JP6874521B2 - Inclusion morphology control steel and its manufacturing method - Google Patents

Inclusion morphology control steel and its manufacturing method Download PDF

Info

Publication number
JP6874521B2
JP6874521B2 JP2017099038A JP2017099038A JP6874521B2 JP 6874521 B2 JP6874521 B2 JP 6874521B2 JP 2017099038 A JP2017099038 A JP 2017099038A JP 2017099038 A JP2017099038 A JP 2017099038A JP 6874521 B2 JP6874521 B2 JP 6874521B2
Authority
JP
Japan
Prior art keywords
inclusions
group
steel
less
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017099038A
Other languages
Japanese (ja)
Other versions
JP2018193590A (en
Inventor
光裕 沼田
光裕 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017099038A priority Critical patent/JP6874521B2/en
Publication of JP2018193590A publication Critical patent/JP2018193590A/en
Application granted granted Critical
Publication of JP6874521B2 publication Critical patent/JP6874521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は造船材、ラインパイプ、建設用鋼材、自動車用鋼等に用いられる高清浄鋼とその精錬方法に関し、詳しくは、非金属介在物の組成を精密に制御することにより、MnSの生成とノズル閉塞を抑止する生産性と機能に優れた介在物形態制御鋼とその製造方法に関する。 The present invention relates to high-clean steel used for shipbuilding materials, line pipes, construction steel materials, automobile steel, etc. and a refining method thereof. The present invention relates to an inclusion morphology control steel having excellent productivity and function for suppressing nozzle blockage and a manufacturing method thereof.

耐食性向上、靭性向上、加工性向上、耐ラメラティア性向上などを目的に、従来から鋼中の非金属介在物(以下、介在物)の低減や無害化を図る技術が多数開発されてきた。特に鋼中のSとMnが鋳造凝固過程で反応して生成するMnSは各種欠陥の起点となりやすいため、その低減技術が多数開発されている。 For the purpose of improving corrosion resistance, toughness, workability, lamellar tear resistance, etc., many techniques for reducing and detoxifying non-metal inclusions (hereinafter referred to as inclusions) in steel have been conventionally developed. In particular, MnS generated by the reaction of S and Mn in steel in the casting solidification process tends to be the starting point of various defects, and therefore many techniques for reducing them have been developed.

MnS生成抑止の主な方法としては鋼中にCaやLa,Ce,NdといったREMを添加し、鋼中SをCaSやLaSといった硫化物として固定することでMnとSとの反応を抑制する技術が広く用いられている。例えば、特許文献1、2、3では鋼中REM濃度とCa濃度とを適正範囲とすることで溶接部靭性に優れた耐サワー鋼管用鋼が示されている。 The main method of suppressing MnS formation is a technique of adding REM such as Ca, La, Ce, and Nd to steel and fixing S in steel as a sulfide such as CaS and LaS to suppress the reaction between Mn and S. Is widely used. For example, Patent Documents 1, 2 and 3 show sour steel pipe steel having excellent weld toughness by setting the REM concentration and the Ca concentration in the steel within an appropriate range.

一方、CaやREMによって生ずる介在物は連続鋳造時の浸漬ノズルを閉塞させる場合があることから、ノズル閉塞回避技術も多数提案されている。例えば、特許文献4では二次精錬にて溶鋼を適正組成に制御した後にCaとREMからなる添加材を添加することでノズル閉塞を抑制する方法が示されている。 On the other hand, since inclusions generated by Ca and REM may block the immersion nozzle during continuous casting, many nozzle blockage avoidance techniques have been proposed. For example, Patent Document 4 discloses a method of suppressing nozzle blockage by adding an additive composed of Ca and REM after controlling the molten steel to an appropriate composition by secondary refining.

特開2016−125137号公報Japanese Unexamined Patent Publication No. 2016-125137 特開2005−240051号公報Japanese Unexamined Patent Publication No. 2005-240051 特開2014−218707号公報Japanese Unexamined Patent Publication No. 2014-218707 特開2012−233220号公報Japanese Unexamined Patent Publication No. 2012-233220

以上のようにCaとREMを用いてMnS生成の抑止と連続鋳造時のノズル閉塞防止を両立させる技術が多数提案されてきた。 As described above, many techniques have been proposed in which Ca and REM are used to suppress MnS formation and prevent nozzle blockage during continuous casting.

しかし、既往技術では両者の両立を十分に達成することが困難であった。一般にMnSの生成を抑制するにはよりSと親和力の強いREMの濃度を増加させ介在物中REM酸化物濃度を増加させることが有利とされ、一方のノズル閉塞を防止するにはCa濃度を増加させ介在物中Ca酸化物濃度を増加させることが有利と考えられている。つまり、MnS生成抑止とノズル閉塞防止とでは適正な介在物は異なることになる。 However, it has been difficult to sufficiently achieve both of them with the existing technology. In general, it is advantageous to increase the concentration of REM, which has a stronger affinity for S, to increase the concentration of REM oxide in inclusions in order to suppress the formation of MnS, and increase the Ca concentration to prevent clogging of one nozzle. It is considered advantageous to increase the Ca oxide concentration in the inclusions. That is, the appropriate inclusions are different between the suppression of MnS generation and the prevention of nozzle blockage.

ところが、既往技術にあるようにREMとCaを溶鋼に添加し、溶鋼成分のみに着目して精錬を行うと、介在物はREM−Ca−O−S系のREMとCaの酸硫化物からなる複合酸硫化物一種類のみが生成する場合が多い。特に生産性を重視してREMとCaとの添加間隔を短くしたり同時に添加したりすると介在物はほぼ一種類となる。このように介在物が一種類の場合には複合酸硫化物中のCaOがノズル閉塞防止に寄与し、同じ複合酸硫化物介在物中のREM酸化物がMnS生成を抑制に寄与することになる。結果、CaOとREM酸化物は同一介在物中に存在するため、CaO単体時に比較して介在物とノズル耐火物との反応生成物の融点が上昇してノズル閉塞防止効果が低下し、さらにREM酸化物単体時に比較して活量が低下するためSとの反応が抑制されるためMnS生成抑制効果も低下してしまう。 However, when REM and Ca are added to molten steel and refining is performed focusing only on the molten steel component as in the conventional technology, the inclusions consist of REM-Ca-OS-based REM and Ca acid sulfide. In many cases, only one type of complex acid sulfide is produced. If the addition interval between REM and Ca is shortened or added at the same time with particular emphasis on productivity, the number of inclusions becomes almost one type. As described above, when there is only one type of inclusions, CaO in the composite acid sulfide contributes to the prevention of nozzle blockage, and the REM oxide in the same composite acid sulfide inclusion contributes to the suppression of MnS formation. .. As a result, since CaO and REM oxide are present in the same inclusions, the melting point of the reaction product between the inclusions and the nozzle refractory increases and the nozzle clogging prevention effect decreases as compared with the case of CaO alone, and further, REM Since the activity is reduced as compared with the case of the oxide alone, the reaction with S is suppressed, so that the effect of suppressing MnS production is also reduced.

従って、MnS生成抑止とノズル閉塞防止を両立するには複数種類の介在物を独立して生成させることが必要であるが、既往技術ではこのような考え方が取り入られておらず、結果、困難であった。 Therefore, it is necessary to independently generate a plurality of types of inclusions in order to suppress MnS generation and prevent nozzle blockage at the same time. there were.

本発明は、上記課題に鑑み、ノズル閉塞と有害介在物であるMnSを徹底的に低減した鋼とその製造方法を提供することにある。 In view of the above problems, the present invention is to provide a steel in which nozzle blockage and MnS, which is a harmful inclusion, are thoroughly reduced, and a method for producing the same.

本発明者は上記の目的を達成すべく鋭意研究を重ねた結果、特定の介在物を2種類生成させ、さらにその存在比率を適正とすることでMnS抑制とノズル閉塞防止が同時に著しく向上することを見出した。 As a result of intensive research to achieve the above object, the present inventor has generated two types of specific inclusions and made the abundance ratio appropriate to significantly improve MnS suppression and nozzle blockage prevention at the same time. I found.

本発明は以上の知見に基づいてなされたもので、その要旨は以下の通りである。
[1]質量%で、C:0.002%以上0.4%以下、Mn:0.1%以上2%以下、Si:0.001%以上1%以下、S:0.001%以上0.005%以下、Al:0.005%以上0.50%以下、O:0.0013%以上0.005%以下、Ca:0.0005%以上0.0045%以下を含有し、かつ、La,Ce,Ndのうちの1種又は2種以上を合計濃度が0.0005%以上0.0035%以下含有し、残部がFeおよび不可避的不純物からなる鋼であって、
鋼中の非金属介在物組成について、Ca化合物を酸化物換算でCaOとし、La,Ce,Ndのうちの1種又は2種以上からなる化合物を酸化物換算でR−Oとし、各非金属介在物中のAl23、CaOおよびR−Oの3成分含有量(質量%)合計を100%としたときの換算含有量をそれぞれ(%Al23)、(%CaO)、(%R−O)と表し、当該換算含有量が(1)式で定義される介在物A群の単位面積当たり個数NAと、当該換算含有量が(2)式で定義される介在物B群の単位面積当たり個数NBが、(3)式の関係を満足し、鋼中の全介在物個数(MnSを除く)に占める、介在物A群と介在物B群合計の個数の比率が、60%以上であることを特徴とする介在物形態制御鋼。
介在物A群:10%≦(%Al23)≦30%かつ50%≦(%R−O) …(1)
介在物B群:30%≦(%CaO)≦50%かつ(%R−O)≦30% …(2)
0.6≦NB/(NA+NB)≦0.75 …(3)
[2]さらに質量%で、Cu≦1%、Ni≦10%、Ti≦0.7%、Nb≦0.5%、V≦0.5%、Cr≦1.5%、Mo≦1%の1種以上を含有することを特徴とする[1]に記載の介在物形態制御鋼。
[3]真空脱ガス精錬設備を用いて、CaとLa,Ce,Nd以外の成分を調整した溶鋼にCaOを主体とするフラックスを溶鋼に吹き付けもしくは吹き込みを行った後に、La、Ce、Ndからなる群から選ばれる一種または二種以上の金属もしくは合金を添加し、さらにこの後にCaまたはCa合金を添加することを特徴とする[1]又は[2]に記載の介在物形態制御鋼の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] In terms of mass%, C: 0.002% or more and 0.4% or less, Mn: 0.1% or more and 2% or less, Si: 0.001% or more and 1% or less, S: 0.001% or more and 0 .005% or less, Al: 0.005% or more and 0.50% or less, O: 0.0013% or more and 0.005% or less, Ca: 0.0005% or more and 0.0045% or less, and La , Ce, Nd, one or more of which has a total concentration of 0.0005% or more and 0.0035% or less, and the balance is Fe and unavoidable impurities.
Regarding the composition of non-metal inclusions in steel, the Ca compound is defined as CaO in terms of oxide, and the compound consisting of one or more of La, Ce, and Nd is designated as RO in terms of oxide, and each non-metal is defined as RO. When the total content (% by mass) of the three components of Al 2 O 3 , Ca O and RO in the inclusions is 100%, the converted contents are (% Al 2 O 3 ), (% CaO) and (% CaO), respectively. % R-O) and represent, inclusions B, and the number per unit area of the inclusions a group of such translation content is defined by (1) N a, the conversion content is defined by the equation (2) per unit area number N B of the group is, (3) satisfy the relationship of expression, the total inclusions number in steel (excluding MnS), the ratio of the inclusions group B a total number of the inclusions group a inclusions form control steel, characterized in der Rukoto 60%.
Inclusion group A: 10% ≤ (% Al 2 O 3 ) ≤ 30% and 50% ≤ (% RO) ... (1)
Inclusion B group: 30% ≤ (% CaO) ≤ 50% and (% RO) ≤ 30% ... (2)
0.6 ≦ N B / (N A + N B) ≦ 0.75 ... (3)
[2] Further, in terms of mass%, Cu ≦ 1%, Ni ≦ 10%, Ti ≦ 0.7%, Nb ≦ 0.5%, V ≦ 0.5%, Cr ≦ 1.5%, Mo ≦ 1% The inclusion morphology control steel according to [1], which contains one or more of the above.
[3] Using a vacuum degassing refining facility, a flux containing CaO as a main component is sprayed or blown onto the molten steel prepared by adjusting components other than Ca and La, Ce, Nd, and then from La, Ce, Nd. The production of the inclusion morphological control steel according to [1] or [2], wherein one or more kinds of metals or alloys selected from the above group are added, and then Ca or a Ca alloy is added. Method.

本発明により、ノズル閉塞を起こすことなくMnSを含まない高機能鋼を効率よく、しかも安定的に製造することができる。 According to the present invention, high-performance steel containing no MnS can be efficiently and stably produced without causing nozzle blockage.

非金属介在物中のAl23、CaOおよびLa,Ce,Ndのうちの1種又は2種以上からなる酸化物R−Oの3元状態図における介在物A群と介在物B群の組成範囲を示す図である。Of the inclusions A and B in the ternary phase diagram of oxide RO consisting of one or more of Al 2 O 3 , CaO and La, Ce, Nd in the non-metal inclusions. It is a figure which shows the composition range. 介在物個数比率NB/(NA+NB)とMnS個数指数ならびにノズル閉塞指数との関係を示す図である。It is a diagram showing the relationship between inclusions number ratio N B / (N A + N B) and MnS number index and nozzle clogging index.

以下、本発明を詳細に説明する。
まず、本発明の処理対象となるFe以外の鋼成分を以下の理由により特定した。なお、本明細書において、鋼組成における「%」は特にことわりがない場合は「質量%」を意味する。
Hereinafter, the present invention will be described in detail.
First, the steel components other than Fe to be treated in the present invention were specified for the following reasons. In the present specification, "%" in the steel composition means "mass%" unless otherwise specified.

C:Cは減圧下で脱酸元素として作用する他に、S,Nの活量に影響する。このため、Cが0.002%未満では低酸素化効果が不安定となり、0.4%を超えて高くなるとSの活量が大きく変化し、反応機構が変化してしまう。そこで、Cは0.002%以上0.4%以下とした。 C: C acts as a deoxidizing element under reduced pressure and also affects the activity of S and N. Therefore, if C is less than 0.002%, the hypoxic effect becomes unstable, and if it exceeds 0.4%, the activity of S changes significantly and the reaction mechanism changes. Therefore, C was set to 0.002% or more and 0.4% or less.

Mn:Mnも脱酸元素であり、各種鋼材特性を改善することから、必須元素である。0.1%未満では脱酸が不安定になり、2%を超えて高くなるとSの活量を低下させ、脱硫を困難とする。従って、Mn濃度は0.1%以上2%以下とした。 Mn: Mn is also a deoxidizing element and is an essential element because it improves the properties of various steel materials. If it is less than 0.1%, deoxidation becomes unstable, and if it exceeds 2%, the activity of S decreases, making desulfurization difficult. Therefore, the Mn concentration was set to 0.1% or more and 2% or less.

