JP7260731B2 - High purity steel and its refining method - Google Patents

High purity steel and its refining method Download PDF

Info

Publication number
JP7260731B2
JP7260731B2 JP2018131184A JP2018131184A JP7260731B2 JP 7260731 B2 JP7260731 B2 JP 7260731B2 JP 2018131184 A JP2018131184 A JP 2018131184A JP 2018131184 A JP2018131184 A JP 2018131184A JP 7260731 B2 JP7260731 B2 JP 7260731B2
Authority
JP
Japan
Prior art keywords
less
inclusions
concentration
lanthanoid
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018131184A
Other languages
Japanese (ja)
Other versions
JP2020007621A (en
Inventor
光裕 沼田
謙治 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018131184A priority Critical patent/JP7260731B2/en
Publication of JP2020007621A publication Critical patent/JP2020007621A/en
Application granted granted Critical
Publication of JP7260731B2 publication Critical patent/JP7260731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は造船材、ラインパイプ、厚鋼板、油井管等に用いられる高清浄鋼板用鋼ならびにその溶製方法に関し、詳しくは、鋼中非金属介在物組成を特定の範囲内に精密に制御することにより複数種類の有害介在物を同時に低減することで高い清浄性を有した鋼とその製造方法に関する。 TECHNICAL FIELD The present invention relates to steel for high-cleanliness steel sheets used for shipbuilding materials, line pipes, thick steel sheets, oil well pipes, etc., and a method for producing the same. More specifically, the composition of non-metallic inclusions in steel is precisely controlled within a specific range. The present invention relates to a steel having high cleanliness by simultaneously reducing multiple types of harmful inclusions, and a method for producing the same.

耐食性向上、靭性向上あるいは加工性向上などを目的に、従来から鋼中の非金属介在物(以下、介在物)の低減や無害化を図る技術が多数開発されてきた。特に、介在物の低減には処理時間延長など工業的制約が生じやすいことから、介在物を無害化する形態制御について多くの技術が開発されている。例えば、Caを溶鋼に添加することで介在物をCaO含有酸硫化物とすることで介在物の球状化やMnS抑制する技術は良く知られている。 For the purpose of improving corrosion resistance, toughness, workability, etc., many techniques have been developed to reduce or render harmless non-metallic inclusions (hereinafter referred to as inclusions) in steel. In particular, reduction of inclusions is likely to be subject to industrial restrictions such as extension of treatment time, so many techniques have been developed for morphology control to render inclusions harmless. For example, a technique for suppressing spheroidization of inclusions and MnS by adding Ca to molten steel to turn the inclusions into CaO-containing oxysulfides is well known.

さらに、近年ではLa,Ce,NdといったランタノイドあるいはCaとランタノイドを併用することで、介在物を制御し、鋳造性向上と鋼材性能向上を両立する技術も多数開発されている。 Furthermore, in recent years, a number of techniques have been developed to control inclusions by using lanthanoids such as La, Ce, and Nd or Ca and lanthanoids in combination to improve both castability and steel performance.

例えば、特許文献1ではランタノイドを0.001~0.05%を含有させることで表面清浄性と耐リジング性を向上させる技術が、特許文献2ではランタノイドを0.0001~0.03%含有したステンレス鋼を溶製する際に鋼中Al濃度とランタノイド濃度を適正条件に制御することで鋳造性を改善する技術が示されている。 For example, Patent Document 1 discloses a technique for improving surface detergency and ridging resistance by containing 0.001 to 0.05% of lanthanoids, while Patent Document 2 discloses a technique of containing 0.0001 to 0.03% of lanthanoids. Techniques for improving castability by controlling the Al concentration and the lanthanide concentration in the steel to appropriate conditions when producing stainless steel have been disclosed.

また、特許文献3では鋼中ランタノイド濃度を0.001~0.0044%とし、かつ、介在物中ランタノイド酸化物濃度を適正範囲に制御することで鋳造性と表面清浄および内質に優れた鋳片を得る技術が、特許文献4では介在物中のCaOとランタノイド酸化物との濃度を適正に制御することで表面清浄を改善させる技術が示されている。 Further, in Patent Document 3, the lanthanoid concentration in the steel is set to 0.001 to 0.0044%, and the lanthanoid oxide concentration in the inclusions is controlled within an appropriate range to achieve excellent castability, surface cleanliness, and internal quality. As a technique for obtaining flakes, Patent Document 4 discloses a technique for improving surface cleanliness by appropriately controlling the concentrations of CaO and lanthanide oxides in inclusions.

さらに、特許文献5では介在物中のCa酸化物やランタノイド酸化物に加えてTi酸化物の濃度を制御することでより優れた鋼材を製造する技術が示されている。
以上の様にランタノイドもしくはランタノイドとCaを活用する技術が多数開発されてきた。
Furthermore, Patent Literature 5 discloses a technique for manufacturing a better steel material by controlling the concentration of Ti oxides in addition to Ca oxides and lanthanide oxides in inclusions.
As described above, many techniques utilizing lanthanoids or lanthanoids and Ca have been developed.

ところで、これまで鋼材に要求される性能は例えば耐食性や溶接性など、単一の特性に対する要求が多かったため、単一の特性を満足させるために限定された種類の介在物のみを制御すればよかった。例えば、耐水素誘起割れ性を向上させるには、割れ基点となるMnSを抑制するために溶鋼にCaを添加して介在物をMnSからCaSに変化させるなどの技術は良く知られている。 By the way, until now, many of the performance requirements for steel materials were for single characteristics, such as corrosion resistance and weldability. . For example, in order to improve resistance to hydrogen-induced cracking, techniques such as adding Ca to molten steel to change inclusions from MnS to CaS are well known in order to suppress MnS, which is the origin of cracking.

しかしながら、近年では鋼材に要求される性能は複数となり、例えば耐食性と低温靱性さらに溶接性等を同時に満足する事などが要求されることが一般的になりつつある。この様な要求に応えるには複数種類の介在物対策が必要であり、限定された介在物に対応することを目的とした従来の技術では十分に対応することができなかった。また、複数種類の介在物に対応するために複数種類の従来技術を適用する方法もあるが、処理時間の延長などの理由で工業的な生産は困難であった。 However, in recent years, steel materials are required to have multiple performances, and it is becoming common to be required to simultaneously satisfy, for example, corrosion resistance, low-temperature toughness, and weldability. In order to meet such demands, it is necessary to take countermeasures against multiple types of inclusions, and the conventional techniques for the purpose of dealing with limited inclusions have not been able to sufficiently meet these requirements. There is also a method of applying a plurality of types of conventional techniques to deal with a plurality of types of inclusions, but industrial production has been difficult for reasons such as the extension of processing time.

さらに、複数種類の介在物に同時に対応する方法として以下の方法も知られている。有害な介在物としてMnS、TiNなどのTi系炭窒化物、Caあるいはランタノイドなどの粗大な酸硫化物、粗大なアルミナクラスターが挙げられるが、これらの介在物を構成する軽元素としてS,O,Nが共通する。例えば、上記有害介在物を同時に抑制しようとすると構成元素であるS,O,Nを同時に低減すればよいことになるが、そのためには溶銑脱硫、溶鋼脱硫、溶鋼脱窒、溶鋼脱酸ならびに介在物除去処理のすべての処理を行う必要があり、さらに鋼材性能向上には各処理を徹底する必要がある。このため、精錬コスト、特に二次精錬コストが大幅に増加し、安価な製造が困難という課題があった。 Furthermore, the following method is also known as a method for dealing with multiple types of inclusions at the same time. Harmful inclusions include Ti-based carbonitrides such as MnS and TiN, coarse oxysulfides such as Ca and lanthanides, and coarse alumina clusters. N is common. For example, if the harmful inclusions are to be suppressed at the same time, the constituent elements S, O, and N should be reduced at the same time. It is necessary to carry out all the processes for removing substances, and furthermore, to improve the performance of steel materials, it is necessary to thoroughly implement each process. For this reason, the refining cost, especially the secondary refining cost, has increased significantly, and there has been the problem that inexpensive production is difficult.

加えて、介在物無害化ではランタノイドが有効であることは前述したとおりであるが、連続鋳造時のノズル閉塞という課題があったため、ノズル閉塞技術抑制方法も多数示されている。これらの技術により、ノズル閉塞は抑制されているものの、閉塞に至らないまでも介在物のノズル内付着までを抑制することができなかった。ノズル閉塞は鋳造中止となり、ノズル内付着では鋳造は可能であるためこれまで大きな課題とされてこなかったが、近年の介在物に対する要求では重要な課題となりつつある。ノズル内に介在物が付着するとノズル断面の均等性が失われるため、結果的に連続鋳造鋳型内の溶鋼流動が不均質化する。流動が不均質化すると鋳型内での介在物浮上分離性悪化、介在物の凝集肥大化促進、鋳片特定位置への介在物集積、といった現象を誘発する。したがって、ノズル閉塞はもちろんのこと、ノズル内付着までを抑制する必要性が高まっていた。 In addition, as mentioned above, lanthanoids are effective in making inclusions harmless, but there was the problem of nozzle clogging during continuous casting. Although these techniques have suppressed nozzle clogging, they have not been able to prevent inclusions from adhering to the inside of the nozzle even if they do not lead to clogging. Nozzle clogging leads to the suspension of casting, and adhesion inside the nozzle has not been considered a major issue because it is possible to cast. When inclusions adhere to the nozzle, the uniformity of the nozzle cross section is lost, resulting in non-uniform molten steel flow in the continuous casting mold. Inhomogeneous flow induces phenomena such as deterioration of flotation and separation of inclusions in the mold, promotion of aggregation and enlargement of inclusions, and accumulation of inclusions at specific positions of the cast slab. Therefore, there is an increasing need to suppress not only nozzle clogging but also adhesion inside the nozzle.

特開2001-279388号公報JP-A-2001-279388 特開2001-192723号公報JP-A-2001-192723 特開2006-97110号公報Japanese Patent Application Laid-Open No. 2006-97110 特開2000-8138号公報JP-A-2000-8138 特開平11-343516号公報JP-A-11-343516

本発明は、上記課題に鑑み、介在物中のCaとランタノイドの酸硫化物ならびにAl酸化物の濃度を特定の範囲に制御することで粗大介在物、MnS、Ti系炭窒化物を同時に大幅低減すると同時に連続鋳造時の鋳造安定性を格段に向上させた鋼を工業的に容易に製造することが可能である鋼とその溶製方法を提供することにある。 In view of the above problems, the present invention simultaneously significantly reduces coarse inclusions, MnS, and Ti-based carbonitrides by controlling the concentrations of Ca and lanthanoid oxysulfides and Al oxides in inclusions within a specific range. At the same time, it is an object of the present invention to provide a steel and a method for producing the same, which can be industrially easily produced with remarkably improved casting stability during continuous casting.

本発明者等は上記の目的を達成すべく鋭意研究を重ねた結果、介在物の組成範囲を所定の範囲に制御すると鋼の清浄性が向上することを見出した。
本発明は以上の知見に基づいてなされたもので、その要旨は以下の通りである。
The present inventors have made intensive studies to achieve the above object, and as a result, have found that the cleanliness of steel is improved by controlling the composition range of inclusions within a predetermined range.
The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)質量%で、C:0.002%以上0.400%以下、Mn:0.1%以上2.0%以下、Si:0.001%以上1.000%以下、S:0.001%以上0.005%以下、Al:0.005%以上1.000%以下、O:0.005%以下、Ca:0.0005%以上0.0035%以下、Ti:0.01%以上0.30%以下、ランタノイドのうちの1種又は2種以上を合計濃度が0.0003%以上0.0020%以下含有した鋼において、残部がFeおよび不可避的不純物からなる鋼であって、ランタノイドの1種または2種以上からなる酸硫化物、Caの酸硫化物、Alの酸化物及びこれらを2種以上含む、3μm以上10μm以下の個々の非金属介在物の組成が、上記化合物の合計を100とした濃度換算でCaの酸硫化物濃度が質量%で30%以上90%以下かつランタノイドの酸硫化物とAlの酸化物の質量濃度比(ランタノイドの酸硫化物濃度)/(Alの酸化物濃度)が1.0以上2.4以下であり、前記組成を満足する非金属介在物の個数が全非金属介在物の個数の95%以上であることを特徴とする高清浄鋼。 (1) In mass %, C: 0.002% or more and 0.400% or less, Mn: 0.1% or more and 2.0% or less, Si: 0.001% or more and 1.000% or less, S: 0.001% or more and 1.000% or less. 001% or more and 0.005% or less, Al: 0.005% or more and 1.000% or less, O: 0.005% or less, Ca: 0.0005% or more and 0.0035% or less, Ti: 0.01% or more Steel containing 0.30% or less and one or more of lanthanoids at a total concentration of 0.0003% or more and 0.0020% or less, the balance being Fe and inevitable impurities, The composition of individual nonmetallic inclusions of 3 μm or more and 10 μm or less containing one or more of oxysulfides, Ca oxysulfides, Al oxides, and two or more of these is the total of the above compounds is 100, the Ca oxysulfide concentration is 30% or more and 90% or less by mass, and the mass concentration ratio of the lanthanide oxysulfide and the Al oxide (lanthanoid oxysulfide concentration) / (Al oxide concentration) is 1.0 or more and 2.4 or less, and the number of nonmetallic inclusions satisfying the composition is 95% or more of the total number of nonmetallic inclusions. .

(2)質量%で、C:0.002%以上0.400%以下、Mn:0.1%以上2.0%以下、Si:0.001%以上1.000%以下、S: 0.001%以上0.005%以下、Al:0.005%以上1.000%以下、N:0.007%以下、O:0.005%以下、Ca:0.0005%以上0.0035%以下、Ti:0.01%以上0.30%以下、ランタノイドのうちの1種又は2種以上を合計濃度が0.0003%以上0.0020%以下を含有し、かつ、残部がFeおよび不可避的不純物からなり、ランタノイドの1種または2種以上からなる酸硫化物、Caの酸硫化物、Alの酸化物及びこれらを2種以上含む、3μm以上10μm以下の個々の非金属介在物の組成が、上記化合物の合計を100とした濃度換算でCaの酸硫化物濃度が質量%で30%以上90%以下かつランタノイドの酸硫化物とAlの酸化物の質量濃度比(ランタノイドの酸硫化物濃度)/(Alの酸化物濃度)が1.0以上2.4以下であり、前記組成を満足する非金属介在物の個数が全非金属介在物の個数の95%以上である高清浄鋼を製造する際の精錬方法であって、精錬中に全Ca添加量の35%以上50%以下を添加し、その1分以上3分以下の後にランタノイドの酸化物からなる群から選ばれる1種または2種以上と残りのCa分をCaまたはCa合金として混合したフラックスを添加することを特徴とする前記高清浄鋼の精錬方法。 (2) C: 0.002% or more and 0.400% or less, Mn: 0.1% or more and 2.0% or less, Si: 0.001% or more and 1.000% or less, S: 0.001% or more and 1.000% or less; 001% or more and 0.005% or less, Al: 0.005% or more and 1.000% or less, N: 0.007% or less, O: 0.005% or less, Ca: 0.0005% or more and 0.0035% or less , Ti: 0.01% or more and 0.30% or less, one or more of the lanthanoids with a total concentration of 0.0003% or more and 0.0020% or less , and the balance being Fe and unavoidable Composition of individual non-metallic inclusions of 3 µm or more and 10 µm or less containing impurities and containing one or more lanthanoid oxysulfides, Ca oxysulfides, Al oxides, and two or more of these However, the concentration of Ca oxysulfide is 30% or more and 90% or less in mass% when the total of the above compounds is 100, and the mass concentration ratio of lanthanide oxysulfide and Al oxide (lanthanoid oxysulfide concentration)/(Al oxide concentration) is 1.0 or more and 2.4 or less, and the number of nonmetallic inclusions satisfying the above composition is 95% or more of the total number of nonmetallic inclusions. wherein 35% to 50% of the total Ca addition amount is added during refining, and after 1 minute or more and 3 minutes or less, one selected from the group consisting of lanthanoid oxides Alternatively , the method for refining the high-cleanliness steel is characterized by adding a flux obtained by mixing two or more kinds and the remaining Ca as Ca or a Ca alloy.

本発明により、高清浄高機能鋼を効率よく、しかも安定的に製造することができる。 INDUSTRIAL APPLICABILITY According to the present invention, highly clean high-performance steel can be produced efficiently and stably.

介在物組成と介在物状態ならびにノズル付着との関係を示す図である。FIG. 4 is a diagram showing the relationship between the composition of inclusions, the state of inclusions, and nozzle adhesion. 先行Ca分量、添加間隔と介在物制御精度との関係を示す図である。FIG. 4 is a diagram showing the relationship between the amount of preceding Ca, the addition interval, and inclusion control accuracy;

以下、本発明を詳細に説明する。
まず、本発明の処理対象となる鉄以外の鋼成分を以下の理由により特定した。なお、本明細書において、鋼組成およびランタノイド濃度(詳細は後述。)における「%」は特にことわりがない場合は「質量%」を意味する。
The present invention will be described in detail below.
First, steel components other than iron to be treated in the present invention were specified for the following reasons. In this specification, "%" in steel composition and lanthanide concentration (details will be described later) means "% by mass" unless otherwise specified.

C:Cは減圧下で脱酸元素として作用する他に、S,Nの活量に影響する。このため、Cが0.002%未満では低酸素化効果が不安定となり、0.400%を超えて高くなるとSの活量が大きく変化し、反応機構が変化してしまう。そこで、Cは0.002%以上0.400%以下とした。 C: C not only acts as a deoxidizing element under reduced pressure, but also affects the activities of S and N. Therefore, if the C content is less than 0.002%, the oxygen-lowering effect becomes unstable, and if the C content exceeds 0.400%, the activity of S changes greatly and the reaction mechanism changes. Therefore, C is set to 0.002% or more and 0.400% or less.

Mn:Mnも脱酸元素であり、各種鋼材特性を改善することから、必須元素である。従って、0.1%未満では脱酸が不安定になり、2.0%を超えて高くなるとSの活量を低下させ、脱硫を困難とする。従って、Mn濃度は0.1%以上2.0%以下とした。 Mn: Mn is also a deoxidizing element and is an essential element because it improves various steel properties. Therefore, if the content is less than 0.1%, deoxidation becomes unstable, and if the content exceeds 2.0%, the activity of S decreases, making desulfurization difficult. Therefore, the Mn concentration is set to 0.1% or more and 2.0% or less.

Si:SiもMn同様脱酸安定に欠くことのできない元素であるが、0.001%未満では脱酸が不安定となり、1.000%を超えて高くなると介在物中のSiO2濃度が高くなり、本発明が意図する介在物組成への制御が困難となる。よって、Siは1.000%以下とする。 Si: Si is also an essential element for stable deoxidation like Mn. , it becomes difficult to control the inclusion composition intended by the present invention. Therefore, Si should be 1.000% or less.

Al:Alは最も強い脱酸力を有する元素であるため、低O、低Sかつ低Nを実現するためには必須である。この脱酸効果を得るには0.005%以上が必要である。一方、1.000%を超えて高くなると再び溶解酸素濃度が高くなって低Oを実現することが困難となるため、1.000%以下が必要である。 Al: Al is an element having the strongest deoxidizing power, and is essential for realizing low O, low S and low N. 0.005% or more is necessary to obtain this deoxidizing effect. On the other hand, when the content exceeds 1.000%, the concentration of dissolved oxygen increases again, making it difficult to achieve low O. Therefore, the content must be 1.000% or less.

S:Sは除去対象元素であるが、0.005%を超えて高くなると、ランタノイド,Caなどの硫化物に加えMnSが多数生成し、介在物制御精度が低下する。一方、0.001%未満では脱硫剤使用量が大幅に増加するため、コストが増加する。そこで、本発明では0.001%以上0.005%以下の溶鋼を処理対象とした。 S: S is an element to be removed, but if it exceeds 0.005%, a large amount of MnS is generated in addition to sulfides such as lanthanides and Ca, resulting in a decrease in inclusion control precision. On the other hand, if it is less than 0.001%, the amount of the desulfurizing agent used is greatly increased, resulting in an increase in cost. Therefore, in the present invention, molten steel with a content of 0.001% or more and 0.005% or less is treated.

O:Oは除去対象元素であるが、Si,AlおよびMnが上記の濃度範囲にあると、O濃度が0.005%を超えて高い場合には、大量に非金属介在物(以下、「介在物」という。)が溶鋼中に存在することとなる。よって、O濃度は0.005%以下とした。 O: O is an element to be removed, but if Si, Al and Mn are within the above concentration range, a large amount of nonmetallic inclusions (hereinafter referred to as " "Inclusions") will be present in the molten steel. Therefore, the O concentration was set to 0.005% or less.

Ca:Caは脱酸や脱硫に有効な元素であると同時に介在物形態制御にも有効である。Ca濃度が0.0005%未満では脱酸が不足するため、脱酸に要するランタノイドが増加するためランタノイド添加量が増加しコストが増加してしまう。Ca濃度が0.0035%を超えて高くなるとCaS介在物の生成が活発となり、本発明の意図するランタノイド硫化物の生成を抑制する。よって、本発明ではCaは0.0005%以上0.0035%以下とした。 Ca: Ca is an effective element for deoxidizing and desulfurizing, and at the same time it is effective for inclusion morphology control. If the Ca concentration is less than 0.0005%, deoxidation will be insufficient, and the amount of lanthanoids required for deoxidation will increase. When the Ca concentration exceeds 0.0035% and increases, the formation of CaS inclusions becomes active, suppressing the formation of the lanthanoid sulfides intended by the present invention. Therefore, in the present invention, Ca is set to 0.0005% or more and 0.0035% or less.

Ti:Tiは析出強化による強度向上や延性・加工性を向上させるに有効な元素である。これらの効果を得るには0.01%以上が必要である。一方、Tiは連続鋳造時のモールドパウダーと反応してモールドパウダーを変質させてしまうため、0.30%以下とした。 Ti: Ti is an element effective for improving strength, ductility and workability by precipitation strengthening. 0.01% or more is necessary to obtain these effects. On the other hand, Ti reacts with the mold powder during continuous casting to alter the quality of the mold powder, so the Ti content was made 0.30% or less.

ランタノイド:これらランタノイドは本発明の目的とする清浄鋼を得るための介在物の構成元素であり、1種または2種以上を含有する。これらの濃度が合計で0.0003%未満では介在物中にランタノイド化合物を形成させることができない。一方、0.002%を超えて高くなるとSの活量を低減してしまい、Sと介在物との反応速度が低下することが予測される。よって、本発明ではランタノイドの1種または2種以上の合計濃度を0.0003%以上0.002%以下とした。なお、ランタノイド元素番号57~71の元素で、化学的特性が極めて近いことは良く知られているが、工業的に利用されているのは元素番号57~61であり、さらに安価かつ大量に使用できるのはLa,Ce,Ndであることから、これらの元素を使用することが望ましい。 Lanthanoids: These lanthanoids are constituent elements of inclusions for obtaining the clean steel targeted by the present invention, and contain one or more of them. If the total concentration of these substances is less than 0.0003%, lanthanide compounds cannot be formed in inclusions. On the other hand, if the content exceeds 0.002%, the activity of S is reduced, and it is predicted that the reaction rate between S and inclusions is lowered. Therefore, in the present invention, the total concentration of one or more lanthanoids is set to 0.0003% or more and 0.002% or less. It is well known that the lanthanoid elements with element numbers 57 to 71 have very similar chemical properties, but the elements with element numbers 57 to 61 are industrially used, and are used inexpensively and in large quantities. Since La , Ce, and Nd can be used, it is desirable to use these elements.

なお、その他に強度や耐食性の確保を目的にCu、Ni、Nb、V、Cr、Moなどの成分を0.005%以上3%以下の範囲であれば必要に応じて含有しても本発明の効果に影響しない。 In addition, for the purpose of ensuring strength and corrosion resistance, the present invention may contain components such as Cu, Ni, Nb, V, Cr, and Mo in the range of 0.005% or more and 3% or less as necessary. does not affect the effects of

次に介在物組成範囲を限定した理由を説明する。
前述した鋼成分系において10μm以上の粗大な介在物を形成するのはアルミナ、CaSとCaOからなるCa系酸硫化物およびCeとCeSなどからなるランタノイド系酸硫化物の複合介在物とMnSとTiN、TiC、NbCなどからなるTiN系炭窒化物の3種類である。
Next, the reason for limiting the inclusion composition range will be explained.
In the steel composition system described above, coarse inclusions of 10 μm or more are formed by composite inclusions of alumina, Ca-based oxysulfides composed of CaS and CaO, and lanthanoid-based oxysulfides composed of Ce 2 O 3 and CeS. There are three types of TiN-based carbonitrides consisting of MnS, TiN, TiC, NbC, and the like.

次に介在物の生成機構から推定すると溶鋼段階から凝固初期の高温に置いて酸硫化物からなる複合介在物が生成し、その後凝固進行に伴って温度が低下するとMnSが、さらに温度が低下するとTiN系炭窒化物が生成する。つまり、MnSやTiN系炭窒化物の生成を抑止するには最初に生成する複合介在物の状態が重要である。 From the formation mechanism of inclusions, it is estimated that composite inclusions consisting of oxysulfides are formed at high temperatures from the molten steel stage to the initial stage of solidification. TiN-based carbonitrides are produced. In other words, the state of the composite inclusions that are formed first is important for suppressing the formation of MnS and TiN-based carbonitrides.

また、複合介在物中の硫化物生成によって鋼中S濃度が低下することでMnS生成が抑止され、複合介在物表面にTiN系炭窒化物が析出することでTiN系炭窒化物介在物生成が抑止されることから、複合介在物の組成が介在物全体の状態に強く影響する。 In addition, the formation of sulfides in the composite inclusions reduces the S concentration in the steel, which suppresses the formation of MnS, and the precipitation of TiN-based carbonitrides on the surface of the composite inclusions inhibits the formation of TiN-based carbonitride inclusions. Since it is suppressed, the composition of the composite inclusion strongly affects the state of the inclusion as a whole.

さらに、連続鋳造時のノズル内付着は複合介在物の付着と考えることができるので、付着の状態も複合介在物組成の影響が強い。 Furthermore, since the adhesion inside the nozzle during continuous casting can be considered as the adhesion of composite inclusions, the state of adhesion is also strongly influenced by the composition of the composite inclusions.

以上の考察から、 複合介在物組成とその他の介在物状態ならびにノズル内介在物付着の状態との関係を以下に述べる方法で鋭意調査した。 Based on the above considerations, the relationship between the composition of composite inclusions, the state of other inclusions, and the state of adhesion of inclusions in the nozzle was earnestly investigated by the method described below.

溶鋼300kgを高周波誘導真空溶解炉で溶解し、成分を前述した範囲に制御した。その後、溶鋼を浸漬ノズルを模擬したノズル(30mmφ×250mmL)を有した中間容器を介して鋳型内に鋳造した。得られた鋼塊からサンプルを切り出し、20×20mmの視野をSEM-EDSを用いて介在物を観察した。3μm以上の介在物を観察対象とし、10μmを超えて大きい介在物を粗大介在物とした。また、介在物は複数の元素から構成されているが、介在物組成をAl2、LAN、LANS、CaO、CaSの合計を100として算出し、Al2とLANのLANS合計とCaOとCaSの合計の3元系で整理した。なお、本調査ではランタノイドとして工業的に広く用いられている金属Ce、あるいは金属Laと金属Ceの混あるいは金属Laと金属Ndと金属Ceの混合物を用いた。LANはLa,Ce,Ndなどのランタノイド元素を示す。加えて、MnSとTi、Nb,C,Nなどを主成分とする炭窒化物介在物をTiNとして個数と大きさを計測した。ノズル付着性に関してはノズルを回収し、縦断面を観察してノズル内壁への介在物付着有無を観察した。 300 kg of molten steel was melted in a high-frequency induction vacuum melting furnace, and the composition was controlled within the ranges described above. After that, molten steel was cast into a mold through an intermediate container having a nozzle (30 mmφ×250 mmL) simulating an immersion nozzle. A sample was cut from the obtained steel ingot, and inclusions were observed using SEM-EDS with a field of view of 20×20 mm. Inclusions of 3 μm or more were taken as objects of observation, and inclusions larger than 10 μm were taken as coarse inclusions. Inclusions are composed of a plurality of elements, and the composition of inclusions was calculated with the sum of Al2O3 , LAN2O3 , LANS , CaO, and CaS as 100 , and Al2O3 and LAN2O 3 and the sum of CaO and CaS. In this study, metal Ce, which is widely used industrially as a lanthanoid, a mixture of metal La and metal Ce, or a mixture of metal La, metal Nd, and metal Ce was used. LAN indicates a lanthanoid element such as La, Ce, Nd. In addition, the number and size of carbonitride inclusions containing MnS, Ti, Nb, C, N, etc. as main components were measured as TiN. As for the adhesion to the nozzle, the nozzle was collected, and the longitudinal section was observed to observe whether inclusions adhered to the inner wall of the nozzle.

観察結果を図1に示す。図中に示す大きさが不満足とは複合介在物の大きさが10μmを超えて大きかった結果を示す。介在物組成によって鋼中の介在物状態が変化しており、粗大な介在物、TiN、MnSのすべてが存在せず、かつ、ノズル付着も示さなかったすべてを満足する介在物組成は〇で示す結果であった。なお、TiN炭窒化物、MnS、10μmを超えて大きい介在物については観察視野内で存在が確認できなかった場合を存在せずと判断し、ノズル付着についてはノズル内壁に付着物が確認された場合をノズル付着有と判断し図1で□で示した。なお、観察視野内にTiNが観察された場合はTiN不満足、MnSが確認された場合はMnS不満足と示した。また、金属Ce、あるいは金属Laと金属Ceの混あるいは金属Laと金属Ndと金属Ceの混合物といった添加物による効果への差異は認められなかった。 The observation results are shown in FIG. The unsatisfactory size shown in the figure means that the size of the composite inclusion exceeded 10 μm. The state of inclusions in the steel changes depending on the composition of inclusions. Coarse inclusions, TiN, and MnS are all absent, and no adhesion to the nozzle is shown. was the result. In addition, TiN carbonitride, MnS, and inclusions larger than 10 μm were judged not to exist when they could not be confirmed within the observation field of view. In this case, it was determined that there was adhesion to the nozzle, and indicated by □ in FIG. 1 . When TiN was observed in the observation field, it was indicated as unsatisfactory TiN, and when MnS was confirmed, it was indicated as unsatisfactory MnS. Moreover, no difference was observed in the effects of additives such as metal Ce, a mixture of metal La and metal Ce, or a mixture of metal La, metal Nd and metal Ce.

従って、ランタノイドの酸硫化物、Caの酸硫化物、Alの酸化物から構成される非金属介在物の組成がCaの酸硫化物濃度が質量%で30%以上90%以下かつランタノイドの酸硫化物とAlの酸化物の質量濃度比(ランタノイドの酸硫化物濃度)/(Alの酸化物濃度)が1.0以上2.4以下なる狭い組成範囲に介在物組成を制御することで従来困難であった複数の有害介在物を抑制し、かつ、鋳造不安定による性能劣化も同時に抑制できることを見出した。この組成を以下好適範囲と称する。 Therefore, the composition of nonmetallic inclusions composed of lanthanide oxysulfides, Ca oxysulfides, and Al oxides has a Ca oxysulfide concentration of 30% or more and 90% or less by mass and lanthanoid oxysulfides. By controlling the composition of inclusions within a narrow composition range in which the mass concentration ratio of oxides of metal and Al (concentration of lanthanoid oxysulfide)/(concentration of Al oxide) is 1.0 or more and 2.4 or less, conventionally difficult It was found that it is possible to suppress a plurality of harmful inclusions, which was the problem, and at the same time suppress performance deterioration due to casting instability. This composition is hereinafter referred to as the preferred range.

次に、この狭い好適範囲に介在物組成を制御する方法を検討した。本発明ではCaとランタノイドを併用するため、一般的な添加方法として金属もしくは合金のCaとランタノイドを同時添加、Ca添加後ランタノイド添加、ランタノイド添加後Ca添加の方法が知られている。 Next, a method for controlling the composition of inclusions within this narrow preferred range was investigated. In the present invention, Ca and lanthanoids are used in combination, and as a general addition method, a method of adding metal or alloy Ca and lanthanoids at the same time, adding lanthanoids after adding Ca, and adding Ca after adding lanthanoids is known.

そこで、これらの方法を用いて好適範囲への制御精度を調査した。実験方法は前述の方法と同一であり、Caとランタノイドの添加方法としてCaSi合金とランタノイド(ミッシュメタル)との同時添加、CaSi合金添加2分後にランタノイド添加、そしてランタノイド添加2分後にCaSi合金添加の3種類とした。CaSi合金はCa純分34%である。CaSi合金添加量とランタノイド添加量を0.01~0.1Kg/溶鋼トンの範囲で各種変化させて介在物組成を調査し、Ca、Alとランタノイドの介在物制御精度の指標として精度=(図1の好適範囲に入る介在物個数/全介在物個数×100)を定義してこれを指標として用いた。なお、Ca,Alとランタノイドの全介在物個数とは20mm×20mmの視野をSEM-EDSを用いて介在物を観察した際に確認された3μm以上のCa系酸硫化物介在物とAl酸化物介在物、ランタノイド酸硫化物介在物およびこれらを2種類以上含む介在物の合計であり、好適範囲に入る介在物個数とは同視野内で図1に示すCa系酸硫化物(CaO+CaS)、Al酸化物(Al2)、ランタノイド酸硫化物(LAN+LANS)の成分範囲が図1の好適範囲を満足する3μm以上10μm以下の介在物個数の総数である。なお、95%以上の介在物が好適範囲となっていれば各種製品欠陥は十分抑制可能であることから、本発明では先に定義した介在物制御精度が95%以上となることを目的とした。結果、一般的な添加方法である金属CaもしくはCaの合金aとランタノイドを同時添加、Ca添加後ランタノイド添加、ランタノイド添加後Ca添加の方法では介在物制御精度は20~40%となった。つまり、金属もしくは合金のCaとランタノイドを用いると、活性が強いためどちらか一方が支配的となり、Ca化合物とランタノイド化合物の中間的な組成範囲である好適範囲への制御は難しいことが解った。 Therefore, these methods were used to investigate the control accuracy to the preferred range. The experimental method was the same as the method described above, and the method of adding Ca and lanthanoids was simultaneous addition of CaSi alloy and lanthanide (misch metal), addition of lanthanide 2 minutes after addition of CaSi alloy, and addition of CaSi alloy 2 minutes after addition of lanthanide. There are 3 types. The CaSi alloy has a Ca content of 34%. The composition of inclusions was investigated by varying the addition amount of CaSi alloy and the addition amount of lanthanoids in the range of 0.01 to 0.1 kg/ton of molten steel, and accuracy = (Fig. The number of inclusions falling within the preferred range of 1/total number of inclusions x 100) was defined and used as an index. The total number of inclusions of Ca, Al, and lanthanoids refers to Ca-based oxysulfide inclusions and Al oxides of 3 µm or more that were confirmed when inclusions were observed using SEM-EDS in a field of view of 20 mm × 20 mm. The total number of inclusions, lanthanoid oxysulfide inclusions, and inclusions containing two or more of these inclusions. It is the total number of inclusions having a component range of oxide (Al 2 O 3 ) and lanthanoid oxysulfide (LAN 2 O 3 +LANS) of 3 μm or more and 10 μm or less satisfying the preferred range in FIG. In addition, since various product defects can be sufficiently suppressed if inclusions of 95% or more are in a suitable range, the inclusion control accuracy defined above is aimed at 95% or more in the present invention. . As a result, the inclusion control accuracy was 20 to 40% by the general addition method of simultaneous addition of metallic Ca or Ca alloy a and lanthanoid, addition of Ca after addition of lanthanide, and addition of Ca after addition of lanthanide. In other words, when metal or alloy Ca and lanthanoids are used, one of them becomes dominant due to strong activity, and it is difficult to control the composition to a preferred range, which is an intermediate composition range between Ca compounds and lanthanoid compounds.

Caの支配性をより高めるにはCaのみを添加し、ランタノイド酸化物添加前にCa単独脱酸の状態を一時的に作ることが適当である。しかし、この状態が強すぎるとランタノイドの効果が消失し、弱すぎれば同時添加と同一となる。つまり、初めに添加するCaの量と続いて添加するCaとランタノイド酸化物の混合物の添加の間隔が重要となる。以上の検討から溶鋼実験を行い、初めに添加するCaの量と続いて添加するCaとランタノイド酸化物の混合物の添加の間隔が介在物制御精度に与える影響を調査した。 In order to further enhance the dominance of Ca, it is appropriate to add only Ca and temporarily create a state of deoxidation by Ca alone before adding the lanthanide oxide. However, if this state is too strong, the effect of the lanthanoid disappears, and if it is too weak, it becomes the same as simultaneous addition. That is, the amount of Ca to be added first and the interval between the addition of the mixture of Ca and lanthanide oxide to be added subsequently are important. Based on the above studies, molten steel experiments were conducted to investigate the effect of the amount of Ca added first and the interval between the addition of the mixture of Ca and lanthanide oxides subsequently added on the accuracy of inclusion control.

結果を図2に示す。Caとランタノイド酸化物を同時に添加した結果である◆は介在物制御精度48.1%とCaとランタノイドの組み合わせでも前述した従来から知られている方法で得られた20~40%よりは高い介在物制御精度が得られ、その他の先行添加Ca分と時間間隔によらず70%以上の介在物制御精度が得られているが、先行添加Ca分である初めに添加するCa添加量が総添加量の35%以上50%以下かつ添加間隔が1分以上3分以下の場合に限り目標とする介在物制御精度を95%以上と著しく高められることが解る。 The results are shown in FIG. ♦, which is the result of simultaneous addition of Ca and lanthanoid oxides, indicates an inclusion control accuracy of 48.1%, which is higher than the 20 to 40% inclusions obtained by the above-mentioned conventionally known method even with the combination of Ca and lanthanoids. Inclusion control accuracy of 70% or more was obtained regardless of the other pre-added Ca content and time interval, but the amount of Ca added at the beginning, which is the pre-added Ca content, was the total addition amount. It can be seen that the target inclusion control accuracy can be remarkably improved to 95% or more only when the amount is 35% or more and 50% or less and the addition interval is 1 minute or more and 3 minutes or less.

以上から、溶鋼に全Ca添加量の35%以上50%以下を添加し、その1分以上3分以下の後にLa、CeO、Ndからなる群から選ばれる1種または2種以上と残りのCa分をCaまたはCa合金として混合したフラックスを添加することにより介在物組成を安定的に好適範囲に制御できることを見出した。
本発明は、溶鋼の状態であれば添加開始はどのタイミングでも構わず、前述の全Ca添加量の35%以上50%以下を添加した後、その1分以上3分以下の後にランタノイドの酸化物からなる群から選ばれる1種または2種以上と残りのCa分をCaまたはCa合金として混合したフラックスを添加すればよい。
以上の方法にて本発明を実施した後、取鍋を連続鋳造装置に移送し、鋳造を行う。
From the above, 35% or more and 50% or less of the total Ca addition amount is added to the molten steel, and after 1 minute or more and 3 minutes or less, one selected from the group consisting of La 2 O 3 , CeO 2 , Nd 2 O 3 or It has been found that the composition of inclusions can be stably controlled within a suitable range by adding a flux obtained by mixing two or more types and the remaining Ca content as Ca or a Ca alloy.
In the present invention, addition of 35% or more to 50% or less of the total amount of Ca added as described above does not matter at any time as long as it is in the state of molten steel, and after 1 minute or more and 3 minutes or less, lanthanoid oxide A flux obtained by mixing one or more selected from the group consisting of Ca and the remaining Ca as Ca or a Ca alloy may be added.
After carrying out the present invention by the above method, the ladle is transferred to a continuous casting apparatus for casting.

溶銑250tを上底吹き転炉に装入し、溶鉄中C含有率が0.03~0.2%になるまで脱炭吹錬を行い、終点温度を1600~1630℃として溶鋼を取鍋内に出鋼し、出鋼時に各種脱酸剤および合金を添加して取鍋内溶鋼のC,Si,Mn,P、S濃度を前述した範囲内に制御した。さらに、出鋼時にAlとCaOを添加し、スラグ中CaO/Al重量比を2~2.5、スラグ中FeOとMnOとの合計濃度を3%以下に調整した。なお、この時の溶鋼中Al濃度は0.007%~0.01%とした。 250 tons of molten iron is charged into a top and bottom blowing converter, and decarburization blowing is performed until the C content in the molten iron reaches 0.03 to 0.2%. At the time of tapping, various deoxidizers and alloys were added to control the concentrations of C, Si, Mn, P and S in the molten steel within the above-described ranges. Further, Al and CaO were added during tapping to adjust the CaO/Al 2 O 3 weight ratio in the slag to 2 to 2.5 and the total concentration of FeO and MnO in the slag to 3% or less. The Al concentration in the molten steel at this time was 0.007% to 0.01%.

その後、取鍋をRHへ移送し、RH処理を開始した。RHでは初めに温度調整を行い、引き続き溶鋼成分調整(合金添加)を行った。なお、本試験では鋼種をC:0.01-0.035%、Mn:1.2-1.3%、Si:0.2-0.4%、S:0.003%,Al:0.03-0.07%、O:0.002-0.003%、Ti:0.01-0.2%もしくはC:0.002-0.003%、Mn:0.2-0.%、Si:0.2-0.3%、Al:0.007-0.015%、O:0.0025-0.004%、Ti;0.05-0.07%ならびにC:0.1-0.3%、Mn:0.7-1.3%、Si:1.2-2.3%、Al:0.3-0.5%、O:0.00075-0.0015%、Ti;0.1-0.2%の3種類とし、各鋼種で同一の効果を確認することとした。その後、真空槽内圧力を100~400Paとして脱水素処理を行い、RH処理を終了した。 After that, the ladle was transferred to RH and RH treatment was started. In the RH, the temperature was adjusted first, followed by the molten steel composition adjustment (alloy addition). In this test, the steel grades were C: 0.01-0.035%, Mn: 1.2-1.3%, Si: 0.2-0.4%, S: 0.003%, Al: 0 .03-0.07%, O: 0.002-0.003%, Ti: 0.01-0.2% or C: 0.002-0.003%, Mn: 0.2-0. %, Si: 0.2-0.3%, Al: 0.007-0.015%, O: 0.0025-0.004%, Ti: 0.05-0.07% and C: 0.07%. 1-0.3%, Mn: 0.7-1.3%, Si: 1.2-2.3%, Al: 0.3-0.5%, O: 0.00075-0.0015% , Ti; After that , dehydrogenation treatment was performed with the pressure in the vacuum chamber set to 100 to 400 Pa, and the RH treatment was completed.

取鍋を不活性ガス吹込み可能な精錬装置に移動し、溶鋼に浸漬ランスを溶鋼表面から溶鋼深さの4/5までし浸漬させ、Arガスを3Nm/minで吹き込んだ。
次に、CaSi合金をCa純分で0.03~0.1kg/tonを0.03kg/(min・ton)の速度で溶鋼に吹込み、吹込み終了後2分間Arガスのみを吹き込んだ。その後、CaSi合金をCa純分で0.13kg/tonと酸化セリウム、酸化セリウムと酸化ランタンの混合物あるいはミッシュメタルの酸化物(25%La酸化物,55%Ce酸化物,15%Nd酸化物,5%Pr酸化物)を0.15kg/tonを混合したものを溶鋼に吹き込んだ。吹込み速度は合計で0.06kg/(min・ton)とした。なお、最初に添加するCaSi添加量を変化させたのは、CaSi添加量を意図的に変化させることで、様々な介在物を生成させるためである。
The ladle was moved to a refining apparatus capable of blowing an inert gas, and the molten steel was immersed with an immersion lance from the surface of the molten steel to 4/5 of the depth of the molten steel, and Ar gas was blown at 3 Nm 3 /min.
Next, a CaSi alloy was blown into the molten steel at a rate of 0.03 kg/(min·ton) at a rate of 0.03 to 0.1 kg/ton as pure Ca, and only Ar gas was blown for 2 minutes after the blowing. After that, the CaSi alloy was mixed with 0.13 kg/ton of pure Ca and cerium oxide, a mixture of cerium oxide and lanthanum oxide, or oxides of misch metal (25% La oxide, 55% Ce oxide, 15% Nd oxide, A mixture of 0.15 kg/ton of 5% Pr oxide) was injected into the molten steel. The total blowing speed was 0.06 kg/(min·ton). The reason why the amount of CaSi added initially is changed is to generate various inclusions by intentionally changing the amount of CaSi added.

二回目のCaSi添加後にArガスのみを3分間吹込みを行って処理を終了し、連続鋳造機にてスラブに鋳造した。スラブは200mm厚、1300mm幅で鋳造速度は1.3m/minである。
鋼中のLa,Ce,Nd,Prのランタノイド合計濃度は0.005-0.0018%、Ca濃度は0.0006%-0.0031%となった。
After adding CaSi for the second time, only Ar gas was blown for 3 minutes to end the treatment, and a slab was cast by a continuous casting machine. The slab is 200 mm thick and 1300 mm wide, and the casting speed is 1.3 m/min.
The total lanthanide concentration of La, Ce, Nd and Pr in the steel was 0.005-0.0018%, and the Ca concentration was 0.0006%-0.0031%.

得られたスラブの幅方向で1/2,1/4,3/4幅位置、厚さ方向で表面から1/2,1/4厚さ位置から20×20×10mmのサンプルを採取し、20×20mm面の表皮側を研磨し、SEM-EPMAにて介在物を測定した。3μm以上の介在物を観察対象とし、10μmを超えて大きい介在物を粗大介在物とした。また、介在物は複数の元素から構成されているが、介在物組成をAl2、RE、RES、CaO、CaSの合計を100として算出し、Al2とLANのLANS合計とCaOとCaSの合計の3元系で整理した。なお、LANはLa,Ce,Nd、Prなどのランタノイド元素を示し、これらの元素の化合物の合計をLAN、LANSとした。加えて、MnSとTi、Nb,C,Nなどを主成分とする炭窒化物介在物をTiNとして個数と大きさを計測した。 Samples of 20 x 20 x 10 mm were taken from 1/2, 1/4, and 3/4 width positions in the width direction of the obtained slab and from 1/2 and 1/4 thickness positions from the surface in the thickness direction, The skin side of the 20×20 mm surface was polished, and inclusions were measured by SEM-EPMA. Inclusions of 3 μm or more were taken as objects of observation, and inclusions larger than 10 μm were taken as coarse inclusions. Inclusions are composed of a plurality of elements, and the composition of inclusions is calculated with the sum of Al 2 O 3 , RE 2 O 3 , RES, CaO, and CaS as 100, and Al 2 O 3 and LAN 2 O The ternary system of the sum of 3 LANS and the sum of CaO and CaS was arranged. Note that LAN indicates a lanthanoid element such as La, Ce, Nd, and Pr, and the totals of compounds of these elements are LAN 2 O 3 and LANS. In addition, the number and size of carbonitride inclusions containing MnS, Ti, Nb, C, N, etc. as main components were measured as TiN.

ノズル付着性に関してはノズルを回収し、縦断面を観察してノズル内壁への介在物付着有無を観察した。
介在物観察結果を表1、表2に示す。介在物組成が本発明請求項1を満足している場合に限り、粗大介在物、MnS、TiN系炭窒化物を同時に抑制し、かつ、ノズル付着も抑制できていることが解る。
As for the adhesion to the nozzle, the nozzle was collected, and the longitudinal section was observed to observe whether inclusions adhered to the inner wall of the nozzle.
Tables 1 and 2 show inclusion observation results. It can be seen that only when the composition of inclusions satisfies the first aspect of the present invention, coarse inclusions, MnS, and TiN-based carbonitrides can be simultaneously suppressed, and adhesion to nozzles can also be suppressed.

次に、処理方法の影響を評価した。CaSi総添加量をCa純分で0.18kg/ton、CeOを0.15kg/ton、ランタノイドを用いる場合は金属Ceを0.12kg/tonを用い、表3に示すプロセスでCaとランタノイドの添加を行った。処理はRH終了後に前述した取鍋精錬装置条件である。
鋼中のランタノイド、Caの濃度範囲は前述と同等であった。
Next, the effect of treatment method was evaluated. The total amount of CaSi added is 0.18 kg/ton in terms of pure Ca, 0.15 kg/ton of CeO 2 , and 0.12 kg/ton of metal Ce when lanthanoids are used. additions were made. The treatment is the ladle refining equipment conditions described above after the end of RH.
The range of concentrations of lanthanides and Ca in the steel was the same as described above.

前述と同様の方法で介在物調査を行い、精度を求めた。結果を表3に示す。本発明請求項2に従った場合は極めて高い精度ることが解る。また、これらの効果は前述した3種類の鋼種いずれでも確認され、本発明で特定した鋼成分範囲であれば本発明の効果が得られることが確認された。
以上の様に本発明に従うことで溶鋼の清浄性を安定的に高めることができる。
Inclusions were investigated in the same manner as described above, and accuracy was obtained. Table 3 shows the results. It can be seen that the accuracy is extremely high when according to claim 2 of the present invention. Moreover, these effects were confirmed in any of the three types of steel described above, and it was confirmed that the effects of the present invention can be obtained within the range of steel composition specified in the present invention.
As described above, according to the present invention, the cleanliness of molten steel can be stably improved.

Figure 0007260731000001
Figure 0007260731000001

Figure 0007260731000002
Figure 0007260731000002

Figure 0007260731000003
Figure 0007260731000003

Claims (2)

質量%で、C:0.002%以上0.400%以下、Mn:0.1%以上2.0%以下、Si:0.001%以上1.000%以下、S:0.001%以上0.005%以下、Al:0.005%以上1.000%以下、O:0.005%以下、Ca:0.0005%以上0.0035%以下、Ti:0.01%以上0.30%以下、ランタノイドのうちの1種又は2種以上を合計濃度が0.0003%以上0.0020%以下、残部がFeおよび不可避的不純物からなる鋼であって、
ランタノイドの1種または2種以上からなる酸硫化物、Caの酸硫化物、Alの酸化物及びこれらを2種以上含む、3μm以上10μm以下の個々の非金属介在物の組成が、上記化合物の合計を100とした濃度換算でCaの酸硫化物濃度が質量%で30%以上90%以下かつランタノイドの酸硫化物とAlの酸化物の質量濃度比(ランタノイドの酸硫化物濃度)/(Alの酸化物濃度)が1.0以上2.4以下であり、前記組成を満足する非金属介在物の個数が全非金属介在物の個数の95%以上であることを特徴とする高清浄鋼。
% by mass, C: 0.002% or more and 0.400% or less, Mn: 0.1% or more and 2.0% or less, Si: 0.001% or more and 1.000% or less, S: 0.001% or more 0.005% or less, Al: 0.005% or more and 1.000% or less, O: 0.005% or less, Ca: 0.0005% or more and 0.0035% or less, Ti: 0.01% or more and 0.30% % or less, the total concentration of one or more lanthanoids is 0.0003% or more and 0.0020% or less, and the balance is Fe and inevitable impurities,
The composition of lanthanoid oxysulfides consisting of one or more lanthanoids, Ca oxysulfides, Al oxides, and individual nonmetallic inclusions of 3 μm or more and 10 μm or less containing two or more of these is the above compound. The concentration of Ca oxysulfide is 30% or more and 90% or less by mass in terms of concentration with the total being 100, and the mass concentration ratio of lanthanide oxysulfide and Al oxide (lanthanoid oxysulfide concentration) / (Al oxide concentration) is 1.0 or more and 2.4 or less, and the number of nonmetallic inclusions satisfying the composition is 95% or more of the total number of nonmetallic inclusions. .
質量%で、C:0.002%以上0.400%以下、Mn:0.1%以上2.0%以下、Si:0.001%以上1.000%以下、S: 0.001%以上0.005%以下、Al:0.005%以上1.000%以下、N:0.007%以下、O:0.005%以下、Ca:0.0005%以上0.0035%以下、Ti:0.01%以上0.30%以下、ランタノイドのうちの1種又は2種以上を合計濃度が0.0003%以上0.0020%以下を含有し、かつ、残部がFeおよび不可避的不純物からなり、ランタノイドの1種または2種以上からなる酸硫化物、Caの酸硫化物、Alの酸化物及びこれらを2種以上含む、3μm以上10μm以下の個々の非金属介在物の組成が、上記化合物の合計を100とした濃度換算でCaの酸硫化物濃度が質量%で30%以上90%以下かつランタノイドの酸硫化物とAlの酸化物の質量濃度比(ランタノイドの酸硫化物濃度)/(Alの酸化物濃度)が1.0以上2.4以下であり、前記組成を満足する非金属介在物の個数が全非金属介在物の個数の95%以上である高清浄鋼を製造する際の精錬方法であって、精錬中に全Ca添加量の35%以上50%以下を添加し、その1分以上3分以下の後にランタノイドの酸化物からなる群から選ばれる1種または2種以上と残りのCa分をCaまたはCa合金として混合したフラックスを添加することを特徴とする前記高清浄鋼の精錬方法。 % by mass, C: 0.002% or more and 0.400% or less, Mn: 0.1% or more and 2.0% or less, Si: 0.001% or more and 1.000% or less, S: 0.001% or more 0.005% or less, Al: 0.005% or more and 1.000% or less, N: 0.007% or less, O: 0.005% or less, Ca: 0.0005% or more and 0.0035% or less, Ti: 0.01% or more and 0.30% or less, containing one or more lanthanoids at a total concentration of 0.0003% or more and 0.0020% or less , and the balance being Fe and unavoidable impurities The composition of each nonmetallic inclusion of 3 μm or more and 10 μm or less containing two or more kinds of lanthanoid oxysulfides, Ca oxysulfides, Al oxides, and the above The Ca oxysulfide concentration is 30% or more and 90% or less in mass%, and the mass concentration ratio of the lanthanide oxysulfide and the Al oxide (lanthanoid oxysulfide concentration)/ (Al oxide concentration) is 1.0 or more and 2.4 or less, and the number of nonmetallic inclusions satisfying the composition is 95% or more of the total number of nonmetallic inclusions. A refining method during refining, in which 35% or more and 50% or less of the total Ca addition amount is added during refining, and after 1 minute or more and 3 minutes or less, one or two selected from the group consisting of lanthanoid oxides A method for refining high-cleanliness steel, characterized by adding a flux obtained by mixing the above and the remaining Ca as Ca or a Ca alloy.
JP2018131184A 2018-07-11 2018-07-11 High purity steel and its refining method Active JP7260731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018131184A JP7260731B2 (en) 2018-07-11 2018-07-11 High purity steel and its refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018131184A JP7260731B2 (en) 2018-07-11 2018-07-11 High purity steel and its refining method

Publications (2)

Publication Number Publication Date
JP2020007621A JP2020007621A (en) 2020-01-16
JP7260731B2 true JP7260731B2 (en) 2023-04-19

Family

ID=69150877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018131184A Active JP7260731B2 (en) 2018-07-11 2018-07-11 High purity steel and its refining method

Country Status (1)

Country Link
JP (1) JP7260731B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025902B (en) * 2021-03-04 2022-02-01 东北大学 Hot-rolled seamless steel tube with excellent toughness and manufacturing method thereof
CN115505849B (en) * 2022-09-28 2023-07-18 延安嘉盛石油机械有限责任公司 Oil casing and preparation method and application thereof
CN116145026B (en) * 2022-12-01 2023-11-28 内蒙古包钢钢联股份有限公司 355 MPa-grade rare earth La weather-resistant steel plate and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052076A (en) 2002-07-23 2004-02-19 Nippon Steel Corp Steel material having little alumina cluster
JP2010236030A (en) 2009-03-31 2010-10-21 Nippon Steel Corp Method for refining molten steel
JP2016222970A (en) 2015-05-29 2016-12-28 新日鐵住金株式会社 Superclean steel and method of refining the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052076A (en) 2002-07-23 2004-02-19 Nippon Steel Corp Steel material having little alumina cluster
JP2010236030A (en) 2009-03-31 2010-10-21 Nippon Steel Corp Method for refining molten steel
JP2016222970A (en) 2015-05-29 2016-12-28 新日鐵住金株式会社 Superclean steel and method of refining the same

Also Published As

Publication number Publication date
JP2020007621A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6524801B2 (en) High purity steel and its refining method
JP7260731B2 (en) High purity steel and its refining method
JP6786964B2 (en) How to prevent blockage of continuous casting nozzle of sulfur-added steel
JP5381243B2 (en) Method for refining molten steel
JP6642174B2 (en) Continuous casting method of high carbon molten steel
JP6874521B2 (en) Inclusion morphology control steel and its manufacturing method
JP6903182B1 (en) Ni-Cr-Al-Fe alloy with excellent surface properties and its manufacturing method
JP5332568B2 (en) Denitrification method for molten steel
JP7087723B2 (en) Steel manufacturing method
JP7492118B2 (en) Steel product with low ductile MnS, steel slab, and manufacturing method thereof
JPWO2019182056A1 (en) High-cleanliness steel manufacturing method
KR101199632B1 (en) Process for production of cast slab of low-carbon steel
JP5056826B2 (en) Steel for continuous casting and method for producing the same
JP2008095201A (en) Titanium-killed steel material having good surface characteristic and producing method therefor
JP3537685B2 (en) Slab for thin steel sheet with less inclusion defect and method for producing the same
JP6825507B2 (en) Manufacturing method of low carbon steel thin wall slab and manufacturing method of low carbon steel thin wall slab and low carbon steel thin steel sheet
JP2009270165A (en) Extra-low carbon steel sheet, and method for producing the same
JP2005307234A (en) Ferritic stainless steel sheet having excellent ridging resistance and surface characteristic and method for manufacturing the same
JP2002327239A (en) Slab for thin steel sheet with few defect caused by inclusion, and manufacturing method therefor
JP7261345B1 (en) Austenitic Ni-Cr-Fe alloy excellent in oxidation resistance and its production method
JP3542913B2 (en) Slab for thin steel sheet with less inclusion defect and method for producing the same
JP3535026B2 (en) Slab for thin steel sheet with less inclusion defect and method for producing the same
JP2006097110A (en) Steel sheet and slab superior in surface quality and inner quality, and manufacturing method therefor
JP2006152444A (en) MELTING AND MANUFACTURING METHOD OF Ti-ADDED ULTRA-LOW CARBON STEEL
JP3714190B2 (en) Method of deoxidizing thin steel sheet and molten steel for thin steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R151 Written notification of patent or utility model registration

Ref document number: 7260731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151