JP3535026B2 - Slab for thin steel sheet with less inclusion defect and method for producing the same - Google Patents

Slab for thin steel sheet with less inclusion defect and method for producing the same

Info

Publication number
JP3535026B2
JP3535026B2 JP31989798A JP31989798A JP3535026B2 JP 3535026 B2 JP3535026 B2 JP 3535026B2 JP 31989798 A JP31989798 A JP 31989798A JP 31989798 A JP31989798 A JP 31989798A JP 3535026 B2 JP3535026 B2 JP 3535026B2
Authority
JP
Japan
Prior art keywords
weight
inclusions
slab
molten steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31989798A
Other languages
Japanese (ja)
Other versions
JP2000129332A (en
Inventor
昌光 若生
秀里 間渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31989798A priority Critical patent/JP3535026B2/en
Publication of JP2000129332A publication Critical patent/JP2000129332A/en
Application granted granted Critical
Publication of JP3535026B2 publication Critical patent/JP3535026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、薄鋼板向け炭素鋼
の連続鋳造鋳片とその製造方法に関し、特に介在物性欠
陥の少ない鋳片およびその製造方法に係わるものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuously cast slab of carbon steel for thin steel sheets and a method for producing the same, and more particularly to a slab with few inclusion property defects and a method for producing the same.

【0002】[0002]

【従来の技術】近年、連続鋳造法で製造した鋳片におけ
る介在物性の欠陥は非常に少なくなってきている。これ
は、溶鋼段階での脱酸法の技術改善や、連続鋳造におけ
る種々の介在物対策が効を奏した結果である。(第12
6・127回西山記念技術講座「高清浄鋼」社団法人日
本鉄鋼協会,1988)
2. Description of the Related Art In recent years, defects in inclusions in a cast product manufactured by a continuous casting method have become extremely small. This is a result of the technical improvement of the deoxidation method at the molten steel stage and the countermeasures against various inclusions in continuous casting. (Twelfth
6.127th Nishiyama Memorial Technical Lecture "High Purity Steel" Japan Iron and Steel Institute, 1988)

【0003】しかしながら、薄板向け鋳片、特に飲料缶
素材用鋳片においては、益々の介在物低減が要求されて
おり、個数の低減とともにそのサイズを小さくすること
が求められている。鋳片内の介在物個数を低減する技術
としては、例えば特開平07−300612号公報、特
開平05−331522号公報が、また、介在物のサイ
ズを小さくする技術としては、例えば特開平05−43
977号公報がある。
However, in castings for thin plates, particularly in castings for beverage can materials, it is increasingly required to reduce inclusions, and it is required to reduce the number and the size thereof. Techniques for reducing the number of inclusions in a slab are disclosed in, for example, Japanese Patent Application Laid-Open Nos. 07-300162 and 05-331522, and as techniques for reducing the size of inclusions, for example, Japanese Patent Application Laid-Open No. 05- 43
There is a 977 publication.

【0004】飲料缶用鋳片内の介在物個数を低減する技
術として、上記特開平07−300612号公報には、
二次精錬において、溶鋼中にガス吹き込みランスからフ
ラックスを吹き込んで、該フラックスを介在物と凝集合
体させ、浮上させることが記載されているが、吹き込ん
だフラックスが溶鋼中に残留して介在物となる恐れがあ
った。
As a technique for reducing the number of inclusions in a slab for beverage cans, Japanese Patent Laid-Open No. 07-300612 discloses a technique.
In the secondary refining, it is described that the flux is blown into the molten steel from the gas blowing lance to cause the flux to aggregate with the inclusions and float, but the blown flux remains in the molten steel to form inclusions. There was a fear of becoming.

【0005】また、上記特開平05−331522号公
報では、転炉内へCaOを投入してスラグを固化させた
後、取鍋内に出鋼し、その後取鍋上のスラグにAlを添
加して、スラグ中FeO濃度を2%以下にすることを記
載しているが、スラグ中FeO濃度を安定的に2%以下
にするには、多量のAl投入が必要となり、コスト的に
高くなる。また、スラグ中FeO濃度を2%以下にして
も、Al脱酸を行なう限り、脱酸生成物であるアルミナ
が生成してクラスタ状になる。これは比重が大きいた
め、溶鋼表面への浮上によるアルミナクラスタ個数の大
幅減少は、期待出来ない。
Further, in the above-mentioned Japanese Patent Laid-Open No. 05-331522, after CaO is charged into the converter to solidify the slag, steel is tapped into the ladle, and then Al is added to the slag on the ladle. However, it is described that the FeO concentration in the slag is set to 2% or less, but in order to stably reduce the FeO concentration in the slag to 2% or less, it is necessary to add a large amount of Al, which increases the cost. Further, even if the FeO concentration in the slag is 2% or less, alumina, which is a deoxidation product, is formed into clusters as long as Al deoxidation is performed. Since this has a large specific gravity, a drastic reduction in the number of alumina clusters due to floating on the surface of molten steel cannot be expected.

【0006】介在物のサイズを小さくする技術として
は、特開平05−43977号公報にTiとMgを溶鋼
中に添加することが開示されているが、Al含有量を
0.006重量%以下に制限しており、材質上Al含有
が必要な鋼材用途には使えない。また、TiやMg添加
前の溶鋼酸素濃度が高い場合には、TiやMgを添加し
て脱酸を行なっても、介在物の微細化効果が十分に発揮
されないことから、生成した介在物は大きなものとなっ
てしまう。
As a technique for reducing the size of inclusions, Japanese Patent Laid-Open No. 05-43977 discloses that Ti and Mg are added to molten steel, but the Al content is set to 0.006% by weight or less. It is limited and cannot be used for steel applications that require Al content. Further, when the molten steel oxygen concentration before addition of Ti or Mg is high, even if Ti or Mg is added to perform deoxidation, the effect of refining inclusions is not sufficiently exerted. It becomes a big thing.

【0007】このようなことから、前記各公報の技術で
は、薄板向鋼板用鋳片の介在物個数の低減と介在物サイ
ズの微細化を安定して達成することは困難であった。
For these reasons, it is difficult for the techniques of the above-mentioned publications to stably reduce the number of inclusions and miniaturize the size of inclusions in the cast slab for thin steel sheet.