Si:SiもMn同様脱酸安定に欠くことのできない元素であるが、0.001%未満では脱酸が不安定となり、1%を超えて高くなると介在物中のSiO2濃度が高くなり、本発明が意図する介在物組成への制御が困難となる。よって、Siは0.001%以上1%以下とする。 Si: Si is also an element that is indispensable for deoxidation stability like Mn, but if it is less than 0.001%, deoxidation becomes unstable, and if it exceeds 1%, the SiO 2 concentration in the inclusions increases. It becomes difficult to control the composition of inclusions intended by the present invention. Therefore, Si is set to 0.001% or more and 1% or less.

Al:Alは最も強い脱酸力を有する元素であるため、この脱酸効果を得るには0.005%以上が必要である。一方、0.50%を超えて高くなると介在物中CaO濃度の制御が困難となる場合があるため0.50%以下が必要である。 Al: Al is an element having the strongest deoxidizing power, so 0.005% or more is required to obtain this deoxidizing effect. On the other hand, if the concentration exceeds 0.50%, it may be difficult to control the CaO concentration in the inclusions, so 0.50% or less is required.

S:Sは除去対象元素であるが、0.005%を超えて高くなると、界面張力が変化し、本発明が意図する介在物制御によるノズル閉塞防止効果が低下する。一方、0.001%未満では脱硫剤使用量が大幅に増加するため、コストが増加する。そこで、本発明では0.001%以上0.005%以下の溶鋼を処理対象とした。 S: S is an element to be removed, but when it becomes higher than 0.005%, the interfacial tension changes, and the nozzle clogging prevention effect by the inclusion control intended by the present invention decreases. On the other hand, if it is less than 0.001%, the amount of desulfurizing agent used increases significantly, which increases the cost. Therefore, in the present invention, molten steel of 0.001% or more and 0.005% or less is treated.

O:Si,AlおよびMnが上記の濃度範囲にあると、O濃度が0.005%を超えて高い場合には、大量に介在物が溶鋼中に存在することとなる。よって、O濃度は0.005%以下とした。また、O濃度が0.0013%未満の場合は介在物量が少なくノズル閉塞が起こりにくいこと、Sを捕捉しMnS生成を抑制する酸化物介在物が少なくなりすぎMnS生成抑制が不安定となること、O濃度を0.0013%未満とするには処理コストが大幅に増加すること、から本発明の対象外とした。本発明において、OはT.Oを意味する。 When O: Si, Al and Mn are in the above concentration range, if the O concentration is higher than 0.005%, a large amount of inclusions will be present in the molten steel. Therefore, the O concentration was set to 0.005% or less. Further, when the O concentration is less than 0.0013%, the amount of inclusions is small and nozzle clogging is unlikely to occur, and the amount of oxide inclusions that capture S and suppress MnS formation becomes too small and the suppression of MnS formation becomes unstable. Since the treatment cost is significantly increased to reduce the O concentration to less than 0.0013%, the present invention is excluded. In the present invention, O is T.I. Means O.

Ca:Caは脱酸や脱硫に有効な元素であると同時に介在物形態制御にも有効である。Ca濃度が0.0005%未満ではREMに対して脱酸力が不足する。Ca濃度が0.0045%を超えて高くなるとCaS介在物の生成が活発となり、CaSによるノズル閉塞が発生する場合がある。よって、本発明ではCaを0.0005%以上0.0045%以下とした。 Ca: Ca is an element effective for deoxidation and desulfurization, and at the same time, it is also effective for controlling the morphology of inclusions. If the Ca concentration is less than 0.0005%, the deoxidizing power is insufficient for REM. When the Ca concentration exceeds 0.0045%, the formation of CaS inclusions becomes active, and nozzle clogging due to CaS may occur. Therefore, in the present invention, Ca is set to 0.0005% or more and 0.0045% or less.

その他に強度や耐食性の確保を目的にCu≦1%、Ni≦10%、Ti≦0.7%、Nb≦0.5%、V≦0.5%、Cr≦1.5%、Mo≦1%の1種以上の成分を必要に応じて添加してもよい。 In addition, Cu ≦ 1%, Ni ≦ 10%, Ti ≦ 0.7%, Nb ≦ 0.5%, V ≦ 0.5%, Cr ≦ 1.5%, Mo ≦ for the purpose of ensuring strength and corrosion resistance. One or more components of 1% may be added as needed.

次に、La,Ce,Ndについて説明する。本発明では、La,Ce,Ndのうちの1種又は2種以上について以下「REM」という。
La、Ce,Nd:これらREMは本発明の目的とする清浄鋼を得るための介在物の構成元素であり、1種または2種以上を添加する。これらの濃度が合計で0.0005%未満では介在物中にREM化合物を形成させることができない。一方、0.0035%を超えて高くなるとSの活量を低減してしまい、Sと介在物との反応速度が低下することが予測される。よって、本発明ではLa,Ce,Ndの合計濃度を0.0005%以上0.0035%以下とした。
Next, La, Ce, and Nd will be described. In the present invention, one or more of La, Ce, and Nd are hereinafter referred to as "REM".
La, Ce, Nd: These REMs are constituent elements of inclusions for obtaining the clean steel which is the object of the present invention, and one kind or two or more kinds are added. If these concentrations are less than 0.0005% in total, REM compounds cannot be formed in the inclusions. On the other hand, if it exceeds 0.0035%, the activity of S is reduced, and it is predicted that the reaction rate between S and inclusions will decrease. Therefore, in the present invention, the total concentration of La, Ce, and Nd is set to 0.0005% or more and 0.0035% or less.

次に、鋼中の非金属介在物組成について説明する。非金属介在物のうち、Ca化合物(Ca酸硫化物)を酸化物換算でCaOとし、La,Ce,Ndのうちの1種又は2種以上からなる化合物(酸硫化物)を酸化物換算でR−Oとする。非金属介在物中のAl23、CaOおよびR−Oの3成分含有量(質量%)合計を100%としたときの換算含有量をそれぞれ(%Al23)、(%CaO)、(%R−O)と表す。そして、当該換算含有量が(1)式で定義される介在物を介在物A群、当該換算含有量が(2)式で定義される介在物を介在物B群と定義する。さらに、介在物A群の単位面積当たり個数をNA、介在物B群の単位面積当たり個数をNBとする。このように介在物群を定義した上で、本発明においては、介在物A群の単位面積当たり個数NAと介在物B群の単位面積当たり個数NBが(3)式の関係を満たすことを特徴とする。なお、Al23、CaOおよびR−Oの3元質量濃度換算とするため、(1)式の残部はCaOであり、(2)式の残部はAl23である。また、(%Al23)+(%CaO)+(%R−O)=100(質量%)である。
介在物A群:10%≦(%Al23)≦30%かつ50%≦(%R−O) …(1)
介在物B群:30%≦(%CaO)≦50%かつ(%R−O)≦30% …(2)
0.6≦NB/(NA+NB)≦0.75 …(3)
Next, the composition of non-metal inclusions in steel will be described. Among the non-metal inclusions, the Ca compound (Ca acid sulfide) is converted into CaO in terms of oxide, and the compound (acid sulfide) consisting of one or more of La, Ce, and Nd is converted into oxide. Let it be RO. When the total content (mass%) of the three components of Al 2 O 3 , Ca O and RO in the non-metal inclusions is 100%, the converted contents are (% Al 2 O 3 ) and (% CaO), respectively. , (% RO). Then, the inclusions whose conversion content is defined by the equation (1) are defined as inclusions A group, and the inclusions whose conversion content is defined by the equation (2) are defined as inclusions B group. Furthermore, the number per unit area of the inclusions group A N A, the number per unit area of the inclusions group B and N B. After having thus defined the inclusion group, in the present invention, it is filled inclusions group A per unit area number N A and inclusions group B per unit area number N B is the (3) Relationship It is characterized by. In addition, since it is converted into the ternary mass concentration of Al 2 O 3 , Ca O and RO, the balance of the formula (1) is CaO and the balance of the formula (2) is Al 2 O 3 . Further, (% Al 2 O 3 ) + (% CaO) + (% RO) = 100 (mass%).
Inclusion group A: 10% ≤ (% Al 2 O 3 ) ≤ 30% and 50% ≤ (% RO) ... (1)
Inclusion B group: 30% ≤ (% CaO) ≤ 50% and (% RO) ≤ 30% ... (2)
0.6 ≦ N B / (N A + N B) ≦ 0.75 ... (3)

以下、鋼中の介在物組成についてこのように規定した理由を説明する。
鋼中のCa濃度とREM濃度とを制御するのみではノズル閉塞防止とMnS生成抑制の両立が困難である理由は前述したとおりであるが、これらを両立させるにはそれぞれの目的に応じた複数の介在物を共存させることが必要であり、さらに、それら複数の介在物の存在比を適正化する必要があると考えた。従って、必要な介在物の種類とその存在比を明らかにする必要があった。
Hereinafter, the reason why the inclusion composition in the steel is defined in this way will be described.
The reason why it is difficult to achieve both prevention of nozzle blockage and suppression of MnS production simply by controlling the Ca concentration and REM concentration in steel is as described above. We thought that it was necessary for inclusions to coexist, and that it was necessary to optimize the abundance ratio of these multiple inclusions. Therefore, it was necessary to clarify the types of inclusions required and their abundance ratios.

そこで、REMとCaの添加量と添加順序、添加間隔を変化させることで様々な介在物を含有させた鋼をRHと連続鋳造機を用いて製造し、ノズル閉塞とMnS個数に与える影響を調査した。ノズル閉塞性は連続鋳造時のノズル内付着物厚で、MnS個数は連続鋳造機で得られた鋳片を観察することで評価した。また、MnS以外の介在物は同じく得られた鋳片内の介在物をSEMとEPMAを用いて組成と個数を分析した。ノズル内付着物厚は、300tの溶鋼を1チャージ連続鋳造した後の浸漬ノズルを縦断面で切断してノズル内の付着物の付着厚さを調査して、最大厚さをノズル内付着物厚と定義した。MnSならびにMnS以外の介在物の個数と組成は鋳片から20mm×20mm×10mmのサンプルを4個切り出し、20mm×20mmの面をSEM−EPMAで観察し、1μm以上の介在物の個数と組成を分析することで定量した。鋳片からのサンプル採取位置は鋳片幅をW、鋳辺厚をtとすると、幅方向1/2W,1/4W,3/4Wの各位置から1/2t位置からサンプルを採取し、3個のサンプルでの個数計測値の和をその鋳片の介在物個数と定義した。 Therefore, by changing the addition amount, addition order, and addition interval of REM and Ca, steel containing various inclusions was manufactured using RH and a continuous casting machine, and the effects on nozzle blockage and the number of MnS were investigated. did. The nozzle blockage was the thickness of deposits in the nozzle during continuous casting, and the number of MnS was evaluated by observing the slabs obtained by the continuous casting machine. As for inclusions other than MnS, the composition and number of inclusions in the obtained slab were analyzed using SEM and EPMA. The thickness of deposits in the nozzle is determined by cutting the immersion nozzle after continuous casting of 300 tons of molten steel for one charge in a vertical cross section and investigating the thickness of deposits in the nozzle, and determining the maximum thickness of deposits in the nozzle. Was defined as. For the number and composition of MnS and inclusions other than MnS, cut out four 20 mm × 20 mm × 10 mm samples from the slab, observe the 20 mm × 20 mm surface with SEM-EPMA, and determine the number and composition of inclusions of 1 μm or more. It was quantified by analysis. As for the sampling position from the slab, assuming that the slab width is W and the casting side thickness is t, a sample is taken from each position of 1 / 2W, 1 / 4W, and 3/4W in the width direction from the 1 / 2t position, and 3 The sum of the measured values of the samples was defined as the number of inclusions in the slab.

MnS以外の介在物はREM−Ca−Al−O−S系であり、その組成分布範囲は非常に狭いものから広範なもの、あるいは2種類以上の介在物が独立して存在するものなど様々であったが、ノズル閉塞防止とMnS抑制に関与する介在物種類と組成範囲の特定ならびに特定された介在物組成の存在比とMnS個数ならびにノズル閉塞性の関係を鋭意検討した。その結果、ノズル閉塞とMnS生成に強く影響する介在物は、(1)式で示される介在物A群と(2)で示される介在物B群であり、かつ介在物A群と介在物B群それぞれの単位面積当たり個数NA、NBの関係が、(3)式の関係を満足することでノズル閉塞防止とMnS生成抑制が両立できることを見出した。 The inclusions other than MnS are REM-Ca-Al-OS systems, and their composition distribution range varies from very narrow to wide, or in which two or more kinds of inclusions exist independently. However, the types and composition ranges of inclusions involved in nozzle blockage prevention and MnS suppression were specified, and the relationship between the abundance ratio of the specified inclusion composition, the number of MnS, and the nozzle blockage was investigated. As a result, the inclusions that strongly affect the nozzle blockage and MnS formation are the inclusions A group represented by the equation (1) and the inclusions B group represented by (2), and the inclusion group A and the inclusions B. It was found that the nozzle clogging prevention and the MnS generation suppression can be achieved at the same time by satisfying the relationship of the number (3) in the relationship of the number N A and N B per unit area of each group.

介在物A群と介在物B群以外の介在物を生成させた場合はノズル閉塞防止とMnS生成抑制のいずれか一方にしか作用しなかったか、いずれにも作用しなかった。介在物A群と介在物B群を(%R−O)−(%CaO)−(%Al23)の3元図に投影すると、図1に示すように、介在物A群と介在物B群の組成範囲は離れた領域あることから、MnSとノズル閉塞にそれぞれ異なる影響を示したと考えられる。鋼中の全介在物個数(MnSを除く)に占める、介在物A群と介在物B群合計の個数の比率が、60%以上であれば、本発明の効果を発揮することができる。 When inclusions other than inclusions A and B were generated, they acted on either nozzle blockage prevention or MnS formation suppression, or did not act on either. When the inclusion group A and the inclusion group B are projected onto the ternary diagram of (% RO)-(% CaO)-(% Al 2 O 3 ), the inclusion group A and the inclusions are projected as shown in FIG. Since the composition range of the product B group is a distant region, it is considered that they showed different effects on MnS and nozzle blockage. The effect of the present invention can be exhibited when the ratio of the total number of inclusions A group and B group to the total number of inclusions in steel (excluding MnS) is 60% or more.

次に介在物A群と介在物B群の存在比について説明する。実験結果を図2に示す。横軸は(1)式と(2)式で定義されるA群とB群それぞれの単位面積当たり個数NA、NBの合計個数に占めるB群の個数(NB)割合を示し、縦軸はMnS個数指数またはノズル閉塞指数を示す。MnS個数はNB/(NB+NA)=1すなわちA群とB群の介在物との比較では全ての介在物がB群であったときのMnS個数を1、ノズル閉塞指数はNB/(NB+NA)=0すなわち全ての介在物がA群であったときのノズル内付着物厚さを1として指数化してノズル閉塞指数として示した。 Next, the abundance ratio of inclusion group A and inclusion group B will be described. The experimental results are shown in FIG. The horizontal axis shows the total number accounted number of group B (N B) ratio of (1) and (2) being defined group A and the number per unit area of the group B respectively by formula N A, N B, vertical The axis shows the MnS number index or the nozzle blockage index. MnS number is N B / (N B + N A) = 1 or 1 a MnS number when all of the inclusions in comparison with the inclusion of groups A and B was group B, nozzle clogging index N B / (N B + N a) = 0 that is, all of the inclusions were shown as nozzle clogging index within deposit thickness nozzles indexed as 1 when was group a.

