行う。吹き込んだアルゴンガスが溶鋼表面から離脱する際、アルゴンガス攪拌によって溶鋼表面の取鍋スラグが溶鋼中に懸濁し、取鍋スラグの溶鋼中への巻き込みが発生する。取鍋スラグはCaOを含有している。また、成分調整のために添加した合金鉄はCaOなどの不純物を含有するので、これら合金鉄起因の不純物も溶鋼中に混入する。そのため、従来の簡易取鍋精錬法を用いた鋼の製造方法においては、アルミナの低減を図ることはできるが、一部の介在物組成がCaO−Al23系介在物に変化する。取鍋スラグの巻き込みはアルゴン吹き込みを行っている間は継続するので、このCaO含有介在物の生成反応は、簡易取鍋精錬終了時まで継続するため浮上分離が十分に行われない。 In the simple ladle refining method, argon gas is blown from the bottom of the ladle for the purpose of stirring the molten steel. When the blown argon gas leaves the surface of the molten steel, the ladle slag on the surface of the molten steel is suspended in the molten steel by stirring the argon gas, and the ladle slag is caught in the molten steel. The ladle slag contains CaO. Moreover, since the alloy iron added for component adjustment contains impurities, such as CaO, these alloy iron impurities are also mixed in molten steel. Therefore, in the steel manufacturing method using the conventional simple ladle refining method, alumina can be reduced, but some of the inclusion composition changes to CaO—Al 2 O 3 inclusions. Since the ladle slag entrainment continues while the argon is blown, the formation reaction of the CaO-containing inclusions continues until the end of the simple ladle refining, so that the floating separation is not sufficiently performed.

従来の簡易取鍋精錬法で精錬した鋼について、コールドクルーシブル法で採取した介在物の写真を図1に示す。図1に矢印で示す2箇所について介在物の成分分析を行ったところ、CaO濃度:10%、Al23濃度90%組成の箇所と、CaO濃度50%、Al23濃度50%組成の箇所が見られた。即ち、溶鋼中にCaO−Al23系の複数組成の介在物が共存した形態となっている。他に微量濃度ではあるが、MgO,SiO2他を含むケースがある。CaO濃度50%、Al23濃度50%の組成は低融点であるから、溶鋼中では固体介在物(高融点)だけでなく、低融点介在物が液体として存在することを示している。また、図1に示す介在物の外観から、固体介在物(高融点)に低融点介在物が混在した形態をとっていることが分かる。この低融点介在物が起因となって、取鍋ノズルや浸漬ノズル内壁に付着、堆積し、ノズル閉塞の原因となる。また、一部が鋳片に捕捉され鋼板での表面欠陥の原因となる。 FIG. 1 shows a photograph of inclusions collected by a cold crucible method for steel refined by a conventional simple ladle refining method. When the component analysis of inclusions was performed at two locations indicated by arrows in FIG. 1, the location where the CaO concentration was 10% and the Al 2 O 3 concentration was 90%, the CaO concentration was 50%, and the Al 2 O 3 concentration was 50%. The part of was seen. In other words, CaO—Al 2 O 3 -based inclusions with multiple compositions coexist in the molten steel. In addition, there are cases where MgO, SiO 2 and the like are contained, although the concentration is very small. Since the composition with a CaO concentration of 50% and an Al 2 O 3 concentration of 50% has a low melting point, it indicates that not only solid inclusions (high melting point) but also low melting point inclusions exist as liquids in the molten steel. In addition, it can be seen from the appearance of the inclusions shown in FIG. 1 that the solid inclusions (high melting point) are mixed with low melting point inclusions. Due to the inclusion of the low melting point, it adheres and accumulates on the ladle nozzle and the inner wall of the immersion nozzle, causing nozzle clogging. Moreover, a part is caught by the slab and causes surface defects in the steel sheet.

本発明は上記課題を解決するためになされたものであり、簡易取鍋精錬法で生成する液体介在物と固体介在物が混在した複数組成のCaO−Al23系介在物を無害化することにより、鋼製造における連続鋳造時のノズル詰まり、圧延鋼板での表面欠陥を防止することを目的とする。 The present invention has been made to solve the above-described problems, and detoxifies a CaO—Al 2 O 3 inclusion having a plurality of compositions in which liquid inclusions and solid inclusions produced by a simple ladle refining method are mixed. The purpose of this is to prevent nozzle clogging during continuous casting in steel production and surface defects in rolled steel sheets.

即ち、本発明の要旨とするところは以下のとおりである。
(1)取鍋中の溶鋼を大気圧雰囲気においてArガス攪拌を行いつつ精錬する簡易取鍋精錬法を用いる溶鋼の精錬方法において、Al脱酸またはAl−Si脱酸した溶鋼中に希土類元素(REM)を添加し、溶鋼に供給するREM添加量は、溶鋼質量に対して5〜20ppmの範囲内であり、REM添加時期は、簡易取鍋精錬法での最終成分調整後であって、かつ添加から処理終了までの時間が均一混合時間以下の時期に行い、鋼中の平均介在物組成を質量比で、CaO%=1〜25%、Al23%=8〜95%、REM酸化物%=3〜90%、残分として微量元素の酸化物を含むことを特徴とする溶鋼の精錬方法。
(2)前記溶鋼は、質量%でC:0.01〜1.5%、Si:0.001〜3.0%、Mn:0.01〜3.0%、P:0.001〜0.1%、S:0.0001〜0.05%、Al:0.001〜2.0%で、残部がFe及び不可避的不純物からなることを特徴とする請求項1に記載の溶鋼の精錬方法。
(3)前記溶鋼は、さらに質量%で、Nb:0.001〜0.1%、Ti:0.001〜0.2%、B:0.0005〜0.005%の一種又は二種以上を含有することを特徴とする請求項2に記載の溶鋼の精錬方法。
That is, the gist of the present invention is as follows.
(1) In a molten steel refining method using a simple ladle refining method in which molten steel in a ladle is refined while stirring with Ar gas in an atmospheric pressure atmosphere, a rare earth element ( REM) is added and the amount of REM added to the molten steel is in the range of 5 to 20 ppm relative to the molten steel mass, and the REM addition time is after the final component adjustment in the simple ladle refining method, and The time from the addition to the end of the treatment is performed at a time equal to or less than the uniform mixing time, and the average inclusion composition in the steel is CaO% = 1 to 25%, Al 2 O 3 % = 8 to 95%, REM oxidation. A method for refining molten steel, characterized by comprising an oxide of a trace element as a residue.
(2) The molten steel is C: 0.01 to 1.5%, Si: 0.001 to 3.0%, Mn: 0.01 to 3.0%, P: 0.001 to 0% by mass. The refining of molten steel according to claim 1, characterized in that: 1%, S: 0.0001 to 0.05%, Al: 0.001 to 2.0%, the balance being Fe and inevitable impurities. Method.
(3) The molten steel is further in mass%, Nb: 0.001 to 0.1%, Ti: 0.001 to 0.2%, B: 0.0005 to 0.005%, one or more. The method for refining molten steel according to claim 2, comprising:

本発明は、簡易取鍋精錬法において溶鋼中にREMを添加し、REM添加量を溶鋼質量に対して5〜20ppmの範囲とし、REM添加時期を簡易取鍋精錬の終了直前とすることにより、介在物を起因とするノズル詰まり、製品欠陥を大幅に改善することができる。   By adding REM to the molten steel in the simple ladle refining method, the REM addition amount is in the range of 5 to 20 ppm with respect to the molten steel mass, and the REM addition time is immediately before the end of the simple ladle refining. Nozzle clogging due to inclusions and product defects can be greatly improved.

従来例について、コールドクルーシブル法で評価した介在物のSEM顕微鏡写真である。It is a SEM micrograph of the inclusion evaluated about the conventional example by the cold crucible method. CaO−Al23−REMの三元状態図である。It is a ternary phase diagram of CaO-Al 2 O 3 -REM. CAS法で成分調整完了からの攪拌時間と鋼中の介在物個数レベルとの関係を示す図である。It is a figure which shows the relationship between the stirring time after completion of component adjustment by CAS method, and the number of inclusions in steel. CAS法での製造条件と連続鋳造ノズル詰まりレベルとの関係を示す図であり、左がREMを添加しない場合、中央がその他成分と同時にREMを添加する場合、右がCAS処理終了直前にREMを添加する場合である。It is a figure which shows the relationship between the manufacturing conditions in a CAS method, and a continuous casting nozzle clogging level. It is a case where it adds. CASの取鍋内へのREM添加量とノズル詰まりレベルとの関係を示す図である。It is a figure which shows the relationship between the amount of REM addition in the ladle of CAS, and a nozzle clogging level. 本発明例について、コールドクルーシブル法で評価した介在物のSEM顕微鏡写真である。It is a SEM micrograph of the inclusion evaluated about the example of this invention by the cold crucible method. CASの取鍋内へのREM添加量とノズル詰まりレベルとの関係を示す図である。It is a figure which shows the relationship between the amount of REM addition in the ladle of CAS, and a nozzle clogging level. CaO−Al23−REMの三元状態図において、本発明例と比較例の介在物組成の分布を示す図である。In ternary phase diagram of CaO-Al 2 O 3 -REM, a diagram showing the distribution of the composition of inclusions of the present invention and comparative example embodiment.

取鍋中の溶鋼を大気圧雰囲気においてArガス攪拌を行いつつ精錬する簡易取鍋精錬法で溶製される溶鋼は、真空脱ガス法で製造される極低炭素鋼とは異なり、簡易取鍋精錬法で処理される前のC濃度が0.01%以上のためT.O量が低く介在物生成量は少ない。しかしながら、簡易取鍋精錬法で溶製される溶鋼中の介在物形態の特徴として、CaO−Al23系介在物が生成する場合が多い。Alのみで脱酸しSi脱酸を行わないアルミキルド鋼、AlとSiで脱酸するアルミシリコンキルド鋼のいずれでも同様である。その理由は前述のとおり、簡易取鍋精錬のアルゴン攪拌によって取鍋スラグの巻き込みが比較的大きいこと、成分調整のために添加した合金鉄中の不純物(特にCa分)が大気圧下のため分離されにくいことが挙げられる。 Unlike the ultra-low carbon steel produced by the vacuum degassing method, the molten steel produced by the simple ladle refining method, in which the molten steel in the ladle is refined while stirring Ar gas in an atmospheric pressure atmosphere, is a simple ladle. Since the C concentration before being processed by the refining method is 0.01% or more, T.C. The amount of inclusions is low and the amount of inclusions produced is small. However, as a feature of the inclusion form in the molten steel melted by the simple ladle refining method, CaO—Al 2 O 3 inclusions are often generated. The same applies to both aluminum killed steel that is deoxidized only by Al and not subjected to Si deoxidation, and aluminum silicon killed steel that is deoxidized by Al and Si. As described above, the reason is that the ladle slag is relatively large by argon stirring in the simple ladle refining, and the impurities (especially Ca content) in the alloy iron added for component adjustment are separated under atmospheric pressure. It is hard to be done.

そのため、脱酸成分投入後に取鍋内のAr攪拌を継続することによって介在物の浮上、分離時間をできるだけ長くとる方法や、簡易取鍋精錬においてアルゴンガス吹き込み量を増大して溶鋼の強攪拌を行いアルミナの浮上、分離を促進する方法では、スラグ等からの二次反応でのCaO−Al23生成をむしろ助長してしまうという問題点がある。 Therefore, by continuing Ar stirring in the ladle after adding the deoxidized component, the floating of inclusions and the separation time can be as long as possible. The method of promoting the floatation and separation of alumina has a problem that it rather promotes the generation of CaO—Al 2 O 3 in the secondary reaction from slag or the like.

図3は、CAS法による簡易取鍋精錬法を用いた精錬において、脱酸元素投入の成分調整が終わった後の攪拌継続時間と、溶鋼中の介在物レベルとの関係を調査した結果である。脱酸元素投入直後の介在物レベルを1としている。図3に示すように簡易取鍋精錬法での攪拌時間と介在物量の関係は、ある程度以上に攪拌時間を延ばしても、介在物量の低減が図れないことがわかる。攪拌時間10分を経過した溶鋼から採取したサンプルをコールドクルーシブル法で評価した結果が図1である。図1に示したように、液体介在物と固体介在物が混在したCaO−Al23系介在物が残留してしまう。 FIG. 3 is a result of investigating the relationship between the stirring duration after the component adjustment of deoxidizing element input and the inclusion level in molten steel in refining using the simple ladle refining method by the CAS method. . The inclusion level immediately after the deoxidation element is added is 1. As shown in FIG. 3, the relationship between the stirring time and the amount of inclusions in the simple ladle refining method indicates that the amount of inclusions cannot be reduced even if the stirring time is extended beyond a certain level. FIG. 1 shows a result obtained by evaluating a sample collected from molten steel after 10 minutes of stirring time by a cold crucible method. As shown in FIG. 1, CaO—Al 2 O 3 inclusions in which liquid inclusions and solid inclusions are mixed remain.

そこで、発明者らはREM酸化物が介在物の高融点化する作用に着目し、簡易取鍋精錬法で生成した介在物へのREM添加による、介在物の高融点化処理の実験、および検討を重ねた。なお、本発明において希土類元素(REM)とは、Ce、La、PrまたはNdの1種類以上の元素を意味する。   Accordingly, the inventors focused on the action of REM oxide to increase the melting point of inclusions, and conducted experiments and examinations on the melting point of inclusions by adding REM to the inclusions generated by the simple ladle refining method. Repeated. In the present invention, the rare earth element (REM) means one or more elements of Ce, La, Pr, or Nd.

表1に示す組成の鋼で浸漬ノズル詰まり低減に必要なREM添加時期を検討した結果を図4に示す。浸漬ノズル詰まりレベルは連続鋳造設備のストッパー開度の変化代から求めた。CASにてAlなどの合金成分を最終的に添加した後、アルゴン攪拌を6分間継続し、CASを終了した。   FIG. 4 shows the result of examining the REM addition time necessary for reducing the clogging of the immersion nozzle with the steel having the composition shown in Table 1. The submerged nozzle clogging level was obtained from the amount of change in the stopper opening of the continuous casting equipment. After the alloy component such as Al was finally added by CAS, argon stirring was continued for 6 minutes to complete CAS.

図4の左端はREMを添加しない従来例である。浸漬ノズル詰まりが発生しており、そのときのノズル詰まりレベルを「1」として規格化した。中央と右端は、REMを溶鋼に対して6ppm相当分鍋上から添加した事例である。中央については、REM添加タイミングを成分調整と同時期とした場合である。すると、REMを添加したにもかかわらず、ノズル詰まりレベルは改善されなかった。一方、CAS処理終了直前(1分前)にREMを添加した場合は、処理過程で生成した介在物の改質に有効に機能し、効果が得られた。以上の結果から、CASにてREMを添加してからの攪拌時間が長すぎると、REMを添加した効果が得られないことが判明した。   The left end of FIG. 4 is a conventional example in which REM is not added. Immersion nozzle clogging occurred, and the nozzle clogging level at that time was normalized as “1”. The center and the right end are examples in which REM is added from the top of the pan corresponding to 6 ppm relative to the molten steel. About the center, it is a case where REM addition timing is set as the same period as component adjustment. The nozzle clogging level was not improved despite the addition of REM. On the other hand, when REM was added immediately before the end of CAS treatment (one minute before), it effectively functioned to reform the inclusions produced in the treatment process, and an effect was obtained. From the above results, it was found that the effect of adding REM cannot be obtained if the stirring time after adding REM with CAS is too long.

次に表1に示す組成のAl脱酸鋼で浸漬ノズル詰まり低減に必要なREM添加量を検討した結果を図5に示す。ここでREM添加量とは、鍋上から溶鋼に供給するREMの投入量を、溶鋼質量との質量比で表したものであって、溶鋼中のREM含有量とは別の概念である。CASにおけるREM添加は処理終了1分前とした。REM添加量が不十分な場合は、浸漬ノズル詰まり改善効果が低い。一方で、REM添加量過多の場合は、REM酸化物単体でのクラスタリングが発生するため、浸漬ノズル詰まりが悪化する。従って、実操業で安定して浸漬ノズル詰まり低減を図るためには、CASで鍋上から添加するREM添加量を質量比で5〜20ppmとすることが好まいことが判明した。REM添加量を5〜20ppmとしたとき、鋼中に残存するREM歩留が低いため、鋼中REM濃度は5ppm以下となる。また、このREM添加量範囲であれば、取鍋ノズルの詰まりも改善する。本発明において、鋼中のREM含有量ではなく、鋼へのREM添加量で規定したのは、溶鋼中に含まれる介在物の組成制御を目的としたものだからである。   Next, FIG. 5 shows the result of examining the REM addition amount necessary for reducing the clogging of the immersion nozzle with Al deoxidized steel having the composition shown in Table 1. Here, the REM addition amount represents the amount of REM supplied to the molten steel from the top of the pan in a mass ratio with the molten steel mass, and is a concept different from the REM content in the molten steel. REM addition in CAS was made 1 minute before the end of the treatment. When the amount of REM added is insufficient, the effect of improving clogging of the immersion nozzle is low. On the other hand, when the amount of REM added is excessive, clustering of the REM oxide alone occurs, so that the immersion nozzle clogging is worsened. Therefore, in order to stably reduce the clogging of the immersion nozzle in actual operation, it has been found that it is preferable that the amount of REM added by CAS from the pan is 5 to 20 ppm in terms of mass ratio. When the REM addition amount is 5 to 20 ppm, since the REM yield remaining in the steel is low, the REM concentration in the steel is 5 ppm or less. Moreover, if it is this REM addition amount range, clogging of a ladle nozzle will also be improved. In the present invention, the reason why the amount of REM added to the steel is not the REM content in the steel but the purpose is to control the composition of inclusions contained in the molten steel.

以上より簡易取鍋精錬法で上記介在物組成を達成するためには、CaO−Al23が処理により十分に生成した状態で行うとともに、最終成分調整後であってかつREM添加後から処理終了までの時間が短いこと、スラグを巻き込まないことが好ましい。即ち、均一混合時間τの範囲内(一般的にCASの均一混合時間は100〜200s程度)であればよい。ここで、均一混合時間τはガス攪拌の場合の攪拌動力値εを用いて以下の式により推算される。
ε=((6.18・Vg・Tl)/Ml)ln(1+(h0/(1.46×10-5・P0)))
τ=800・ε-0.4
ここで、Vg:ガス流量(Nm3/min)、Ml:取鍋内溶鋼質量(ton)、Tl:溶鋼温度(K)、h0:ガス吹き込み深さ(m)、P0:溶鋼表面圧力(Pa)、ε:攪拌動力値(W/ton)、τ:均一混合時間(s)
As described above, in order to achieve the inclusion composition by the simple ladle refining method, the treatment is performed after CaO-Al 2 O 3 is sufficiently generated by the treatment and after the final component adjustment and after the addition of REM. It is preferable that the time until completion is short and that no slag is involved. That is, it may be within the range of the uniform mixing time τ (generally, the uniform mixing time of CAS is about 100 to 200 s). Here, the uniform mixing time τ is estimated by the following equation using the stirring power value ε in the case of gas stirring.
ε = ((6.18 · V g · T l ) / M l ) ln (1+ (h 0 /(1.46×10 -5 · P 0 )))
τ = 800 ・ ε -0.4
Here, V g : gas flow rate (Nm 3 / min), M l : molten steel mass (ton) in the ladle, T l : molten steel temperature (K), h 0 : gas blowing depth (m), P 0 : Molten steel surface pressure (Pa), ε: stirring power value (W / ton), τ: uniform mixing time (s)

なお簡易取鍋精錬において、REM以外の合金成分の最終成分調整から処理終了までの時間については、少なくとも均一混合時間以上を確保すると好ましい。   In simple ladle refining, it is preferable to secure at least a uniform mixing time for the time from the final component adjustment of the alloy components other than REM to the end of the treatment.

アルミキルド鋼についてCASで鍋上から添加するREM添加量を質量比で5〜20ppmとし、かつREM添加後から処理終了までの時間を均一混合時間τの範囲内とした場合について、鋼中の介在物評価を行った。連続鋳造タンディッシュ内の溶鋼から採取した試料についてコールドクルーシブル評価を行った介在物形態を図6に示す。なお、合金最終調整から処理終了までは5分、REM添加量=5ppm、REM添加後処理終了までの時間は1分(τ=3.3分)である。図6の写真に現れている介在物の形態から、溶鋼温度において介在物が固体であったことが見て取れる。また、図6に矢印で示す2箇所について介在物の成分分析を行ったところ、CaO濃度:35%、Al23濃度25%、REM濃度40%組成の箇所と、CaO濃度18%、Al23濃度55%、REM濃度27%の値が得られた。即ち、この介在物組成は、図2に示すとおり溶鋼温度では固体であり、図6の介在物形態は固体介在物(高融点)に改質されていることが確認できた。 For aluminum killed steel, the amount of REM added from the top of the pan in CAS is 5 to 20 ppm by mass, and the time from the end of REM addition to the end of treatment is within the range of uniform mixing time τ, the inclusions in the steel Evaluation was performed. FIG. 6 shows an inclusion form in which cold crucible evaluation was performed on a sample collected from molten steel in a continuous cast tundish. It should be noted that the time from the final adjustment of the alloy to the end of the treatment is 5 minutes, the amount of REM added = 5 ppm, and the time from the end of the REM addition to the end of the treatment is 1 minute (τ = 3.3 minutes). From the form of the inclusion appearing in the photograph of FIG. 6, it can be seen that the inclusion was solid at the molten steel temperature. When it was component analysis of inclusions on two positions indicated by arrows in FIG. 6, CaO concentration: 35% Al 2 O 3 concentration of 25% and part of the REM concentration 40% composition, CaO concentration 18% Al Values of 2 O 3 concentration 55% and REM concentration 27% were obtained. That is, this inclusion composition was solid at the molten steel temperature as shown in FIG. 2, and it was confirmed that the inclusion form in FIG. 6 was modified to a solid inclusion (high melting point).

本発明においては、鋼中の介在物組成を質量比で、CaO%=1〜25%、Al23%=8〜95%、REM酸化物%=3〜90%、残分として微量元素の酸化物を含む組成とすることで、介在物を高融点介在物に改質させることでノズル詰まりが防止できることを見出した。介在物組成評価については、連続鋳造タンディッシュ内の溶鋼から試料を採取し、コールドクルーシブル法で介在物を抽出し、SEM−EDSで介在物組成分析を行い、試料中の4箇所の平均値によって算出することができる。 In the present invention, the inclusion composition in the steel is, by mass ratio, CaO% = 1 to 25%, Al 2 O 3 % = 8 to 95%, REM oxide% = 3 to 90%, and trace elements as the residue It has been found that nozzle clogging can be prevented by modifying the inclusions to high melting point inclusions by using a composition containing this oxide. For the inclusion composition evaluation, a sample is taken from the molten steel in the continuous casting tundish, the inclusion is extracted by the cold crucible method, the inclusion composition analysis is performed by SEM-EDS, and the average value of the four locations in the sample is used. Can be calculated.

鋼中の介在物組成において、液相介在物を介在させないことが重要なため、CaO−Al23−REM酸化物の状態図(図2)の低融点領域(ハッチング部分)を避ける組成であればよい。そのため、基本的にはCaO−Al23−REM酸化物の状態図のCaO濃度が0%を下底、CaO濃度が25%を上底、Al23濃度が0%、REM酸化物濃度が0%で囲まれた台形部分が本発明の介在物組成の基本条件となる。 In the inclusion composition in steel, it is important not to intervene liquid phase inclusions. Therefore, it is a composition that avoids the low melting point region (hatched portion) in the phase diagram of CaO—Al 2 O 3 —REM oxide (FIG. 2). I just need it. Therefore, the CaO-Al 2 O 3 -REM oxide phase diagram basically has a CaO concentration of 0% at the bottom, a CaO concentration of 25% at the top, an Al 2 O 3 concentration of 0%, and a REM oxide. A trapezoidal portion surrounded by a concentration of 0% is a basic condition of the inclusion composition of the present invention.

そのため、先ずCaO濃度の上限値が25%となる。加えて、Al23からCaO−Al23系の介在物となることで接触角が低下しより90°に近くなることが知られている。液相が介在するとクラスタリングが進行してしまうが、固体の介在物であればクラスタリングはおこりにくくなる。その効果はCaO濃度が1%以上で顕著となる。そのため、CaO濃度の下限値は1%とする。CaO濃度の下限値は5%であるとより好ましい。 Therefore, first, the upper limit value of the CaO concentration is 25%. In addition, it is known that the contact angle decreases from Al 2 O 3 to CaO—Al 2 O 3 inclusions and approaches 90 °. Clustering proceeds when a liquid phase is present, but clustering is difficult to occur with solid inclusions. The effect becomes remarkable when the CaO concentration is 1% or more. Therefore, the lower limit value of the CaO concentration is 1%. The lower limit value of the CaO concentration is more preferably 5%.

REM酸化物濃度は3%以上で効果が顕著となるため下限値は3%とする。併せて、CaOを含有することでAl23−REM酸化物においてREM酸化物濃度の高濃度側においてもクラスタリングを低減する効果が見られる。但し、本発明ではREM添加量が5〜20ppmの範囲であり、この条件ではREM酸化物単独は見られないため、REM酸化物単独は含まない。そのため、REM酸化物濃度の上限は90%とする。 Since the effect becomes significant when the REM oxide concentration is 3% or more, the lower limit is set to 3%. In addition, by containing CaO, the effect of reducing clustering is seen even on the higher concentration side of the REM oxide concentration in the Al 2 O 3 -REM oxide. However, in the present invention, the amount of REM added is in the range of 5 to 20 ppm. Under these conditions, REM oxide alone is not seen, and therefore REM oxide alone is not included. Therefore, the upper limit of the REM oxide concentration is 90%.

本発明は簡易取鍋精錬法を用いているため、溶鋼とスラグとの反応が避けられない。そのため、Al23単独の介在物は観察されにくいので、Al23濃度の上限は95%とする。 Since the present invention uses a simple ladle refining method, the reaction between molten steel and slag is inevitable. Therefore, the inclusion of Al 2 O 3 alone is difficult to observe, so the upper limit of the Al 2 O 3 concentration is 95%.

本発明において、介在物におけるCaO、Al23、REM酸化物以外の成分については、10%以下である。 In the present invention, components other than CaO, Al 2 O 3 and REM oxide in inclusions are 10% or less.

Al脱酸またはAl−Si脱酸した溶鋼中にCe、La等の1種類以上の希土類元素(REM)を添加し、CASで鍋上から添加するREM添加量を質量比で5〜20ppmとし、REM添加時期は、簡易取鍋精錬法での最終成分調整後であって、かつ添加から処理終了までの時間が均一混合時間以下の時期とすることにより、介在物組成を上記好ましい範囲とすることができる。   One or more rare earth elements (REM) such as Ce and La are added to Al deoxidized or Al-Si deoxidized molten steel, and the amount of REM added from the pan on CAS is 5 to 20 ppm by mass, The REM addition time is after the final component adjustment in the simple ladle refining method, and the time from the addition to the end of the treatment is set to a time equal to or less than the uniform mixing time so that the inclusion composition is within the above preferred range. Can do.

本発明で用いられるAl脱酸鋼、およびAl−Si脱酸鋼とは、質量%でC:0.01〜1.5%、Si:0.001〜3.0%、Mn:0.01〜3.0%、P:0.001〜0.1%、S:0.0001〜0.05%、Al:0.001〜2.0%で、残部がFe及び不可避的不純物からなることを特徴とする炭素鋼である。必要に応じて、Nb、Ti、B、等の微量元素を添加し、鋼の特性を向上させた炭素鋼でも用いることができる。   Al deoxidized steel and Al-Si deoxidized steel used in the present invention are C: 0.01 to 1.5%, Si: 0.001 to 3.0%, Mn: 0.01 by mass%. -3.0%, P: 0.001-0.1%, S: 0.0001-0.05%, Al: 0.001-2.0%, the balance being made of Fe and inevitable impurities Is a carbon steel characterized by If necessary, it is possible to use carbon steel in which trace elements such as Nb, Ti, and B are added to improve the characteristics of the steel.

Cは鋼の強度を安定して向上させる元素であり、所望する材料の強度応じて含有量を0.01〜1.5%の範囲で調整する。Arバブリング、CASといった簡易取鍋精錬では、一般的にCが0.01%以上である。1.5%以下としたのは、これ以上の含有量では鋼材の加工性が悪化するためである。   C is an element that stably improves the strength of steel, and the content is adjusted in the range of 0.01 to 1.5% according to the strength of the desired material. In simple ladle refining such as Ar bubbling and CAS, C is generally 0.01% or more. The reason why the content is 1.5% or less is that the workability of the steel material is deteriorated when the content exceeds this value.

Siを0.001〜3.0%としたのは、0.001%未満では精錬コスト負担が大きく経済性が悪いこと、3.0%超では鋼材の表面性状が劣化するためである。Al脱酸鋼においてはSi含有量が不純物レベルとなる。Al−Si脱酸鋼では、Si濃度が有限の値となる。   The reason why Si is set to 0.001 to 3.0% is that, if it is less than 0.001%, the refining cost burden is large and the economic efficiency is poor, and if it exceeds 3.0%, the surface properties of the steel material deteriorate. In Al deoxidized steel, the Si content is at the impurity level. In the Al—Si deoxidized steel, the Si concentration becomes a finite value.

Mnを0.01〜3.0%としたのは、0.01%未満では精錬コスト負担が大きく経済性が悪いこと、3.0%超では鋼材の加工性が悪化するためである。   The reason why Mn is set to 0.01 to 3.0% is that if it is less than 0.01%, the refining cost burden is large and the economic efficiency is poor, and if it exceeds 3.0%, the workability of the steel material deteriorates.

Pを0.001〜0.1%としたのは、0.001%未満では精錬コスト負担が大きく経済性が悪いこと、0.1%超では鋼材の加工性が悪化するためである。   The reason why P is set to 0.001 to 0.1% is that if it is less than 0.001%, the refining cost burden is large and the economic efficiency is poor, and if it exceeds 0.1%, the workability of the steel material is deteriorated.

Sを0.0001〜0.05%としたのは、0.001%未満では精錬コスト負担が大きく経済性が悪いこと、0.05%超では鋼材の加工性、耐食性が悪化するためである。   The reason why S is set to 0.0001 to 0.05% is that, if it is less than 0.001%, the refining cost burden is large and the economy is poor, and if it exceeds 0.05%, the workability and corrosion resistance of the steel material deteriorate. .

Alを0.001〜2.0%としたのは、0.001%未満では脱酸が不十分となり、鋳造時に気泡が発生し鋳造性が著しく悪化する。また2.0%超では鋼材の加工性が悪化するためである。   When Al is made 0.001 to 2.0%, if it is less than 0.001%, deoxidation becomes insufficient, bubbles are generated during casting, and castability is remarkably deteriorated. Further, if over 2.0%, the workability of the steel material deteriorates.

本発明で用いられる鋼はさらに必要に応じて、質量%で、Nb:0.001〜0.1%、Ti:0.001〜0.2%、B:0.0005〜0.005%の一種又は二種以上を含有する。   If necessary, the steel used in the present invention is mass%, Nb: 0.001 to 0.1%, Ti: 0.001 to 0.2%, B: 0.0005 to 0.005%. Contains one or more.

Nbを0 .001%以上含有させることによって、強度向上効果を示す。一方、0.1%を超えて添加すると靭性を損なうおそれがある。そこで、Nbを添加する場合には含有範囲を0.001〜0.1%とした。   Nb is set to 0. By containing 001% or more, the strength improvement effect is shown. On the other hand, if added over 0.1%, the toughness may be impaired. Therefore, when Nb is added, the content range is set to 0.001 to 0.1%.

Tiを0 .001%以上含有させることによって、強度向上効果を示す。一方、0.2%を超えて添加すると靭性を損なうおそれがある。そこで、Tiを添加する場合には含有範囲を0.001〜0.2%とした。   Ti is set to 0. By containing 001% or more, the strength improvement effect is shown. On the other hand, if added over 0.2%, the toughness may be impaired. Therefore, when Ti is added, the content range is set to 0.001 to 0.2%.

Bは鋼の焼入れ性を向上させ、強度を高める元素であって、0.0005%以上含有させることによって、強度向上効果を示すが、0.005%を超えて添加するとBの析出物を増加させ靭性を損なうおそれがあるため、0.0005〜0.005%の範囲に限定する。   B is an element that improves the hardenability of the steel and increases the strength. By adding 0.0005% or more, it shows an effect of improving the strength. However, if added over 0.005%, the precipitate of B increases. Therefore, the toughness may be impaired, so the content is limited to 0.0005 to 0.005%.

100t転炉において吹錬し出鋼した溶鋼を、簡易取鍋精錬設備であるCASで目標成分に調整した。REM以外の成分調整及び脱酸を完了した後、REMを添加した。なお、用いたREM含有合金は質量%で、Si=35%、La=10%、Ce=20%を含むFe−Si−REM合金である。CAS処理を完了した溶鋼を連続鋳造設備において、鋳型寸法が250mm厚×980〜1800mm幅、鋳造速度が0.6〜1.2m/分、タンディッシュ内溶鋼温度が1520〜1590℃の条件で鋳造し、鋳片を製造した。均一混合時間τの計算に用いる諸元は、Vg=0.23〜0.32Nm3/min、Ml=100ton、Tl=1873K、h0=2.6m、P0=101325Paである。CASにおける最終成分調整終了から処理終了までの時間については、一律5分とした。 The molten steel blown out in a 100 t converter was adjusted to the target component with CAS, which is a simple ladle refining facility. After completing the component adjustment and deoxidation other than REM, REM was added. Note that the REM-containing alloy used is an Fe-Si-REM alloy containing, in mass%, Si = 35%, La = 10%, and Ce = 20%. Casting of the molten steel that has undergone CAS treatment in a continuous casting facility under the conditions of a mold size of 250 mm thickness x 980 to 1800 mm width, a casting speed of 0.6 to 1.2 m / min, and a molten steel temperature in the tundish of 1520 to 1590 ° C The slab was manufactured. The specifications used for calculating the uniform mixing time τ are V g = 0.23 to 0.32 Nm 3 / min, M l = 100 ton, T l = 1873 K, h 0 = 2.6 m, and P 0 = 101325 Pa. The time from the end of final component adjustment in CAS to the end of processing was uniformly 5 minutes.

(実施例1)
Example 1

表2に示す成分のAl−Si脱酸鋼を用いて、REM添加量を種々変更して鋼を製造した。CASでのアルゴンガス流量Vg=0.27Nm3/minとした。REM添加後処理終了までの時間は1分(τ=3.3分)である。連続鋳造設備のストッパー開度の変化代から求めた浸漬ノズル詰まり状況を図7に示す。浸漬ノズルつまり状況の評価は、前述の図5の場合と同様にして行った。前述のAl脱酸鋼と同様に、Al−Si脱酸鋼においても、REM添加量=5〜20ppmとすることでノズル詰まりが改善する。REM合金の添加コストや、様々な成分の鋼材での汎用性を考えると、REM添加量=5ppm程度で製造することが好ましい。 Using Al-Si deoxidized steel having the components shown in Table 2, steel was manufactured with various REM addition amounts. The argon gas flow rate V g in CAS was 0.27 Nm 3 / min. The time from the addition of REM to the end of the treatment is 1 minute (τ = 3.3 minutes). FIG. 7 shows the clogging state of the immersion nozzle obtained from the change in the stopper opening of the continuous casting equipment. The evaluation of the immersion nozzle, that is, the situation was performed in the same manner as in the case of FIG. Similarly to the above-mentioned Al deoxidized steel, nozzle clogging is improved in Al-Si deoxidized steel by setting the REM addition amount to 5 to 20 ppm. Considering the addition cost of the REM alloy and the versatility of various steel components, it is preferable to manufacture at a REM addition amount of about 5 ppm.

(実施例2)
(Example 2)

表3に示す成分のAl脱酸鋼、Al−Si脱酸鋼を用いて、REM添加量、REM添加時期を種々変更して鋼を製造した。表3の「鋼種」欄の数値が同じものについては、同一の成分目標で製造したことを意味する。均一混合時間τを変化させるため、CASでのアルゴンガス流量Vgを0.23〜0.32Nm3/minの範囲で変化させた。 Using Al deoxidized steel and Al-Si deoxidized steel having the components shown in Table 3, the REM addition amount and REM addition time were variously changed to produce steel. Those having the same numerical value in the “steel type” column of Table 3 mean that they were manufactured with the same component target. In order to change the uniform mixing time τ, the argon gas flow rate V g in CAS was changed in the range of 0.23 to 0.32 Nm 3 / min.

ノズル詰まり状況、介在物に起因する製品欠陥の結果を同じ表3示す。ノズル詰まり評価方法として、連続鋳造設備のストッパー開度の変化代から求めた。○:変化代≦3mm、△:変化代≦5mm、×:変化代>5mmとして評価した。表面欠陥評価方法として、圧延工程検出された介在物を起因とする欠陥の有無を評価した。   The same Table 3 shows the result of the product defect caused by the nozzle clogging situation and inclusions. As a nozzle clogging evaluation method, it was determined from the amount of change in the stopper opening of the continuous casting equipment. ◯: Change margin ≦ 3 mm, Δ: Change margin ≦ 5 mm, ×: Change margin> 5 mm As a surface defect evaluation method, the presence or absence of defects caused by inclusions detected in the rolling process was evaluated.

介在物組成評価については、連続鋳造タンディッシュ内の溶鋼から試料を採取し、コールドクルーシブル法で介在物を抽出し、SEM−EDXで介在物組成分析を行い、試料中の4箇所の平均値によって算出した。図8に介在物組成を示す。   For the inclusion composition evaluation, a sample is taken from the molten steel in the continuous casting tundish, the inclusion is extracted by the cold crucible method, the inclusion composition analysis is performed by SEM-EDX, and the average value of the four locations in the sample is used. Calculated. FIG. 8 shows the inclusion composition.

本発明例において、介在物組成が本発明範囲に入り、比較例と対比してノズル詰まりと製品欠陥が大幅に改善することが確認できた。   In the present invention example, the inclusion composition was within the scope of the present invention, and it was confirmed that nozzle clogging and product defects were greatly improved as compared with the comparative example.

一方、REMを添加しなかった比較例1〜19及びREM添加から処理終了までの攪拌時間が均一混合時間を超えた比較例20、21については、介在物組成が本発明範囲を外れ、ノズル詰まりと製品欠陥が本発明例と対比して不良であった。   On the other hand, for Comparative Examples 1 to 19 in which REM was not added and Comparative Examples 20 and 21 in which the stirring time from the addition of REM to the end of treatment exceeded the uniform mixing time, the inclusion composition was outside the scope of the present invention, and the nozzle was clogged. The product defects were poor in comparison with the examples of the present invention.

Claims (3)

取鍋中の溶鋼を大気圧雰囲気においてArガス攪拌を行いつつ精錬する簡易取鍋精錬法を用いる溶鋼の精錬方法において、
Al脱酸またはAl−Si脱酸した溶鋼中に希土類元素(REM)を添加し、溶鋼に供給するREM添加量は、溶鋼質量に対して5〜20ppmの範囲内であり、REM添加時期は、簡易取鍋精錬法での最終成分調整後であって、かつ添加から処理終了までの時間が均一混合時間以下の時期に行い、
鋼中の平均介在物組成を質量比で、CaO%=1〜25%、Al23%=8〜95%、REM酸化物%=3〜90%、残分として微量元素の酸化物を含むことを特徴とする溶鋼の精錬方法。
In the refining method of the molten steel using the simple ladle refining method of refining the molten steel in the ladle while stirring Ar gas in an atmospheric pressure atmosphere,
The amount of REM added to the molten steel by adding rare earth elements (REM) to the Al deoxidized or Al-Si deoxidized molten steel is in the range of 5 to 20 ppm with respect to the molten steel mass. After the final component adjustment in the simple ladle refining method, and the time from the addition to the end of processing is equal to or less than the uniform mixing time,
Average inclusion composition in steel by mass ratio, CaO% = 1-25%, Al 2 O 3 % = 8-95%, REM oxide% = 3-90%, trace element oxide as the residue A method for refining molten steel, comprising:
前記溶鋼は、質量%でC:0.01〜1.5%、Si:0.001〜3.0%、Mn:0.01〜3.0%、P:0.001〜0.1%、S:0.0001〜0.05%、Al:0.001〜2.0%で、残部がFe及び不可避的不純物からなることを特徴とする請求項1に記載の溶鋼の精錬方法。   The molten steel is C: 0.01-1.5%, Si: 0.001-3.0%, Mn: 0.01-3.0%, P: 0.001-0.1% by mass%. The method for refining molten steel according to claim 1, wherein S: 0.0001 to 0.05%, Al: 0.001 to 2.0%, and the balance is Fe and inevitable impurities. 前記溶鋼は、さらに質量%で、Nb:0.001〜0.1%、Ti:0.001〜0.2%、B:0.0005〜0.005%の一種又は二種以上を含有することを特徴とする請求項2に記載の溶鋼の精錬方法。   The molten steel further contains 1% or more of Nb: 0.001 to 0.1%, Ti: 0.001 to 0.2%, and B: 0.0005 to 0.005% in mass%. The method for refining molten steel according to claim 2.
JP2009085745A 2009-03-31 2009-03-31 Method for refining molten steel Active JP5381243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009085745A JP5381243B2 (en) 2009-03-31 2009-03-31 Method for refining molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085745A JP5381243B2 (en) 2009-03-31 2009-03-31 Method for refining molten steel

Publications (2)

Publication Number Publication Date
JP2010236030A true JP2010236030A (en) 2010-10-21
JP5381243B2 JP5381243B2 (en) 2014-01-08

Family

ID=43090634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085745A Active JP5381243B2 (en) 2009-03-31 2009-03-31 Method for refining molten steel

Country Status (1)

Country Link
JP (1) JP5381243B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162928A1 (en) * 2014-04-23 2015-10-29 新日鐵住金株式会社 Spring steel and method for producing same
KR20160073681A (en) * 2014-12-17 2016-06-27 주식회사 포스코 Refining method for steel
JP2018114528A (en) * 2017-01-18 2018-07-26 新日鐵住金株式会社 Continuously cast slab of steel and method for producing the same
JP2020007621A (en) * 2018-07-11 2020-01-16 日本製鉄株式会社 High cleanliness steel and purification method
KR20220041878A (en) * 2019-09-10 2022-04-01 중국과학원금속연구소 Rare earth microalloy steel and control method
CN114672729A (en) * 2022-03-11 2022-06-28 钢铁研究总院有限公司 Corrosion-resistant steel containing high rare earth cerium content and refining control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143510A (en) * 2002-10-23 2004-05-20 Nippon Steel Corp Method for melting steel sheet for extra low carbon or low carbon thin sheet having excellent surface quality, and continuously cast slab
JP2005002425A (en) * 2003-06-12 2005-01-06 Nippon Steel Corp Steel material with little alumina cluster
JP2005089774A (en) * 2003-09-12 2005-04-07 Nippon Steel Corp Method for uniforming trace amount of rare-earth element added into molten steel
JP2005089776A (en) * 2003-09-12 2005-04-07 Nippon Steel Corp Method for reforming slag in ladle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143510A (en) * 2002-10-23 2004-05-20 Nippon Steel Corp Method for melting steel sheet for extra low carbon or low carbon thin sheet having excellent surface quality, and continuously cast slab
JP2005002425A (en) * 2003-06-12 2005-01-06 Nippon Steel Corp Steel material with little alumina cluster
JP2005089774A (en) * 2003-09-12 2005-04-07 Nippon Steel Corp Method for uniforming trace amount of rare-earth element added into molten steel
JP2005089776A (en) * 2003-09-12 2005-04-07 Nippon Steel Corp Method for reforming slag in ladle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10202665B2 (en) * 2014-04-23 2019-02-12 Nippon Steel & Sumitomo Metal Corporation Spring steel and method for producing the same
CN106232849A (en) * 2014-04-23 2016-12-14 新日铁住金株式会社 Spring steel and manufacture method thereof
JPWO2015162928A1 (en) * 2014-04-23 2017-04-13 新日鐵住金株式会社 Spring steel and manufacturing method thereof
EP3135785A4 (en) * 2014-04-23 2017-09-27 Nippon Steel & Sumitomo Metal Corporation Spring steel and method for producing same
WO2015162928A1 (en) * 2014-04-23 2015-10-29 新日鐵住金株式会社 Spring steel and method for producing same
KR20160073681A (en) * 2014-12-17 2016-06-27 주식회사 포스코 Refining method for steel
KR101709138B1 (en) * 2014-12-17 2017-02-22 주식회사 포스코 Refining method for steel
JP2018114528A (en) * 2017-01-18 2018-07-26 新日鐵住金株式会社 Continuously cast slab of steel and method for producing the same
JP2020007621A (en) * 2018-07-11 2020-01-16 日本製鉄株式会社 High cleanliness steel and purification method
JP7260731B2 (en) 2018-07-11 2023-04-19 日本製鉄株式会社 High purity steel and its refining method
KR20220041878A (en) * 2019-09-10 2022-04-01 중국과학원금속연구소 Rare earth microalloy steel and control method
KR102473922B1 (en) 2019-09-10 2022-12-05 중국과학원금속연구소 Rare earth micro alloy steels and control methods
CN114672729A (en) * 2022-03-11 2022-06-28 钢铁研究总院有限公司 Corrosion-resistant steel containing high rare earth cerium content and refining control method thereof

Also Published As

Publication number Publication date
JP5381243B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
JP5381243B2 (en) Method for refining molten steel
JP5541310B2 (en) Manufacturing method of highly clean steel
JP4762725B2 (en) Continuous cast slab for thin steel sheet and method for producing the same, thin steel plate and method for producing the same, and rolling method
JP7260731B2 (en) High purity steel and its refining method
JP7087727B2 (en) Steel manufacturing method
US20120261085A1 (en) Extremely low carbon steel plate excellent in surface characteristics, workability, and formability and a method of producing extremely low carbon cast slab
JP2009242912A (en) Method for melting and manufacturing titanium-added ultra-low carbon steel and method for producing titanium-added ultra-low carbon steel cast slab
JP5343305B2 (en) Method for producing Ti-containing ultra-low carbon steel slab
JP4280163B2 (en) Low carbon steel sheet, low carbon steel slab and method for producing the same
CN115244199A (en) Stainless steel, stainless steel material, and method for producing stainless steel
JP7087724B2 (en) Steel manufacturing method
JP5590056B2 (en) Manufacturing method of highly clean steel
JP2017131933A (en) Production method for low-carbon steel thin-walled cast slab, the thin-walled cast slab, and production method for low-carbon thin-walled steel sheet
JP2020002407A (en) Manufacturing method of steel
JP2018015794A (en) Manufacturing method of low carbon steel thin slab, low carbon steel thin slab, and manufacturing method of low carbon steel thin steel sheet
JP3742619B2 (en) Low carbon steel slab manufacturing method
JP4299757B2 (en) Thin steel plate and slab excellent in surface properties and internal quality, and method for producing the same
JP4502944B2 (en) Thin steel plate rich in ductility and method for producing steel ingot to obtain the steel plate
CN114981460B (en) Ferritic stainless steel
JP5106153B2 (en) Stainless steel with excellent surface properties
JP2000273525A (en) Production of high cleanliness steel
JP3714190B2 (en) Method of deoxidizing thin steel sheet and molten steel for thin steel sheet
JP4025718B2 (en) Extremely low carbon steel sheet excellent in surface properties, workability and formability, and method for producing the same
JP2017101266A (en) Fe-Ni ALLOY SHEET MATERIAL AND MANUFACTURING METHOD THEREFOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R151 Written notification of patent or utility model registration

Ref document number: 5381243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350