JP2001105101A - Melting method of steel plate for thin sheet - Google Patents

Melting method of steel plate for thin sheet

Info

Publication number
JP2001105101A
JP2001105101A JP28455199A JP28455199A JP2001105101A JP 2001105101 A JP2001105101 A JP 2001105101A JP 28455199 A JP28455199 A JP 28455199A JP 28455199 A JP28455199 A JP 28455199A JP 2001105101 A JP2001105101 A JP 2001105101A
Authority
JP
Japan
Prior art keywords
molten steel
low carbon
added
inclusions
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28455199A
Other languages
Japanese (ja)
Inventor
Katsuhiro Sasai
勝浩 笹井
Hajime Hasegawa
一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28455199A priority Critical patent/JP2001105101A/en
Publication of JP2001105101A publication Critical patent/JP2001105101A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a melting method of molten low carbon steel for steel thin sheet blank, capable of surely preventing the surface flaw and the nozzle clogging by executing deoxidization mainly with Ti so as not to develop alumina base intervening substance. SOLUTION: This melting method of the low carbon steel thin sheet is that the component adjustment of this molten steel is executed after decarburizing to <=0.01% carbon content with a vacuum degassing treatment and the total Ti adding amount is divided into >=two parts and added into the molten steel and thereafter, Ca is added and the substance is floated up and separated by stirring the molten steel with a circulating type vacuum degassing apparatus or an Ar gas bubbling. Then it is desirable to control the dissolved oxygen amount after adding the first Ti to be 10 ppm-100 ppm. Further, it is desirable to secure the substance floating-up time of >=30 sec till adding Ti at the next time after the first Ti, and to secure the stirring time of >=30 sec after adding Ca.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加工性、成形性に
優れた低炭素薄鋼板の溶製方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low carbon steel sheet having excellent workability and formability.

【0002】[0002]

【従来の技術】転炉や真空処理容器で精錬された溶鋼中
には、多量の溶存酸素が含まれており、この過剰酸素は
酸素との親和力が強い強脱酸元素であるAlにより脱酸
されるのが一般的である。しかし、Alは脱酸によりア
ルミナ系介在物を生成し、これが凝集・合体して粗大な
アルミナクラスターとなる。このアルミナクラスターは
鋼板製造時に表面疵発生の原因となり、薄鋼板の品質を
大きく劣化させる。また、溶鋼中のアルミナ系介在物
は、タンディッシュノズル等の連続鋳造用ノズルに付着
し易く、ノズルが閉塞した場合には、円滑な鋳造作業を
困難にする。特に、炭素濃度が低く、精錬後の溶存酸素
濃度が高い薄鋼板用素材である低炭素溶鋼では、アルミ
ナクラスターの量が非常に多く、表面疵やノズル閉塞が
極めて発生し易く、アルミナ系介在物の低減対策は大き
な課題となっている。
2. Description of the Related Art Molten steel refined in a converter or a vacuum processing vessel contains a large amount of dissolved oxygen. This excess oxygen is deoxidized by Al which is a strong deoxidizing element having a strong affinity for oxygen. It is generally done. However, Al generates alumina-based inclusions by deoxidation, and these aggregate and coalesce to form coarse alumina clusters. The alumina clusters cause surface flaws during the production of the steel sheet, and greatly deteriorate the quality of the thin steel sheet. Further, the alumina-based inclusions in the molten steel easily adhere to a continuous casting nozzle such as a tundish nozzle, and when the nozzle is closed, smooth casting becomes difficult. In particular, in low-carbon molten steel, which is a material for thin steel sheets with a low carbon concentration and a high dissolved oxygen concentration after refining, the amount of alumina clusters is very large, surface flaws and nozzle blockage are extremely likely to occur, and alumina inclusions Reduction measures have become a major issue.

【0003】これに対して、従来は特開平5−1042
19号公報の介在物吸着用フラックスを溶鋼表面に添加
してアルミナ系介在物を除去する方法、或いは特開昭6
3−149057号公報の注入流を利用してCaOフラ
ックスを溶鋼中に添加し、これによりアルミナ系介在物
を吸着除去する方法が提案、実施されてきた。一方、ア
ルミナ系介在物を除去するのではなく、生成させない方
法として、特開平5−302112号公報にあるように
溶鋼をMgで脱酸し、Alでは殆ど脱酸しない薄鋼板用
溶鋼の溶製方法も開示されている。
On the other hand, in the prior art, Japanese Patent Laid-Open No. 5-1042
No. 19, a method for removing alumina-based inclusions by adding a flux for adsorption of inclusions to the surface of molten steel;
A method of adding CaO flux to molten steel by using an injection flow disclosed in Japanese Patent Application Laid-Open No. 3-149057 and thereby adsorbing and removing alumina-based inclusions has been proposed and implemented. On the other hand, as a method of not forming alumina inclusions instead of removing them, as described in Japanese Patent Laid-Open No. 5-302112, molten steel is deoxidized with Mg, and almost no deoxidation is performed with Al. A method is also disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
たアルミナ系介在物を除去する方法では、低炭素溶鋼中
に多量に生成したアルミナ系介在物を表面疵やノズル閉
塞が発生しない程度まで低減することは非常に難しい。
また、アルミナ系介在物を全く生成しないMg脱酸で
は、Mgの蒸気圧が高く、溶鋼への歩留まりが非常に低
いため、低炭素鋼のように溶存酸素濃度が高い溶鋼をM
gだけで脱酸するには多量のMgを必要とし、製造コス
トを考えると実用的なプロセスとは言えない。
However, in the above-described method of removing alumina-based inclusions, it is necessary to reduce the amount of alumina-based inclusions generated in low-carbon molten steel to a level that does not cause surface flaws or nozzle blockage. Is very difficult.
Further, in the Mg deoxidation that does not produce any alumina-based inclusions, the vapor pressure of Mg is high and the yield to molten steel is very low.
A large amount of Mg is required to deoxidize only with g, and it is not a practical process in view of the production cost.

【0005】これらの問題を鑑み、本発明はアルミナ系
介在物を生成させることがないように、Tiを主とした
脱酸を行うことにより、確実に表面疵とノズル閉塞を防
止できる薄鋼板用素材の低炭素溶鋼を溶製する方法を提
示することを課題とする。
[0005] In view of these problems, the present invention provides a thin steel sheet which can reliably prevent surface flaws and nozzle blockage by performing deoxidation mainly using Ti so as not to form alumina inclusions. An object of the present invention is to present a method for smelting low carbon molten steel as a material.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は以下の構成を要旨とする。即ち、(1)低
炭素薄鋼板の溶製方法において炭素含有率を0.01%
以下まで脱炭した後、該溶鋼にTiを2分割以上して添
加し、さらにCaを添加してから、環流式真空脱ガス装
置により環流するか、又はArガス吹き込みによりバブ
リングして介在物を浮上分離することを特徴とする低炭
素薄鋼板の溶製方法である。また、(2)低炭素薄鋼板
の溶製方法において真空脱ガス処理により炭素含有率を
0.01%以下まで脱炭後、該溶鋼の成分調整を行い、
総Ti添加量を2分割以上して溶鋼に添加し、その後C
aを添加し、環流式真空脱ガス装置にて環流、又はAr
ガス吹き込みにてバブリングすることにより介在物を浮
上分離することを特徴とする低炭素薄鋼板の溶製方法で
ある。また、(3)請求項1から請求項2において、最
初のTi添加後に溶存酸素量が10ppmから100p
pmになるように制御することを特徴とする低炭素薄鋼
板の溶製方法である。また、(4)請求項1から請求項
3において、最初のTi添加後、次回Ti添加までに、
30秒以上の介在物浮上時間を確保することを特徴とす
る低炭素薄鋼板の溶製方法である。また、(5)請求項
1から請求項4において、Ca添加後の環流式脱ガス装
置による環流時間、又はArガス吹き込みによるバブリ
ング時間を30秒以上確保することを特徴とする低炭素
薄鋼板の溶製方法である。
Means for Solving the Problems In order to solve the above problems, the present invention has the following features. That is, (1) the carbon content is reduced to 0.01% in the low carbon thin steel sheet smelting method.
After decarburizing to the following, Ti is added to the molten steel in two or more portions, and Ca is further added. Then, the molten steel is refluxed by a reflux vacuum degassing apparatus, or bubbling is performed by blowing Ar gas to remove inclusions. This is a method for smelting a low carbon steel sheet, which is characterized by floating separation. (2) In the method for producing a low-carbon thin steel sheet, after decarburizing the carbon content to 0.01% or less by vacuum degassing, the composition of the molten steel is adjusted.
The total amount of Ti is divided into two or more parts and added to molten steel.
a, and refluxed by a reflux type vacuum degassing device, or Ar
This is a method for smelting a low-carbon thin steel sheet, in which inclusions are floated and separated by bubbling by blowing gas. (3) The method according to any one of claims 1 and 2, wherein the dissolved oxygen amount is from 10 ppm to 100 p after the first Ti addition.
pm, which is a method for melting low carbon thin steel sheets. (4) In claim 1 to claim 3, after the first Ti addition, by the next Ti addition.
This is a method for melting a low carbon thin steel sheet, which secures an inclusion floating time of 30 seconds or more. (5) The low-carbon thin steel sheet according to any one of (1) to (4), wherein a recirculation time of the recirculation type degassing device after addition of Ca or a bubbling time of Ar gas injection is secured for 30 seconds or more. This is a smelting method.

【0007】[0007]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明の溶製法では、転炉や電気炉等の製鋼炉で精錬
し、その後真空脱ガス処理して薄鋼板用素材として必要
な炭素含有率0.01%以下に脱炭した溶鋼に、Tiを
2分割以上で添加し脱酸と成分調整を行い、さらにCa
を添加してから攪拌により介在物の浮上分離を促進す
る。この溶製法の基本思想は、1回目のTi添加により
介在物を低融点化し浮上分離を促進することにより溶鋼
の清浄性を高め、その上で2回目以降のTi添加で生成
した介在物を少量のCa添加と攪拌により確実に除去
し、超清浄鋼を得ることにある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
In the smelting method of the present invention, molten steel that has been refined in a steelmaking furnace such as a converter or an electric furnace and then degassed by vacuum degassing to a carbon content of 0.01% or less, which is necessary as a material for thin steel sheets, Is added in two or more portions to perform deoxidation and component adjustment.
Is added and then stirred to promote floating separation of inclusions. The basic idea of this smelting method is to increase the cleanliness of molten steel by lowering the melting point of inclusions and promoting flotation by the first addition of Ti, and then to reduce a small amount of inclusions generated by the second and subsequent additions of Ti. In order to obtain ultra-clean steel.

【0008】溶鋼中の溶存酸素濃度が高い状態で添加さ
れた1回目のTiは急激に溶鋼中の溶存酸素と反応し、
酸化鉄・チタニア系の複合介在物となる。この介在物は
溶鋼中で液相であり、凝集・合体で粗大化することによ
り殆ど浮上分離されるため、溶鋼中の溶存酸素の低下と
共に、介在物濃度も大きく低下する。1回目のTi添加
は脱酸が主な目的であるが、上述したように比較的凝集
・合体し易い低融点の介在物に組成制御し、浮上分離に
より介在物量をできるだけ低減させる役割も有してい
る。このため、溶鋼中の溶存酸素をできるだけ低減し、
且つ溶鋼中の介在物を浮上分離し易い酸化鉄・チタニア
系の複合介在物に制御することが重要であり、実験的検
討では溶鋼中の溶存酸素を10ppmから100ppm
程度残すように1回目のTiを添加することが効果的で
ある。この理由は、1回目のTi添加後における溶鋼中
の溶存酸素を10ppm未満まで脱酸すると固相のチタ
ニア系介在物が生成し浮上分離し難いため、また1回目
のTi添加後に溶存酸素を100ppm超残すと2回目
以降のTi添加で浮上分離し難い固相のチタニア系介在
物が多量に生成するためである。また、2回目のTi添
加までに介在物の浮上分離時間を設けることが好まし
く、この介在物組成で浮上分離時間を実験的に評価した
ところ30秒以上確保すれば良いことが分かった。
[0008] The first Ti added in a state where the dissolved oxygen concentration in the molten steel is high reacts rapidly with the dissolved oxygen in the molten steel,
It becomes a complex inclusion of iron oxide and titania. The inclusions are in the liquid phase in the molten steel and are almost separated by flotation by coarsening due to agglomeration / coalescence. Therefore, the concentration of the inclusions greatly decreases as the dissolved oxygen in the molten steel decreases. The main purpose of the first addition of Ti is to deoxidize it, but as described above, it controls the composition of inclusions with a low melting point that are relatively easy to aggregate and coalesce, and also has the role of minimizing the amount of inclusions by flotation. ing. Therefore, the dissolved oxygen in the molten steel is reduced as much as possible,
In addition, it is important to control the inclusions in the molten steel to composite oxides of iron oxide and titania that are easily floated and separated, and in an experimental study, the dissolved oxygen in the molten steel was reduced from 10 ppm to 100 ppm.
It is effective to add Ti for the first time so as to leave a certain amount. The reason is that if the dissolved oxygen in the molten steel after the first addition of Ti is deoxidized to less than 10 ppm, solid-phase titania-based inclusions are formed and it is difficult to float and separate, and the dissolved oxygen is reduced to 100 ppm after the first addition of Ti. This is because a large amount of solid-phase titania-based inclusions, which are difficult to float and separate by adding Ti from the second time onward, will be generated if they remain excessively. Further, it is preferable to provide a floating separation time for inclusions before the second addition of Ti, and the floating separation time was experimentally evaluated with this inclusion composition, and it was found that 30 seconds or more should be secured.

【0009】2回目以降に分割添加されたTiは、一部
残った溶存酸素と反応して、固相のチタニア系介在物を
生成する。この高融点の介在物は浮上分離し難いため、
さらに溶鋼の清浄性を高めることができない。このた
め、Ti添加終了後にCaを添加し、この高融点のチタ
ニア系介在物を低融点のチタニア・カルシア系介在物に
改質すると共に、攪拌を加えることにより介在物同士の
凝集・合体を促進し、迅速な浮上分離を図る。なお、一
度にTiを添加した場合には、脱ガス処理後の溶存酸素
が全てチタニア系介在物となり浮上分離しないため、こ
れを改質するには多量のCa添加と長時間の攪拌が必要
になる。攪拌の方法としては、環流式の真空脱ガス装置
により溶鋼を環流するか、もしくはArガスを溶鋼中に
吹き込んで攪拌する方法が効果的であり、攪拌時間とし
て何れの方式においても30秒以上確保すれば十分であ
ることを実験的に確認した。その結果、アルミナ介在物
を生成することなく、溶鋼中の介在物を効率的に低減で
きるため、確実に表面疵とノズル閉塞を防止できる薄鋼
板用素材の低炭素溶鋼を溶製することができる。
The Ti added separately from the second time onwards reacts with the remaining dissolved oxygen to form solid titania-based inclusions. Because this high melting point inclusion is difficult to float and separate,
Further, the cleanliness of the molten steel cannot be improved. For this reason, after the addition of Ti, Ca is added to modify the high-melting titania-based inclusions to low-melting titania-calcia-based inclusions, and to promote agglomeration and coalescence of the inclusions by adding stirring. And achieve rapid flotation. If Ti is added at once, all dissolved oxygen after the degassing process becomes titania-based inclusions and does not float and separate, so a large amount of Ca must be added and long-time stirring is required to reform this. Become. As a method of stirring, it is effective to circulate the molten steel by a circulating vacuum degassing apparatus or to stir by blowing Ar gas into the molten steel, and a stirring time of 30 seconds or more is secured in any method. It was confirmed experimentally that this was sufficient. As a result, the inclusions in the molten steel can be efficiently reduced without generating alumina inclusions, so that it is possible to smelt a low-carbon molten steel as a material for a thin steel sheet that can reliably prevent surface flaws and nozzle blockage. .

【0010】Tiの総添加量は溶鋼中の溶存酸素を脱酸
し、さらに材質を確保する上で溶鋼中の炭素と窒素を固
定するに必要な量であり、脱ガス処理後の溶鋼中の溶存
酸素量と炭素、窒素濃度にもよるが、Ti濃度で0.0
05%以上、好ましくは0.01%以上になるように歩
留まり考慮して添加するのが良い。添加するTiはスポ
ンジ状Tiのように高純度Tiに限られたものではな
く、Fe−Tiのような合金として添加しても上記効果
は損なわれない。
The total amount of Ti is an amount necessary for deoxidizing dissolved oxygen in the molten steel and fixing carbon and nitrogen in the molten steel in order to secure the quality of the material. Although it depends on the amount of dissolved oxygen and the concentrations of carbon and nitrogen, 0.0
It is advisable to add it in consideration of the yield so as to be at least 05%, preferably at least 0.01%. The Ti to be added is not limited to high-purity Ti as in the case of sponge-like Ti, and the above effects are not impaired even when added as an alloy such as Fe-Ti.

【0011】Caの添加量は、2回目以降に添加したT
iと溶存酸素が反応して生成した少量のチタニア系介在
物を低融点のチタニア・カルシア系複合酸化物にするに
必要な量以上であって、且つCaが耐火物やモールドパ
ウダーと反応して溶鋼を汚染させない量以下である。す
なわち、溶鋼中のCa濃度で1〜100ppm程度が適
正範囲である。Ca添加は、Ti添加後に実施すれば良
く、インジェクション法、ワイヤー添加法等により、取
鍋、タンディッシュ、連続鋳造鋳型等の何れかで添加す
れば良い。さらに、Ca添加は純Caで行うことも可能
であるが、Caの蒸気圧が高いので、Ca−Si等のC
a合金として添加しても良い。
[0011] The amount of Ca added is the amount of T
The amount of titania-based inclusions generated by the reaction between i and dissolved oxygen is greater than or equal to the amount required to make the low-melting titania-calcia-based composite oxide, and Ca reacts with the refractory or mold powder. It is below the amount that does not contaminate the molten steel. That is, the appropriate range is about 1 to 100 ppm in the Ca concentration in the molten steel. The addition of Ca may be performed after the addition of Ti, and may be added in any of a ladle, a tundish, a continuous casting mold, or the like by an injection method, a wire addition method, or the like. Further, Ca addition can be performed with pure Ca, but since the vapor pressure of Ca is high, C such as Ca-Si
You may add as an a alloy.

【0012】溶鋼中のAlは添加しないのが好ましい
が、必要な場合には0.01%以下で添加しても良い。
このAl濃度であれば、Ca添加によりアルミナ系介在
物も低融点化されるためである。
It is preferable not to add Al in the molten steel, but if necessary, it may be added at 0.01% or less.
This is because if the Al concentration is attained, the addition of Ca also lowers the melting point of alumina-based inclusions.

【0013】自動車用外板向けの加工が厳しい極低炭素
鋼板等では、加工性を付与するためにCをできるだけ低
くする必要があり、C濃度は0.01%以下、好ましく
は0.005%以下にするのが良い。
In ultra-low carbon steel sheets and the like which are severely processed for automobile outer panels, it is necessary to make C as low as possible in order to impart workability, and the C concentration is 0.01% or less, preferably 0.005%. It is better to do the following.

【0014】[0014]

【実施例】以下に、実施例及び比較例を挙げて、本発明
について説明する。 実施例:転炉で精錬した200tの溶鋼を、環流式真空
脱ガス装置で炭素濃度30ppmまで脱炭した後、取鍋
内の溶鋼にTiを150kg添加して溶存酸素濃度20
ppmまで脱酸し、その後1分間環流式真空脱ガス装置
で取鍋内溶鋼を環流した。溶鋼中に50kgのTiを加
えて成分調整を行った後、さらに取鍋内の溶鋼中にワイ
ヤー添加法でCaを添加し、Ti濃度0.02%、Ca
濃度5ppmの溶鋼を溶製し、これをさらに環流式真空
脱ガス装置で30秒間環流した。この溶鋼を連続鋳造法
で鋳造し、厚み250mm、幅1800mmのスラブを
鋳造した。連続鋳造時におけるノズル開度は一定であ
り、ノズル閉塞は全く生じなかった。鋳造した鋳片は8
500mm長さに切断し、1コイル単位とした。このよ
うにして得られたスラブは、常法により熱間圧延、冷間
圧延し、最終的には0.7mm厚みで幅1800mmコ
イルの冷延鋼板とした。鋳片品質については、冷間圧延
後の検査ラインで目視観察を行い、1コイル当たりに発
生する表面欠陥の発生個数を評価した。その結果、表面
欠陥は全く発生しなかった。
The present invention will be described below with reference to examples and comparative examples. Example: 200 ton of molten steel refined in a converter was decarburized to a carbon concentration of 30 ppm by a reflux vacuum degassing apparatus, and then 150 kg of Ti was added to the molten steel in the ladle to obtain a dissolved oxygen concentration of 20 ppm.
ppm, and then the molten steel in the ladle was refluxed for 1 minute with a reflux vacuum degassing apparatus. After adjusting the composition by adding 50 kg of Ti to the molten steel, Ca was further added to the molten steel in the ladle by a wire addition method to obtain a Ti concentration of 0.02% and a Ca concentration of 0.02%.
Molten steel having a concentration of 5 ppm was smelted, and this was further refluxed for 30 seconds by a reflux vacuum degassing apparatus. This molten steel was cast by a continuous casting method to cast a slab having a thickness of 250 mm and a width of 1800 mm. The nozzle opening during continuous casting was constant, and no nozzle blockage occurred. The cast slab is 8
It was cut to a length of 500 mm to make one coil unit. The slab thus obtained was hot-rolled and cold-rolled by a conventional method to finally obtain a cold-rolled steel sheet having a thickness of 0.7 mm and a width of 1800 mm. Regarding the slab quality, visual observation was performed on an inspection line after cold rolling, and the number of surface defects generated per coil was evaluated. As a result, no surface defects occurred.

【0015】比較例:転炉で精錬した200tの溶鋼
を、環流式真空脱ガス装置で炭素濃度30ppmまで脱
炭した後、取鍋内の溶鋼にAlを200kg添加して脱
酸し、その後45kgのTiを加えて、Al濃度0.0
4%、Ti濃度0.02%の溶鋼に成分調整した。この
溶鋼を連続鋳造法で鋳造し、厚み250mm、幅180
0mmのスラブを鋳造した。連続鋳造時におけるノズル
開度は鋳造開始から徐々に開き、鋳造終了時には全開状
態となり、ノズル閉塞が生じた。鋳造した鋳片は850
0mm長さに切断し、1コイル単位とした。このように
して得られたスラブは、常法により熱間圧延、冷間圧延
し、最終的には0.7mm厚みで幅1800mmコイル
の冷延鋼板とした。鋳片品質については、冷間圧延後の
検査ラインで目視観察を行い、1コイル当たりに発生す
る表面欠陥の発生個数を評価した。その結果、表面欠陥
は1コイル当たり20個も発生した。
Comparative Example: 200 ton of molten steel refined in a converter was decarburized to a carbon concentration of 30 ppm by a reflux vacuum degassing apparatus, and then 200 kg of Al was added to molten steel in a ladle to deoxidize the steel, and then 45 kg. And an Al concentration of 0.0
The composition was adjusted to 4% molten steel having a Ti concentration of 0.02%. This molten steel is cast by a continuous casting method and has a thickness of 250 mm and a width of 180 mm.
A 0 mm slab was cast. The nozzle opening during continuous casting gradually opened from the start of casting, and was fully opened at the end of casting, causing nozzle blockage. The cast slab is 850
It was cut to a length of 0 mm to make one coil unit. The slab thus obtained was hot-rolled and cold-rolled by a conventional method to finally obtain a cold-rolled steel sheet having a thickness of 0.7 mm and a width of 1800 mm. Regarding the slab quality, visual observation was performed on an inspection line after cold rolling, and the number of surface defects generated per coil was evaluated. As a result, as many as 20 surface defects were generated per coil.

【0016】[0016]

【発明の効果】以上に説明したように、本発明による
と、アルミナ系介在物を生成することなく、溶鋼中の介
在物を低減した上で、さらに介在物を微細化することが
できるため、確実に表面疵とノズル閉塞を防止できる加
工性、成形性に優れた薄鋼板用の低炭素溶鋼を溶製する
ことが可能となる。
As described above, according to the present invention, the inclusions in the molten steel can be reduced and the inclusions can be further refined without producing alumina-based inclusions. It becomes possible to smelt a low carbon molten steel for a thin steel sheet having excellent workability and formability capable of reliably preventing surface flaws and nozzle blockage.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22D 43/00 B22D 43/00 A C21C 7/04 C21C 7/04 B 7/10 7/10 F ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B22D 43/00 B22D 43/00 A C21C 7/04 C21C 7/04 B 7/10 7/10 F

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 低炭素薄鋼板の溶製方法において炭素含
有率を0.01%以下まで脱炭した後、該溶鋼にTiを
2分割以上して添加し、さらにCaを添加してから、環
流式真空脱ガス装置により環流するか、又はArガス吹
き込みによりバブリングして介在物を浮上分離すること
を特徴とする低炭素薄鋼板の溶製方法。
In a method for producing a low carbon thin steel sheet, after decarburizing the carbon content to 0.01% or less, Ti is added to the molten steel in two or more parts, and Ca is further added. A method for melting a low carbon thin steel sheet, comprising refluxing by a reflux vacuum degassing apparatus or bubbling by blowing in Ar gas to float and separate inclusions.
【請求項2】 低炭素薄鋼板の溶製方法において真空脱
ガス処理により炭素含有率を0.01%以下まで脱炭
後、該溶鋼の成分調整を行い、総Ti添加量を2分割以
上して溶鋼に添加し、その後Caを添加し、環流式真空
脱ガス装置にて環流、又はArガス吹き込みにてバブリ
ングすることにより介在物を浮上分離することを特徴と
する低炭素薄鋼板の溶製方法。
2. In a method for producing a low carbon thin steel sheet, after decarburizing the carbon content to 0.01% or less by vacuum degassing, the composition of the molten steel is adjusted, and the total amount of Ti added is divided into two or more. Melting steel, then adding Ca, and buoyant inclusions by bubbling with reflux or Ar gas injection in a reflux type vacuum degassing apparatus to separate inclusions by flotation. Method.
【請求項3】 請求項1又は請求項2において、最初の
Ti添加後に溶存酸素量が10ppmから100ppm
になるように制御することを特徴とする低炭素薄鋼板の
溶製方法。
3. The method according to claim 1, wherein the amount of dissolved oxygen is from 10 ppm to 100 ppm after the first addition of Ti.
A method for melting low carbon thin steel sheets, characterized in that the control is performed so that
【請求項4】 請求項1乃至請求項3のいずれかにおい
て、最初のTi添加後、次回Ti添加までに、30秒以
上の介在物浮上時間を確保することを特徴とする低炭素
薄鋼板の溶製方法。
4. The low carbon thin steel sheet according to claim 1, wherein an inclusion floating time of 30 seconds or more is secured after the first Ti addition and before the next Ti addition. Melting method.
【請求項5】 請求項1乃至請求項4のいずれかにおい
て、Ca添加後の環流式脱ガス装置による環流時間、又
はArガス吹き込みによるバブリング時間を30秒以上
確保することを特徴とする低炭素薄鋼板の溶製方法。
5. The low carbon material according to claim 1, wherein a recirculation time by a recirculation type degassing device after Ca addition or a bubbling time by bubbling Ar gas is maintained for 30 seconds or more. Melting method of thin steel sheet.
JP28455199A 1999-10-05 1999-10-05 Melting method of steel plate for thin sheet Withdrawn JP2001105101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28455199A JP2001105101A (en) 1999-10-05 1999-10-05 Melting method of steel plate for thin sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28455199A JP2001105101A (en) 1999-10-05 1999-10-05 Melting method of steel plate for thin sheet

Publications (1)

Publication Number Publication Date
JP2001105101A true JP2001105101A (en) 2001-04-17

Family

ID=17679926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28455199A Withdrawn JP2001105101A (en) 1999-10-05 1999-10-05 Melting method of steel plate for thin sheet

Country Status (1)

Country Link
JP (1) JP2001105101A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240137A (en) * 2007-03-29 2008-10-09 Jfe Steel Kk Method for smelting ti-containing extra-low carbon steel, and method for producing ti-containing extra-low carbon steel slab
JP2009226463A (en) * 2008-03-25 2009-10-08 Jfe Steel Corp Method for continuously casting slab
CN102211155A (en) * 2011-06-01 2011-10-12 武汉钢铁(集团)公司 Calcium treatment method of low-carbon low silicon aluminium killed steels under CSP (Cast Steel Plate) condition
CN101296766B (en) * 2005-10-27 2012-11-28 新日本制铁株式会社 Method for manufacture of ultra-low carbon steel slab
JP2013119656A (en) * 2011-12-08 2013-06-17 Jfe Steel Corp Method for smelting low-calcium steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296766B (en) * 2005-10-27 2012-11-28 新日本制铁株式会社 Method for manufacture of ultra-low carbon steel slab
JP2008240137A (en) * 2007-03-29 2008-10-09 Jfe Steel Kk Method for smelting ti-containing extra-low carbon steel, and method for producing ti-containing extra-low carbon steel slab
JP2009226463A (en) * 2008-03-25 2009-10-08 Jfe Steel Corp Method for continuously casting slab
CN102211155A (en) * 2011-06-01 2011-10-12 武汉钢铁(集团)公司 Calcium treatment method of low-carbon low silicon aluminium killed steels under CSP (Cast Steel Plate) condition
JP2013119656A (en) * 2011-12-08 2013-06-17 Jfe Steel Corp Method for smelting low-calcium steel

Similar Documents

Publication Publication Date Title
JP4280163B2 (en) Low carbon steel sheet, low carbon steel slab and method for producing the same
JP2004143510A (en) Method for melting steel sheet for extra low carbon or low carbon thin sheet having excellent surface quality, and continuously cast slab
JP4873921B2 (en) Method for producing ultra-low carbon steel sheet and ultra-low carbon cast slab excellent in surface properties, workability and formability
JP2001105101A (en) Melting method of steel plate for thin sheet
JP3742619B2 (en) Low carbon steel slab manufacturing method
JP3686579B2 (en) Method of melting steel sheet for thin plate and slab cast using the same
JP4392364B2 (en) Method for producing ultra-low carbon steel
JP2001032014A (en) Method for manufacturing steel plate for sheet steel
JP3760144B2 (en) Ultra-low carbon steel sheet, ultra-low carbon steel slab and method for producing the same
JP4502944B2 (en) Thin steel plate rich in ductility and method for producing steel ingot to obtain the steel plate
JP2002003930A (en) Method for melting steel plate for thin sheet
JP4227478B2 (en) Low carbon steel slab manufacturing method
JP5387045B2 (en) Manufacturing method of bearing steel
JP4392365B2 (en) Method for producing ultra-low carbon steel
JP3736159B2 (en) Steel manufacturing method with excellent cleanliness
JP4660037B2 (en) Method for melting steel sheet for thin plate and cast piece thereof
JP2000256732A (en) PRODUCTION OF Fe-Ni BASE ALLOY COLD-ROLLED SHEET BLANK FOR SHADOW MASK EXCELLENT IN ETCHING PERFORATION
JP2002060828A (en) Method for smelting steel plate for thin sheet
JP4828052B2 (en) Manufacturing method of steel sheet for thin sheet
JP4660038B2 (en) Method for melting steel sheet for thin plate and cast piece thereof
JP4025718B2 (en) Extremely low carbon steel sheet excellent in surface properties, workability and formability, and method for producing the same
JP4035081B2 (en) Method for producing ultra-low carbon steel slab
JP2005139492A (en) Reforming agent for inclusion in molten steel, and method for producing low carbon steel cast slab
JP2002249818A (en) Method for refining thin steel sheet, and slab cast by using the steel sheet
JP2002266019A (en) Method for refining low-carbon steel sheet by melting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205