図2から介在物B群の比率が増加するとノズル閉塞指数が低下し、(3)式で与えられる値が0.6を超えて大きくなるとノズル閉塞指数が0となることが解る。介在物B群は比較的高いCaO濃度を有した介在物であるため、ノズル耐火物と接触すると低融点酸化物相を形成してノズルに付着しなくなるためである。次に、MnS個数指数に着目すると(3)式で与えられる値が0.75を超えて大きくなるとMnS個数が急激に増加することが解る。これは、REM酸化物濃度が高く鋼中Sの補足能力が高いA群の介在物が減少してしまうためと考えられる。 From FIG. 2, it can be seen that the nozzle blockage index decreases as the ratio of the inclusions B group increases, and the nozzle blockage index becomes 0 when the value given by Eq. (3) increases beyond 0.6. This is because the inclusions B group are inclusions having a relatively high CaO concentration, and therefore, when they come into contact with the nozzle refractory, they form a low melting point oxide phase and do not adhere to the nozzle. Next, focusing on the MnS number index, it can be seen that the number of MnS increases sharply when the value given by Eq. (3) exceeds 0.75. It is considered that this is because the inclusions of group A having a high REM oxide concentration and a high ability to capture S in steel are reduced.

以上から、A群とB群の介在物を鋼中に生成させ、さらにA群とB群の介在物個数が(3)式を満足させることでMnS生成抑止とノズル閉塞防止が同時に格段に向上することが解る。 From the above, by forming inclusions of groups A and B in the steel and further satisfying the equation (3) by the number of inclusions of groups A and B, the suppression of MnS generation and the prevention of nozzle blockage are remarkably improved at the same time. I understand that I will do it.

次に、(1)〜(3)式を満足する介在物に制御するための、本発明の介在物形態制御鋼の製造方法について説明する。以下に示すプロセスA、またはプロセスBの製造方法を適用することにより、本発明の介在物形態制御鋼とすることができる。プロセスA、プロセスBのいずれも、鋼中の全介在物個数に占める、介在物A群と介在物B群合計の個数の比率を、60%以上とすることができる。 Next, a method for producing the inclusion morphology control steel of the present invention for controlling inclusions satisfying the equations (1) to (3) will be described. By applying the manufacturing method of Process A or Process B shown below, the inclusion morphologically controlled steel of the present invention can be obtained. In both process A and process B, the ratio of the total number of inclusions A group and inclusion group B group to the total number of inclusions in the steel can be 60% or more.

第1に、プロセスAについて説明する。例えば、二次精錬において、CaとLa,Ce,Nd以外の成分を調整した上で、溶鋼にREMを二回以上に分割して添加した後、溶鋼を10分間以上保持した後にCaを0.01〜0.15kg/(溶鋼トン・分)の低速で添加する方法がある。REMを分割添加するのは介在物をA群に制御するためである。REMを一括で大量に添加するとA群のAl23濃度が低下しすぎてしまう場合がある。また、溶鋼を保持し、かつ、Caを低速添加するのはA群の介在物を保持したままB群の介在物を生成させるためである。保持時間が短すぎると溶鋼中REMが残留しているためCaによる脱酸が効かなくなり介在物中CaO濃度の高いB群の生成が困難になる。また、Caを高速で添加すると一次的に溶鋼中Ca濃度が高くなり、先行して生成させたA群の一部がCaに還元され、A群の組成域から外れ高CaO濃度側へ変化してしまう。
以上のような方法で(1)〜(3)式を満足する介在物に制御可能である。
First, process A will be described. For example, in the secondary refining, after adjusting the components other than Ca and La, Ce, and Nd, REM is added to the molten steel in two or more divided portions, the molten steel is held for 10 minutes or more, and then Ca is added to 0. There is a method of adding at a low speed of 01 to 0.15 kg / (molten steel tons / minute). The reason for adding REM separately is to control the inclusions in group A. If a large amount of REM is added all at once, the Al 2 O 3 concentration in Group A may decrease too much. Further, the reason why the molten steel is retained and Ca is added at a low speed is to generate the inclusions of the B group while retaining the inclusions of the A group. If the holding time is too short, REM remains in the molten steel, so that deoxidation by Ca does not work, and it becomes difficult to generate group B having a high CaO concentration in inclusions. In addition, when Ca is added at high speed, the Ca concentration in the molten steel temporarily increases, and a part of the previously generated group A is reduced to Ca, which deviates from the composition range of the group A and changes to the high CaO concentration side. It ends up.
By the above method, it is possible to control inclusions satisfying the equations (1) to (3).

次に、プロセスAよりも効率的な方法として、以下にプロセスBについて説明する。真空脱ガス精錬設備を用いて生石灰を主体とするフラックスを溶鋼に吹き付けもしくは吹き込みを行った後に、La、Ce、Ndからなる群から選ばれる一種または二種以上の金属もしくは合金を添加し、さらにこの後にCaまたはCa合金を添加する方法を新たに考案した。主な作用機構は以下の通りである。 Next, process B will be described below as a method that is more efficient than process A. After spraying or blowing a flux mainly composed of quicklime to molten steel using a vacuum degassing refining facility, one or more metals or alloys selected from the group consisting of La, Ce, and Nd are added, and further. After this, a new method of adding Ca or Ca alloy was devised. The main mechanism of action is as follows.

前述したようにプロセスAでは、A群の介在物をゆっくり生成させ、その後保持することでA群とB群の干渉を避け、さらにCaをゆっくり添加することでB群の介在物を安定的に生成させることが必要である。この方法はA群の介在物は溶鋼中REMで、B群の介在物は溶鋼中Caでそれぞれ制御する方法であるため、REMとCaの相互作用による相互干渉を軽減するため低速添加と保持が必要となる。しかし、A群とB群の介在物の両方に影響する酸化物をさらに共存させることで溶鋼中REMと溶鋼中Caの相互作用を緩和し、低速添加と保持が不要になると考えた。CaO共存下でAl含有溶鋼にREMを添加するとREM−Al−Ca−O平衡により介在物が規定される。一方、AlとREMを含有した溶鋼にCaを添加した場合もREM−Al−Ca−O平衡により介在物が規定される。また、CaOは熱力学的にも安定であるため、REMやAlによる変化はわずかである。つまり、CaOを溶鋼に添加しておけば介在物を規定する平衡反応が同一となるため、低速添加や保持を行う必要がなくなる。 As described above, in process A, the inclusions of group A are slowly generated and then retained to avoid interference between groups A and B, and the inclusions of group B are stably added by slowly adding Ca. It is necessary to generate it. In this method, the inclusions in group A are controlled by REM in molten steel, and the inclusions in group B are controlled by Ca in molten steel. Therefore, low-speed addition and retention are required to reduce mutual interference due to the interaction between REM and Ca. You will need it. However, it was considered that the interaction between REM in molten steel and Ca in molten steel was alleviated by further coexisting oxides affecting both inclusions in groups A and B, and slow addition and retention became unnecessary. When REM is added to Al-containing molten steel in the presence of CaO, inclusions are defined by the REM-Al-Ca-O equilibrium. On the other hand, when Ca is added to molten steel containing Al and REM, inclusions are defined by the REM-Al-Ca-O equilibrium. Moreover, since CaO is thermodynamically stable, the change due to REM and Al is slight. That is, if CaO is added to the molten steel, the equilibrium reaction that defines the inclusions becomes the same, so that it is not necessary to add or retain CaO at a low speed.

本発明を転炉、RHならびに連続鋳造機を用いて実施する形態を説明する。転炉処理終了後に溶鋼を取鍋へ出鋼する。出鋼時にSi,Mn等の合金を加えても良いし、生石灰等の造滓剤を添加しても良い。また、出鋼時にスラグ中低級酸化物を低減することを目的にスラグ改質剤やAlを用いても良い。このとき、取鍋内のスラグ量は10kg/ton以上となることが望ましい。これは、スラグ量が少ないと溶鋼表面の被覆効果が小さくなり、大気からの再酸化ならびに吸窒を受けやすくなるためである。また、スラグ組成はスラグ中FeOとMnOの合計が10質量%以下であることが好ましく、更に好ましくは7質量%以下である。スラグ中FeO,MnO濃度が高いと酸素ポテンシャルが不安定かつ変動しやすくなるためA群とB群とに正確に制御することが困難になる場合がある。出鋼時のスラグ改質剤やAlの添加量を調整することにより、取鍋内スラグのスラグ量とスラグ組成を上記好ましい範囲とすることができる。 An embodiment of the present invention using a converter, RH, and a continuous casting machine will be described. After the converter processing is completed, the molten steel is taken out to the ladle. An alloy such as Si or Mn may be added at the time of steel ejection, or a slag-forming agent such as quicklime may be added. Further, a slag modifier or Al may be used for the purpose of reducing slag intermediate and lower oxides at the time of steel ejection. At this time, it is desirable that the amount of slag in the ladle is 10 kg / ton or more. This is because when the amount of slag is small, the coating effect on the surface of the molten steel is small, and it is easily reoxidized and absorbed by the atmosphere. Further, the slag composition preferably has a total of FeO and MnO in the slag of 10% by mass or less, more preferably 7% by mass or less. If the concentrations of FeO and MnO in the slag are high, the oxygen potential is unstable and easily fluctuates, so that it may be difficult to accurately control the group A and the group B. By adjusting the amount of the slag modifier and Al added at the time of steel ejection, the amount of slag and the slag composition of the slag in the ladle can be set within the above preferable ranges.

RHへ取鍋を移送後、直ちに処理を開始する。RHでの処理は、脱水素等の真空脱ガス、溶鋼温度調整、成分調整、等の必要な処理を行った後、本発明を実施する。 Immediately after transferring the ladle to RH, the process is started. In the treatment with RH, the present invention is carried out after performing necessary treatments such as vacuum degassing such as dehydrogenation, molten steel temperature adjustment, and component adjustment.

第1に、プロセスAについて説明する。
初めに溶鋼にREMを添加する。REM添加量は目標濃度に応じて決定すればよいが、より精度よく本発明で規定する介在物を得るために、添加は2回以上に分割することが望ましい。ただし、4回以上に分割しても効果は飽和する。なお、添加するREMは金属Ceなどの金属、ミッシュメタルなどの合金などいかなる形態でも良い。
First, process A will be described.
First, REM is added to the molten steel. The amount of REM added may be determined according to the target concentration, but in order to obtain the inclusions specified in the present invention more accurately, it is desirable to divide the addition into two or more times. However, the effect is saturated even if it is divided into four or more times. The REM to be added may be in any form such as a metal such as metal Ce or an alloy such as mischmetal.

続いて溶鋼にCaを添加するが、より精度よく本発明で規定する介在物を得るために、REM添加後から10分以上溶鋼を環流した後にCaを添加することが望ましい。還流中に必要に応じてREM、S、Ca以外の合金成分の調整を行ってもよいが、酸化性ガスを用いた溶鋼温度調整は避ける必要がある。これは溶鋼温度調整中に酸素活量が大きく変動し、REM添加で生成させたA群の介在物が大きく変化してしまうためである。 Subsequently, Ca is added to the molten steel, but in order to obtain the inclusions specified in the present invention more accurately, it is desirable to add Ca after circulating the molten steel for 10 minutes or more after the addition of REM. If necessary, the alloy components other than REM, S, and Ca may be adjusted during reflux, but it is necessary to avoid adjusting the temperature of the molten steel using an oxidizing gas. This is because the oxygen activity fluctuates greatly during the temperature adjustment of the molten steel, and the inclusions of group A generated by the addition of REM change significantly.

Caは金属Ca、CaSi合金などいかなる形態で添加してもよい。また、添加方法は溶鋼への吹き込みやワイヤー添加などいかなる方法でも良い。また、Ca添加はRHで行ってもよいし、RH処理を終了し別の処理位置で大気圧下取鍋精錬装置で行ってもよい。 Ca may be added in any form such as metallic Ca and CaSi alloy. Further, the addition method may be any method such as blowing into molten steel or adding a wire. Further, Ca addition may be carried out by RH, or may be carried out by an atmospheric pressure ladle smelting device at another treatment position after the RH treatment is completed.

ただし、より精度よく本発明で規定する介在物を得るためにCa添加速度をCa純分で0.01kg/(溶鋼トン・分)以上0.15kg/(溶鋼トン・分)以下とすることが望ましく、さらに好ましくは0.05kg/(溶鋼トン・分)以下である。0.01kg/(溶鋼トン・分)未満では添加速度に対しCa蒸発速度が速いため溶鋼中Ca活量を十分増加させることができず、B群への制御精度が低下する。0.15kg/(溶鋼トン・分)を超えて早いと溶鋼中Ca活量が高くなりすぎ、予め生成させておいたA群の介在物がB群側へ変化してしまう場合がある。 However, in order to obtain the inclusions specified in the present invention more accurately, the Ca addition rate may be 0.01 kg / (molten steel ton / min) or more and 0.15 kg / (molten steel ton / min) or less in terms of pure Ca content. It is desirable, and more preferably 0.05 kg / (ton / min of molten steel) or less. If it is less than 0.01 kg / (ton / min of molten steel), the Ca evaporation rate is faster than the addition rate, so that the Ca activity in the molten steel cannot be sufficiently increased, and the control accuracy for the B group is lowered. If it exceeds 0.15 kg / (ton / minute of molten steel), the Ca activity in the molten steel becomes too high, and the inclusions of group A that have been generated in advance may change to the side of group B.

Ca添加終了後は均一混合を図るため溶鋼を3分間程度環流もしくは撹拌を行い、連続鋳造機へ取鍋を移送し、速やかに鋳造する。 After the addition of Ca is completed, the molten steel is recirculated or stirred for about 3 minutes in order to achieve uniform mixing, and the ladle is transferred to a continuous casting machine for prompt casting.

第2に、請求項3記載の精錬方法(プロセスB)について説明する。RHへ取鍋を移送後、直ちに処理を開始する。RHでの処理は、脱水素等の真空脱ガス、溶鋼温度調整、成分調整、等の必要な処理を行った後、本発明を実施する。初めにCaOを60%以上含有するフラックスをRHにて添加する。フラックスはCaOの他、CaOにMgO、Al23、CaF2などの酸化物などを混合あるいはプリメルトしてもよい。 Secondly, the refining method (process B) according to claim 3 will be described. Immediately after transferring the ladle to RH, the process is started. In the treatment with RH, the present invention is carried out after performing necessary treatments such as vacuum degassing such as dehydrogenation, molten steel temperature adjustment, and component adjustment. First, a flux containing 60% or more of CaO is added by RH. In addition to CaO, the flux may be CaO mixed with or premelted with oxides such as MgO, Al 2 O 3 and Ca F 2.

添加の方法は真空槽内溶鋼表面に上吹きランスを介して吹き付ける方法や取鍋内溶鋼にインジェクションランスを浸漬させて溶鋼に吹き込む方法などいかなる方法でも良い。その後、REM添加を行った後にCaを添加するが、特にREM添加を分割する必要はなく、さらにREM添加後に溶鋼を10分間保持する必要もない。これは、CaOが介在物を規定する平衡反応を制御しているため短時間で溶鋼−介在物間反応が平衡に近付くためである。 The method of addition may be any method such as a method of spraying the surface of the molten steel in the vacuum chamber through a top blowing lance or a method of immersing the injection lance in the molten steel in the ladle and blowing it into the molten steel. After that, Ca is added after the REM addition, but it is not necessary to divide the REM addition in particular, and it is not necessary to hold the molten steel for 10 minutes after the REM addition. This is because the CaO controls the equilibrium reaction that defines the inclusions, so that the molten steel-inclusion reaction approaches equilibrium in a short time.

溶銑300tを上底吹き転炉に装入し、溶鉄中C含有率が0.03〜0.2%になるまで粗脱炭吹錬を行い、終点温度を1630〜1650℃として粗脱炭溶鋼を取鍋に出鋼し、出鋼時に各種脱酸剤および合金を添加して取鍋内溶鋼成分を調整した。さらに、出鋼時に生石灰を添加し、スラグ中CaO/Al23質量比を1.2〜1.5、スラグ中FeOとMnOとの合計濃度を8%以下に調整した。 300 tons of hot metal is charged into an upper bottom blown converter, rough decarburization is performed until the C content in molten iron reaches 0.03 to 0.2%, and the end point temperature is 1630 to 1650 ° C. Steel was dispensed into the ladle, and various deoxidizers and alloys were added at the time of steel ejection to adjust the molten steel composition in the ladle. Further, quicklime was added at the time of steel removal to adjust the mass ratio of CaO / Al 2 O 3 in the slag to 1.2 to 1.5 and the total concentration of FeO and MnO in the slag to 8% or less.

その後、取鍋をRHへ移送し、速やかにRH処理を開始した。RHでは初めに温度調整を行い、引き続きNi,Nb,Cuなどの溶鋼成分調整(合金添加)を行った。 After that, the ladle was transferred to RH, and the RH treatment was started promptly. In RH, the temperature was adjusted first, and then the molten steel components such as Ni, Nb, and Cu were adjusted (alloy addition).

その後、3種類の方法で精錬を行った。
プロセスAではREMを2分割添加した後に環流を10min行い、RH処理を終了して取鍋精錬装置でCaSi合金(35%Ca−65%Si)を内包したCaSiワイヤを溶鋼にCa純分で0.05kg/(溶鋼トン・分)で添加した。
プロセスBではRH真空槽内に設置した上吹きランスからCaOパウダーを0.7kg/(溶鋼トン・分)の速度で1.2kg/溶鋼トン上吹きした後、REMを一括添加し、3分間還流した後にCaSi合金を取鍋内溶鋼にCa純分で0.15kg/(溶鋼トン・分)で添加した。
プロセスCではREMを一括添加した後に3分間還流し、その後にCaSi合金を取鍋内溶鋼にCa純分で0.15kg/(溶鋼トン・分)で添加した。
なお、REMの添加量は0.02〜0.1kg/溶鋼トン、CaSi添加量は0.1〜0.4kg/溶鋼トンである。
After that, refining was carried out by three kinds of methods.
In process A, after adding REM in two portions, recirculation was performed for 10 minutes, the RH treatment was completed, and a CaSi wire containing a CaSi alloy (35% Ca-65% Si) was added to molten steel with a pure Ca content of 0 in a ladle refining apparatus. It was added at 0.05 kg / (molten steel ton / min).
In process B, CaO powder was blown over 1.2 kg / ton of molten steel at a rate of 0.7 kg / (ton of molten steel) from a top-blown lance installed in the RH vacuum chamber, then REM was added all at once and refluxed for 3 minutes. After that, the CaSi alloy was added to the molten steel in the pan at a pure Ca content of 0.15 kg / (tons of molten steel).
In Process C, REM was added all at once and then refluxed for 3 minutes, and then the CaSi alloy was added to the molten steel in the ladle at a pure Ca content of 0.15 kg / (tons of molten steel).
The amount of REM added is 0.02 to 0.1 kg / ton of molten steel, and the amount of CaSi added is 0.1 to 0.4 kg / ton of molten steel.

各プロセス終了後に取鍋を連続鋳造機に移送し、鋳造した。1チャージ鋳造した後の浸漬ノズルから前述した方法でノズル内付着物厚を調査し、得られた鋳片から前述した方法で介在物調査を行い、ノズル閉塞性と介在物を評価した。処理後の溶鋼組成、介在物個数比(NB/(NA+NB))と製造結果を表1に示す。本発明範囲から外れる数値・項目に下線を付している。プロセスA、プロセスBのいずれも、鋼中の全介在物個数(MnSを除く)に占める、介在物A群と介在物B群合計の個数の比率は、62.5%以上であった。 After each process was completed, the ladle was transferred to a continuous casting machine and cast. The thickness of deposits in the nozzle was investigated from the immersion nozzle after 1-charge casting by the method described above, and inclusions were investigated from the obtained slab by the method described above to evaluate the nozzle blockage and inclusions. The molten steel composition after treatment, showing inclusions number ratio of (N B / (N A + N B)) and producing results in Table 1. Numerical values and items outside the scope of the present invention are underlined. In both Process A and Process B, the ratio of the total number of inclusions A group and inclusion group B group to the total number of inclusions (excluding MnS) in the steel was 62.5% or more.

MnS指数は試験番号12の結果を1として、閉塞指数は試験番号13の結果を1として、それぞれ規格化した。本発明請求項1を満足した試験番号1〜11はMnS生成と閉塞が抑制されている。それに対して、本発明請求項1を満足しなかった比較例12〜24ではMnS生成と閉塞のいずれか一方もしくは両方とも抑制できないことが解る。さらに、試験番号4,9,10,11は製造方法として本発明請求項3で規定したプロセスBを用いているが、さらにMnSとノズル閉塞が抑制されており、請求項3を満足することでさらに高い効果が得られることが解る。 The MnS index was standardized with the result of test number 12 as 1, and the occlusion index with the result of test number 13 as 1. Test numbers 1 to 11 satisfying claim 1 of the present invention suppress MnS formation and blockage. On the other hand, in Comparative Examples 12 to 24 that did not satisfy claim 1 of the present invention, it can be seen that either one or both of MnS formation and occlusion cannot be suppressed. Further, Test Nos. 4, 9, 10 and 11 use the process B specified in claim 3 of the present invention as a manufacturing method, but MnS and nozzle blockage are further suppressed, and by satisfying claim 3. It can be seen that a higher effect can be obtained.

Figure 0006874521
Figure 0006874521

Claims (3)

質量%で、C:0.002%以上0.4%以下、Mn:0.1%以上2%以下、Si:0.001%以上1%以下、S:0.001%以上0.005%以下、Al:0.005%以上0.50%以下、O:0.0013%以上0.005%以下、Ca:0.0005%以上0.0045%以下を含有し、かつ、La,Ce,Ndのうちの1種又は2種以上を合計濃度が0.0005%以上0.0035%以下含有し、残部がFeおよび不可避的不純物からなる鋼であって、
鋼中の非金属介在物組成について、Ca化合物を酸化物換算でCaOとし、La,Ce,Ndのうちの1種又は2種以上からなる化合物を酸化物換算でR−Oとし、各非金属介在物中のAl23、CaOおよびR−Oの3成分含有量(質量%)合計を100%としたときの換算含有量をそれぞれ(%Al23)、(%CaO)、(%R−O)と表し、当該換算含有量が(1)式で定義される介在物A群の単位面積当たり個数NAと、当該換算含有量が(2)式で定義される介在物B群の単位面積当たり個数NBが、(3)式の関係を満足し、鋼中の全介在物個数(MnSを除く)に占める、介在物A群と介在物B群合計の個数の比率が、60%以上であることを特徴とする介在物形態制御鋼。
介在物A群:10%≦(%Al23)≦30%かつ50%≦(%R−O) …(1)
介在物B群:30%≦(%CaO)≦50%かつ(%R−O)≦30% …(2)
0.6≦NB/(NA+NB)≦0.75 …(3)
By mass%, C: 0.002% or more and 0.4% or less, Mn: 0.1% or more and 2% or less, Si: 0.001% or more and 1% or less, S: 0.001% or more and 0.005% Hereinafter, Al: 0.005% or more and 0.50% or less, O: 0.0013% or more and 0.005% or less, Ca: 0.0005% or more and 0.0045% or less are contained, and La, Ce, A steel containing one or more of Nd having a total concentration of 0.0005% or more and 0.0035% or less, and the balance being Fe and unavoidable impurities.
Regarding the composition of non-metal inclusions in steel, the Ca compound is defined as CaO in terms of oxide, and the compound consisting of one or more of La, Ce, and Nd is designated as RO in terms of oxide, and each non-metal is defined as RO. When the total content (% by mass) of the three components of Al 2 O 3 , Ca O and RO in the inclusions is 100%, the converted contents are (% Al 2 O 3 ), (% CaO) and (% CaO), respectively. % R-O) and represent, inclusions B, and the number per unit area of the inclusions a group of such translation content is defined by (1) N a, the conversion content is defined by the equation (2) per unit area number N B of the group is, (3) satisfy the relationship of expression, the total inclusions number in steel (excluding MnS), the ratio of the inclusions group B a total number of the inclusions group a inclusions form control steel, characterized in der Rukoto 60%.
Inclusion group A: 10% ≤ (% Al 2 O 3 ) ≤ 30% and 50% ≤ (% RO) ... (1)
Inclusion B group: 30% ≤ (% CaO) ≤ 50% and (% RO) ≤ 30% ... (2)
0.6 ≦ N B / (N A + N B) ≦ 0.75 ... (3)
さらに質量%で、Cu≦1%、Ni≦10%、Ti≦0.7%、Nb≦0.5%、V≦0.5%、Cr≦1.5%、Mo≦1%の1種以上を含有することを特徴とする請求項1に記載の介在物形態制御鋼。 Further, in terms of mass%, one type of Cu ≦ 1%, Ni ≦ 10%, Ti ≦ 0.7%, Nb ≦ 0.5%, V ≦ 0.5%, Cr ≦ 1.5%, Mo ≦ 1% The inclusion morphological control steel according to claim 1, further comprising the above. 真空脱ガス精錬設備を用いて、CaとLa,Ce,Nd以外の成分を調整した溶鋼にCaOを主体とするフラックスを溶鋼に吹き付けもしくは吹き込みを行った後に、La、Ce、Ndからなる群から選ばれる一種または二種以上の金属もしくは合金を添加し、さらにこの後にCaまたはCa合金を添加することを特徴とする請求項1又は請求項2に記載の介在物形態制御鋼の製造方法。 From the group consisting of La, Ce, and Nd after spraying or blowing a flux mainly containing CaO onto the molten steel prepared by adjusting components other than Ca and La, Ce, and Nd using a vacuum degassing and refining facility. The method for producing an inclusion morphologically controlled steel according to claim 1 or 2, wherein one or more selected metals or alloys are added, and then Ca or a Ca alloy is added.
JP2017099038A 2017-05-18 2017-05-18 Inclusion morphology control steel and its manufacturing method Active JP6874521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017099038A JP6874521B2 (en) 2017-05-18 2017-05-18 Inclusion morphology control steel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017099038A JP6874521B2 (en) 2017-05-18 2017-05-18 Inclusion morphology control steel and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018193590A JP2018193590A (en) 2018-12-06
JP6874521B2 true JP6874521B2 (en) 2021-05-19

Family

ID=64569999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017099038A Active JP6874521B2 (en) 2017-05-18 2017-05-18 Inclusion morphology control steel and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6874521B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109930056B (en) * 2019-04-09 2020-01-07 东北大学 400 MPa-level fine-grain twisted steel and manufacturing method thereof
CN110079728B (en) * 2019-04-09 2020-07-10 东北大学 High-strength twisted steel with good weldability and manufacturing method thereof
CN115862766B (en) * 2023-01-31 2023-05-23 北京宝威新材科技有限公司 Predicting MnS and MnS-M in steel based on solidification segregation model x O y Method for sizing inclusions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158271B2 (en) * 2011-02-24 2013-03-06 新日鐵住金株式会社 High-strength steel sheet with excellent stretch flangeability and bending workability and method for producing the molten steel
JP5158272B2 (en) * 2011-03-10 2013-03-06 新日鐵住金株式会社 High-strength steel sheet with excellent stretch flangeability and bending workability and method for producing the molten steel
JP6524801B2 (en) * 2015-05-29 2019-06-05 日本製鉄株式会社 High purity steel and its refining method

Also Published As

Publication number Publication date
JP2018193590A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
KR101150141B1 (en) Process for manufacturing the steel pipes excellent in sour resistance
KR100309192B1 (en) Titanium killed steel sheet with good surface properties and a method of producing the same
WO1997036010A1 (en) Process for producing aluminum-killed steel free of cluster
JP6874521B2 (en) Inclusion morphology control steel and its manufacturing method
JP6524801B2 (en) High purity steel and its refining method
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
JP6990337B1 (en) Ni-based alloy with excellent surface properties and its manufacturing method
JP2018034189A (en) Sulfur-added steel continuous casting nozzle block preventing method
JP5151448B2 (en) Method of melting ultra-low sulfur ultra-low oxygen ultra-low nitrogen steel
JP7260731B2 (en) High purity steel and its refining method
CN106011688A (en) Fe-Cr-Ni alloy with high Mn content and manufacturing method of Fe-Cr-Ni alloy
JP6642174B2 (en) Continuous casting method of high carbon molten steel
JP2010236030A (en) Method for refining molten steel
TW201002832A (en) Steel-making method for titanium-containing ultralow carbon steel and method for manufacturing titanium-containing ultralow carbon steel slab
JP4656007B2 (en) Method of processing molten iron by adding Nd and Ca
JP6555068B2 (en) Flux for refining molten steel and method for refining molten steel
JP2010132982A (en) Method of denitrizing molten steel
JP4998365B2 (en) Ultra-low carbon steel sheet and manufacturing method thereof
JP5056826B2 (en) Steel for continuous casting and method for producing the same
RU2637194C1 (en) Method of ladle treatment of alloyed steels
JP7031634B2 (en) Manufacturing method of sour resistant steel
JP7288131B1 (en) S-containing stainless steel with excellent surface properties and method for producing the same
KR101441302B1 (en) Stainless steel and method of manufacturing the same
JP3631629B2 (en) Mild steel for strips and its manufacturing method
JPH0841530A (en) Production of low aluminum and low sulfur stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210405

R151 Written notification of patent or utility model registration

Ref document number: 6874521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151