【0008】[0008]

【発明が解決しようとする課題】本発明は、鋳片の介在
物個数の低減と介在物サイズの微細化を安定して達成す
ることによって、介在物性欠陥の少ない薄鋼板用鋳片と
その製造方法を提供することである。すなわち、本発明
は、薄板製品で介在物性欠陥が発生しないための鋳片内
介在物条件を満足する鋳片とその鋳片の製造方法であ
り、特に、薄鋼板用鋳片で制約を受ける、MnやSiそ
してAl含有量に依存しない、介在物性欠陥の少ない鋳
片とその製造方法を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention provides a cast slab for thin steel sheets with few defects in inclusion properties and its production by stably reducing the number of inclusions in the slab and miniaturizing the size of the inclusions. Is to provide a method. That is, the present invention is a slab and a method of manufacturing the slab that satisfies the inclusion condition in the slab to prevent inclusion property defects in the thin plate product, and is particularly limited by the thin steel plate slab, It is an object of the present invention to provide a cast slab having few inclusion property defects that does not depend on the contents of Mn, Si and Al, and a method for producing the cast slab.

【0009】[0009]

【課題を解決するための手段】本発明は、溶鋼に脱酸材
を添加する前に、減圧雰囲気でC脱酸を行なって溶鋼中
の酸素濃度を低減して、その後、脱酸材としてTi、M
gの順で金属または合金として添加して脱酸し、その後
Alを添加することにより、53μm以上の酸化物介在
物の個数が200個/kg以下で、かつ、その内、アル
ミナクラスタ介在物の個数が20個/kg以下の鋳片に
して、製品加工において、介在物欠陥の発生を防止する
ものであり、その手段1は、C:0.001〜0.2重
量%、Mn:0.01〜0.5重量%、Si:0.00
1〜0.5重量%、P:0.001〜0.3重量%、
S:0.0005〜0.05重量%、Al:0.006
超〜0.1重量%、Ti:0.005〜0.06重量
%、Mg:0.0005〜0.01重量%、N:0.0
005〜0.01重量%、酸素:0.0005〜0.0
050重量%を含み、残部鉄および不可避的不純物から
なる炭素鋼で、鋳片中の酸化物系介在物のうち、53μ
m以上の介在物の個数が200個/kg以下で、かつ、
その内、アルミナクラスタ介在物の個数が20個/kg
以下である介在物性欠陥の少ない薄鋼板用鋳片である。
According to the present invention, before adding a deoxidizing material to molten steel, C deoxidation is performed in a reduced pressure atmosphere to reduce the oxygen concentration in the molten steel. , M
The order of g is added as a metal or alloy for deoxidation, and then Al is added, whereby the number of oxide inclusions of 53 μm or more is 200 / kg or less, and among them, alumina cluster inclusions are included. The number of cast pieces is 20 pieces / kg or less to prevent the occurrence of inclusion defects during product processing. The means 1 is C: 0.001 to 0.2% by weight, Mn: 0. 01-0.5 wt%, Si: 0.00
1 to 0.5% by weight, P: 0.001 to 0.3% by weight,
S: 0.0005 to 0.05% by weight, Al: 0.006
Super-0.1% by weight, Ti: 0.005-0.06% by weight, Mg: 0.0005-0.01% by weight, N: 0.0
005-0.01% by weight, oxygen: 0.0005-0.0
Carbon steel containing 050% by weight and the balance iron and unavoidable impurities. Of the oxide inclusions in the cast slab, 53μ
The number of inclusions of m or more is 200 pieces / kg or less, and
Among them, the number of alumina cluster inclusions is 20 / kg
The following is a slab for thin steel sheets with few inclusion physical defects.

【0010】更に、手段2は、上記手段1にNb:0.
001〜0.10重量%、V:0.005〜0.20重
量%、Cr:0.01〜0.50重量%、Mo:0.0
1〜0.50重量%、Cu:0.01〜0.50重量
%、Ni:0.01〜0.50重量%、B:0.000
2〜0.0020重量%の一種または二種以上を含有せ
しめるものである。
Further, the means 2 is the same as the means 1 except that Nb: 0.
001 to 0.10% by weight, V: 0.005 to 0.20% by weight, Cr: 0.01 to 0.50% by weight, Mo: 0.0
1 to 0.50 wt%, Cu: 0.01 to 0.50 wt%, Ni: 0.01 to 0.50 wt%, B: 0.000
2 to 0.0020% by weight of one kind or two or more kinds are contained.

【0011】手段3は、C:0.001〜0.2重量
%、Mn:0.01〜0.5重量%、Si:0.001
〜0.5重量%、P:0.001〜0.3重量%、S:
0.0005〜0.05重量%、Al:0.006超〜
0.1重量%、Ti:0.005〜0.06重量%、M
g:0.0005〜0.01重量%、N:0.0005
〜0.01重量%、酸素:0.0005〜0.0050
重量%を含み、残部鉄および不可避的不純物からなる炭
素鋼溶鋼を連続鋳造設備で鋳造して鋳片を製造する際
に、脱炭を行なった溶鋼を、減圧雰囲気でC脱酸を行な
って該溶鋼中の酸素濃度を300ppm以下とし、その
後、Ti、Mgの順で金属または合金として添加して脱
酸し、その後Alを添加する介在物性欠陥の少ない薄鋼
板用鋳片の製造方法である。
Means 3 are: C: 0.001 to 0.2% by weight, Mn: 0.01 to 0.5% by weight, Si: 0.001
~ 0.5 wt%, P: 0.001-0.3 wt%, S:
0.0005 to 0.05% by weight, Al: more than 0.006
0.1% by weight, Ti: 0.005-0.06% by weight, M
g: 0.0005 to 0.01% by weight, N: 0.0005
~ 0.01 wt%, oxygen: 0.0005-0.0050
When producing a slab by casting a carbon steel molten steel containing the balance by weight and the balance iron and unavoidable impurities in a continuous casting facility, the decarburized molten steel is subjected to C deoxidation in a reduced pressure atmosphere. This is a method for producing a cast slab for thin steel sheets in which the oxygen concentration in molten steel is 300 ppm or less, Ti, Mg are added in that order as metals or alloys to deoxidize them, and Al is then added.

【0012】手段4は、上記手段3にNb:0.001
〜0.10重量%、V:0.005〜0.20重量%、
Cr:0.01〜0.50重量%、Mo:0.01〜
0.50重量%、Cu:0.01〜0.50重量%、N
i:0.01〜0.50重量%、B:0.0002〜
0.0020重量%の一種または二種以上を含有せしめ
るものである。
The means 4 is the same as the means 3 except that Nb: 0.001.
~ 0.10% by weight, V: 0.005 to 0.20% by weight,
Cr: 0.01 to 0.50% by weight, Mo: 0.01 to
0.50% by weight, Cu: 0.01 to 0.50% by weight, N
i: 0.01 to 0.50% by weight, B: 0.0002 to
One or more of 0.0020% by weight is contained.

【0013】[0013]

【発明の実施の形態】発明者らは、まず、製品にとって
介在物性欠陥の発生しにくい鋳片の介在物条件について
検討した。ここで、介在物とは、製品欠陥に悪影響を与
えやすい酸化物系のものを示す。鋳片内の介在物個数が
多くなると、製品での介在物性欠陥が発生しやすくな
る。そこで、鋳片内の介在物の大きさや個数と製品欠陥
発生との関係を調査した結果、図1に示すように、鋳片
内の介在物のうち、53μm以上の大きさのものが、鋳
片1kgあたり200個以下で、しかも、53μm以上
のアルミナクラスタが、鋳片1kg当たり20個以下で
あると製品欠陥発生率が極めて低い。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors first examined conditions for inclusions in a cast product in which inclusion-like defects are less likely to occur in products. Here, the inclusions are oxide-based inclusions that tend to adversely affect product defects. When the number of inclusions in the slab is large, inclusion property defects are likely to occur in the product. Therefore, as a result of investigating the relationship between the size and the number of inclusions in the slab and the occurrence of product defects, as shown in FIG. 1, among the inclusions in the slab, those having a size of 53 μm or more are If the number of alumina clusters per kg of the piece is 200 or less and the number of alumina clusters of 53 μm or more per 20 kg of the cast piece is 20 or less, the product defect occurrence rate is extremely low.

【0014】これに対し、それ以外の場合(53μm以
上の介在物が鋳片1kgあたり200個超、アルミナク
ラスタが鋳片1kg当たり20個超である場合)には製
品欠陥発生率が高い、すなわち製品欠陥が発生しやすい
傾向にあることが判明した。
On the other hand, in other cases (when the number of inclusions of 53 μm or more is more than 200 per 1 kg of the cast and the number of alumina clusters is more than 20 per 1 kg of the cast), the product defect occurrence rate is high, that is, It was found that product defects tend to occur.

【0015】ここで、前記アルミナクラスタとは、複数
のアルミナ粒子が凝集したもので、この集合体を1個と
数える。一般的にAl脱酸後の生成物であるアルミナ
は、一つ一つの粒子は小さいが、生成後すぐに粒子どう
しが凝集し、クラスタ状となってサイズが大きくなる。
また、このクラスタは、構成粒子どうしの間に鉄を含む
ので、比重が大きく浮上しにくい。また、アルミナクラ
スタのほうが他の介在物よりも、製品欠陥に与える影響
が大きい。なお、53μmという数字は、介在物分析法
におけるフィルターの編み目のサイズである。
Here, the alumina clusters are aggregates of a plurality of alumina particles, and this aggregate is counted as one. In general, alumina, which is a product after Al deoxidation, has a small size for each particle, but immediately after generation, the particles agglomerate to form clusters and the size increases.
Further, since this cluster contains iron between the constituent particles, it has a large specific gravity and is hard to float. Further, the alumina cluster has a greater effect on the product defect than other inclusions. The number of 53 μm is the size of the filter mesh in the inclusion analysis method.

【0016】以下に本発明の鋳片について詳細に説明す
るために、発明の条件を規定した理由を述べる。Cは鋼
の強度を持たす為に用いられる元素であるが、薄板向け
では深絞り用鋼板等でCを極力低減させたほうが望まし
い場合もある。しかしながら、Cが0.001重量%以
下では本発明におけるC脱酸が非常に困難になるので、
下限を0.001重量%とし、上限は板材で用いられる
最大炭素量として0.2重量%とした。
In order to describe the cast piece of the present invention in detail, the reasons for defining the conditions of the invention will be described below. C is an element used to have the strength of steel, but in the case of thin plates, it may be desirable to reduce C as much as possible with a deep drawing steel plate or the like. However, if the C content is 0.001% by weight or less, the deoxidation of C in the present invention becomes very difficult.
The lower limit was 0.001% by weight, and the upper limit was 0.2% by weight as the maximum amount of carbon used in the plate material.

【0017】また、Mnも強度を得るためやSによる脆
化を抑制するために必要であり、上限はハイテン材等で
使用される場合の最大値0.5重量%とした。また、下
限は不可避的に混入するために0.01重量%とした。
Siも強度を得るためや高温特性を改善するために用い
られる元素であり、上限は0.5重量%とした。また、
不可避的に混入するためその下限を0.001重量%と
した。
Further, Mn is also necessary to obtain strength and suppress brittleness due to S, and the upper limit is set to 0.5% by weight, which is the maximum value when used in a high-tensile material or the like. Further, the lower limit is 0.01% by weight because it is unavoidably mixed.
Si is also an element used to obtain strength and improve high temperature characteristics, and the upper limit was set to 0.5% by weight. Also,
Since it is unavoidably mixed, the lower limit was made 0.001% by weight.

【0018】Pは鋼に有害な元素であるため、極力少な
いほうが望ましいが、不可避的に混入するため下限値
0.001重量%が現実的である。しかしながら、鋼の
強度や耐食性向上の観点から多量のP添加を求められる
場合があるので、その上限を0.3重量%とした。これ
以上では、Pによる脆化の影響が強くなる。Sも同様に
製品特性に害をなす場合が多く、極力低位とすることが
望ましいが、不可避的に混入するため下限値0.000
5重量%が現実的である。また上限は連続鋳造時の割れ
を防ぐために0.05重量%とした。
Since P is an element harmful to steel, it is desirable that it is as small as possible, but since it is unavoidably mixed, the lower limit of 0.001% by weight is practical. However, a large amount of P may be required from the viewpoint of improving the strength and corrosion resistance of steel, so the upper limit was made 0.3% by weight. Above this, the effect of embrittlement due to P becomes stronger. Similarly, S is often harmful to the product characteristics, and it is desirable to set it to the lowest possible level, but since it is unavoidably mixed, the lower limit value is 0.000.
5 wt% is realistic. The upper limit was set to 0.05% by weight in order to prevent cracking during continuous casting.

【0019】Alは脱酸元素として一般的に使用されて
いるが、鋳片中の酸化物系介在物のうち、53μm以上
の介在物の個数が200個/kg以下であり、かつその
内、アルミナ粒子が2個以上合体したアルミナクラスタ
介在物の個数が20個/kg以下であることを満たすた
めには、本発明では極力Alを脱酸元素として用いない
ことが、基本思想である。
Although Al is generally used as a deoxidizing element, the number of inclusions having a size of 53 μm or more in the cast slab is 200 pieces / kg or less, and among them, In order to satisfy that the number of alumina cluster inclusions in which two or more alumina particles are united is 20 / kg or less, the basic idea is that Al is not used as a deoxidizing element in the present invention as much as possible.

【0020】しかしながら、発明の対象となる薄鋼板用
鋳片においては、材質上Alが必要とされる。すなわ
ち、Alは鋼中でAlNとなって鋼の結晶粒の成長を抑
える働きがあり、この観点から、必用成分として規格化
されている。そこで、下限を0.006重量%超とし
た。また、上限は本発明で用いるTiおよびMgの効果
を阻害しないために、0.1重量%とした。
However, the thin steel sheet slab that is the subject of the present invention requires Al as a material. That is, Al acts as AlN in steel and has a function of suppressing the growth of crystal grains of steel, and from this viewpoint, it is standardized as an essential component. Therefore, the lower limit is set to more than 0.006% by weight. Further, the upper limit is set to 0.1% by weight in order not to impair the effects of Ti and Mg used in the present invention.

【0021】TiおよびMgは本発明の重要な元素であ
る。鋳片中の酸化物系介在物のうち、53μm以上の介
在物の個数が200個/kg以下であり、かつその内、
アルミナ粒子が2個以上合体したアルミナクラスタ介在
物の個数が20個/kg以下であることを満たすために
は、Alを脱酸材として用いるのではなく、後述するよ
うにTiやMgを用いる必要があることを、発明者らは
知見した。
Ti and Mg are important elements of the present invention. Of the oxide-based inclusions in the slab, the number of inclusions of 53 μm or more is 200 / kg or less, and
In order to satisfy that the number of alumina cluster inclusions in which two or more alumina particles are united is 20 / kg or less, it is necessary to use Ti or Mg as described later, instead of using Al as a deoxidizing agent. The inventors have found that there is.

【0022】Tiの下限値は、脱酸効果を得るために
0.005重量%とし、上限については、多量に添加す
るとMg脱酸の効果を阻害するので、0.06重量%と
規定した。Mgについても、十分な脱酸効果を得るため
に、下限値は0.0005重量%とした。上限値は、過
剰に入れても効果が飽和するレベルとして0.01重量
%とした。
The lower limit of Ti is set to 0.005% by weight in order to obtain the deoxidizing effect, and the upper limit is defined as 0.06% by weight because addition of a large amount of Ti hinders the effect of Mg deoxidizing. Also for Mg, the lower limit is set to 0.0005% by weight in order to obtain a sufficient deoxidizing effect. The upper limit is set to 0.01% by weight as a level at which the effect is saturated even if added in excess.

【0023】Nは、Alと化合してAlNをつくり、結
晶粒の成長を抑えることに利用される。この観点から用
いられている添加量の上限値として、0.01重量%と
した。また、不可避的に混入される分を考慮して、下限
値として0.0005重量%とした。
N is used to combine with Al to form AlN and suppress the growth of crystal grains. From this viewpoint, the upper limit of the addition amount used is 0.01% by weight. In addition, considering the amount that is unavoidably mixed, the lower limit is set to 0.0005% by weight.

【0024】鋳片中の酸素量は、そのほとんどが鋳片内
の酸化物系介在物として含まれる分である。製品で有害
となる53μm以上の介在物については、極力少ないほ
うが望ましいが、大きな介在物が少なくなれば、必ず酸
素量が低くなるという訳ではない。すなわち、製品に無
害な微細介在物が多数あっても、酸素量は高くなる。従
って、酸素量があるレベル以下では、必ずしも酸素量は
介在物個数の指標とは成り得ないが、酸素値が非常に高
い場合には、大きな介在物個数が多くなる傾向が見られ
るので、上限を0.0050重量%とした。また、下限
については、不可避的に混入する分を考慮して、0.0
005重量%とした。
Most of the oxygen content in the cast slab is contained as oxide inclusions in the cast slab. For inclusions of 53 μm or more, which are harmful to the product, it is desirable that the inclusions are as small as possible, but if the number of large inclusions is reduced, the amount of oxygen does not necessarily decrease. That is, even if there are many fine inclusions that are harmless to the product, the amount of oxygen increases. Therefore, when the oxygen amount is below a certain level, the oxygen amount cannot always be an index of the number of inclusions, but when the oxygen value is very high, the number of large inclusions tends to increase, so the upper limit Was 0.0050% by weight. In addition, the lower limit is 0.0, considering the amount that is unavoidably mixed.
It was 005% by weight.

【0025】以上が、本発明が対象とする鋼の基本成分
であるが、強度や耐食性、焼き入れ性を初めとする材料
の諸特性を向上させるために、鋼の用途に応じてNb、
V、Cr、Mo、Cu、Ni、Bの一種または二種以上
を添加しても、本発明の効果は何ら損なわれるものでは
ない。すなわち、その添加量の範囲は、Nb:0.00
1〜0.10重量%、V:0.005〜0.20重量
%、Cr:0.01〜0.50重量%、Mo:0.01
〜0.50重量%、Cu:0.01〜0.50重量%、
Ni:0.01〜0.50重量%、B:0.0002〜
0.0020重量%とする。
The above are the basic components of the steel targeted by the present invention. In order to improve various properties of the material such as strength, corrosion resistance, and hardenability, Nb, depending on the use of the steel,
The addition of one or more of V, Cr, Mo, Cu, Ni and B does not impair the effects of the present invention. That is, the range of the addition amount is Nb: 0.00
1 to 0.10% by weight, V: 0.005 to 0.20% by weight, Cr: 0.01 to 0.50% by weight, Mo: 0.01
~ 0.50% by weight, Cu: 0.01 to 0.50% by weight,
Ni: 0.01 to 0.50% by weight, B: 0.0002 to
The amount is 0.0020% by weight.

【0026】この他の元素として、CaやREMの元素
が溶鋼中に含まれる場合もあるが、当該1元素につき1
0ppmまでなら、含まれても本発明の効果に影響を与
えることはない。
As other elements, elements such as Ca and REM may be contained in the molten steel.
If it is contained up to 0 ppm, it does not affect the effect of the present invention.

【0027】なお、実際の製造プロセスでは、添加した
元素が100%溶鋼中に含まれることになるわけではな
いので、歩留を考慮して余分に添加する必要がある。ま
た、添加方法については、特に規定はしない。上記条件
を満足するように鋼中に含有できる方法であれば、どの
ような方法でも構わない。また、鋳片中の酸化物系介在
物のうち、53μm以上の介在物の個数を200個/k
g以下とし、かつその内のアルミナクラスタの個数を2
0個/kg以下としたのは、図1に示したように、製品
欠陥の発生率が小さくなる条件から決定したものであ
る。
In the actual manufacturing process, 100% of the added elements are not contained in the molten steel, so it is necessary to add them in consideration of the yield. The method of addition is not specified. Any method may be used as long as it can be contained in steel so as to satisfy the above conditions. In addition, the number of oxide inclusions of 53 μm or more among the oxide inclusions in the cast slab is 200 / k.
g or less, and the number of alumina clusters in it is 2
The number of 0 pieces / kg or less is determined based on the condition that the occurrence rate of product defects becomes small as shown in FIG.

【0028】次に、このような鋳片内の介在物条件を満
たすための製造方法について検討した。発明者らは、ま
ず脱酸元素について着目した。溶鋼の脱酸元素として
は、一般にAlが広く用いられている。しかしながら、
Al脱酸後の生成物であるアルミナは、一つ一つの粒子
は小さいが、生成後すぐに粒子どうしが凝集し、クラス
タ状となってサイズが大きくなる。また、このクラスタ
は、構成粒子どうしの間に鉄を含むので、比重が大きく
浮上しにくい。従って、Al脱酸で生成したアルミナ介
在物を浮上・除去するためには、静置時間を非常に長く
とる、Arガスを多量に溶鋼中へ吹き込んで、ガスと介
在物を合体させて浮上を促進する等の対策が必要であっ
た。
Next, a manufacturing method for satisfying such inclusion condition in the cast piece was examined. The inventors first focused on the deoxidizing element. Generally, Al is widely used as a deoxidizing element for molten steel. However,
Each particle of alumina, which is a product after Al deoxidation, is small, but the particles agglomerate immediately after the formation, and the size becomes large in a cluster. Further, since this cluster contains iron between the constituent particles, it has a large specific gravity and is hard to float. Therefore, in order to float and remove the alumina inclusions generated by Al deoxidation, a very long standing time is required, and a large amount of Ar gas is blown into the molten steel to combine the gas and the inclusions for floating. Measures such as promotion were necessary.

【0029】そこで、発明者らはAlを脱酸材として用
いないことを考え、Alに代わる脱酸元素として、Mg
に着目した。Mgで脱酸すると、脱酸生成物であるMg
Oが生成するが、そのサイズが他の脱酸元素に較べて小
さい特徴がある。しかしながら、このMgOのサイズ
は、Mg添加前の溶鋼酸素濃度に大きく依存する。
Therefore, the inventors of the present invention have considered that Al is not used as a deoxidizing material, and therefore Mg is used as a deoxidizing element instead of Al.
I focused on. When deoxidized with Mg, the deoxidized product Mg
O is generated, but its size is smaller than that of other deoxidizing elements. However, the size of this MgO largely depends on the molten steel oxygen concentration before addition of Mg.

【0030】発明者らは、MgO介在物のサイズが小さ
くなるMg添加前の溶鋼酸素濃度について、ラボ実験に
より求めた。鋼の成分は0.04%C−0.0010%
NでTi,Mg,酸素量を変化させた。なお、他の成分
は含まれていない。図2には、Mg脱酸直後のMgO介
在物平均粒径と、Mg脱酸前の溶鋼酸素濃度の関係を示
すが、溶鋼酸素濃度が50pppm以下の場合に、生成
したMgO介在物の平均サイズが10μm以下と非常に
小さくなることが判った。
The inventors determined the oxygen concentration of molten steel before the addition of Mg, which reduces the size of MgO inclusions, by a laboratory experiment. Steel composition is 0.04% C-0.0010%
The amount of Ti, Mg and oxygen was changed by N. In addition, other components are not included. FIG. 2 shows the relationship between the average particle size of MgO inclusions immediately after Mg deoxidation and the molten steel oxygen concentration before Mg deoxidation. When the molten steel oxygen concentration is 50 pppm or less, the average size of the MgO inclusions produced is shown. Was 10 μm or less, which was extremely small.

【0031】次に、Mg添加前の溶鋼酸素濃度を50p
pm以下に制御する手段について検討した。熱力学的に
検討すると、溶鋼酸素濃度を50ppm以下にするため
には、Siよりも酸素親和力の強い脱酸元素を選択する
のが良い。これは、Siを0.5重量%と比較的多量に
入れて脱酸した時に、溶鋼温度1600℃で熱力学的に
平衡する溶鋼酸素濃度が約70ppmであることから推
測出来る。
Next, the molten steel oxygen concentration before adding Mg is set to 50 p.
The means for controlling to pm or less was examined. From a thermodynamic study, in order to reduce the molten steel oxygen concentration to 50 ppm or less, it is preferable to select a deoxidizing element having a stronger oxygen affinity than Si. This can be inferred from the fact that when a relatively large amount of Si of 0.5% by weight is added for deoxidation, the molten steel oxygen concentration thermodynamically equilibrated at a molten steel temperature of 1600 ° C. is about 70 ppm.

【0032】これに当てはまる脱酸元素としては、T
i、Al、Mg、Caが挙げられるが、Mgはその後の
脱酸で用いるので、除外される。また、CaはMgより
も酸素親和力の強い元素なので、除かれる。また、Al
については、脱酸元素として用いないことが本発明の基
本思想であるから除いた。以上の考察から、Mg添加前
の溶鋼酸素濃度を50ppm以下に制御する手段とし
て、Tiを用いることにした。Ti脱酸は、脱酸するた
めに必要な濃度が数百ppmと、MnやSiの場合に較
べて非常に少ないことも特徴である。
The deoxidizing element applicable to this is T
Although i, Al, Mg, and Ca are included, Mg is excluded because it is used in the subsequent deoxidation. Further, Ca is an element having a stronger oxygen affinity than Mg, and is therefore excluded. Also, Al
Is excluded since it is a basic idea of the present invention that it is not used as a deoxidizing element. From the above consideration, Ti was used as a means for controlling the molten steel oxygen concentration before adding Mg to 50 ppm or less. Ti deoxidation is also characterized in that the concentration required for deoxidation is several hundred ppm, which is much smaller than in the case of Mn or Si.

【0033】しかしながら、Ti脱酸においても、Mg
脱酸と同様に、Ti添加前の溶鋼酸素濃度が、生成する
Ti酸化物のサイズに大きく影響する。すなわち、溶鋼
酸素濃度が高い場合には、生成するTi酸化物が大きい
ものになり、本発明の意図と矛盾することになる。そこ
で、発明者らは、Ti酸化物のサイズが小さくなるTi
添加前の溶鋼酸素濃度について、ラボ実験により求め
た。図3には、Ti脱酸直後のTi酸化物の平均粒径
と、Ti脱酸前の溶鋼酸素濃度の関係を示すが、溶鋼酸
素濃度が300ppm以上では、生成したTi酸化物の
サイズが急激に大きくなることが判った。従って、Ti
添加前の溶鋼酸素濃度を300ppm以下とする必要が
あることが判明した。
However, even in Ti deoxidation, Mg
Similar to deoxidation, the molten steel oxygen concentration before addition of Ti greatly affects the size of the Ti oxide produced. That is, when the molten steel oxygen concentration is high, a large amount of Ti oxide is generated, which is inconsistent with the intention of the present invention. Therefore, the inventors have found that the size of Ti oxide is reduced to Ti.
The molten steel oxygen concentration before addition was determined by a laboratory experiment. FIG. 3 shows the relationship between the average particle size of Ti oxide immediately after Ti deoxidation and the molten steel oxygen concentration before Ti deoxidation. When the molten steel oxygen concentration is 300 ppm or more, the size of the generated Ti oxide is sharp. It turned out to be big. Therefore, Ti
It was found that the molten steel oxygen concentration before addition needs to be 300 ppm or less.

【0034】次に、Ti添加前の溶鋼酸素濃度を300
ppm以下に制御する手段について検討した。熱力学的
に検討すると、溶鋼酸素濃度を300ppm以下にする
ためには、Mn脱酸やSi脱酸が挙げられるが、本発明
が対象とする薄鋼板用鋳片では、材質上MnやSi濃度
を低く制約される場合がある。従って、MnやSi濃度
に依存しない脱酸法を考える必用があった。
Next, the molten steel oxygen concentration before adding Ti is set to 300.
The means for controlling to ppm or less was examined. According to thermodynamic studies, Mn deoxidation and Si deoxidation can be mentioned in order to reduce the molten steel oxygen concentration to 300 ppm or less. May be constrained to be low. Therefore, it is necessary to consider a deoxidation method that does not depend on the Mn or Si concentration.

【0035】発明者らは、Cに着目し、減圧下でC脱酸
を行なうことにより、溶鋼酸素濃度を300ppm以下
にすることを考えた。C脱酸平衡から検討すると、例え
ばC濃度0.04重量%の場合、溶鋼温度1600℃で
雰囲気中のCO分圧が約0.4であれば、平衡する溶鋼
酸素濃度は約300ppmとなり、本発明で要求される
条件を満足する事が出来る。C脱酸は、脱酸生成物がC
Oガスであるため、溶鋼中に残留して介在物とならない
ことも大きな特徴である。
The inventors of the present invention focused on C and considered that the deoxidation of C under reduced pressure would reduce the molten steel oxygen concentration to 300 ppm or less. Examining from the C deoxidization equilibrium, for example, when the C concentration is 0.04% by weight and the CO partial pressure in the atmosphere is about 0.4 at the molten steel temperature of 1600 ° C, the equilibrium molten steel oxygen concentration is about 300 ppm. The conditions required by the invention can be satisfied. C deoxidation is carried out when the deoxidation product is C
Since it is O gas, it is also a major feature that it remains in the molten steel and does not become inclusions.

【0036】次に、Al添加について検討した。本発明
では、Alを脱酸元素として使用しないことが基本的思
想であるが、発明の対象となる薄鋼板用鋳片では、材質
上Alが必要とされる。すなわち、Alは鋼中でAlN
となって鋼の結晶粒の成長を抑える働きがあり、この観
点から、必要成分として規格化されている。しかしなが
ら、Alは酸素との親和力が非常に大きいので、溶鋼酸
素が高いうちにAlを添加すると、多量のアルミナ介在
物が生成し、本発明の意図が満たされなくなる。
Next, the addition of Al was examined. In the present invention, it is a basic idea that Al is not used as a deoxidizing element, but the thin steel plate cast object of the present invention requires Al as a material. That is, Al is AlN in steel
It has a function of suppressing the growth of crystal grains of steel, and from this viewpoint, it is standardized as a necessary component. However, since Al has a very high affinity with oxygen, if Al is added while the molten steel oxygen is high, a large amount of alumina inclusions will be formed, and the intention of the present invention will not be satisfied.

【0037】そこで、本発明では、Alを添加する時期
として、Mg添加の後と規定した。Alに較べて、Mg
のほうが酸素親和力が大きいので、Mg添加により溶鋼
酸素濃度は非常に低下している。そこにAlを添加して
も、Alは酸素と結合することがほとんどなく、溶鋼中
に溶解する。すなわち、この場合Alは脱酸元素として
は働かない。従って、Mg脱酸後にAlを添加すること
が重要である。なお、脱酸を行なう前に、取鍋内溶鋼上
のスラグにCaOやAlを添加して、スラグ中の酸素ポ
テンシャルを低下させる、いわゆるスラグ改質を行なう
ことは、本発明の効果にとっても有利な方法であり、ス
ラグ改質を行なうほうが、更なる介在物個数の低減と介
在物の微細化が期待できる。
Therefore, in the present invention, the timing for adding Al is defined as after the addition of Mg. Compared to Al, Mg
In this case, since the oxygen affinity is higher, the molten steel oxygen concentration is extremely lowered by the addition of Mg. Even if Al is added thereto, Al hardly bonds with oxygen and is dissolved in molten steel. That is, in this case, Al does not function as a deoxidizing element. Therefore, it is important to add Al after deoxidizing Mg. It should be noted that it is advantageous for the effect of the present invention to perform so-called slag reforming, in which CaO or Al is added to the slag on the molten steel in the ladle before deoxidation to reduce the oxygen potential in the slag. It is a different method, and it is expected that the number of inclusions will be further reduced and the inclusions will be finer by performing slag modification.

【0038】[0038]

【実施例】表1に示す成分の炭素鋼を表3に示す製造条
件で製造し、得られた鋳片の介在物個数と、鋳片を圧延
して得られた鋼板および、それを素材として加工した場
合の結果について調査した。調査方法としては、表4に
示した方法で行なった。なお、水準A−1、C−1、D
−1はスラグ改質として、C脱酸前に、取鍋内のスラグ
上に、溶鋼300tにつきCaOを1.5t、Alを5
00kg添加した。
EXAMPLES Carbon steels having the components shown in Table 1 were produced under the production conditions shown in Table 3, the number of inclusions in the obtained slab, the steel plate obtained by rolling the slab, and the material The results of processing were investigated. The investigation method was as shown in Table 4. Incidentally, the levels A-1, C-1, D
-1 is slag reforming, and before deoxidation of C, 1.5 t of CaO and 5 t of Al are added per 300 t of molten steel on the slag in the ladle.
00 kg was added.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】結果を表2に示す。表より、本発明の場合
の条件を満たす場合には、鋳片内の介在物個数が少な
く、表面疵や内部欠陥による不合格が発生せず、更に加
工時の欠陥も発生しないという良好な結果が得られた。
一方、本発明を満たさない比較材については、次の通り
問題のある結果となった。すなわち、比較材B−2、E
−2、F−2では、脱酸用合金元素であるTi、Mgの
添加前にC脱酸を行なっていないので、結果的に脱酸用
合金元素添加前の溶鋼酸素濃度が300ppmより高く
なり、Ti−Mg−Alの順序で添加を行なっても、鋳
片内介在物個数が多くなっている。比較材A−2、D−
2では、脱酸用合金元素添加前にC脱酸を行なったにも
かかわらず、脱酸用合金元素添加前の溶鋼酸素濃度が3
00ppm以下を満たしていないので、鋳片内介在物個
数が多くなっている。比較材C−2、G−2、H−2で
は、脱酸元素の添加順序が本発明を満たしていなかった
ので製品加工時に欠陥が発生した。
The results are shown in Table 2. From the table, when the conditions of the present invention are satisfied, the number of inclusions in the cast is small, no rejection due to surface defects or internal defects occurs, and good results that no defects occur during processing. was gotten.
On the other hand, the comparative materials that do not satisfy the present invention have the following problematic results. That is, comparative materials B-2 and E
-2 and F-2, since C deoxidation was not performed before adding the deoxidizing alloy elements Ti and Mg, as a result, the molten steel oxygen concentration before adding the deoxidizing alloy element was higher than 300 ppm. , Ti-Mg-Al are added in this order, the number of inclusions in the slab increases. Comparative materials A-2, D-
In No. 2, although the C deoxidation was performed before the addition of the deoxidizing alloy element, the molten steel oxygen concentration before the addition of the deoxidizing alloy element was 3
Since it does not satisfy below 00 ppm, the number of inclusions in the slab is large. In Comparative Materials C-2, G-2, and H-2, the order of addition of the deoxidizing element did not satisfy the present invention, and thus defects were generated during product processing.

【0044】また、比較材I−1ではTi濃度が低く本
発明を満たさないため、またJ−1ではAlが高く、本
発明を満たさないため、K−1ではTi、Mg、酸素の
濃度が高く本発明を満たしていないために、鋳片内介在
物個数が多くなっている。特にJ−1の場合には、53
μm以上の介在物個数は、条件を満たしているが、アル
ミナクラスタ個数が本発明範囲よりも多くなっている。
この結果、本発明の条件を満たさない場合には、鋳片内
介在物の個数が多く、圧延後のコイル欠陥や製品加工時
の欠陥も発生している。ここで、表2中の加工欠陥の欄
で、−印となっているものは、コイル段階で不合格にな
ったために、製品にはならず、加工に至らなかったもの
である。
Further, the comparative material I-1 has a low Ti concentration which does not satisfy the present invention, and the J-1 has a high Al content which does not satisfy the present invention. Therefore, the K-1, Ti, Mg and oxygen concentrations are high. Since it does not satisfy the present invention at a high level, the number of inclusions in the cast piece is large. Especially in the case of J-1, 53
The number of inclusions of μm or more satisfies the condition, but the number of alumina clusters is larger than the range of the present invention.
As a result, when the conditions of the present invention are not satisfied, the number of inclusions in the slab is large, and coil defects after rolling and defects during product processing also occur. Here, in the column of processing defects in Table 2, those marked with a minus mark are those that did not become a product and could not be processed because they failed at the coil stage.

【0045】[0045]

【発明の効果】以上のように本発明は、有害な介在物の
個数が大幅に減少した薄鋼板用鋳片であることから、圧
延後の鋼板に介在物に起因する欠陥や製品加工時の欠陥
が非常に少なくなり、良好な製品を得ることが可能とな
って、製品歩留を向上出来る。更に、本発明により、介
在物性欠陥の少ない薄鋼板用鋳片の製造を確実に行うこ
とが可能となる。
As described above, the present invention is a slab for thin steel plates in which the number of harmful inclusions is greatly reduced, and therefore, defects caused by inclusions in the rolled steel plate and the occurrence of product The number of defects is extremely small, a good product can be obtained, and the product yield can be improved. Furthermore, according to the present invention, it becomes possible to reliably manufacture a cast slab for thin steel sheets with few inclusion property defects.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋳片内介在物個数と製品欠陥の発生率の関係を
示した図。
FIG. 1 is a diagram showing the relationship between the number of inclusions in a cast and the occurrence rate of product defects.

【図2】Mg添加前の溶鋼酸素量と介在物サイズとの関
係を示した図。
FIG. 2 is a diagram showing the relationship between the amount of molten steel oxygen before inclusion of Mg and the size of inclusions.

【図3】Ti添加前の溶鋼酸素量と介在物サイズとの関
係を示した図。
FIG. 3 is a diagram showing the relationship between the amount of molten steel oxygen and the size of inclusions before the addition of Ti.

フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/00 301 C22C 38/00 301Z 38/14 38/14 38/54 38/54 (56)参考文献 特開 平5−43977(JP,A) 特開 平9−104944(JP,A) 特開 平10−324956(JP,A) 特開 平11−21613(JP,A) 特開 平7−97613(JP,A) 特開 平10−158723(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21C 7/00 - 7/10 B22D 11/00 C22C 38/00 - 38/60 Continuation of front page (51) Int.Cl. 7 identification code FI C22C 38/00 301 C22C 38/00 301Z 38/14 38/14 38/54 38/54 (56) Reference JP-A-5-43977 (JP , A) JP 9-104944 (JP, A) JP 10-324956 (JP, A) JP 11-21613 (JP, A) JP 7-97613 (JP, A) JP 10-158723 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) C21C 7 /00-7/10 B22D 11/00 C22C 38/00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.001〜0.2重量%、Mn:
0.01〜0.5重量%、Si:0.001〜0.5重
量%、P:0.001〜0.3重量%、S:0.000
5〜0.05重量%、Al:0.006超〜0.1重量
%、Ti:0.005〜0.06重量%、Mg:0.0
005〜0.01重量%、N:0.0005〜0.01
重量%、酸素:0.0005〜0.0050重量%を含
み、残部鉄および不可避的不純物からなる炭素鋼で、鋳
片中の酸化物系介在物のうち、53μm以上の介在物の
個数が200個/kg以下で、かつ、その内、アルミナ
クラスタ介在物の個数が20個/kg以下であることを
特徴とする介在物性欠陥の少ない薄鋼板用鋳片。
1. C: 0.001-0.2% by weight, Mn:
0.01-0.5% by weight, Si: 0.001-0.5% by weight, P: 0.001-0.3% by weight, S: 0.000
5 to 0.05% by weight, Al: more than 0.006 to 0.1% by weight, Ti: 0.005 to 0.06% by weight, Mg: 0.0
005-0.01% by weight, N: 0.0005-0.01
% By weight and oxygen: carbon steel containing 0.0005 to 0.0050% by weight, the balance being iron and unavoidable impurities, and the number of inclusions of 53 μm or more among oxide inclusions in the cast piece is 200. A cast piece for a thin steel sheet having few inclusion physicality defects, wherein the number of alumina cluster inclusions is 20 pieces / kg or less, and the number of alumina cluster inclusions is 20 pieces / kg or less.
【請求項2】 Nb:0.001〜0.10重量%、
V:0.005〜0.20重量%、Cr:0.01〜
0.50重量%、Mo:0.01〜0.50重量%、C
u:0.01〜0.50重量%、Ni:0.01〜0.
50重量%、B:0.0002〜0.0020重量%の
一種または二種以上を含有せしめることを特徴とする請
求項1記載の介在物性欠陥の少ない薄鋼板用鋳片。
2. Nb: 0.001 to 0.10% by weight,
V: 0.005 to 0.20% by weight, Cr: 0.01 to
0.50% by weight, Mo: 0.01 to 0.50% by weight, C
u: 0.01 to 0.50% by weight, Ni: 0.01 to 0.
50% by weight, B: 0.0002 to 0.0020% by weight of one kind or two or more kinds are contained, and the cast piece for a thin steel sheet with few inclusion physical property defects according to claim 1.
【請求項3】 C:0.001〜0.2重量%、Mn:
0.01〜0.5重量%、Si:0.001〜0.5重
量%、P:0.001〜0.3重量%、S:0.000
5〜0.05重量%、Al:0.006超〜0.1重量
%、Ti:0.005〜0.06重量%、Mg:0.0
005〜0.01重量%、N:0.0005〜0.01
重量%、酸素:0.0005〜0.0050重量%を含
み、残部鉄および不可避的不純物からなる炭素鋼溶鋼を
連続鋳造設備で鋳造して鋳片を製造する際に、脱炭を行
なった溶鋼を、減圧雰囲気でC脱酸を行なって該溶鋼中
の酸素濃度を300ppm以下とし、その後、Ti、M
gの順で金属または合金として添加して脱酸し、その後
Alを添加することを特徴とする、介在物性欠陥の少な
い薄鋼板用鋳片の製造方法。
3. C: 0.001-0.2% by weight, Mn:
0.01-0.5% by weight, Si: 0.001-0.5% by weight, P: 0.001-0.3% by weight, S: 0.000
5 to 0.05% by weight, Al: more than 0.006 to 0.1% by weight, Ti: 0.005 to 0.06% by weight, Mg: 0.0
005-0.01% by weight, N: 0.0005-0.01
Wt%, oxygen: 0.0005 to 0.0050 wt%, carbon steel molten steel consisting of balance iron and unavoidable impurities is cast in a continuous casting facility to produce a slab, and then decarburized molten steel Is deoxidized in a reduced pressure atmosphere to reduce the oxygen concentration in the molten steel to 300 ppm or less, and then Ti, M
A method for producing a cast slab for a thin steel sheet with few inclusion physical defects, which comprises adding g in the order of g as a metal or alloy to deoxidize it, and then adding Al.
【請求項4】 Nb:0.001〜0.10重量%、
V:0.005〜0.20重量%、Cr:0.01〜
0.50重量%、Mo:0.01〜0.50重量%、C
u:0.01〜0.50重量%、Ni:0.01〜0.
50重量%、B:0.0002〜0.0020重量%の
一種または二種以上を含有せしめることを特徴とする請
求項3記載の介在物性欠陥の少ない薄鋼板用鋳片の製造
方法。
4. Nb: 0.001 to 0.10% by weight,
V: 0.005 to 0.20% by weight, Cr: 0.01 to
0.50% by weight, Mo: 0.01 to 0.50% by weight, C
u: 0.01 to 0.50% by weight, Ni: 0.01 to 0.
50% by weight, B: 0.0002 to 0.0020% by weight of one kind or two or more kinds are contained, and the method for producing a cast slab for a thin steel sheet having few inclusion property defects according to claim 3.
JP31989798A 1998-10-23 1998-10-23 Slab for thin steel sheet with less inclusion defect and method for producing the same Expired - Fee Related JP3535026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31989798A JP3535026B2 (en) 1998-10-23 1998-10-23 Slab for thin steel sheet with less inclusion defect and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31989798A JP3535026B2 (en) 1998-10-23 1998-10-23 Slab for thin steel sheet with less inclusion defect and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000129332A JP2000129332A (en) 2000-05-09
JP3535026B2 true JP3535026B2 (en) 2004-06-07

Family

ID=18115463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31989798A Expired - Fee Related JP3535026B2 (en) 1998-10-23 1998-10-23 Slab for thin steel sheet with less inclusion defect and method for producing the same

Country Status (1)

Country Link
JP (1) JP3535026B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013505B2 (en) 2000-11-27 2007-11-28 住友金属工業株式会社 Ultra-low carbon steel sheet and manufacturing method thereof
CN112853219A (en) * 2021-01-08 2021-05-28 南京钢铁股份有限公司 13MnNi6 steel for low-temperature liquid hydrocarbon storage tank and smelting method thereof

Also Published As

Publication number Publication date
JP2000129332A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
US7776162B2 (en) Steels with few alumina clusters
WO2022220242A1 (en) High nickel alloy excellent in high welding temperature cracking resistance
JP6842257B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
JP2019178363A (en) AUSTENITIC STAINLESS STEEL WITH HIGH CONTENT OF Si, HAVING EXCELLENT MANUFACTURABILITY
WO2021172381A1 (en) Stainless steel for metal foils, satinless steel foil, method for roducing stainless steel for metal foils, and method for producing satinless steel foil
TW202138587A (en) Stainless steel, stainless steel material, and method for manufacturing stainless steel
JP5331700B2 (en) Ferritic stainless steel excellent in workability of welds and corrosion resistance of steel materials and method for producing the same
EP2738281B1 (en) High si-content austenitic stainless steel
JP7087724B2 (en) Steel manufacturing method
JP3537685B2 (en) Slab for thin steel sheet with less inclusion defect and method for producing the same
CN115667563B (en) Precipitation hardening martensitic stainless steel sheet excellent in fatigue resistance
JP3535026B2 (en) Slab for thin steel sheet with less inclusion defect and method for producing the same
JP7187604B2 (en) High-Ni alloy with excellent weld hot cracking resistance
JP3542913B2 (en) Slab for thin steel sheet with less inclusion defect and method for producing the same
KR100825632B1 (en) Ferritic stainless steel having excellent formability of welded zone and corrosion resistance, and method for manufacturing the same
JP7230454B2 (en) Steel materials for seamless steel pipes
JP2002327239A (en) Slab for thin steel sheet with few defect caused by inclusion, and manufacturing method therefor
JPWO2020189762A1 (en) Manufacturing method of high manganese steel slab, manufacturing method of high manganese steel slab and high manganese steel sheet
JP2021143407A (en) Duplex stainless steel and manufacturing method thereof
JP4046255B2 (en) Slab for thin steel sheet with few inclusion property defects and manufacturing method thereof
JP3302391B2 (en) Steel with fine particles of Mn oxide and Al oxide dispersed
JP4012370B2 (en) Method for producing slab for thin steel sheet without inclusion physical defect
CN115491569B (en) Production method of non-oriented silicon steel and non-oriented silicon steel
JP2001011528A (en) Method for melting steel excellent in hydrogen induced cracking resistance
RU2318900C2 (en) Complex modifier for steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees