JP3742619B2 - Low carbon steel slab manufacturing method - Google Patents

Low carbon steel slab manufacturing method Download PDF

Info

Publication number
JP3742619B2
JP3742619B2 JP2002335999A JP2002335999A JP3742619B2 JP 3742619 B2 JP3742619 B2 JP 3742619B2 JP 2002335999 A JP2002335999 A JP 2002335999A JP 2002335999 A JP2002335999 A JP 2002335999A JP 3742619 B2 JP3742619 B2 JP 3742619B2
Authority
JP
Japan
Prior art keywords
molten steel
addition
added
inclusions
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002335999A
Other languages
Japanese (ja)
Other versions
JP2004169107A (en
Inventor
勝浩 笹井
渡 大橋
勝行 礒上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002335999A priority Critical patent/JP3742619B2/en
Publication of JP2004169107A publication Critical patent/JP2004169107A/en
Application granted granted Critical
Publication of JP3742619B2 publication Critical patent/JP3742619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、加工性、成形性に優れた低炭素薄鋼板の溶製方法に関するものである。
【0002】
【従来の技術】
転炉や真空処理容器で精錬された溶鋼中には、多量の溶存酸素が含まれており、この過剰酸素は酸素との親和力が強い強脱酸元素であるAlにより脱酸されるのが一般的である。しかし、Alは脱酸によりアルミナ系介在物を生成し、これが凝集・合体して粗大なアルミナクラスターとなる。このアルミナクラスターは鋼板製造時に表面疵発生の原因となり、薄鋼板の品質を大きく劣化させる。また、溶鋼中のアルミナ系介在物は、タンディッシュノズル等の連続鋳造用ノズルに付着し易く、ノズルが閉塞した場合には、円滑な鋳造作業を困難にする。特に、炭素濃度が低く、精錬後の溶存酸素濃度が高い薄鋼板用素材である低炭素溶鋼では、アルミナクラスターの量が非常に多く、表面疵やノズル閉塞が極めて発生し易く、アルミナ系介在物の低減対策は大きな課題となっている。
【0003】
これに対して、従来は特許文献1の介在物吸着用フラックスを溶鋼表面に添加してアルミナ系介在物を除去する方法、或いは特許文献2の注入流を利用してCaOフラックスを溶鋼中に添加し、これによりアルミナ系介在物を吸着除去する方法が提案、実施されてきた。一方、アルミナ系介在物を除去するのではなく、生成させない方法として、特許文献3にあるように溶鋼をMgで脱酸し、Alでは殆ど脱酸しない薄鋼板用溶鋼の溶製方法も開示されている。
【0004】
【特許文献1】
特開平5−104219号公報
【特許文献2】
特開昭63−149057号公報
【特許文献3】
特開平5−302112号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上述したアルミナ系介在物を除去する方法では、低炭素溶鋼中に多量に生成したアルミナ系介在物を表面疵やノズル閉塞が発生しない程度まで低減することは非常に難しい。また、アルミナ系介在物を全く生成しないMg脱酸では、Mgの蒸気圧が高く、溶鋼への歩留まりが非常に低いため、低炭素鋼のように溶存酸素濃度が高い溶鋼をMgだけで脱酸するには多量のMgを必要とし、製造コストを考えると実用的なプロセスとは言えない。
これらの問題を鑑み、本発明はアルミナ系介在物を生成させることがないように、Tiを主とした脱酸を行うことにより、確実に表面疵とノズル閉塞を防止できる薄鋼板用低炭素鋼鋳片の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明は以下の構成を要旨とする。
(1)真空脱ガス処理により溶鋼中の炭素含有率を0.01質量%以下まで脱炭した後、2回以上のTiの添加により予め設定された総Ti添加量を投入し、その後少なくともLa、Ceを添加した溶鋼を鋳造する方法であって、1回目のTi添加前にAlを添加して3分以上攪拌して予備脱酸処理を行い、1回目のTi添加後の溶鋼中の溶存酸素を0.001質量%以上から0.01質量%以下とし、1回目のTiを添加した後、2回目のTiを添加するまでに、30秒以上の介在物浮上時間を確保することを特徴とする低炭素鋼鋳片の製造方法。
【0007】
【発明の実施の形態】
以下に本発明を詳細に説明する。本発明の溶製法では、転炉や電気炉等の製鋼炉で精錬し、或いはその後に真空脱ガス処理して炭素含有率を0.01質量%以下に脱炭した溶鋼に、Tiを2回以上添加し脱酸を行い、さらにその溶鋼中に少なくともLa、Ceを添加する。
この溶製法の基本思想は、1回目のTi添加により介在物を低融点化し浮上分離を促進することにより溶鋼の清浄性を高め、その上で2回目以降のTi添加と、その後に少なくともLa、Ceを添加することにより残りの介在物を微細に分散させ、無害化することにある。以下に詳細に説明する。
【0008】
まず、本発明が対象とする脱炭溶鋼の炭素含有率は0.01質量%以下とする。その理由として、自動車用外板向けの加工が厳しい極低炭素鋼板等では、加工性を付与するためにCをできるだけ低くする必要があるためである。そこで、C濃度は0.01質量%以下、好ましくは0.005質量%以下にするのが良い。また、真空脱ガス装置を用いて脱炭しても良い。
【0009】
次に、Tiを2回以上添加することであるが、溶鋼中の溶存酸素濃度が高い状態で添加された1回目のTiは、急激に溶鋼中の溶存酸素と反応しチタニアとなるが、Ti添加後も溶存酸素を過飽和に残存させているため、チタニアがさらに溶鋼と反応し、最終的に酸化鉄・チタニア系の複合介在物となる。この介在物は溶鋼中で液相であり、凝集・合体で粗大化することにより殆ど浮上分離されるため、溶鋼中の溶存酸素の低下と共に、介在物濃度も大きく低下する。1回目のTi添加は脱酸が主な目的であるが、上述したように比較的凝集・合体し易い低融点の介在物に組成制御し、浮上分離により介在物量をできるだけ低減させる役割も有している。このため、溶鋼中の溶存酸素をできるだけ低減し、且つ溶鋼中の介在物を浮上分離し易い酸化鉄・チタニア系の複合介在物に制御することが重要であり、この様なことを考慮して、1回目のTi添加量を実験等により適宜設定すれば良い。
【0010】
2回目以降に添加されたTiは、一部残った溶存酸素と反応してチタニア系介在物を生成するが、この介在物は酸化鉄・チタニア系の液相介在物とは異なり固相であり、且つ溶鋼との濡れ性がアルミナ系介在物に比べて良好であるため、比較的凝集・合体し難く、アルミナ系介在物に比べて微細である。2回目以降に添加するTiの添加回数は、必要に応じて複数回添加しても良い。この様にして得られた、チタニア系介在物でも一部凝集・合体が起こるため、チタニアクラスターを形成する。このため、最終Ti添加終了後に少なくともLa、Ceを添加し、このチタニア系介在物を還元することにより、さらに微細なチタニア−セリュウムオキサイド系、チタニア−ランタンオキサイド系、或いはチタニア−ランタンオキサイド−セリュウムオキサイド系の複合介在物に改質する。その結果、アルミナ系介在物を生成することなく、溶鋼中の介在物を低減した上で、さらに介在物を微細化できるため、確実に表面疵とノズル閉塞を防止できる薄鋼板用素材の低炭素溶鋼を製造することができる。ここで、少なくともLa、Ceを添加するというのは、La、Ceのいずれか一方または双方を添加するという意味である。
【0011】
添加するTiはスポンジ状Tiのように高純度Tiに限られたものではなく、Fe−Tiのような合金として添加しても上記効果は損なわれない。
また、少なくともLa、Ceの添加量は、2回目以降に添加したTiと溶存酸素が反応して生成した少量のチタニア系介在物を還元するに必要な量以上であって、且つLa、Ceが耐火物やモールドパウダーと反応して溶鋼を汚染させない量以下とすることが好ましい。すなわち、溶鋼中のLaとCeの合計濃度で0.0001〜0.01質量%が適正範囲である。La、Ceの添加は、Ti添加後に実施すれば良く、インジェクション法、ワイヤー添加法等により、取鍋、タンディッシュ、連続鋳造鋳型等の何れかで添加すれば良い。さらに、La、Ceの添加は純La、純Ceで行うことも可能であるが、La−Ce等の合金として添加しても良い。
【0012】
次に、Tiの総添加量は溶鋼中の溶存酸素を脱酸し、さらに材質を確保する上で溶鋼中の炭素と窒素を固定するに必要な量であることが好ましい。従って、この様なことを考慮して、予めTiの総添加量を設定することができる。脱ガス処理後の溶鋼中の溶存酸素量と炭素、窒素濃度にもよるが、溶鋼中の最終Ti濃度で0.005質量%以上、好ましくは0.01質量%以上になるように歩留まりを考慮して添加するのが良い。
この様に、2回以上のTi添加量の合計が、予め設定された総Ti添加量の投入になる様に、Tiを添加するものである。ここで、各添加ごとのTi添加量は、上記に記載の通りである。
【0013】
また、1回目のTi添加量については、比較的凝集・合体し易い低融点の介在物に組成制御し、浮上分離により介在物量をできるだけ低減させるための、1回目のTi添加後の好ましい溶存酸素量は、実験的検討から溶鋼中に0.001質量%から0.01質量%程度残すようにすることが効果的であることが判明した。ここで、溶存酸素量の測定方法としては、固体電解質を利用した酸素センサー等を活用すれば容易に測定できる。
さらに、1回目のTiを添加した後、2回目のTi添加までに介在物の浮上分離時間を設けることが好ましく、この酸化鉄・チタニア系の介在物組成であれば30秒以上確保すれば十分である。
【0014】
溶鋼中にアルミナ系介在物を残さないためには、溶鋼中にAlを添加しないことが好ましいが、脱炭後の溶存酸素が高くなり過ぎると、この溶存酸素をTiだけで脱酸するのはコスト的に不利である。その場合、過剰な溶存酸素を一部Alで予備脱酸し、Ti添加量を減少させることができる。
さらに、Al添加後の攪拌時間を3分以上確保することが、殆どのアルミナ系介在物を残留させないため好ましい。
【0015】
【実施例】
以下に、実施例及び比較例を挙げて、本発明について説明する。
・実施例:転炉で精錬した200tの溶鋼を、環流式真空脱ガス装置で炭素濃度0.003質量%まで脱炭した。その時、取鍋内溶鋼の溶存酸素濃度は0.05質量%であった。取鍋内の溶鋼に表1に示すTi量を添加して脱酸した。一部、Ti添加前にAlによる予備脱酸も実施した。ここで、Alとして金属Alを、またTiとしてスポンジ状Tiをそれぞれ用いた。
【0016】
最初のTi添加と2回目Ti添加との間隔は、1分間であった。2回目のTi添加後に、取鍋内溶鋼中にLa、Ceの混合物(質量比で6:4)を添加し、最終組成の溶鋼を溶製した。この溶鋼を連続鋳造法で鋳造し、厚み250mm、幅1800mmのスラブを鋳造した。連続鋳造時におけるノズル開度は一定であり、ノズル閉塞は生じなかった。鋳造した鋳片は8500mm長さに切断し、1コイル単位とした。このようにして得られたスラブは、常法により熱間圧延、冷間圧延し、最終的には0.7mm厚みで幅1800mmコイルの冷延鋼板とした。鋳片品質については、冷間圧延後の検査ラインで目視観察を行い、1コイル当たりに発生する表面欠陥の発生個数を評価した。その結果、表面欠陥は発生しなかった。
【0017】
【表1】

Figure 0003742619
【0018】
・比較例:転炉で精錬した200tの溶鋼を、環流式真空脱ガス装置で炭素濃度30ppmまで脱炭した後、取鍋内の溶鋼にAlを200kg添加して脱酸し、その後直ちに45kgのTiを加えて、Al濃度0.04質量%、Ti濃度0.02質量%の溶鋼に成分調整した。この溶鋼を連続鋳造法で鋳造し、厚み250mm、幅1800mmのスラブを鋳造した。連続鋳造時におけるノズル開度は鋳造開始から徐々に開き、鋳造終了時には全開状態となり、ノズル閉塞が生じた。鋳造した鋳片は8500mm長さに切断し、1コイル単位とした。このようにして得られたスラブは、常法により熱間圧延、冷間圧延し、最終的には0.7mm厚みで幅1800mmコイルの冷延鋼板とした。鋳片品質については、冷間圧延後の検査ラインで目視観察を行い、1コイル当たりに発生する表面欠陥の発生個数を評価した。その結果、表面欠陥は1コイル当たり20個も発生した。
【0019】
【発明の効果】
以上に説明したように、本発明によると、アルミナ系介在物を生成することなく、溶鋼中の介在物を低減した上で、さらに介在物を微細化することができるため、確実に表面疵とノズル閉塞を防止できる加工性、成形性に優れた薄鋼板用の低炭素鋼鋳片を製造することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for melting a low carbon thin steel sheet excellent in workability and formability.
[0002]
[Prior art]
The molten steel refined in a converter or vacuum processing vessel contains a large amount of dissolved oxygen, and this excess oxygen is generally deoxidized by Al, a strong deoxidizing element with a strong affinity for oxygen. Is. However, Al produces alumina inclusions by deoxidation, which aggregate and coalesce into coarse alumina clusters. This alumina cluster causes surface flaws during the production of the steel sheet and greatly deteriorates the quality of the thin steel sheet. In addition, alumina inclusions in the molten steel are likely to adhere to a continuous casting nozzle such as a tundish nozzle, and when the nozzle is blocked, smooth casting work becomes difficult. In particular, low carbon molten steel, which is a material for thin steel sheets with a low carbon concentration and a high dissolved oxygen concentration after refining, has a very large amount of alumina clusters, and surface flaws and nozzle clogging are very likely to occur. Measures to reduce this are a major issue.
[0003]
On the other hand, conventionally, the inclusion adsorption flux of Patent Document 1 is added to the molten steel surface to remove alumina inclusions, or the CaO flux is added to the molten steel using the injection flow of Patent Document 2. Thus, a method for adsorbing and removing alumina inclusions has been proposed and implemented. On the other hand, as a method that does not remove alumina inclusions but does not generate them, a method for melting molten steel for thin steel sheets that deoxidizes molten steel with Mg and hardly deoxidizes with Al as disclosed in Patent Document 3 is also disclosed. ing.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 5-104219 [Patent Document 2]
JP 63-149057 A [Patent Document 3]
Japanese Patent Laid-Open No. 5-302112
[Problems to be solved by the invention]
However, in the method of removing the alumina inclusions described above, it is very difficult to reduce the alumina inclusions generated in a large amount in the low carbon molten steel to the extent that surface flaws and nozzle clogging do not occur. In addition, Mg deoxidation that does not produce any alumina inclusions has a high vapor pressure of Mg and a very low yield to molten steel. Therefore, a molten steel with a high dissolved oxygen concentration such as low carbon steel can be deoxidized only with Mg. Therefore, a large amount of Mg is required, and it cannot be said that it is a practical process considering the manufacturing cost.
In view of these problems, the present invention is a low-carbon steel for thin steel sheets that can reliably prevent surface flaws and nozzle clogging by performing deoxidation mainly using Ti so as not to generate alumina inclusions. It aims at providing the manufacturing method of slab.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention has the following configuration.
(1) After decarburizing the carbon content in the molten steel to 0.01% by mass or less by vacuum degassing treatment, a total Ti addition amount set in advance by adding Ti twice or more is added, and then at least La , A method of casting molten steel to which Ce has been added , Al is added before the first Ti addition, and the mixture is stirred for 3 minutes or more, preliminarily deoxidized, and dissolved in the molten steel after the first Ti addition. Oxygen is 0.001 mass% or more to 0.01 mass% or less, and after the first Ti is added, the inclusion flotation time of 30 seconds or more is ensured until the second Ti is added. A method for producing a low carbon steel slab.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below. In the melting method of the present invention, Ti is twice applied to molten steel that has been refined in a steelmaking furnace such as a converter or an electric furnace, or subsequently degassed by vacuum degassing to a carbon content of 0.01% by mass or less. Deoxidation is performed by adding the above, and at least La and Ce are added to the molten steel.
The basic idea of this melting method is to improve the cleanliness of molten steel by lowering the melting point of inclusions and promoting floating separation by the first addition of Ti, and then adding Ti for the second and subsequent times, and then at least La, By adding Ce, the remaining inclusions are finely dispersed and made harmless. This will be described in detail below.
[0008]
First, the carbon content of the decarburized molten steel targeted by the present invention is 0.01% by mass or less. This is because, in an extremely low carbon steel sheet or the like that is severely processed for an automobile outer plate, it is necessary to make C as low as possible in order to impart workability. Therefore, the C concentration is 0.01% by mass or less, preferably 0.005% by mass or less. Moreover, you may decarburize using a vacuum degassing apparatus.
[0009]
Next, Ti is added two or more times. The first Ti added in a state where the dissolved oxygen concentration in the molten steel is high reacts rapidly with the dissolved oxygen in the molten steel to become titania. Since dissolved oxygen remains supersaturated even after the addition, titania further reacts with the molten steel, and finally becomes iron oxide / titania composite inclusions. The inclusions are in a liquid phase in the molten steel, and are almost floated and separated by being coarsened by agglomeration and coalescence. Therefore, the inclusion concentration is greatly reduced as the dissolved oxygen in the molten steel is reduced. The primary purpose of the first Ti addition is deoxidation, but as described above, the composition is controlled to low melting point inclusions that are relatively easy to aggregate and coalesce, and the amount of inclusions is reduced as much as possible by flotation separation. ing. For this reason, it is important to reduce the dissolved oxygen in the molten steel as much as possible, and to control the inclusions in the molten steel to be iron oxide / titania composite inclusions that are easily levitated and separated. What is necessary is just to set the Ti addition amount of the 1st time suitably by experiment etc.
[0010]
Ti added after the second reaction reacts with the remaining dissolved oxygen to produce titania inclusions, which are solid phases unlike iron oxide / titania liquid phase inclusions. In addition, since wettability with molten steel is better than that of alumina inclusions, it is relatively difficult to agglomerate and coalesce and is finer than alumina inclusions. The number of additions of Ti added after the second time may be added a plurality of times as necessary. Even the titania inclusions obtained in this way partially aggregate and coalesce, so that titania clusters are formed. Therefore, by adding at least La and Ce after the final Ti addition is completed and reducing the titania inclusions, finer titania-cerium oxide, titania-lanthanum oxide, or titania-lanthanum oxide-cement. It is modified to a composite oxide inclusion of ruthenium oxide. As a result, the inclusions in the molten steel can be reduced without generating alumina inclusions, and the inclusions can be further refined, so the low carbon content of the thin steel sheet material can reliably prevent surface flaws and nozzle clogging. Molten steel can be manufactured. Here, adding at least La and Ce means adding one or both of La and Ce.
[0011]
Ti to be added is not limited to high-purity Ti like sponge-like Ti, and the above effect is not impaired even if it is added as an alloy such as Fe-Ti.
Further, at least the addition amount of La and Ce is not less than the amount necessary for reducing a small amount of titania inclusions produced by the reaction of Ti and dissolved oxygen added after the second time, and La and Ce are contained. It is preferable to make the amount less than that which does not contaminate molten steel by reacting with refractory or mold powder. That is, 0.0001-0.01 mass% is an appropriate range with the total density | concentration of La and Ce in molten steel. La and Ce may be added after adding Ti, and may be added in any of a ladle, a tundish, a continuous casting mold or the like by an injection method, a wire addition method, or the like. Furthermore, La and Ce can be added as pure La or pure Ce, but may be added as an alloy such as La-Ce.
[0012]
Next, the total addition amount of Ti is preferably an amount necessary for deoxidizing dissolved oxygen in the molten steel and securing carbon and nitrogen in the molten steel in order to secure the material. Therefore, in consideration of this, the total amount of Ti can be set in advance. Considering the yield so that the final Ti concentration in the molten steel is 0.005 mass% or more, preferably 0.01 mass% or more, depending on the dissolved oxygen content and carbon and nitrogen concentration in the molten steel after degassing treatment. To add.
In this manner, Ti is added so that the total of the two or more Ti addition amounts becomes the input of the preset total Ti addition amount. Here, the Ti addition amount for each addition is as described above.
[0013]
In addition, for the first Ti addition amount, preferable dissolved oxygen after the first Ti addition to control the composition to inclusions having a low melting point that are relatively easy to aggregate and coalesce, and to reduce the inclusion amount as much as possible by floating separation. From the experimental investigation, it has been found that it is effective to leave about 0.001% by mass to 0.01% by mass in the molten steel. Here, as a method for measuring the amount of dissolved oxygen, it can be easily measured by utilizing an oxygen sensor using a solid electrolyte.
Furthermore, it is preferable to provide a floating separation time for inclusions after the first Ti addition until the second Ti addition. If this iron oxide / titania inclusion composition is sufficient, it is sufficient to secure 30 seconds or more. It is.
[0014]
In order not to leave alumina inclusions in the molten steel, it is preferable not to add Al to the molten steel, but when the dissolved oxygen after decarburization becomes too high, it is possible to deoxidize this dissolved oxygen with only Ti. It is disadvantageous in cost. In that case, a part of the excess dissolved oxygen can be predeoxidized with Al to reduce the amount of Ti added.
Furthermore, it is preferable to secure a stirring time of 3 minutes or more after the addition of Al since most alumina inclusions do not remain.
[0015]
【Example】
Hereinafter, the present invention will be described with reference to examples and comparative examples.
Example: 200 t of molten steel smelted in a converter was decarburized to a carbon concentration of 0.003% by mass using a reflux vacuum degasser. At that time, the dissolved oxygen concentration of the molten steel in the ladle was 0.05 mass%. The amount of Ti shown in Table 1 was added to the molten steel in the ladle for deoxidation. In part, preliminary deoxidation with Al was also performed before Ti addition. Here, metal Al was used as Al, and sponge-like Ti was used as Ti.
[0016]
The interval between the first Ti addition and the second Ti addition was 1 minute. After the second addition of Ti, a mixture of La and Ce (6: 4 by mass ratio) was added to the molten steel in the ladle to melt the molten steel having the final composition. This molten steel was cast by a continuous casting method to cast a slab having a thickness of 250 mm and a width of 1800 mm. The nozzle opening during the continuous casting was constant, and no nozzle clogging occurred. The cast slab was cut to a length of 8500 mm to make one coil unit. The slab thus obtained was hot-rolled and cold-rolled by a conventional method, and finally formed into a cold-rolled steel sheet having a thickness of 0.7 mm and a coil width of 1800 mm. Regarding the slab quality, visual observation was performed on the inspection line after cold rolling, and the number of surface defects generated per coil was evaluated. As a result, no surface defects occurred.
[0017]
[Table 1]
Figure 0003742619
[0018]
・ Comparative example: After decarburizing 200t of molten steel smelted in a converter to a carbon concentration of 30ppm with a reflux vacuum degassing device, 200kg of Al was added to the molten steel in the ladle and immediately deoxidized. Ti was added to adjust the components to molten steel having an Al concentration of 0.04% by mass and a Ti concentration of 0.02% by mass. This molten steel was cast by a continuous casting method to cast a slab having a thickness of 250 mm and a width of 1800 mm. The nozzle opening at the time of continuous casting gradually opened from the start of casting and was fully opened at the end of casting, resulting in nozzle clogging. The cast slab was cut to a length of 8500 mm to make one coil unit. The slab thus obtained was hot-rolled and cold-rolled by a conventional method, and finally formed into a cold-rolled steel sheet having a thickness of 0.7 mm and a coil width of 1800 mm. Regarding the slab quality, visual observation was performed on the inspection line after cold rolling, and the number of surface defects generated per coil was evaluated. As a result, 20 surface defects were generated per coil.
[0019]
【The invention's effect】
As described above, according to the present invention, the inclusions in the molten steel can be reduced and the inclusions can be further refined without generating alumina inclusions, so that It becomes possible to produce a low carbon steel slab for a thin steel sheet excellent in workability and formability that can prevent nozzle clogging.

Claims (1)

真空脱ガス処理により溶鋼中の炭素含有率を0.01質量%以下まで脱炭した後、2回以上のTiの添加により予め設定された総Ti添加量を投入し、その後少なくともLa、Ceを添加した溶鋼を鋳造する方法であって、1回目のTi添加前にAlを添加して3分以上攪拌して予備脱酸処理を行い、1回目のTi添加後の溶鋼中の溶存酸素を0.001質量%以上から0.01質量%以下とし、1回目のTiを添加した後、2回目のTiを添加するまでに、30秒以上の介在物浮上時間を確保することを特徴とする低炭素鋼鋳片の製造方法。After decarburizing the carbon content in the molten steel to 0.01% by mass or less by vacuum degassing treatment, the total Ti addition amount set in advance by adding Ti twice or more is added, and then at least La and Ce are added. This is a method of casting the added molten steel, wherein Al is added before the first Ti addition, and the mixture is stirred for 3 minutes or more to perform a preliminary deoxidation treatment, and the dissolved oxygen in the molten steel after the first Ti addition is reduced to 0. .001 mass% or more to 0.01 mass% or less After the first Ti addition, the inclusion floating time of 30 seconds or more is ensured until the second Ti addition. A method for producing a carbon steel slab.
JP2002335999A 2002-11-20 2002-11-20 Low carbon steel slab manufacturing method Expired - Fee Related JP3742619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002335999A JP3742619B2 (en) 2002-11-20 2002-11-20 Low carbon steel slab manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002335999A JP3742619B2 (en) 2002-11-20 2002-11-20 Low carbon steel slab manufacturing method

Publications (2)

Publication Number Publication Date
JP2004169107A JP2004169107A (en) 2004-06-17
JP3742619B2 true JP3742619B2 (en) 2006-02-08

Family

ID=32699954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002335999A Expired - Fee Related JP3742619B2 (en) 2002-11-20 2002-11-20 Low carbon steel slab manufacturing method

Country Status (1)

Country Link
JP (1) JP3742619B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4811018B2 (en) * 2005-12-28 2011-11-09 Jfeスチール株式会社 Deoxidation method for molten steel
JP5096779B2 (en) * 2007-04-12 2012-12-12 株式会社神戸製鋼所 Method of adding rare earth elements to molten steel
JP4879809B2 (en) * 2007-04-17 2012-02-22 新日本製鐵株式会社 Continuous casting method
CN110643783A (en) * 2019-10-31 2020-01-03 达力普石油专用管有限公司 Narrow range control method for Ti content of Ti microalloyed steel
CN114058786B (en) * 2021-10-18 2023-03-17 首钢集团有限公司 Alloying method in IF steel refining process

Also Published As

Publication number Publication date
JP2004169107A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JPH09263820A (en) Production of cluster-free aluminum killed steel
JP4280163B2 (en) Low carbon steel sheet, low carbon steel slab and method for producing the same
JP5381243B2 (en) Method for refining molten steel
JP3733098B2 (en) Method of melting steel sheet for ultra-low carbon or low-carbon sheet with excellent surface quality and continuous cast slab
JP4873921B2 (en) Method for producing ultra-low carbon steel sheet and ultra-low carbon cast slab excellent in surface properties, workability and formability
JP3742619B2 (en) Low carbon steel slab manufacturing method
JP3686579B2 (en) Method of melting steel sheet for thin plate and slab cast using the same
JP4571994B2 (en) Low carbon steel continuous casting method
JP4392364B2 (en) Method for producing ultra-low carbon steel
JP2001105101A (en) Melting method of steel plate for thin sheet
JP3760144B2 (en) Ultra-low carbon steel sheet, ultra-low carbon steel slab and method for producing the same
JP2001032014A (en) Method for manufacturing steel plate for sheet steel
JP3679770B2 (en) Manufacturing method of low carbon steel sheet and its slab
JP4227478B2 (en) Low carbon steel slab manufacturing method
JP4660037B2 (en) Method for melting steel sheet for thin plate and cast piece thereof
JP4392365B2 (en) Method for producing ultra-low carbon steel
JP2002003930A (en) Method for melting steel plate for thin sheet
JP4035081B2 (en) Method for producing ultra-low carbon steel slab
JP4828052B2 (en) Manufacturing method of steel sheet for thin sheet
JP4520653B2 (en) Casting method for thin plate slab
JP2005139492A (en) Reforming agent for inclusion in molten steel, and method for producing low carbon steel cast slab
JP4660038B2 (en) Method for melting steel sheet for thin plate and cast piece thereof
JP4025718B2 (en) Extremely low carbon steel sheet excellent in surface properties, workability and formability, and method for producing the same
JP2002060828A (en) Method for smelting steel plate for thin sheet
JP2002266019A (en) Method for refining low-carbon steel sheet by melting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051111

R151 Written notification of patent or utility model registration

Ref document number: 3742619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees