JP3542913B2 - Slab for thin steel sheet with less inclusion defect and method for producing the same - Google Patents

Slab for thin steel sheet with less inclusion defect and method for producing the same Download PDF

Info

Publication number
JP3542913B2
JP3542913B2 JP32438898A JP32438898A JP3542913B2 JP 3542913 B2 JP3542913 B2 JP 3542913B2 JP 32438898 A JP32438898 A JP 32438898A JP 32438898 A JP32438898 A JP 32438898A JP 3542913 B2 JP3542913 B2 JP 3542913B2
Authority
JP
Japan
Prior art keywords
weight
slab
molten steel
inclusions
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32438898A
Other languages
Japanese (ja)
Other versions
JP2000144230A (en
Inventor
昌光 若生
秀里 間渕
弘昭 飯星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP32438898A priority Critical patent/JP3542913B2/en
Publication of JP2000144230A publication Critical patent/JP2000144230A/en
Application granted granted Critical
Publication of JP3542913B2 publication Critical patent/JP3542913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、薄鋼板向け炭素鋼の連続鋳造鋳片とその製造方法に関し、特に介在物性欠陥の少ない鋳片およびその製造方法に係わるものである。
【0002】
【従来の技術】
近年、連続鋳造法で製造した鋳片における介在物性の欠陥は非常に少なくなってきている。これは、溶鋼段階での脱酸法の技術改善や、連続鋳造における種々の介在物対策が効を奏した結果である(第126・127回西山記念技術講座「高清浄鋼」社団法人日本鉄鋼協会,1988)。
【0003】
しかしながら、薄板向け鋳片、特に飲料缶素材用鋳片においては、益々の介在物低減が要求されており、個数の低減とともにそのサイズを小さくすることが求められている。鋳片内の介在物個数を低減する技術としては、例えば特開平07−300612号公報、特開平05−331522号公報がある。
また、微細介在物をつくる技術としては、例えば特開昭58−204117号公報、特開平3−267311号公報がある。
【0004】
飲料缶用鋳片内の介在物個数を低減する技術として、上記特開平07−300612号公報には、二次精錬において、溶鋼中にガス吹き込みランスからフラックスを吹き込んで、該フラックスを介在物と凝集合体させ、浮上させることが記載されているが、吹き込んだフラックスが溶鋼中に残留して介在物となる恐れがあった。
【0005】
また、上記特開平05−331522号公報では、転炉内へCaOを投入してスラグを固化させた後、取鍋内に出鋼し、その後取鍋上のスラグにAlを添加して、スラグ中FeO濃度を2%以下にすることを記載しているが、スラグ中FeO濃度を安定的に2%以下にするには、多量のAl投入が必要となり、コスト的に高くなる。また、スラグ中FeO濃度を2%以下にしても、Al脱酸を行なう限り、脱酸生成物であるアルミナが生成してクラスタ状になる。
これは比重が大きいため、溶鋼表面への浮上によるアルミナクラスタ個数の大幅減少は、期待出来ない。
【0006】
介在物のサイズを小さくする技術としては、特開昭58−204117号公報ではMn、SiとTiまたあはAl、或いは更にREMまたはCaを脱酸力の弱い順で加える技術が示されているが、Mnが0.8重量%以上と規定されており、Mnの低い薄板向けでは適用できない。
また、特開平3−267311号公報では、TiとCaを用いた脱酸法が開示されているが、0.005重量%以上のZrが必須となっているため、コスト的に高くなる。また、TiやCa添加前の溶鋼酸素濃度が高い場合には、TiやCaを添加して脱酸を行なっても、介在物の微細化効果が十分に発揮されないことから、生成した介在物は大きなものとなってしまう。
【0007】
このようなことから、前記各号公報の技術では、薄板向鋼板用鋳片の介在物個数の低減と介在物サイズの微細化を安定して達成することは困難であった。
【0008】
【発明が解決しようとする課題】
本発明は、鋳片の介在物個数の低減と介在物サイズの微細化を安定して達成することによって、介在物性欠陥の少ない薄鋼板用鋳片とその製造方法を提供することである。
すなわち、本発明は、薄板製品で介在物性欠陥が発生しないための鋳片内介在物条件を満足する鋳片とその鋳片の製造方法であり、特に、薄鋼板用鋳片で制約を受ける、MnやSiそしてAl含有量に依存しない、介在物性欠陥の少ない鋳片とその製造方法を提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明は、溶鋼に脱酸材を添加する前に、減圧雰囲気でC脱酸を行なって溶鋼中の酸素濃度を低減し、その後、脱酸材としてTi、Caの順で金属または合金として添加して脱酸し、その後Alを添加することにより、53μm以上の酸化物系介在物の個数が200個/kg以下で、かつ、その内、アルミナクラスタ介在物の個数が20個/kg以下の鋳片にするものであり、その手段1は、C:0.001〜0.2重量%、Mn:0.01〜0.5重量%、Si:0.001〜0.5重量%、P:0.001〜0.3重量%、S:0.0005〜0.05重量%、Al:0.006超〜0.1重量%、Ti:0.005〜0.06重量%、Ca:0.0005〜0.01重量%、N:0.0005〜0.01重量%、酸素:0.0005〜0.0050重量%を含み、残部鉄および不可避的不純物からなる炭素鋼で、鋳片中の酸化物系介在物のうち、53μm以上の介在物の個数が200個/kg以下で、かつ、その内、アルミナクラスタ介在物の個数が20個/kg以下である介在物性欠陥の少ない薄鋼板用鋳片である。
【0010】
更に手段2は、前記手段1に、Nb:0.001〜0.10重量%、V:0.005〜0.20重量%、Cr:0.01〜0.50重量%、Mo:0.01〜0.50重量%、Cu:0.01〜0.50重量%、Ni:0.01〜0.50重量%、B:0.0002〜0.0020重量%の一種または二種以上を含有せしめるものである。
【0011】
手段3は、C:0.001〜0.2重量%、Mn:0.01〜0.5重量%、Si:0.001〜0.5重量%、P:0.001〜0.3重量%、S:0.0005〜0.05重量%、Al:0.006超〜0.1重量%、Ti:0.005〜0.06重量%、Ca:0.0005〜0.01重量%、N:0.0005〜0.01重量%、酸素:0.0005〜0.0050重量%を含み、残部鉄および不可避的不純物からなる炭素鋼溶鋼を連続鋳造設備で鋳造して鋳片を製造する際に、脱炭を行なった溶鋼を、減圧雰囲気でC脱酸を行なって該溶鋼中の酸素濃度を300ppm以下とし、その後、Ti、Caの順で金属または合金として添加して脱酸し、その後Alを添加する介在物性欠陥の少ない薄鋼板用鋳片の製造方法である。
【0012】
手段4は、前記手段3に、Nb:0.001〜0.10重量%、V:0.005〜0.20重量%、Cr:0.01〜0.50重量%、Mo:0.01〜0.50重量%、Cu:0.01〜0.50重量%、Ni:0.01〜0.50重量%、B:0.0002〜0.0020重量%の一種または二種以上を含有せしめるものである。
【0013】
手段5は、C:0.001〜0.2重量%、Mn:0.01〜0.5重量%、Si:0.001〜0.5重量%、P:0.001〜0.3重量%、S:0.0005〜0.05重量%、Al:0.006超〜0.1重量%、Ti:0.005〜0.06重量%、Ca:0.0005〜0.01重量%、N:0.0005〜0.01重量%、酸素:0.0005〜0.0050重量%を含み、残部鉄および不可避的不純物からなる炭素鋼溶鋼を連続鋳造設備で鋳造して鋳片を製造する際に、脱炭を行なった溶鋼を、減圧雰囲気でC脱酸を行なって該溶鋼中の酸素濃度を300ppm以下とし、その後、MnまたはMn,SiまたはMn,Siそして溶鋼中のAl濃度が0.01重量%以下となるように微量Alを金属または合金として添加して脱酸を行ない、次にTiを金属または合金として添加して脱酸し、更にCa金属または合金として添加して脱酸し、その後残りのAlを添加する介在物性欠陥の少ない薄鋼板用鋳片の製造方法である。
【0014】
手段6は、前記手段5に、Nb:0.001〜0.10重量%、V:0.005〜0.20重量%、Cr:0.01〜0.50重量%、Mo:0.01〜0.50重量%、Cu:0.01〜0.50重量%、Ni:0.01〜0.50重量%、B:0.0002〜0.0020重量%の一種または二種以上を含有せしめるものである。
【0015】
【発明の実施の形態】
発明者らは、まず、製品にとって介在物性欠陥の発生しにくい鋳片の介在物条件について検討した。ここで、介在物とは、製品欠陥に悪影響を与えやすい酸化物系のものを示す。鋳片内の介在物個数が多くなると、製品での介在物性欠陥が発生しやすくなる。そこで、鋳片内の介在物の大きさや個数と製品欠陥発生との関係を調査した結果、図1に示すように、鋳片内の介在物のうち、53μm以上の大きさのものが、鋳片1kgあたり200個以下で、しかも、53μm以上のアルミナクラスタが鋳片1kg当たり20個以下であると、製品欠陥発生率が極めて低く良好なものである。
【0016】
これに対し、これ以外の場合(53μm以上の介在物が200個超、アルミナクラスタが20個超)には製品欠陥発生率が高い、すなわち製品欠陥が発生しやすい傾向にあることが判明した。
【0017】
ここで、アルミナクラスタとは、複数の粒子が凝集したもので、この集合体を1個と数える。一般的にAl脱酸後の生成物であるアルミナは、一つ一つの粒子は小さいが、生成後すぐに粒子どうしが凝集し、クラスタ状となってサイズが大きくなる。また、このクラスタは、構成粒子どうしの間に鉄を含むので、比重が大きく浮上しにくい。また、アルミナクラスタのほうが他の介在物よりも、製品欠陥に与える影響が大きい。なお、53μmという数字は、介在物分析法におけるフィルターの編み目のサイズである。
【0018】
以下に本発明の鋳片について詳細に説明するために、発明の条件を規定した理由を述べる。
Cは鋼の強度を持たす為に用いられる元素であるが、薄板向けでは深絞り用鋼板等でCを極力低減させたほうが望ましい場合もある。しかしながら、Cが0.001重量%以下では本発明におけるC脱酸が非常に困難になるので、下限を0.001重量%とし、上限は板材で用いられる最大炭素量として0.2重量%とした。
【0019】
また、Mnも強度を得るためやSによる脆化を抑制するために必要であり、上限はハイテン材等で使用される場合の最大値0.5重量%とした。また、下限は不可避的に混入するために0.01重量%とした。
Siも強度を得るためや高温特性を改善するために用いられる元素であり、上限は0.5重量%とした。また、不可避的に混入するためその下限を0.001重量%とした。
【0020】
Pは鋼に有害な元素であるため、極力少ないほうが望ましいが、不可避的に混入するため下限値0.001重量%が現実的である。しかしながら、鋼の強度や耐食性向上の観点から多量のP添加を求められる場合があるので、その上限を0.3重量%とした。これ以上では、Pによる脆化の影響が強くなる。
Sも同様に製品特性に害をなす場合が多く、極力低位とすることが望ましいが、不可避的に混入するため下限値0.0005重量%が現実的である。また上限は連続鋳造時の割れを防ぐために0.05重量%とした。
【0021】
Alは脱酸元素として一般的に使用されているが、鋳片中の酸化物系介在物のうち、53μm以上の介在物の個数が200個/kg以下であり、かつその内、アルミナ粒子が2個以上合体したアルミナクラスタ介在物の個数が20個/kg以下であることを満たすためには、本発明では極力Alを脱酸元素として用いないことが、基本思想である。
【0022】
しかしながら、発明の対象となる薄鋼板用鋳片においては、材質上Alが必要とされる。すなわち、Alは鋼中でAlNとなって鋼の結晶粒の成長を抑える働きがあり、この観点から、必用成分として規格化されている。そこで、下限を0.006重量%超とした。また、上限は本発明で用いるTiおよびCaの効果を阻害しないために、0.1重量%とした。
【0023】
TiおよびCaは本発明の重要な元素である。鋳片中の酸化物系介在物のうち、53μm以上の介在物の個数が200個/kg以下であり、かつその内、アルミナ粒子が2個以上合体したアルミナクラスタ介在物の個数が20個/kg以下であることを満たすためには、Alを脱酸材として用いるのではなく、後述するようにTiやCaを用いる必要があることを、発明者らは知見した。
【0024】
Tiの下限値は、脱酸効果を得るために0.005重量%とし、上限については、多量に添加するとCa脱酸の効果を阻害するので、0.06重量%と規定した。
Caについても、十分な脱酸効果を得るために、下限値は0.0005重量%とした。上限値は、過剰に入れても効果が飽和するレベルとして0.01重量%とした。
【0025】
Nは、Alと化合してAlNをつくり、結晶粒の成長を抑えることに利用される。この観点から用いられている添加量の上限値として、0.01重量%とした。また、不可避的に混入される分を考慮して、下限値として0.0005重量%とした。
【0026】
鋳片中の酸素量は、そのほとんどが鋳片内の酸化物系介在物として含まれる分である。製品で有害となる53μm以上の介在物については、極力少ないほうが望ましいが、大きな介在物が少なくなれば、必ず酸素量が低くなるという訳ではない。
すなわち、製品に無害な微細介在物が多数あっても、酸素量は高くなる。従って、酸素量があるレベル以下では、必ずしも酸素量は介在物個数の指標とは成り得ないが、酸素値が非常に高い場合には、大きな介在物個数が多くなる傾向が見られるので、上限を0.0050重量%とした。また、下限については、不可避的に混入する分を考慮して、0.0005重量%とした。
【0027】
以上が、本発明が対象とする鋼の基本成分であるが、強度や耐食性、焼き入れ性を初めとする材料の諸特性を向上させるために、鋼の用途に応じてNb,V,Cr,Mo,Cu,Ni,Bの一種または二種以上を添加しても、本発明の効果は何ら損なわれるものではない。
すなわち、その添加量の範囲は、Nb:0.001〜0.10重量%、V:0.005〜0.20重量%、Cr:0.01〜0.50重量%、Mo:0.01〜0.50重量%、Cu:0.01〜0.50重量%、Ni:0.01〜0.50重量%、B:0.0002〜0.0020重量%とする。
【0028】
この他の元素として、REMの元素が溶鋼中に含まれる場合もあるが、当該1元素につき10ppmまでなら、含まれても本発明の効果に影響を与えることはない。
【0029】
なお、実際の製造プロセスでは、添加した元素が100%溶鋼中に含まれることになるわけではないので、歩留を考慮して余分に添加する必要がある。また、添加方法については、特に規定はしない。上記条件を満足するように鋼中に含有できる方法であれば、どのような方法でも構わない。
また、鋳片中の酸化物系介在物のうち、53μm以上の介在物の個数を200個/kg以下とし、かつその内のアルミナクラスタの個数を20個/kg以下としたのは、図1に示したように、製品欠陥の発生率が小さくなる条件から決定したものである。
【0030】
次に、このような鋳片内の介在物条件を満たすための製造方法について検討した。発明者らは、まず脱酸元素について着目した。溶鋼の脱酸元素としては、一般にAlが広く用いられている。しかしながら、Al脱酸後の生成物であるアルミナは、一つ一つの粒子は小さいが、生成後すぐに粒子どうしが凝集し、クラスタ状となってサイズが大きくなる。
また、このクラスタは、構成粒子どうしの間に鉄を含むので、比重が大きく浮上しにくい。従って、Al脱酸で生成したアルミナ介在物を浮上・除去するためには、静置時間を非常に長くとる、Arガスを多量に溶鋼中へ吹き込んで、ガスと介在物を合体させて浮上を促進する等の対策が必要であった。
【0031】
そこで、発明者らはAlを脱酸材として用いないことを考え、Alに代わる脱酸元素として、Caに着目した。Caで脱酸すると、脱酸生成物であるCaOが生成するが、そのサイズが他の脱酸元素に較べて小さい特徴がある。しかしながら、このCaOのサイズは、Ca添加前の溶鋼酸素濃度に大きく依存する。
【0032】
発明者らは、CaO介在物のサイズが小さくなるCa添加前の溶鋼酸素濃度について、ラボ実験により求めた。鋼の成分は0.04%C−0.0010%NでTi,Ca,酸素量を変化させた。なお、他の成分は含まれていない。図2には、Ca脱酸直後のCaO介在物平均粒径と、Ca脱酸前の溶鋼酸素濃度の関係を示すが、溶鋼酸素濃度が50ppm以下の場合に、生成したCaO介在物の平均サイズが10μm以下と非常に小さくなることが判った。
【0033】
次に、Ca添加前の溶鋼酸素濃度を50ppm以下に制御する手段について検討した。熱力学的に検討すると、溶鋼酸素濃度を50ppm以下にするためには、Siよりも酸素親和力の強い脱酸元素を選択するのが良い。これは、Siを0.5重量%と比較的多量に入れて脱酸した時に、溶鋼温度1600℃で熱力学的に平衡する溶鋼酸素濃度が約70ppmであることから推測出来る。
【0034】
これに当てはまる脱酸元素としては、Ti、Al、Mg、Caが挙げられるが、Caはその後の脱酸で用いるので、除外される。また、MgはCaに近い強脱酸元素なので、除かれる。また、Alについては、脱酸元素として用いないことが本発明の基本思想であるから除いた。
以上の考察から、Ca添加前の溶鋼酸素濃度を50ppm以下に制御する手段として、Tiを用いることにした。Ti脱酸は、脱酸するために必要な濃度が数百ppmと、MnやSiの場合に較べて非常に少ないことも特徴である。
【0035】
しかしながら、Ti脱酸においても、Ca脱酸と同様に、Ti添加前の溶鋼酸素濃度が、生成するTi酸化物のサイズに大きく影響する。すなわち、溶鋼酸素濃度が高い場合には、生成するTi酸化物が大きいものになり、本発明の意図と矛盾することになる。
そこで、発明者らは、Ti酸化物のサイズが小さくなるTi添加前の溶鋼酸素濃度について、ラボ実験により求めた。図3には、Ti脱酸直後のTi酸化物の平均粒径と、Ti脱酸前の溶鋼酸素濃度の関係を示すが、溶鋼酸素濃度が300ppm以上では、生成したTi酸化物のサイズが急激に大きくなることが判った。従って、Ti添加前の溶鋼酸素濃度を300ppm以下とする必要があることが判明した。
【0036】
次に、Ti添加前の溶鋼酸素濃度を300ppm以下に制御する手段について検討した。熱力学的に検討すると、溶鋼酸素濃度を300ppm以下にするためには、Mn脱酸やSi脱酸が挙げられるが、本発明が対象とする薄鋼板用鋳片では、材質上MnやSi濃度を低く制約される場合がある。従って、MnやSi濃度に依存しない脱酸法を考える必用があった。
【0037】
発明者らは、Cに着目し、減圧下でC脱酸を行なうことにより、溶鋼酸素濃度を300ppm以下にすることを考えた。C脱酸平衡から検討すると、例えばC濃度0.04重量%の場合、溶鋼温度1600℃で雰囲気中のCO分圧が約0.4であれば、平衡する溶鋼酸素濃度は約300ppmとなり、本発明で要求される条件を満足する事が出来る。C脱酸は、脱酸生成物がCOガスであるため、溶鋼中に残留して介在物とならないことも大きな特徴である。
【0038】
次に、Al添加について検討した。本発明では、Alを脱酸元素として使用しないことが基本的思想であるが、発明の対象となる薄鋼板用鋳片では、材質上
Alが必要とされる。
すなわち、Alは鋼中でAlNとなって鋼の結晶粒の成長を抑える働きがあり、この観点から、必用成分として規格化されている。しかしながら、Alは酸素との親和力が非常に大きいので、溶鋼酸素が高いうちにAlを添加すると、多量のアルミナ介在物が生成し、本発明の意図が満たされなくなる。
【0039】
そこで、本発明では、Alを添加する時期として、Ca添加の後と規定した。Alに較べて、Caのほうが酸素親和力が大きいので、Ca添加により溶鋼酸素濃度は非常に低下している。そこにAlを添加しても、Alは酸素と結合することがほとんどなく、溶鋼中に溶解する。すなわち、この場合Alは脱酸元素としては働かない。従って、Ca脱酸後にAlを添加することが重要である。
なお、C脱酸を行なった後でMnやMn,Siおよび微量Alを添加してからTi添加をしても構わない。ここで、微量あlとは、添加した後、溶鋼中の濃度で0.01重量%以下の場合であり、介在物生成に大きな悪影響を与えないので、Ti添加前にAlを添加して脱酸しても構わない。そして、Ca添加の後で残りのAlを添加すればよい。
【0040】
また、脱酸を行なう前に、取鍋内溶鋼上のスラグにCaOやAlを添加して、スラグ中の酸素ポテンシャルを低下させる、いわゆるスラグ改質を行なうことは、本発明の効果にとっても有利な方法であり、スラグ改質を行なうほうが、更なる介在物個数の低減と介在物の微細化が期待できる。
【0041】
【実施例】
表1に示す成分の炭素鋼を表3に示す製造条件で製造し、得られた鋳片の介在物個数と、鋳片を圧延して得られた鋼板および、それを素材として加工した場合の結果について調査した。調査方法としては、表4に示した方法で行なった。なお、水準A−1、C−1、D−1はスラグ改質として、C脱酸前に、取鍋内のスラグ上に、溶鋼300tにつきCaOを1.5t、Alを500kg添加した。また、E−1ではMn,Si,微量をAlをC脱酸後Ti添加前に添加し、G−1,H−1ではMn,SiをC脱酸後Ti添加前に添加した。
【0042】
【表1】

Figure 0003542913
【0043】
【表2】
Figure 0003542913
【0044】
【表3】
Figure 0003542913
【0045】
【表4】
Figure 0003542913
【0046】
結果を表2に示す。表より、本発明の場合の条件を満たす場合には、鋳片内の介在物個数が少なく、表面疵や内部欠陥による不合格が発生せず、更に加工時の欠陥も発生しないという良好な結果が得られた。
【0047】
一方、本発明を満たさない比較材については、次の通り問題のある結果となった。
すなわち、比較材B−2、E−2、F−2では、脱酸用合金元素であるTi,Caの添加前にC脱酸を行なっていないので、結果的に脱酸用合金元素添加前の溶鋼酸素濃度が300ppmより高くなり、Ti−Ca−Alの順序で添加を行なっても、鋳片内介在物個数が多くなっている。
【0048】
比較材A−2、D−2では、脱酸用合金元素添加前にC脱酸を行なったにもかかわらず、脱酸用合金元素添加前の溶鋼酸素濃度が300ppm以下を満たしていないので、鋳片内介在物個数が多くなっている。比較材C−2、G−2、H−2では、脱酸元素の添加順序が本発明を満たしていなかったので製品加工時に欠陥が発生した。
【0049】
また、比較材I−1ではTi濃度が低く本発明を満たさないため、またJ−1ではAlが高く、本発明を満たさないため、K−1ではTi、Ca、酸素の濃度が高く本発明を満たしていないために、鋳片内介在物個数が多くなっている。特にJ−1の場合には、53μm以上の介在物個数は、条件を満たしているが、アルミナクラスタ個数が本発明範囲よりも多くなっている。
【0050】
この結果、本発明の条件を満たさない場合には、鋳片内介在物の個数が多く、圧延後のコイル欠陥や製品加工時の欠陥も発生している。ここで、表3中の加工欠陥の欄で、−印となっているものは、コイル段階で不合格になったために、製品にはならず、加工に至らなかったものである。
【0051】
【発明の効果】
以上のように本発明により、有害な介在物の個数が大幅に減少した薄鋼板用鋳片が得られ、圧延後のコイル欠陥や製品加工時の欠陥が非常に少ないものが得られた。従って、本発明により、介在物性欠陥の少ない薄鋼板用鋳片の製造が可能となる。
【図面の簡単な説明】
【図1】鋳片内介在物個数と製品欠陥の発生率の関係を示した図。
【図2】Mg添加前の溶鋼酸素量と介在物サイズとの関係を示した図。
【図3】Ti添加前の溶鋼酸素量と介在物サイズとの関係を示した図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a continuous cast slab of carbon steel for thin steel sheets and a method for producing the same, and more particularly, to a slab having few inclusion defects and a method for producing the same.
[0002]
[Prior art]
In recent years, defects in inclusions in slabs manufactured by the continuous casting method have been extremely reduced. This is the result of the technical improvement of the deoxidation method at the molten steel stage and the measures taken against various inclusions in continuous casting. (The 126th and 127th Nishiyama Memorial Technical Lecture “High Purity Steel” Nippon Steel Corp. Association, 1988).
[0003]
However, in cast pieces for thin plates, particularly cast pieces for beverage can materials, more and more inclusions are required to be reduced, and it is required to reduce the size as well as to reduce the number of inclusions. As a technique for reducing the number of inclusions in a slab, there are, for example, JP-A-07-200612 and JP-A-05-331522.
Techniques for forming fine inclusions include, for example, JP-A-58-204117 and JP-A-3-267311.
[0004]
As a technique for reducing the number of inclusions in a slab for a beverage can, Japanese Patent Application Laid-Open No. H07-300012 discloses a technique in which, during secondary refining, a flux is blown into a molten steel from a gas injection lance, and the flux is mixed with the inclusions. Although it is described that the flux is caused to agglomerate and coalesce, it is feared that the blown flux remains in the molten steel and becomes an inclusion.
[0005]
Further, in the above-mentioned Japanese Patent Application Laid-Open No. 05-331522, after CaO is charged into a converter to solidify slag, steel is tapped into a ladle, and then Al is added to the slag on the ladle, and slag is added. It is described that the concentration of FeO in the medium is 2% or less. However, in order to stably reduce the concentration of FeO in the slag to 2% or less, a large amount of Al needs to be introduced, which is costly. Further, even if the FeO concentration in the slag is 2% or less, as long as Al deoxidation is performed, alumina, which is a deoxidation product, is formed to form a cluster.
Since the specific gravity is large, it is not expected that the number of alumina clusters greatly decreases due to floating on the molten steel surface.
[0006]
As a technique for reducing the size of inclusions, Japanese Patent Application Laid-Open No. 58-204117 discloses a technique in which Mn, Si and Ti or Al, or REM or Ca is added in order of decreasing deoxidizing power. However, since Mn is specified to be 0.8% by weight or more, it cannot be applied to a thin plate having a low Mn.
Japanese Patent Application Laid-Open No. 3-267311 discloses a deoxidation method using Ti and Ca. However, since Zr of 0.005% by weight or more is essential, the cost is high. Further, when the oxygen concentration of molten steel before the addition of Ti or Ca is high, even if deoxidation is performed by adding Ti or Ca, the effect of miniaturization of inclusions is not sufficiently exhibited. It will be big.
[0007]
For these reasons, it has been difficult to stably achieve the reduction in the number of inclusions and the miniaturization of the size of the inclusions in the slabs for thin steel plates for steel sheets with the techniques of the above-mentioned publications.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a slab for a thin steel sheet having few inclusion defect and a method for producing the same by stably achieving the reduction of the number of inclusions and the miniaturization of the inclusion size of the slab.
That is, the present invention is a method for producing a slab and a slab that satisfies the inclusion condition in the slab for the inclusion property defect not to occur in the thin plate product, and is particularly limited by the slab for the thin steel plate. It is an object of the present invention to provide a slab having few inclusion defect and independent of Mn, Si and Al contents and a method for producing the same.
[0009]
[Means for Solving the Problems]
The present invention reduces the oxygen concentration in the molten steel by performing C deoxidation in a reduced-pressure atmosphere before adding the deoxidizing material to the molten steel, and then adding Ti and Ca as the metal or alloy in the order of deoxidizing material. Then, by adding Al, the number of oxide-based inclusions of 53 μm or more is 200 / kg or less, and among them, the number of alumina cluster inclusions is 20 / kg or less. Means 1 is as follows: C: 0.001 to 0.2% by weight, Mn: 0.01 to 0.5% by weight, Si: 0.001 to 0.5% by weight, P : 0.001 to 0.3% by weight, S: 0.0005 to 0.05% by weight, Al: more than 0.006 to 0.1% by weight, Ti: 0.005 to 0.06% by weight, Ca: 0.0005 to 0.01% by weight, N: 0.0005 to 0.01% by weight, oxygen: 0.0005 to 0.01% by weight Carbon steel containing 0.0050% by weight, the balance being iron and unavoidable impurities, and among the oxide-based inclusions in the slab, the number of inclusions with a size of 53 μm or more is 200 / kg or less, and And a cast piece for a thin steel sheet having a small number of inclusion defect, in which the number of alumina cluster inclusions is 20 / kg or less.
[0010]
Further, the means 2 is different from the means 1 in that Nb: 0.001 to 0.10% by weight, V: 0.005 to 0.20% by weight, Cr: 0.01 to 0.50% by weight, Mo: 0. 01 to 0.50% by weight, Cu: 0.01 to 0.50% by weight, Ni: 0.01 to 0.50% by weight, B: 0.0002 to 0.0020% by weight. It is to be included.
[0011]
Means 3 is as follows: C: 0.001 to 0.2% by weight, Mn: 0.01 to 0.5% by weight, Si: 0.001 to 0.5% by weight, P: 0.001 to 0.3% by weight %, S: 0.0005 to 0.05 wt%, Al: more than 0.006 to 0.1 wt%, Ti: 0.005 to 0.06 wt%, Ca: 0.0005 to 0.01 wt% , N: 0.0005 to 0.01% by weight, Oxygen: 0.0005 to 0.0050% by weight, and cast carbon steel molten steel consisting of iron and unavoidable impurities by a continuous casting facility to produce a slab. When performing decarbonization, the decarbonized molten steel is subjected to C deoxidation in a reduced-pressure atmosphere to reduce the oxygen concentration in the molten steel to 300 ppm or less, and then added as a metal or an alloy in the order of Ti and Ca to be deoxidized. And a method of manufacturing a cast piece for a thin steel sheet having a small number of inclusion defects, to which Al is added thereafter.
[0012]
The means 4 is different from the means 3 in that Nb: 0.001 to 0.10% by weight, V: 0.005 to 0.20% by weight, Cr: 0.01 to 0.50% by weight, Mo: 0.01. 0.50% by weight, Cu: 0.01 to 0.50% by weight, Ni: 0.01 to 0.50% by weight, B: 0.0002 to 0.0020% by weight. It is a hurry.
[0013]
Means 5 is as follows: C: 0.001 to 0.2% by weight, Mn: 0.01 to 0.5% by weight, Si: 0.001 to 0.5% by weight, P: 0.001 to 0.3% by weight. %, S: 0.0005 to 0.05 wt%, Al: more than 0.006 to 0.1 wt%, Ti: 0.005 to 0.06 wt%, Ca: 0.0005 to 0.01 wt% , N: 0.0005 to 0.01% by weight, Oxygen: 0.0005 to 0.0050% by weight, and cast carbon steel molten steel consisting of iron and unavoidable impurities by a continuous casting facility to produce a slab. The decarbonized molten steel is subjected to C deoxidation in a reduced pressure atmosphere to reduce the oxygen concentration in the molten steel to 300 ppm or less, and then the Mn or Mn, Si or Mn, Si and the Al concentration in the molten steel are reduced. Add a trace amount of Al as a metal or alloy so as to be 0.01% by weight or less to deoxidize And then deoxidizing by adding Ti as a metal or alloy, further deoxidizing by adding Ca as a metal or alloy, and then adding the remaining Al. It is.
[0014]
The means 6 is different from the means 5 in that Nb: 0.001 to 0.10% by weight, V: 0.005 to 0.20% by weight, Cr: 0.01 to 0.50% by weight, Mo: 0.01. 0.50% by weight, Cu: 0.01 to 0.50% by weight, Ni: 0.01 to 0.50% by weight, B: 0.0002 to 0.0020% by weight. It is a hurry.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The inventors first studied the inclusion conditions of a cast slab in which inclusion defects are unlikely to occur in a product. Here, the inclusion means an oxide-based material that easily affects a product defect. Increasing the number of inclusions in the slab tends to cause inclusion defect in the product. Therefore, as a result of investigating the relationship between the size and number of inclusions in the slab and the occurrence of product defects, as shown in FIG. 1, among the inclusions in the slab, those having a size of 53 μm or more were found to be cast. When the number of alumina clusters is 200 or less per 1 kg of a piece and the number of alumina clusters of 53 μm or more is 20 or less per 1 kg of a slab, the product defect occurrence rate is extremely low and good.
[0016]
On the other hand, in other cases (exceeding 200 inclusions of 53 μm or more and exceeding 20 alumina clusters), it was found that the product defect occurrence rate was high, that is, product defects tended to occur.
[0017]
Here, the alumina cluster is an aggregate of a plurality of particles, and this aggregate is counted as one. In general, alumina, which is a product after Al deoxidation, has small individual particles, but immediately after generation, the particles aggregate to form a cluster and increase in size. In addition, since this cluster contains iron between constituent particles, it has a large specific gravity and is difficult to float. In addition, alumina clusters have a greater effect on product defects than other inclusions. The number 53 μm is the size of the stitch of the filter in the inclusion analysis method.
[0018]
Hereinafter, in order to explain the cast slab of the present invention in detail, the reason for defining the conditions of the present invention will be described.
C is an element used for imparting the strength of steel, but for thin sheets, it may be desirable to reduce C as much as possible by using a steel sheet for deep drawing. However, when C is 0.001% by weight or less, C deoxidation in the present invention becomes very difficult. Therefore, the lower limit is set to 0.001% by weight, and the upper limit is set to 0.2% by weight as the maximum carbon amount used in the sheet material. did.
[0019]
Also, Mn is necessary for obtaining strength and suppressing embrittlement due to S, and the upper limit is set to 0.5% by weight, which is the maximum value when used as a high-tensile material or the like. In addition, the lower limit is set to 0.01% by weight to be inevitably mixed.
Si is also an element used for obtaining strength and improving high-temperature characteristics, and the upper limit is set to 0.5% by weight. In addition, the lower limit was set to 0.001% by weight because of inevitable mixing.
[0020]
Since P is a harmful element to steel, it is desirable that P be as small as possible. However, since P is inevitably mixed, the lower limit of 0.001% by weight is practical. However, from the viewpoint of improving the strength and corrosion resistance of steel, a large amount of P may be required in some cases, so the upper limit is set to 0.3% by weight. Above this, the effect of embrittlement by P becomes stronger.
Similarly, S also often impairs the product characteristics, and is desirably as low as possible. However, the lower limit is 0.0005% by weight because it is inevitably mixed. The upper limit is set to 0.05% by weight in order to prevent cracking during continuous casting.
[0021]
Al is generally used as a deoxidizing element, but among the oxide-based inclusions in the slab, the number of inclusions of 53 μm or more is 200 / kg or less, and among them, alumina particles In order to satisfy that the number of the alumina cluster inclusions of two or more coalesced is 20 or less, it is a basic idea that in the present invention, Al is not used as a deoxidizing element as much as possible.
[0022]
However, in the slab for a thin steel sheet, which is an object of the present invention, Al is required due to its material. That is, Al acts as AlN in the steel to suppress the growth of crystal grains of the steel. From this viewpoint, Al is standardized as a necessary component. Therefore, the lower limit is set to more than 0.006% by weight. The upper limit is set to 0.1% by weight so as not to impair the effects of Ti and Ca used in the present invention.
[0023]
Ti and Ca are important elements of the present invention. Among the oxide-based inclusions in the slab, the number of inclusions of 53 μm or more is 200 / kg or less, and among them, the number of alumina cluster inclusions in which two or more alumina particles are combined is 20 / kg. The inventors have found that in order to satisfy the requirement of not more than kg, it is necessary to use Ti or Ca as described later instead of using Al as a deoxidizing material.
[0024]
The lower limit of Ti is set to 0.005% by weight in order to obtain a deoxidizing effect, and the upper limit is set to 0.06% by weight, because adding a large amount impairs the effect of Ca deoxidizing.
The lower limit of Ca was set to 0.0005% by weight in order to obtain a sufficient deoxidizing effect. The upper limit was set to 0.01% by weight as a level at which the effect would be saturated even if added excessively.
[0025]
N combines with Al to form AlN and is used to suppress the growth of crystal grains. From this viewpoint, the upper limit of the addition amount is set to 0.01% by weight. The lower limit was set to 0.0005% by weight in consideration of the inevitable mixing.
[0026]
Most of the oxygen amount in the slab is included as oxide-based inclusions in the slab. It is desirable to minimize the inclusions of 53 μm or more that are harmful to the product, but the smaller the number of large inclusions, the lower the oxygen content.
That is, even if there are many harmless fine inclusions in the product, the amount of oxygen is high. Therefore, when the oxygen amount is below a certain level, the oxygen amount cannot always be an index of the number of inclusions, but when the oxygen value is very high, the tendency is that the number of large inclusions tends to increase. Was set to 0.0050% by weight. The lower limit was set to 0.0005% by weight in consideration of the inevitable mixing.
[0027]
The above are the basic components of the steel targeted by the present invention. In order to improve various properties of the material such as strength, corrosion resistance, and hardenability, Nb, V, Cr, Even if one or more of Mo, Cu, Ni, and B are added, the effects of the present invention are not impaired at all.
That is, the range of the addition amount is as follows: Nb: 0.001 to 0.10% by weight, V: 0.005 to 0.20% by weight, Cr: 0.01 to 0.50% by weight, Mo: 0.01. To 0.50% by weight, Cu: 0.01 to 0.50% by weight, Ni: 0.01 to 0.50% by weight, and B: 0.0002 to 0.0020% by weight.
[0028]
As other elements, REM elements may be included in the molten steel, but if the content of each element is up to 10 ppm, the effect of the present invention is not affected even if it is included.
[0029]
In an actual manufacturing process, the added elements are not necessarily included in 100% molten steel. Therefore, it is necessary to add extra elements in consideration of the yield. There is no particular limitation on the method of addition. Any method may be used as long as it can be contained in steel so as to satisfy the above conditions.
Further, among the oxide-based inclusions in the slab, the number of inclusions having a size of 53 μm or more was set to 200 / kg or less, and the number of alumina clusters was set to 20 / kg or less in FIG. As shown in FIG. 7, the conditions are determined from the condition that the incidence of product defects is reduced.
[0030]
Next, a manufacturing method for satisfying such inclusion conditions in the slab was examined. The inventors first paid attention to deoxidizing elements. Generally, Al is widely used as a deoxidizing element of molten steel. However, alumina, which is a product after Al deoxidation, has small individual particles, but immediately after the generation, the particles aggregate to form clusters and increase in size.
In addition, since this cluster contains iron between constituent particles, it has a large specific gravity and is difficult to float. Therefore, in order to float and remove the alumina inclusions generated by Al deoxidation, a very long standing time is required, a large amount of Ar gas is blown into the molten steel, and the gas and the inclusions are united to float. Measures such as promotion were necessary.
[0031]
Then, the inventors considered not using Al as a deoxidizing material, and focused on Ca as a deoxidizing element instead of Al. Deoxidation with Ca produces CaO, which is a deoxidation product, but its size is smaller than other deoxidizing elements. However, the size of this CaO largely depends on the oxygen concentration of molten steel before adding Ca.
[0032]
The inventors determined by laboratory experiments the oxygen concentration of molten steel before the addition of Ca at which the size of CaO inclusions was reduced. The composition of steel was 0.04% C-0.0010% N, and the amounts of Ti, Ca and oxygen were changed. In addition, other components are not included. FIG. 2 shows the relationship between the average particle size of CaO inclusions immediately after Ca deoxidation and the oxygen concentration of molten steel before Ca deoxidation. When the oxygen concentration of molten steel is 50 ppm or less, the average size of CaO inclusions generated Was found to be very small at 10 μm or less.
[0033]
Next, means for controlling the oxygen concentration of molten steel before adding Ca to 50 ppm or less was examined. Considering thermodynamically, in order to reduce the oxygen concentration of molten steel to 50 ppm or less, it is preferable to select a deoxidizing element having a higher oxygen affinity than Si. This can be inferred from the fact that when oxygen is added in a relatively large amount of 0.5% by weight and deoxidized, the oxygen concentration of molten steel which equilibrates thermodynamically at a molten steel temperature of 1600 ° C. is about 70 ppm.
[0034]
Examples of the deoxidizing element applicable to this include Ti, Al, Mg, and Ca. However, Ca is excluded because it is used in the subsequent deoxidizing. Also, Mg is a strong deoxidizing element close to Ca, and is therefore excluded. In addition, Al was omitted because it is a basic idea of the present invention that it is not used as a deoxidizing element.
From the above considerations, Ti was used as a means for controlling the oxygen concentration of molten steel before adding Ca to 50 ppm or less. Ti deoxidation is also characterized in that the concentration required for deoxidation is several hundred ppm, which is very small as compared with the case of Mn or Si.
[0035]
However, in the case of Ti deoxidation, the oxygen concentration of molten steel before the addition of Ti greatly affects the size of the generated Ti oxide as in the case of Ca deoxidation. That is, when the molten steel oxygen concentration is high, the generated Ti oxide is large, which contradicts the intention of the present invention.
Then, the inventors obtained through a laboratory experiment the oxygen concentration of molten steel before the addition of Ti at which the size of the Ti oxide was reduced. FIG. 3 shows the relationship between the average particle diameter of the Ti oxide immediately after Ti deoxidation and the oxygen concentration of molten steel before Ti deoxidation. When the oxygen concentration of molten steel is 300 ppm or more, the size of the generated Ti oxide sharply increases. It turned out to be bigger. Therefore, it became clear that the oxygen concentration of molten steel before adding Ti needs to be 300 ppm or less.
[0036]
Next, means for controlling the oxygen concentration of molten steel before adding Ti to 300 ppm or less was studied. According to thermodynamic studies, Mn deoxidation and Si deoxidation are mentioned in order to reduce the molten steel oxygen concentration to 300 ppm or less. May be constrained lower. Therefore, it was necessary to consider a deoxidation method independent of Mn and Si concentrations.
[0037]
The present inventors have focused on C and considered that the oxygen concentration of molten steel is reduced to 300 ppm or less by performing C deoxidation under reduced pressure. Considering the C deoxidation equilibrium, for example, when the C concentration is 0.04% by weight, if the molten steel temperature is 1600 ° C. and the CO partial pressure in the atmosphere is about 0.4, the equilibrium molten steel oxygen concentration is about 300 ppm. The requirements required by the invention can be satisfied. C deoxidation is also characterized in that since the deoxidation product is CO gas, it remains in molten steel and does not become inclusions.
[0038]
Next, the addition of Al was studied. In the present invention, the basic idea is not to use Al as a deoxidizing element, but the cast piece for a thin steel sheet, which is the subject of the present invention, requires Al because of its material.
That is, Al acts as AlN in the steel to suppress the growth of crystal grains of the steel. From this viewpoint, Al is standardized as a necessary component. However, since Al has a very high affinity for oxygen, if Al is added while molten steel oxygen is high, a large amount of alumina inclusions will be generated, and the intention of the present invention will not be satisfied.
[0039]
Therefore, in the present invention, the timing of adding Al is defined as after the addition of Ca. Since Ca has a higher oxygen affinity than Al, the oxygen concentration of molten steel is significantly reduced by the addition of Ca. Even if Al is added thereto, Al hardly combines with oxygen and dissolves in molten steel. That is, in this case, Al does not work as a deoxidizing element. Therefore, it is important to add Al after Ca deoxidation.
After C deoxidation, Mn, Mn, Si and a small amount of Al may be added, and then Ti may be added. Here, the trace amount refers to a case in which the concentration in the molten steel is 0.01% by weight or less after the addition, and does not significantly affect the formation of inclusions. It may be acid. Then, the remaining Al may be added after the addition of Ca.
[0040]
Before performing deoxidation, performing so-called slag reforming, in which CaO or Al is added to the slag on the molten steel in the ladle to reduce the oxygen potential in the slag, is also advantageous to the effects of the present invention. The slag reforming can be expected to further reduce the number of inclusions and refine the inclusions.
[0041]
【Example】
When carbon steel having the components shown in Table 1 was manufactured under the manufacturing conditions shown in Table 3, the number of inclusions in the obtained slab, the steel plate obtained by rolling the slab, and the case where the steel plate was processed as a raw material The results were investigated. The survey method was as shown in Table 4. For the slag reforming of the levels A-1, C-1, and D-1, 1.5 tons of CaO and 500 kg of Al were added per 300 tons of molten steel to the slag in the ladle before C deoxidation. For E-1, Mn, Si, and trace amounts of Al were added after deoxidizing C and before adding Ti. For G-1 and H-1, Mn and Si were added after deoxidizing C and before adding Ti.
[0042]
[Table 1]
Figure 0003542913
[0043]
[Table 2]
Figure 0003542913
[0044]
[Table 3]
Figure 0003542913
[0045]
[Table 4]
Figure 0003542913
[0046]
Table 2 shows the results. From the table, when the condition of the present invention is satisfied, the number of inclusions in the slab is small, good results that no rejection due to surface flaws or internal defects does not occur, and further no defects during processing occur was gotten.
[0047]
On the other hand, the comparative materials that do not satisfy the present invention have the following problematic results.
That is, in the comparative materials B-2, E-2, and F-2, C deoxidation was not performed before the addition of the deoxidizing alloy elements Ti and Ca. And the molten steel oxygen concentration becomes higher than 300 ppm, and the number of inclusions in the slab is increased even if the addition is performed in the order of Ti-Ca-Al.
[0048]
In the comparative materials A-2 and D-2, the oxygen concentration of molten steel before the addition of the deoxidizing alloy element did not satisfy 300 ppm or less, although the C deoxidation was performed before the addition of the deoxidizing alloy element. The number of inclusions in the slab is increasing. In the comparative materials C-2, G-2, and H-2, the order of adding the deoxidizing element did not satisfy the present invention, and thus defects occurred during product processing.
[0049]
Further, since the comparative material I-1 has a low Ti concentration and does not satisfy the present invention, and the J-1 has a high Al and does not satisfy the present invention, the K-1 has a high concentration of Ti, Ca and oxygen, and thus the present invention has a high concentration. Is not satisfied, the number of inclusions in the slab increases. In particular, in the case of J-1, the number of inclusions of 53 μm or more satisfies the condition, but the number of alumina clusters is larger than the range of the present invention.
[0050]
As a result, when the conditions of the present invention are not satisfied, the number of inclusions in the slab is large, and coil defects after rolling and defects during product processing also occur. Here, in the column of the machining defect in Table 3, those marked with a minus sign indicate that the product was not rejected at the coil stage and thus did not become a product and did not undergo machining.
[0051]
【The invention's effect】
As described above, according to the present invention, a slab for a thin steel sheet in which the number of harmful inclusions has been significantly reduced was obtained, and a coil defect after rolling and a defect during processing of a product were extremely small. Therefore, according to the present invention, it is possible to manufacture a cast piece for a thin steel sheet having few inclusion defect.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the number of inclusions in a slab and the incidence of product defects.
FIG. 2 is a diagram showing the relationship between molten steel oxygen content and inclusion size before Mg addition.
FIG. 3 is a graph showing the relationship between the oxygen content of molten steel and the size of inclusions before the addition of Ti.

Claims (6)

C:0.001〜0.2重量%、Mn:0.01〜0.5重量%、Si:0.001〜0.5重量%、P:0.001〜0.3重量%、S:0.0005〜0.05重量%、Al:0.006超〜0.1重量%、Ti:0.005〜0.06重量%、Ca:0.0005〜0.01重量%、N:0.0005〜0.01重量%、酸素:0.0005〜0.0050重量%を含み、残部鉄および不可避的不純物からなる炭素鋼で、鋳片中の酸化物系介在物のうち、53μm以上の介在物の個数が200個/kg以下で、かつ、その内、アルミナクラスタ介在物の個数が20個/kg以下であることを特徴とする介在物性欠陥の少ない薄鋼板用鋳片。C: 0.001 to 0.2% by weight, Mn: 0.01 to 0.5% by weight, Si: 0.001 to 0.5% by weight, P: 0.001 to 0.3% by weight, S: 0.0005 to 0.05% by weight, Al: more than 0.006 to 0.1% by weight, Ti: 0.005 to 0.06% by weight, Ca: 0.0005 to 0.01% by weight, N: 0 0.0005 to 0.01% by weight, oxygen: 0.0005 to 0.0050% by weight, the balance being iron and unavoidable impurities. A slab for a thin steel sheet having few inclusion defects, wherein the number of inclusions is 200 / kg or less, and among them, the number of alumina cluster inclusions is 20 / kg or less. Nb:0.001〜0.10重量%、V:0.005〜0.20重量%、Cr:0.01〜0.50重量%、Mo:0.01〜0.50重量%、Cu:0.01〜0.50重量%、Ni:0.01〜0.50重量%、B:0.0002〜0.0020重量%の一種または二種以上を含有せしめることを特徴とする請求項1記載の介在物性欠陥の少ない薄鋼板用鋳片。Nb: 0.001 to 0.10% by weight, V: 0.005 to 0.20% by weight, Cr: 0.01 to 0.50% by weight, Mo: 0.01 to 0.50% by weight, Cu: 2. The composition according to claim 1, wherein one or more of 0.01 to 0.50% by weight, Ni: 0.01 to 0.50% by weight, and B: 0.0002 to 0.0020% by weight are contained. A slab for a thin steel sheet having few described inclusion defects. C:0.001〜0.2重量%、Mn:0.01〜0.5重量%、Si:0.001〜0.5重量%、P:0.001〜0.3重量%、S:0.0005〜0.05重量%、Al:0.006超〜0.1重量%、Ti:0.005〜0.06重量%、Ca:0.0005〜0.01重量%、N:0.0005〜0.01重量%、酸素:0.0005〜0.0050重量%を含み、残部鉄および不可避的不純物からなる炭素鋼溶鋼を連続鋳造設備で鋳造して鋳片を製造する際に、脱炭を行なった溶鋼を、減圧雰囲気でC脱酸を行なって該溶鋼中の酸素濃度を300ppm以下とし、その後、Ti、Caの順で金属または合金として添加して脱酸し、その後Alを添加することを特徴とする、介在物性欠陥の少ない薄鋼板用鋳片の製造方法。C: 0.001 to 0.2% by weight, Mn: 0.01 to 0.5% by weight, Si: 0.001 to 0.5% by weight, P: 0.001 to 0.3% by weight, S: 0.0005 to 0.05% by weight, Al: more than 0.006 to 0.1% by weight, Ti: 0.005 to 0.06% by weight, Ca: 0.0005 to 0.01% by weight, N: 0 0.0005 to 0.01% by weight, oxygen: 0.0005 to 0.0050% by weight, and when casting carbon steel molten steel consisting of iron and unavoidable impurities with a continuous casting facility to produce a slab, The decarbonized molten steel is subjected to C deoxidation in a reduced-pressure atmosphere to reduce the oxygen concentration in the molten steel to 300 ppm or less, and then added as a metal or an alloy in the order of Ti and Ca to be deoxidized. A method for producing a slab for a thin steel sheet having less inclusion defect, characterized by adding. Nb:0.001〜0.10重量%、V:0.005〜0.20重量%、Cr:0.01〜0.50重量%、Mo:0.01〜0.50重量%、Cu:0.01〜0.50重量%、Ni:0.01〜0.50重量%、B:0.0002〜0.0020重量%の一種または二種以上を含有せしめることを特徴とする請求項3記載の介在物性欠陥の少ない薄鋼板用鋳片の製造方法。Nb: 0.001 to 0.10% by weight, V: 0.005 to 0.20% by weight, Cr: 0.01 to 0.50% by weight, Mo: 0.01 to 0.50% by weight, Cu: 4. The composition according to claim 3, wherein one or more of 0.01 to 0.50% by weight, Ni: 0.01 to 0.50% by weight, and B: 0.0002 to 0.0020% by weight are contained. A method for producing a slab for a thin steel sheet having few inclusion defect as described above. C:0.001〜0.2重量%、Mn:0.01〜0.5重量%、Si:0.001〜0.5重量%、P:0.001〜0.3重量%、S:0.0005〜0.05重量%、Al:0.006超〜0.1重量%、Ti:0.005〜0.06重量%、Ca:0.0005〜0.01重量%、N:0.0005〜0.01重量%、酸素:0.0005〜0.0050重量%を含み、残部鉄および不可避的不純物からなる炭素鋼溶鋼を連続鋳造設備で鋳造して鋳片を製造する際に、脱炭を行なった溶鋼を、減圧雰囲気でC脱酸を行なって該溶鋼中の酸素濃度を300ppm以下とし、その後、MnまたはMn,SiまたはMn,Siそして溶鋼中のAl濃度が0.01重量%以下となるように微量Alを金属または合金として添加して脱酸を行ない、次にTiを金属または合金として添加して脱酸し、更にCa金属または合金として添加して脱酸し、その後残りのAlを添加することを特徴とする、介在物性欠陥の少ない薄鋼板用鋳片の製造方法。C: 0.001 to 0.2% by weight, Mn: 0.01 to 0.5% by weight, Si: 0.001 to 0.5% by weight, P: 0.001 to 0.3% by weight, S: 0.0005 to 0.05% by weight, Al: more than 0.006 to 0.1% by weight, Ti: 0.005 to 0.06% by weight, Ca: 0.0005 to 0.01% by weight, N: 0 0.0005 to 0.01% by weight, oxygen: 0.0005 to 0.0050% by weight, and when casting carbon steel molten steel consisting of iron and unavoidable impurities with a continuous casting facility to produce a slab, The decarbonized molten steel is subjected to C deoxidation in a reduced pressure atmosphere to reduce the oxygen concentration in the molten steel to 300 ppm or less, and then the Mn or Mn, Si or Mn, Si and the Al concentration in the molten steel are reduced to 0.01 wt. % Or less as a metal or alloy to perform deoxidation. Characterized in that Ti is added as a metal or an alloy to deoxidize, and further added as a Ca metal or an alloy to be deoxidized, and then the remaining Al is added, and the slab for a thin steel sheet with few inclusion defects is characterized in that Manufacturing method. Nb:0.001〜0.10重量%、V:0.005〜0.20重量%、Cr:0.01〜0.50重量%、Mo:0.01〜0.50重量%、Cu:0.01〜0.50重量%、Ni:0.01〜0.50重量%、B:0.0002〜0.0020重量%の一種または二種以上を含有せしめることを特徴とする請求項5記載の介在物性欠陥の少ない薄鋼板用鋳片の製造方法。Nb: 0.001 to 0.10% by weight, V: 0.005 to 0.20% by weight, Cr: 0.01 to 0.50% by weight, Mo: 0.01 to 0.50% by weight, Cu: 6. One or two or more of 0.01 to 0.50% by weight, Ni: 0.01 to 0.50% by weight, and B: 0.0002 to 0.0020% by weight. A method for producing a slab for a thin steel sheet having few inclusion defect as described above.
JP32438898A 1998-10-30 1998-10-30 Slab for thin steel sheet with less inclusion defect and method for producing the same Expired - Fee Related JP3542913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32438898A JP3542913B2 (en) 1998-10-30 1998-10-30 Slab for thin steel sheet with less inclusion defect and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32438898A JP3542913B2 (en) 1998-10-30 1998-10-30 Slab for thin steel sheet with less inclusion defect and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000144230A JP2000144230A (en) 2000-05-26
JP3542913B2 true JP3542913B2 (en) 2004-07-14

Family

ID=18165242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32438898A Expired - Fee Related JP3542913B2 (en) 1998-10-30 1998-10-30 Slab for thin steel sheet with less inclusion defect and method for producing the same

Country Status (1)

Country Link
JP (1) JP3542913B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5085013B2 (en) * 2005-05-10 2012-11-28 山陽特殊製鋼株式会社 Steel reliability evaluation method
JP6347164B2 (en) * 2014-07-18 2018-06-27 新日鐵住金株式会社 Low carbon aluminum killed steel manufacturing method
CN109023021B (en) * 2018-08-29 2020-08-14 南京钢铁股份有限公司 Steel plate with toughness improved by regulating Al element and manufacturing method thereof

Also Published As

Publication number Publication date
JP2000144230A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
US7776162B2 (en) Steels with few alumina clusters
JP5381243B2 (en) Method for refining molten steel
JP7119642B2 (en) steel manufacturing method
JP7087727B2 (en) Steel manufacturing method
CN115244199B (en) Stainless steel, stainless steel material, and method for producing stainless steel
JP3537685B2 (en) Slab for thin steel sheet with less inclusion defect and method for producing the same
JP3542913B2 (en) Slab for thin steel sheet with less inclusion defect and method for producing the same
JP7087724B2 (en) Steel manufacturing method
JP7119641B2 (en) steel manufacturing method
JP7087723B2 (en) Steel manufacturing method
CN115667563B (en) Precipitation hardening martensitic stainless steel sheet excellent in fatigue resistance
JP2002327239A (en) Slab for thin steel sheet with few defect caused by inclusion, and manufacturing method therefor
JP4160103B1 (en) Steel ingot for forging
JP3535026B2 (en) Slab for thin steel sheet with less inclusion defect and method for producing the same
JP4046255B2 (en) Slab for thin steel sheet with few inclusion property defects and manufacturing method thereof
JP4586648B2 (en) Steel plate excellent in workability and method for producing the same
JP7230454B2 (en) Steel materials for seamless steel pipes
JP2021155766A (en) STRETCHABLE MnS LOW STEEL MATERIAL, STEEL SLAB, AND METHOD FOR MANUFACTURING THEM
JP4012370B2 (en) Method for producing slab for thin steel sheet without inclusion physical defect
JPWO2020189762A1 (en) Manufacturing method of high manganese steel slab, manufacturing method of high manganese steel slab and high manganese steel sheet
CN115491569B (en) Production method of non-oriented silicon steel and non-oriented silicon steel
JP7256381B2 (en) Manufacturing method of killed steel
JPH05271864A (en) Steel having dispersed fine grain including mn oxide and al oxide
JP6086036B2 (en) Steel plate with excellent weld heat-affected zone toughness and its melting method
JP2003119546A (en) Steel for thin sheet with little defect due to inclusion

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees