JP2009270165A - Extra-low carbon steel sheet, and method for producing the same - Google Patents

Extra-low carbon steel sheet, and method for producing the same Download PDF

Info

Publication number
JP2009270165A
JP2009270165A JP2008122114A JP2008122114A JP2009270165A JP 2009270165 A JP2009270165 A JP 2009270165A JP 2008122114 A JP2008122114 A JP 2008122114A JP 2008122114 A JP2008122114 A JP 2008122114A JP 2009270165 A JP2009270165 A JP 2009270165A
Authority
JP
Japan
Prior art keywords
less
steel
inclusions
concentration
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008122114A
Other languages
Japanese (ja)
Other versions
JP4998365B2 (en
Inventor
Takayuki Nishi
隆之 西
Jun Haga
純 芳賀
Seiji Furuhashi
誠治 古橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2008122114A priority Critical patent/JP4998365B2/en
Publication of JP2009270165A publication Critical patent/JP2009270165A/en
Application granted granted Critical
Publication of JP4998365B2 publication Critical patent/JP4998365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for industrially mass-producing an extra-low carbon steel sheet made of a Ti-deoxidized steel with an extra-low carbon concentration and an extra-low Al concentration which has excellent surface properties while maintaining its deep drawability, and can solve the clogging of an immersion nozzle upon continuous casting and deterioration in the surface properties of the steel caused thereby by allowing the steel to have an inclusion oxygen concentration in a prescribed amount and to contain TiO<SB>x</SB>based inclusions with a predetermined composition. <P>SOLUTION: Disclosed is an extra-low carbon steel sheet having a chemical composition comprising 0.0005 to 0.025% C, 0.003 to 0.12% Si, 0.05 to 2.5% Mn, ≤0.15% P, ≤0.02% S, ≤0.006% N, 0.0002 to 0.003% sol.Al, 0.005 to 0.05% Ti and 0.005 to 0.20% Nb, having the total oxygen concentration T.O of 0.003 to 0.008% and an oxygen concentration Oinc caused by inclusions of 0.0025 to 0.007%, and the balance Fe with impurities, and in which the content of SiO<SB>2</SB>as oxide based inclusions in the steel is <1.0%, ≥90.0% is composed of a ternary system of TiOx, Al<SB>2</SB>O<SB>3</SB>and MnO, and the compositional ranges in the ternary system lie in 50.0 to 95.0% TiOx, 3.0 to 35.0% Al<SB>2</SB>O<SB>3</SB>and 2.0 to 25.0% MnO. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、極低炭素鋼板およびその製造方法に関し、具体的には、鋼中全酸素濃度および介在物に因る酸素濃度(以下介在物酸素濃度と称す)を所定量含有し、特定組成のTiO系介在物を含むことによって、強度や伸び、さらには深絞り性等の鋼板特性を維持しつつ、表面性状に優れ、かつ連続鋳造時の浸漬ノズルの閉塞およびそれによって引き起こされる鋼材表面性状の劣化等も解決できる、極低炭素濃度かつ極低Al濃度を有するTi脱酸鋼からなる極低炭素鋼板および、これを工業的規模で量産する方法に関する。 The present invention relates to an ultra-low carbon steel sheet and a method for producing the same, specifically, containing a predetermined amount of total oxygen concentration in steel and oxygen concentration due to inclusions (hereinafter referred to as inclusion oxygen concentration), and having a specific composition. By including TiO x- based inclusions, while maintaining the steel plate properties such as strength, elongation, and deep drawability, the surface properties are excellent, and the immersion material nozzle clogging during continuous casting and the steel surface properties caused thereby The present invention relates to an ultra-low carbon steel plate made of Ti deoxidized steel having an ultra-low carbon concentration and an ultra-low Al concentration, and a method for mass-producing this on an industrial scale.

溶鋼は、その製鋼工程において酸素を多量に含む状態になるので、一般的に、連続鋳造より前の工程において過剰な酸素を除くための脱酸が行われる。最も普及した脱酸方法は、溶鋼に、酸素と強い親和力を有するとともに工業上の大量使用が可能なAlを添加し、鋼中酸素濃度を低減するものであり、この脱酸方法により製造されたAl脱酸鋼が広く実用化されている。自動車車体等に広く用いられる鋼材、特に薄板として炭素濃度を特に低くした極低炭素鋼板においても、このAl脱酸鋼が一般的に使用される。   Since molten steel is in a state containing a large amount of oxygen in the steel making process, deoxidation is generally performed in order to remove excess oxygen in a process prior to continuous casting. The most popular deoxidation method is to add molten aluminum with a strong affinity for oxygen and Al that can be used in large quantities on an industrial scale to reduce the oxygen concentration in the steel. Al deoxidized steel has been widely put into practical use. This Al deoxidized steel is generally used also in steel materials widely used for automobile bodies and the like, particularly in ultra-low carbon steel sheets having a particularly low carbon concentration as a thin plate.

自動車用途を中心とした薄鋼板は、強度や伸びさらには溶接性といった様々な特性を高度にバランスさせるとともに、熱間および冷間で圧延された後においてもその表面に疵がない美麗な状態であることが要求される。このような美麗さは、官能的な判断に委ねられるので、厳格かつ対処が難しい課題でもある。その一方で、自動車用途を中心とした薄鋼板は、このように多様な性質が要求される高級鋼としてだけではなく量産される鋼材としても位置付けられるので、上述した様々な特性を高度にバランスさせるとともに表面が美麗な薄鋼板を、大規模製鉄所において量産することは、想像以上に困難であり、それだけにこれを実現できれば、工業的意義は極めて大きい。   Thin steel sheets, mainly for automotive applications, have a high balance of various properties such as strength, elongation, and weldability, and are in a beautiful state with no wrinkles on the surface even after hot and cold rolling. It is required to be. Since such beauty is left to sensual judgment, it is a strict and difficult problem to deal with. On the other hand, thin steel sheets, mainly for automotive applications, are positioned not only as high-grade steels that require such various properties, but also as mass-produced steel materials, so the above-mentioned various properties are highly balanced. At the same time, mass production of a thin steel sheet with a beautiful surface at a large-scale steelworks is more difficult than imagined.

圧延された薄鋼板の表面性状を損なう原因の一つに、Al脱酸によって生成したAl系介在物が表面に存在することが挙げられる。このAl系介在物は、クラスターと呼ばれる群落状の形状を呈するので、圧延された鋼材の表面に線状に伸展する、いわゆるスリバー疵の原因になる。また、このクラスター介在物は、連続鋳造に用いる浸漬ノズルを閉塞させる要因にもなる。この閉塞を軽減するために浸漬ノズルの上部から吹き込まれるArガスが連続鋳造鋳型中の溶鋼の流動を乱すため、連続鋳造スラブの表面性状が劣化し、ひいてはその後に圧延されて製造される薄鋼板の表面性状をも損なう要因となる。さらに、薄鋼板用の極低炭素鋼では、脱炭処理のために酸素を含む状態も必要であるので、その後に行う脱酸工程で生成するAl系介在物を充分に除去する処理を適用することは、時間やコストを要してしまうので、量産には適さない。 One of the causes of impairing the surface properties of the rolled thin steel sheet is the presence of Al 2 O 3 -based inclusions generated by Al deoxidation on the surface. Since the Al 2 O 3 inclusions have a cluster-like shape called a cluster, they cause so-called sliver wrinkles that extend linearly on the surface of the rolled steel material. Moreover, this cluster inclusion also becomes a factor which obstruct | occludes the immersion nozzle used for continuous casting. In order to reduce this blockage, Ar gas blown from the upper part of the immersion nozzle disturbs the flow of the molten steel in the continuous casting mold, so that the surface properties of the continuous casting slab deteriorate, and as a result, a thin steel plate produced by rolling thereafter. It becomes a factor which also impairs the surface property of the. Furthermore, in the ultra-low carbon steel for thin steel plates, a state containing oxygen is also necessary for the decarburization treatment, and therefore, treatment for sufficiently removing Al 2 O 3 inclusions generated in the subsequent deoxidation step. Since applying time requires time and cost, it is not suitable for mass production.

Al脱酸鋼を採用することに起因するこれらの弊害を抑制する方法として、薄鋼板用として非Al脱酸鋼を用いる発明が開示されている。
例えば特許文献1には、溶鋼中自由酸素を50〜150ppmに調整した後、Tiを溶鋼成分として0.003〜0.020%含有するように添加した後、連続鋳造することにより、Al:0.003%以下(本明細書においては特に断りがない限り組成に関する「%」は「質量%」を意味する)の低炭素鋼材を製造する方法に係る発明が開示されている。しかし、この発明は、非Al脱酸鋼として用いるTi脱酸化によって懸念される、連続鋳造時に発生するCOガスによるブローホールを抑制することを目的にするに過ぎない。
As a method for suppressing these adverse effects caused by employing Al deoxidized steel, an invention using non-Al deoxidized steel for thin steel sheets is disclosed.
For example, in Patent Document 1, after adjusting free oxygen in molten steel to 50 to 150 ppm, adding Ti so as to contain 0.003 to 0.020% as a molten steel component, and continuously casting, Al: 0 An invention relating to a method for producing a low carbon steel material of 0.003% or less (in this specification, “%” means “mass%” unless otherwise specified) is disclosed. However, this invention is only intended to suppress blow holes caused by CO gas generated during continuous casting, which is a concern due to Ti deoxidation used as non-Al deoxidized steel.

特許文献2には、C:0.005%以下、Mn:1.0%以下を含有する脱炭処理後の溶鋼に、AlおよびSiを添加して半脱酸溶鋼とし、この半脱酸溶鋼中に、含Ti物質を添加してさらに脱酸し、Al:0.005%以下、Si:0.20%以下、Ti:0.01〜0.10%を含有する溶鋼とするとともに、この溶鋼中の介在物の主成分をTi、AlおよびSiの複合酸化物として溶製し、次いでこの溶鋼を連続鋳造し、その後、熱間圧延および冷間圧延を経た後、得られた冷延鋼板を700℃〜Ac点の温度域で連続焼鈍することによって、極低炭素冷延鋼板を製造する方法に係る発明が開示されている。この方法は、Al濃度を抑制して、Si添加し、さらにTi添加量を制御して、介在物の主成分をTi、AlおよびSiの複合酸化物とした溶鋼を溶製することにより、アルミナクラスタの生成と浸漬ノズルの閉塞の抑制を図ったものである。しかし、この発明では、Siの複合酸化物を必要とする一方で、不可避的に生成されるMnの複合酸化物は許容しない介在物への制御は困難であると考えられる。 In Patent Document 2, Al and Si are added to a decarburized molten steel containing C: 0.005% or less and Mn: 1.0% or less to form a semi-deoxidized molten steel. In addition, a Ti-containing material was added to further deoxidize to obtain a molten steel containing Al: 0.005% or less, Si: 0.20% or less, Ti: 0.01 to 0.10%. The main component of inclusions in molten steel is melted as a composite oxide of Ti, Al, and Si, then this molten steel is continuously cast, and then subjected to hot rolling and cold rolling, and then the obtained cold rolled steel sheet The invention which concerns on the method of manufacturing an ultra-low-carbon cold-rolled steel sheet is disclosed by carrying out continuous annealing in the temperature range of 700 degreeC-Ac three points. This method suppresses the Al concentration, adds Si, further controls the amount of Ti added, and melts the molten steel in which the main component of inclusions is a composite oxide of Ti, Al, and Si. It is intended to suppress the generation of clusters and clogging of the immersion nozzle. However, in the present invention, it is considered difficult to control inclusions that do not allow the complex oxide of Mn that is inevitably produced while requiring the complex oxide of Si.

特許文献3には、C:0.0001〜0.0070%、酸可溶性Al:0.005%以下、Ti:0.004〜0.040%を含有し、残部Feおよび不可避的不純物からなる鋼中に、チタン酸化物、マンガン酸化物、シリコン酸化物、アルミナが複合され、かつアルミナが30%以下である酸化物系複合介在物を含有させた、欠陥が少なくプレス成形性に優れた薄鋼板およびその製造方法に係る発明が開示されている。   Patent Document 3 contains C: 0.0001 to 0.0070%, acid-soluble Al: 0.005% or less, and Ti: 0.004 to 0.040%, and the balance Fe and unavoidable impurities. Thin steel plate with excellent defects and excellent press formability, containing titanium oxide, manganese oxide, silicon oxide and alumina composite oxide inclusions containing 30% or less of alumina. And an invention relating to the manufacturing method thereof is disclosed.

この発明は、酸可溶性Alを制限することにより鋼中アルミナを生成させず、Ti脱酸前の酸素濃度制御やTi含有金属による複合脱酸を図ることにより、粒径が粗大になりがちなチタン酸化物単独の生成を抑制するものである。ここで目指す介在物組成は、チタン酸化物、マンガン酸化物、シリコン酸化物、アルミナが複合され、かつアルミナが30%以下である酸化物系であり、特許文献3の段落0008に記載されるように、融点が比較的低く冷却時に高融点で硬い晶出相の生成を抑制できる複合介在物を得るためである。アルミナ以外の組成については、明記こそされてはいないものの、段落0019の表4の記載から、Si酸化物を必須とするとともにTi酸化物の含有量が低いことにより、圧延で破砕されやすい組成を希求するものと考えられる。   This invention does not produce alumina in steel by restricting acid-soluble Al, but by controlling the oxygen concentration before Ti deoxidation and composite deoxidation with Ti-containing metals, titanium which tends to become coarser It suppresses the generation of oxide alone. The inclusion composition aimed here is an oxide system in which titanium oxide, manganese oxide, silicon oxide, and alumina are combined, and alumina is 30% or less, as described in paragraph 0008 of Patent Document 3. In addition, a composite inclusion that has a relatively low melting point and can suppress the formation of a hard crystallization phase with a high melting point upon cooling is obtained. The composition other than alumina is not specified, but from the description of Table 4 in paragraph 0019, the composition is easy to be crushed by rolling due to the fact that Si oxide is essential and the content of Ti oxide is low. It is thought that it is desired.

しかし、本発明者らの知見によれば、軟質な介在物は圧延により伸展した形状を呈し、薄鋼板の主要特性である伸びや深絞り性の指標であるランクフォード値を悪化させるので、Si酸化物を含有する特許文献3により開示される発明は、そのまま実施できる発明ではないと解される。   However, according to the knowledge of the present inventors, the soft inclusions exhibit a shape extended by rolling, and deteriorate the Rankford value, which is an index of elongation and deep drawability, which are the main characteristics of a thin steel sheet. It is understood that the invention disclosed by Patent Document 3 containing an oxide is not an invention that can be implemented as it is.

さらに、特許文献4には、C:0.01%以下、sol.Al:0.0001〜0.01%、酸化物系非金属介在物として含有されるTiを除いたTi(1):0.003〜0.1%を含有し、さらにTi(l)、sol.Al、Mn、CおよびNの含有量を関係式で規定し、幅1μm以上の酸化物系非金属介在物の70%以上がTiOx、MnOおよびAlを主成分として、かつ介在物中TiOx、MnOおよびAlを3%以上であって、その介在物組成比が所定の関係を満足することによって、特許文献3に記載されたSi酸化物を含有する弊害を抑制する薄鋼板およびその脱酸方法が開示されている。 Furthermore, in Patent Document 4, C: 0.01% or less, sol. Al: 0.0001 to 0.01%, excluding Ti contained as oxide-based non-metallic inclusions Ti (1): 0.003 to 0.1%, further Ti (l), sol . The contents of Al, Mn, C and N are defined by the relational expression, and 70% or more of the oxide-based nonmetallic inclusions having a width of 1 μm or more are mainly composed of TiOx, MnO and Al 2 O 3 and in the inclusions. A thin steel sheet containing 3% or more of TiOx, MnO, and Al 2 O 3 and containing the Si oxide described in Patent Document 3 when the inclusion composition ratio satisfies a predetermined relationship And a deoxidation method thereof.

この発明は、段落0015〜0021等に記載されるように、溶鋼中酸化物系介在物の低融点組成化、すなわち酸化物系介在物組成を、低融点のTiOx−Al−MnO系またはTiOx−Al−MnO―SiO系(ただしSiO含有率≦5%)の組成とすることによって、表面疵が発生しない良好な表面品質を有するとともに、伸びの低下等を防止した加工性に優れた薄鋼板と、連続鋳造時の浸漬ノズルの閉塞を防止することが可能な溶製方法に係るものである。 As described in paragraphs 0015 to 0021 and the like of this invention, the low melting point composition of oxide inclusions in molten steel, that is, the oxide inclusion composition is reduced to a low melting point TiOx—Al 2 O 3 —MnO type. Alternatively, the composition of TiOx—Al 2 O 3 —MnO—SiO 2 system (however, SiO 2 content ≦ 5%) has a good surface quality that does not cause surface flaws and prevents a decrease in elongation, etc. The present invention relates to a thin steel plate excellent in workability and a melting method capable of preventing clogging of an immersion nozzle during continuous casting.

しかし、この発明では、段落0058および0059に記載されるように、介在物中SiO濃度は、基本的には低融点化を実現するために制限される。また、溶鋼段階の介在物の組成形態と、圧延鋼材の段階での介在物の組成形態は概ね一致すると解されていたが、本発明者らがさらに研究を重ねたところ、その溶製条件によってはむしろ両者の間には相違があることが判明してきた。すなわち、低融点組成を有する酸化物系介在物がそのまま圧延鋼材まで維持された場合には、上述したように圧延工程で伸展した形状となる。このため、この発明に基づいても、薄鋼板の種々の特性、特に表面性状や圧延と垂直方向の延びといった特性がばらつくがあり、さらなる改善を図る必要がある。
特公平2−9646号公報 特許第3422612号公報 特許第3436857号公報 特許第3852396号公報
However, in the present invention, as described in paragraphs 0058 and 0059, the SiO 2 concentration in inclusions is basically limited in order to achieve a low melting point. In addition, it was understood that the composition form of inclusions in the molten steel stage and the composition form of inclusions in the rolled steel stage were almost the same, but when the present inventors further researched, depending on the melting conditions Rather, it has been found that there is a difference between the two. That is, when the oxide inclusion having the low melting point composition is maintained as it is to the rolled steel material, it becomes a shape extended in the rolling process as described above. For this reason, even in accordance with the present invention, various properties of the thin steel sheet, particularly surface properties and properties such as elongation in the direction perpendicular to rolling, vary, and further improvement is required.
Japanese Patent Publication No. 2-9646 Japanese Patent No. 3422612 Japanese Patent No. 3436857 Japanese Patent No. 3852396

このような状況下にあって、本発明者らは、先に特願2007−054511号により、極低炭素を含み、Al濃度を極低水準、具体的には0.005%以下とし、かつTi等の酸素との親和力を有する合金を一定量含有する冷間圧延鋼材は、同じ強度水準に合金成分を調整しても、深絞り性の指標であるランクフォード値(以下「r値」という。)が高くなるとの知見に基づく発明を、提案した。   Under such circumstances, the present inventors previously made Japanese Patent Application No. 2007-054511 contain extremely low carbon, set the Al concentration to an extremely low level, specifically 0.005% or less, and A cold-rolled steel material containing a certain amount of an alloy having an affinity for oxygen such as Ti or the like, even if the alloy components are adjusted to the same strength level, is a Rankford value (hereinafter referred to as “r value”) which is an index of deep drawability. .) Proposed an invention based on the knowledge that it would be high.

本発明者らは、この検討の中で、極低炭素でかつAl濃度を極低水準に維持し、かつTi等の酸素との親和力を有する合金を一定量含有する鋼を製造する際に、Ti脱酸鋼における種々の鋼材特性と、薄鋼板の表面性状の美麗さとを両立するには、むしろ酸化物系介在物はTiOx濃度が高い組成を有し、その形態は孤立点在する塊状形態であることが望ましいとの知見を得た。   In this study, the inventors have produced a steel containing a certain amount of an alloy having an extremely low carbon, maintaining an Al concentration at an extremely low level, and having an affinity for oxygen such as Ti. In order to achieve both the various steel properties and the beautiful surface properties of the thin steel sheet in the Ti deoxidized steel, the oxide inclusions have a composition with a high TiOx concentration, and the form is a lump-like form that is scattered in isolation. It was found that it is desirable.

しかしながら、このような形態を有する酸化物系介在物は、従来から指摘されているように、連続鋳造時に浸漬ノズルの閉塞や、これに起因した薄鋼板の表面性状の劣化を生じるので、これらを防止する必要がある。   However, the oxide inclusions having such a form cause the clogging of the immersion nozzle and the deterioration of the surface properties of the thin steel plate during the continuous casting as pointed out conventionally. There is a need to prevent.

本発明は、Ti脱酸鋼におけるO含有量、および熱間圧延以後の鋼材中の酸化物系介在物を特定することによって上記課題を解決することができるという知見に基づくものである。   The present invention is based on the knowledge that the above problem can be solved by specifying the O content in Ti deoxidized steel and the oxide inclusions in the steel after hot rolling.

本発明は、C:0.0005%以上0.025%以下、Si:0.003%以上0.12%以下、Mn:0.05%以上2.5%以下、P:0.15%以下、S:0.02%以下、N:0.006%以下、sol.Al:0.0002%以上0.003%以下、Ti:0.005%以上0.05%以下、Nb:0.005%以上0.20%以下を含有し、全酸素濃度T.O:0.003%以上0.008%以下を含み、介在物に因る酸素濃度Oinc:0.0025%以上0.007%以下を含み、任意添加元素として、Feの一部に代えて(I)B:0.0020%以下、および/または(II)Cu: 1.0%以下、Ni: 1.0%以下、およびCr:1.0%以下からなる群から選ばれる1種または2種以上を含み、残部Feおよび不純物からなる化学組成を有するとともに、鋼材中の酸化物系介在物のSiOが1.0%未満であり、90.0%以上がTiOx、AlおよびMnOの3元系から構成され、この3元系での組成範囲がTiOx:50.0%以上95.0%以下、Al:3.0%以上35.0%以下、MnO:2.0%以上25.0%以下にあることを特徴とする極低炭素鋼板である。 In the present invention, C: 0.0005% to 0.025%, Si: 0.003% to 0.12%, Mn: 0.05% to 2.5%, P: 0.15% or less , S: 0.02% or less, N: 0.006% or less, sol. Al: 0.0002% to 0.003%, Ti: 0.005% to 0.05%, Nb: 0.005% to 0.20%, and the total oxygen concentration T.I. O: 0.003% to 0.008% inclusive, oxygen concentration due to inclusions Oinc: 0.0025% to 0.007% inclusive, as an optional additive element, instead of a part of Fe ( One or two selected from the group consisting of I) B: 0.0020% or less, and / or (II) Cu: 1.0% or less, Ni: 1.0% or less, and Cr: 1.0% or less It has a chemical composition comprising more than seeds and the balance Fe and impurities, and the oxide inclusions in the steel material have a SiO 2 content of less than 1.0%, and 90.0% or more of TiOx, Al 2 O 3 and The composition range of the ternary system of MnO is TiOx: 50.0% to 95.0%, Al 2 O 3 : 3.0% to 35.0%, MnO: 2 Extremely low carbon characterized by being in the range of 0.0% to 25.0% It is a plate.

別の観点からは、転炉精錬および真空精錬を含む精錬を経て行う、上述した本発明に係る極低炭素鋼板の製造方法であって、この精錬におけるTi添加によるTi調整前の溶鋼の酸素濃度が0.004%以上0.015%以下の段階で溶鋼にTiを添加し、溶鋼中のTi濃度を0.005%以上0.05%以下とするとともに溶鋼中のO濃度を0.003%以上0.008%以下としてから、連続鋳造することを特徴する極低炭素鋼板の製造方法である。   From another point of view, it is a manufacturing method of the ultra-low carbon steel sheet according to the present invention described above, which is performed through refining including converter refining and vacuum refining, and the oxygen concentration of molten steel before Ti adjustment by Ti addition in this refining Is added to the molten steel at a stage of 0.004% to 0.015%, the Ti concentration in the molten steel is 0.005% to 0.05% and the O concentration in the molten steel is 0.003%. It is the manufacturing method of the ultra-low carbon steel plate characterized by performing continuous casting after setting it to 0.008% or less.

本発明により、介在物酸素濃度を所定量含有し、特定組成のTiO系介在物を含むことによって、強度や伸び、さらには深絞り性等の鋼板特性を維持しつつ、表面性状に優れ、かつ連続鋳造時の浸漬ノズルの閉塞およびそれによって引き起こされる鋼材表面性状の劣化等も解決できる、極低炭素濃度かつ極低Al濃度を有するTi脱酸鋼からなる極低炭素鋼板および、これを工業的規模で量産する方法を提供することができる。 According to the present invention, the inclusion oxygen concentration is contained in a predetermined amount, and by including a TiO x- based inclusion of a specific composition, the surface properties are excellent while maintaining the steel sheet characteristics such as strength and elongation, and deep drawability, Also, an ultra-low carbon steel plate made of Ti deoxidized steel having an ultra-low carbon concentration and an ultra-low Al concentration, which can solve the obstruction of the immersion nozzle during continuous casting and the deterioration of the steel surface properties caused thereby, It is possible to provide a method for mass production on a target scale.

以下、本発明を実施するための最良の形態を説明する。はじめに、本発明の技術思想を説明する。
極低炭素鋼の組成を有する薄鋼板の基本特性を損なうことがない酸化物系介在物の形態を検討するため、薄鋼板の基本特性である強度および伸びと、介在物の形態との関係を、Alを極少量しか含有しない非Al脱酸のTi脱酸鋼と、ほぼ同様の組成を有するAl脱酸鋼とを比較しながら、調査した。
Hereinafter, the best mode for carrying out the present invention will be described. First, the technical idea of the present invention will be described.
In order to investigate the form of oxide inclusions that do not impair the basic characteristics of thin steel sheets with an ultra-low carbon steel composition, the relationship between the strength and elongation, which are the basic characteristics of thin steel sheets, and the form of inclusions A non-Al deoxidized Ti deoxidized steel containing only a very small amount of Al was compared with an Al deoxidized steel having almost the same composition.

その結果、Al脱酸鋼では、酸化物系介在物としてアルミナクラスタを生成し、このアルミナクラスタが薄鋼板の表面に残存することが、いわいるスリバー疵の生成要因となり、表面性状を著しく損ねる。一方、このアルミナクラスタは、熱間圧延および冷間圧延により介在物が破砕されて疎な点列状で内在される状態として存在すれば、鋼の清浄度が著しく悪くない限り、鋼材の基本特性に影響を及ぼさないことが判明した。   As a result, in the Al deoxidized steel, alumina clusters are generated as oxide inclusions, and the alumina clusters remain on the surface of the thin steel plate, which is the cause of the so-called sliver soot, and the surface properties are significantly impaired. On the other hand, if this alumina cluster exists as a state in which inclusions are crushed by hot rolling and cold rolling and are contained in a sparse dot array, the basic properties of the steel are not limited unless the cleanliness of the steel is significantly worse. Was found to have no effect.

これに対し、Ti脱酸鋼では、群落状介在物は生成されないので、介在物が薄鋼板の表面に残存しても、表面性状の劣化要因にはならない。しかし、Ti脱酸鋼では酸化物系介在物の形態が、薄鋼板の特性のうちr値に影響すること、すなわち、酸化物系介在物の形態が熱間圧延工程で伸展した形態であるとr値も低下する傾向にあることが判明した。一方、酸化物系介在物が熱間圧延工程でも伸展し難い孤立した塊状の形態を呈すると、r値はむしろ向上することが判明した。この理由は、Ti脱酸鋼は、Al脱酸鋼よりも弱脱酸であるため、酸化物系介在物の量そのものが多いこと、および酸化物系介在物が析出物の不均質核生成の起点となること等があるものと推定される。   On the other hand, in Ti deoxidized steel, no community inclusions are generated, so even if the inclusions remain on the surface of the thin steel plate, it does not cause deterioration of the surface properties. However, in the Ti deoxidized steel, the oxide inclusions affect the r value among the properties of the thin steel sheet, that is, the oxide inclusions are extended in the hot rolling process. It was found that the r value also tends to decrease. On the other hand, it has been found that the r-value is rather improved when the oxide inclusions have an isolated lump shape that is difficult to extend even in the hot rolling process. The reason for this is that Ti deoxidized steel is weaker deoxidized than Al deoxidized steel, so that the amount of oxide inclusions itself is large, and oxide inclusions cause heterogeneous nucleation of precipitates. It is estimated that this may be the starting point.

Ti脱酸鋼における、このように伸展し難い孤立した塊状の形態の酸化物は、TiO主体の組成を有する。ここで、「TiO」とは鋼中のTi酸化物の総称である。Tiは価数として4価、あるいは3価を取り得るため、TiO、Ti、Ti等の存在形態が考えられ、さらに非化学量論組成も存在するので、TiOと表記した。この酸化物は、TiOおよびTiといったTi酸化物を主体とし、かつAlやMnOを含む成分からなるものである。一方、Ti脱酸鋼において伸展した酸化物は、TiO、Ti、Al、MnO、SiO等の成分が複合した、液相線温度が低く熱間圧延の温度でも軟質な介在物であった。 The isolated massive oxide in the Ti deoxidized steel which is difficult to extend has a composition mainly composed of TiO x . Here, “TiO x ” is a general term for Ti oxides in steel. Since Ti is capable of forming a tetravalent or trivalent as valence, considered the presence forms such as TiO 2, Ti 3 O 5, Ti 2 O 3, since there is also a further non-stoichiometric composition, and TiO x Indicated. This oxide is composed mainly of a Ti oxide such as TiO 2 and Ti 2 O 3 and a component containing Al 2 O 3 or MnO. On the other hand, the extended oxide in Ti deoxidized steel is composed of TiO 2 , Ti 2 O 3 , Al 2 O 3 , MnO, SiO 2, etc., which has a low liquidus temperature and is soft even at the temperature of hot rolling. Inclusions.

ところで、Ti脱酸鋼は、連続鋳造を採用した量産工程では、条件によっては、酸化物系介在物による浸漬ノズルの閉塞が容易に生じることが知られている。特に極低炭素鋼では、精錬段階の途中まで脱炭処理のために溶鋼中酸素濃度が高いことからその後の脱酸で生成する酸化物系介在物を除去する時間が制約されるために、浸漬ノズルの閉塞が発生する可能性は非常に高まる。これを防ぐためには、溶鋼中の酸化物系介在物は液相を呈した介在物に制御する方法があるが、薄鋼板の特性に対しての介在物形態とは望ましい形態が不一致である。   By the way, it is known that Ti deoxidized steel is easily clogged with an immersion nozzle due to oxide inclusions in a mass production process employing continuous casting depending on conditions. Especially in ultra-low carbon steel, since the oxygen concentration in the molten steel is high due to decarburization until the middle of the refining stage, the time for removing oxide inclusions generated by the subsequent deoxidation is limited. The possibility of nozzle clogging is greatly increased. In order to prevent this, there is a method in which the oxide inclusions in the molten steel are controlled to inclusions exhibiting a liquid phase, but the desired form is inconsistent with the inclusion form for the properties of the thin steel sheet.

そこで、極低炭素鋼の組成を基本としたTi脱酸鋼の酸化物系介在物について調査したところ、精錬時の溶鋼の段階における介在物の組成形態と、連続鋳造以降の鋳片もしくは圧延の段階における介在物の組成形態とが異なる場合があることを判明した。すなわち、溶鋼の段階では、液相を含むTiOおよびTiを主体とする組成形態であるのに対し、鋳片以降の段階では、さらにTiOおよびTi濃度が増加して塊状を呈する組成形態になる状態がある。このような状態は、Tiを脱酸剤に使用した場合は、Ti脱酸の温度依存性が影響し、温度が低下する過程でさらに脱酸する方向に進むため、すなわち介在物中のTi酸化物が濃化して液相を含む状態から塊状を呈する状態に変化するためと解される。さらには、このような状態は、連続鋳造以降の圧延鋼材の状態で、以下の4つの条件を満たすことにより実現できる。 Therefore, when the oxide inclusions of Ti deoxidized steel based on the composition of ultra-low carbon steel were investigated, the composition form of inclusions at the stage of molten steel during refining, and the slab or rolling after continuous casting It was found that the composition form of inclusions in the stage may be different. That is, in the molten steel stage, the composition is mainly composed of TiO 2 and Ti 2 O 3 containing a liquid phase, whereas in the stage after the slab, the TiO 2 and Ti 2 O 3 concentrations are further increased. There is a state in which the composition is in the form of a lump. In such a state, when Ti is used as a deoxidizing agent, the temperature dependence of Ti deoxidation affects, and in the process of lowering the temperature, it proceeds in the direction of further deoxidation, that is, Ti oxidation in inclusions. It is understood that the substance is concentrated to change from a state containing a liquid phase to a state of forming a lump. Furthermore, such a state can be realized by satisfying the following four conditions in the state of the rolled steel material after continuous casting.

すなわち、本発明の技術思想を以下に列記する。
(a)アルミナクラスタが薄鋼板の表面性状を悪化し、連続鋳造時の浸漬ノズルの閉塞の要因となり、さらにはそのために薄鋼板の表面性状を悪化させることを防ぐために、Ti脱酸鋼を用いる。
That is, the technical ideas of the present invention are listed below.
(A) Ti deoxidized steel is used in order to prevent the alumina cluster from deteriorating the surface properties of the thin steel plate, causing the clogging of the immersion nozzle during continuous casting, and further deteriorating the surface properties of the thin steel plate. .

(b)Ti脱酸鋼においては、介在物の組成形態が薄鋼板の深絞り性に悪影響を及ぼし得るので、介在物の組成形態を、薄鋼板の基本特性を劣化させない塊状形態に制御する。 (B) In Ti deoxidized steel, the composition form of inclusions can adversely affect the deep drawability of the thin steel sheet, so the composition form of inclusions is controlled to a massive form that does not deteriorate the basic characteristics of the thin steel sheet.

(c)溶鋼段階で介在物の組成形態をこのような塊状形態に制御すると、浸漬ノズルの閉塞を生じ、スラブの量産性や表面性状の悪化を誘発するので、溶鋼段階では、液相を含む、浸漬ノズルの閉塞を生じ難い組成形態に制御し、かつTi脱酸が有する脱酸平衡の温度依存性を利用して、鋳造工程および圧延工程において塊状形態に介在物を制御する。 (C) When the composition form of inclusions is controlled in such a massive form at the molten steel stage, the immersion nozzle is blocked, and mass production of the slab and deterioration of surface properties are induced. Therefore, the molten steel stage includes a liquid phase. In addition, the composition is controlled so as not to cause the clogging of the immersion nozzle, and the inclusions are controlled in a lump form in the casting process and the rolling process by utilizing the temperature dependence of the deoxidation equilibrium of Ti deoxidation.

(d)溶鋼段階では液相を含有する介在物に組成形態を制御し、かつ連続鋳造以降の圧延鋼材の状態で塊状の介在物に組成形態を制御可能な薄鋼板の条件、およびそのような鋼材を得るのに必要な製鋼条件を特定する。 (D) the condition of the thin steel plate that can control the composition form in inclusions containing a liquid phase in the molten steel stage, and can control the composition form into massive inclusions in the state of rolled steel after continuous casting, and such Identify the steelmaking conditions necessary to obtain steel.

次に、本実施の形態の極低炭素鋼板の特徴を説明する。
(全酸素濃度T.O:0.003%以上0.008%以下)
全酸素濃度T.Oは、0.003%以上0.008%以下である。弱脱酸鋼では、予備脱酸を経ても、なお鋼材中に酸素が含有された状態である。ここで、T.Oが0.008%を超えると、Tiを過剰に添加しても酸化物系介在物にMnOが25.0%以上および/またはSiOが1.0%以上の状態となり、介在物組成を制御し難く、介在物が低融点の組成のまま持ちきたされてしまう。一方、全酸素濃度T.Oが0.003%未満であると、溶鋼の段階で介在物の形態が液相状態を実現できないばかりか、Al濃度が高い介在物となる場合もあり、Ti脱酸鋼の特徴である表面性状の優位性を維持できなくなる。
Next, the features of the ultra-low carbon steel plate of the present embodiment will be described.
(Total oxygen concentration T.O: 0.003% to 0.008%)
Total oxygen concentration O is 0.003% or more and 0.008% or less. In weakly deoxidized steel, even after preliminary deoxidation, the steel material still contains oxygen. Here, T.W. If O exceeds 0.008%, even if Ti is added excessively, the oxide inclusions will be in a state where MnO is 25.0% or more and / or SiO 2 is 1.0% or more. It is difficult to control, and inclusions are brought in with a low melting point composition. On the other hand, the total oxygen concentration T.I. If O is less than 0.003%, the form of inclusions in the molten steel stage cannot realize a liquid phase state, and there may be inclusions with high Al 2 O 3 concentration. It becomes impossible to maintain the superiority of the surface texture.

(介在物に因る酸素濃度Oinc:0.0025%以上0.007%以下)
介在物に因る酸素濃度Oincは、0.0025%以上0.007%以下である。Ti弱脱酸鋼では、鋼中に含有される全酸素濃度の全てが酸化物系介在物になるわけではない。弱脱酸鋼であっても、脱酸が充分になされ全酸素濃度の多くが酸化物系介在物として存在することが望ましく、その介在物に因る酸素濃度Oincは0.0025%以上である。しかしながら、介在物量が多すぎると鋼の清浄度が悪化するので、介在物に因る酸素濃度Oincは0.007%以下であることが望ましい。
(Oxygen concentration due to inclusion: Oinc: 0.0025% to 0.007%)
The oxygen concentration Oinc due to inclusions is 0.0025% or more and 0.007% or less. In Ti weakly deoxidized steel, not all of the total oxygen concentration contained in the steel becomes oxide inclusions. Even in the weakly deoxidized steel, it is desirable that the deoxidation is sufficiently performed and most of the total oxygen concentration exists as oxide inclusions, and the oxygen concentration Oinc due to the inclusions is 0.0025% or more. . However, since the cleanliness of steel deteriorates when the amount of inclusions is too large, the oxygen concentration Oinc due to inclusions is desirably 0.007% or less.

なお、介在物による酸素濃度の測定方法は特に限定されないが、例えば酸化物系介在物の平均組成をエネルギー分散型X線マイクロアナライザーで求めるとともに、光学顕微鏡で粒度分布を測定して、その単位面積あたりの介在物量から単位体積あたり介在物量を求め、両者から介在物に因る酸素濃度Oincを換算する方法がある。   The method for measuring the oxygen concentration by inclusions is not particularly limited. For example, the average composition of oxide inclusions is obtained with an energy dispersive X-ray microanalyzer, the particle size distribution is measured with an optical microscope, and the unit area is measured. There is a method in which the amount of inclusion per unit volume is obtained from the amount of inclusions per unit and the oxygen concentration Oinc due to the inclusions is converted from both.

(酸化物系介在物)
熱間圧延以後の鋼材中の酸化物系介在物は、TiOx、Al、MnO、SiO、MgO、CaOおよび不純物からなる。ここで、TiOxは、x=1.5〜2.0の範囲であり、換言するとTiOおよびTiから構成される酸化物を意味する。本発明のTi脱酸鋼の組成範囲では、TiOの割合が優勢であるので、TiO濃度に換算した値を用いる。
(Oxide inclusions)
Oxide inclusions in the steel material after hot rolling are composed of TiOx, Al 2 O 3 , MnO, SiO 2 , MgO, CaO and impurities. Here, TiOx ranges from x = 1.5 to 2.0, means an oxide configured in other words from TiO 2 and Ti 2 O 3. In the composition range of the Ti deoxidized steel of the present invention, since the proportion of TiO 2 is dominant, the value converted to the TiO 2 concentration is used.

酸化物系介在物は、TiOx、Al、MnOの合計が90%以上であって、かつSiOが1.0%未満である。TiOxを含む塊状の形態を呈するには、90.0%以上である。一方、SiO濃度が1.0%を上回ると、介在物が液相を含む割合が増加して、圧延鋼材中で伸展した形状の介在物となるので、SiO濃度は1.0%未満である。CaOおよびMgO濃度は、少量が含まれても塊状形態を得ることができるので、それぞれ5%以下であれば許容できる。 In the oxide inclusions, the total of TiOx, Al 2 O 3 and MnO is 90% or more, and SiO 2 is less than 1.0%. In order to exhibit a massive form containing TiOx, the content is 90.0% or more. On the other hand, if the SiO 2 concentration exceeds 1.0%, the inclusion contains a liquid phase, and the inclusion is formed in an extended shape in the rolled steel material. Therefore, the SiO 2 concentration is less than 1.0%. It is. The CaO and MgO concentrations can be obtained even if a small amount is contained, so that a bulk form can be obtained.

TiOx、AlおよびMnOの割合は、この3元系に換算した時の組成範囲が、TiOx:50.0%以上95.0%以下、Al:3.0%以上35.0%以下、MnO:2.0%以上25.0%以下である。TiOxが50.0%未満であると熱間圧延域で伸展した介在物になるとともに薄鋼板の深絞り性に悪影響を及ぼすためであり、一方95.0%を超えると溶鋼段階でも液相を含まない状態になるためである。また、Alが3.0%未満であるとTiOx濃度が95.0%を超えたり、MnO−TiOxの液相介在物を呈し溶鋼段階での制御が難しく、一方35.0%を超えると溶鋼段階で液相を含まない状態となるためである。さらに、MnOが2.0%未満であると介在物が溶鋼段階で液相を含まない状態となるためであり、25.0%を超えるとMnO−TiOxの液相介在物が多くなってしまうためである。 The ratios of TiOx, Al 2 O 3 and MnO are as follows: TiOx: 50.0% to 95.0%, Al 2 O 3 : 3.0% to 35. 0% or less, MnO: 2.0% or more and 25.0% or less. If the TiOx is less than 50.0%, it becomes inclusions that have been extended in the hot rolling zone and adversely affects the deep drawability of the thin steel sheet. This is because it is not included. Also, if Al 2 O 3 is less than 3.0%, the TiOx concentration exceeds 95.0%, or liquid phase inclusions of MnO—TiOx are present, making it difficult to control at the molten steel stage, while 35.0% It is because it will be in the state which does not contain a liquid phase in a molten steel stage when exceeding. Furthermore, if MnO is less than 2.0%, inclusions are in a state not containing a liquid phase at the molten steel stage, and if it exceeds 25.0%, liquid phase inclusions of MnO—TiOx increase. Because.

次に、本実施の形態に係る極低炭素鋼板の化学組成の限定理由を説明する。
(C:0.0005%以上0.025%以下)
Cは、Ti等の炭化物形成元素と結合し、TiC、NbCまたはその複合炭窒化析出物を形成する。このため、C含有量を適正化することによって、これら析出物の体積分率を限定して鋼の成形性の向上、すなわち、これら析出物による析出強化の効果および、焼鈍時の固溶炭素や固溶窒素の低減による深絞り性の向上を図ることができる。
Next, the reasons for limiting the chemical composition of the ultra-low carbon steel sheet according to the present embodiment will be described.
(C: 0.0005% or more and 0.025% or less)
C combines with a carbide-forming element such as Ti to form TiC, NbC or a composite carbonitride precipitate thereof. For this reason, by optimizing the C content, the volume fraction of these precipitates is limited to improve the formability of the steel, that is, the effect of precipitation strengthening by these precipitates, and solid solution carbon during annealing The deep drawability can be improved by reducing the solid solution nitrogen.

しかし、C含有量が0.0005%未満では充分な引張強度が得られない。また、溶鋼段階にあっては、炭素は溶鋼中に共存する酸素と反応し、反応物が減圧除去されることによって脱炭される。このため、C含有量を0.0005%未満とするためには長時間の真空処理を行う必要を生じ、経済的観点からも好ましくない。一方、炭素含有量が0.025%を超えると耐力が上昇し伸びが低下して、成形性が劣化する。   However, if the C content is less than 0.0005%, sufficient tensile strength cannot be obtained. In the molten steel stage, carbon reacts with oxygen present in the molten steel and is decarburized by removing the reaction product under reduced pressure. For this reason, in order to make C content less than 0.0005%, it will be necessary to perform a long-time vacuum processing, and it is not preferable also from an economical viewpoint. On the other hand, when the carbon content exceeds 0.025%, the yield strength increases, the elongation decreases, and the moldability deteriorates.

したがって、C含有量は、0.0005%以上0.025%以下とする。さらなる成形性、特にr値の確保を図るためには、C含有量を0.01%以下とすることが好ましい。さらに好ましい範囲は、0.0010%以上0.0030%以下である。   Therefore, the C content is 0.0005% or more and 0.025% or less. In order to secure further moldability, particularly r value, the C content is preferably 0.01% or less. A more preferable range is 0.0010% or more and 0.0030% or less.

(Si:0.003%以上0.12%以下)
Siは、安価な固溶強化元素であり、低コストで薄鋼板の高強度化を図ることができるので、強度の向上を目的として含有する。また、Ti弱脱酸鋼にあっては予備脱酸および複合脱酸の効果も期待できる。しかし、介在物中にSiOが含まれると、薄鋼板の本来の性能が発揮できなくなる可能性があるので、その点では低い濃度であることが望ましい。Si濃度が0.12%を超えると、介在物中のSiO濃度を1%未満にすることが困難となる。望ましくは0.08%以下、さらに望ましくは0.05%以下である。一方、Siは粗溶鋼の段階で含有されるものであり、Si含有量を極端に低下させるには、所定の処理が必要になるので生産性の低下を招くので、Si含有量を0.003%以上とする。以上の理由により、Si含有量は、0.003%以上0.12%以下とする。
(Si: 0.003% to 0.12%)
Si is an inexpensive solid solution strengthening element, and can increase the strength of a thin steel sheet at low cost. Therefore, Si is contained for the purpose of improving the strength. Further, in the case of Ti weakly deoxidized steel, the effects of preliminary deoxidation and complex deoxidation can be expected. However, if SiO 2 is contained in the inclusions, the original performance of the thin steel sheet may not be exhibited. Therefore, it is desirable that the concentration be low. If the Si concentration exceeds 0.12%, it is difficult to make the SiO 2 concentration in the inclusions less than 1%. Desirably, it is 0.08% or less, and more desirably 0.05% or less. On the other hand, Si is contained at the stage of the coarse molten steel, and in order to drastically reduce the Si content, a predetermined treatment is required, leading to a decrease in productivity. % Or more. For these reasons, the Si content is set to 0.003% or more and 0.12% or less.

(Mn:0.05%以上2.5%以下)
Mnは、固溶強化により鋼板を高強度化する作用を有し、またTi弱脱酸鋼にあっては、Mnとの複合脱酸の効果により脱酸を強化する働きがある。したがって、Mn含有量は0.05%以上とする。望ましくは0.10%以上、さらに望ましくは0.15%越とする。一方、Mn含有量が2.5%を超えると耐力の上昇と伸びの劣化が顕著になり、加工時にしわや割れが生じやすくなる。また、Mn合金鉄の使用量も増加し、Mn合金鉄に含有される炭素を除去するために製造コストが嵩む。このため、Mn含有量の上限を2.5%とする。望ましい上限は0.80%未満であり、さらに好ましい上限は0.31%未満である。
(Mn: 0.05% to 2.5%)
Mn has the effect of increasing the strength of the steel sheet by solid solution strengthening, and in the case of Ti weakly deoxidized steel, it has a function of strengthening deoxidation by the effect of combined deoxidation with Mn. Therefore, the Mn content is 0.05% or more. Desirably, it is 0.10% or more, more desirably 0.15%. On the other hand, when the Mn content exceeds 2.5%, the yield strength and the deterioration of the elongation become remarkable, and wrinkles and cracks are likely to occur during processing. Moreover, the usage-amount of Mn alloy iron also increases and the manufacturing cost increases in order to remove the carbon contained in Mn alloy iron. For this reason, the upper limit of the Mn content is set to 2.5%. A desirable upper limit is less than 0.80%, and a more preferred upper limit is less than 0.31%.

(P:0.15%以下)
Pは、固溶強化によって鋼板を高強度化する有用な元素であり、強度の向上を目的として含有する。しかし、P含有量が過剰になると、粒界偏析による脆化が懸念される。また、冷延鋼板の表面に溶融亜鉛めっきを施す鋼種では合金化処理性が低下してめっき密着性が低下したり、めっき表面にP偏析に起因する筋模様が現れたりする。したがって、P含有量は0.15%以下とする。0.06%以下とすることが好ましい。下限については、脱P処理に要する製造コストの上昇を抑制する観点から、0.005%以上とすることが好ましい。
(P: 0.15% or less)
P is a useful element for increasing the strength of a steel sheet by solid solution strengthening, and is contained for the purpose of improving the strength. However, when the P content is excessive, there is a concern about embrittlement due to grain boundary segregation. Moreover, in the steel type which carries out the hot dip galvanization on the surface of a cold-rolled steel plate, alloying processability falls and plating adhesiveness falls, or the streak pattern resulting from P segregation appears on the plating surface. Therefore, the P content is 0.15% or less. It is preferable to make it 0.06% or less. About a lower limit, it is preferable to set it as 0.005% or more from a viewpoint of suppressing the raise of the manufacturing cost required for P removal process.

(S:0.02%以下)
Sは、不純物として鋼板中に存在するが、S含有量が過剰であると薄鋼板の表面にスケール疵が生じ易くなり、外観品質を損なう場合がある。そのため、S含有量は0.02%以下とする。0.01%以下とすることが好ましい。
(S: 0.02% or less)
S is present in the steel sheet as an impurity, but if the S content is excessive, scale wrinkles are likely to occur on the surface of the thin steel sheet, and the appearance quality may be impaired. Therefore, the S content is 0.02% or less. It is preferable to make it 0.01% or less.

(N:0.006%以下)
Nは、過剰に含有すると、耐力が上昇したり、ストレッチャーストレインが発生したりして、加工時に薄鋼板の面歪みが発生し易くなる。このため、N含有量は0.006%以下とする。0.003%以下とすることが好ましい。
(N: 0.006% or less)
When N is contained excessively, the yield strength is increased or stretcher strain is generated, and surface distortion of the thin steel sheet is likely to occur during processing. For this reason, N content shall be 0.006% or less. It is preferable to make it 0.003% or less.

(sol.Al:0.0002%以上0.003%以下)
鋼中Alは、酸化物等の分析時に使用する酸に溶解しない形態と、固溶あるいは窒化物等の酸に溶解する形態とがあり、一般にAl含有量は酸に可溶な量で表し、これをsol.Alと表記する。sol.Al含有量は、溶鋼段階での溶存Al量と関連づけられるので、鋼の脱酸および介在物の組成形態に強く影響する。
(Sol.Al: 0.0002% or more and 0.003% or less)
Al in steel has a form that does not dissolve in acid used for analysis of oxides and the like, and a form that dissolves in acid such as solid solution or nitride, generally Al content is expressed in an amount soluble in acid, This is sol. Indicated as Al. sol. Since the Al content is related to the amount of dissolved Al in the molten steel stage, it strongly affects the deoxidation of steel and the composition form of inclusions.

本発明では、薄鋼板の段階でAl濃度は35.0%以下を必要とするが、Alが高い場合はこれを超えてしまうので、sol.Al含有量は0.003%以下とする。望ましくは0.001%以下である。 In the present invention, the Al 2 O 3 concentration needs to be 35.0% or less at the stage of the thin steel plate, but when Al is high, it exceeds this, so that the sol. Al content shall be 0.003% or less. Desirably, it is 0.001% or less.

一方、Al自体は、溶鋼の製造工程で予備脱酸や温度調整に使用できるとともに、薄鋼板中のアルミナ系介在物の濃度が3.0%以上は必要であるので、その含有量を0.0002%以上とする。0.0003%以上とすることが好ましい。   On the other hand, Al itself can be used for preliminary deoxidation and temperature adjustment in the manufacturing process of molten steel, and the concentration of alumina inclusions in the thin steel plate is required to be 3.0% or more. 0002% or more. It is preferable to set it as 0.0003% or more.

(Ti:0.005%以上0.05%以下)
本実施の形態に係る極低炭素鋼板では、鋼中Tiは溶鋼段階では脱酸するとともに、薄鋼板の諸特性を安定させるために必要なTiOxの介在物を生成させる機能を有する重要な元素である。また、Tiの一部はTiNとして析出することにより、Nによるストッレッチャーストレインや耐力上昇を抑制し、加工時の面歪みを抑制する。そのためTi含有量を0.005%以上とする。
(Ti: 0.005% to 0.05%)
In the ultra-low carbon steel sheet according to the present embodiment, Ti in the steel is an important element having a function of deoxidizing in the molten steel stage and generating inclusions of TiOx necessary for stabilizing various properties of the thin steel sheet. is there. Further, a part of Ti precipitates as TiN, thereby suppressing the stretcher strain and the yield strength increase due to N, and suppressing the surface distortion during processing. Therefore, the Ti content is set to 0.005% or more.

一方、Ti含有量が0.05%を超えると、TiCの析出量が増加して伸びを劣化させ、加工時に面歪みや割れが生じるようになる。また、本実施の形態に係る極低炭素鋼板に溶融亜鉛めっきを施す場合には、めっき皮膜の表面に筋模様を呈するといった問題も生じる。したがって、Ti含有量は0.05%以下とする。なお、Tiは比較的高価な元素であり製造コストに影響するから、薄鋼板の特性維持の観点や加工時の面歪みの発生防止の観点から許容される場合には、その含有量を0.025%以下とすることが好ましい。   On the other hand, if the Ti content exceeds 0.05%, the amount of TiC deposited increases and the elongation deteriorates, and surface distortion and cracking occur during processing. In addition, when hot dip galvanizing is performed on the ultra-low carbon steel sheet according to the present embodiment, there is a problem that a streak pattern is formed on the surface of the plating film. Therefore, the Ti content is 0.05% or less. In addition, since Ti is a relatively expensive element and affects the manufacturing cost, when it is allowed from the viewpoint of maintaining the characteristics of the thin steel sheet and from the viewpoint of preventing the occurrence of surface distortion during processing, the content thereof is set to 0. It is preferable to make it 025% or less.

(Nb:0.005%以上0.20%以下)
Nbは、鋼中にあってCと結合しNbCの析出物を生成し、鋼板の機械特性を向上させる。特にTi脱酸鋼では、Cと結びつくTi量が必ずしも充分ではないのでNbは必須となる。このような効果を得るためにNbは0.005%以上含有する。Nb含有量が0.005%未満であると、引張強度を安定して得ることが困難になる場合がある。より安定した効果を得るためには0.01%以上とすることが好ましい。一方、Nb含有量が0.20%を超えると、C含有量に対してNb含有量が過剰となり、かえって耐力が上昇し伸びが低下する。したがって、Nb含有量の上限を0.20%とする。望ましい上限は0.05%以下である。
(Nb: 0.005% to 0.20%)
Nb is in steel and combines with C to form NbC precipitates, improving the mechanical properties of the steel sheet. In particular, in Ti deoxidized steel, the amount of Ti associated with C is not always sufficient, so Nb is essential. In order to obtain such an effect, Nb is contained by 0.005% or more. If the Nb content is less than 0.005%, it may be difficult to stably obtain the tensile strength. In order to obtain a more stable effect, the content is preferably 0.01% or more. On the other hand, when the Nb content exceeds 0.20%, the Nb content becomes excessive with respect to the C content, and on the contrary, the yield strength increases and the elongation decreases. Therefore, the upper limit of the Nb content is 0.20%. A desirable upper limit is 0.05% or less.

Feの一部に換えて以下に列記する元素を任意添加元素として、単独であるいは2種以上を複合して含有することにより、本発明の効果を享受しながら、薄鋼板の特性をさらに改善することができる。   The element listed below as an optional additive element instead of a part of Fe is contained alone or in combination of two or more to further improve the properties of the thin steel sheet while enjoying the effects of the present invention. be able to.

(B:0.0020%以下)
Bは、二次加工脆化を防止する作用を有するので含有することが好ましい。ただし、B含有量が0.0020%を超えると、r値が顕著に低下する。このため、B含有量は0.0020%以下とすることが望ましい。B含有量を0.0003%以上0.0010%以下とすれば、B添加の効果を効率的に享受することができ、望ましい。
(B: 0.0020% or less)
Since B has the effect | action which prevents secondary work embrittlement, it is preferable to contain. However, when the B content exceeds 0.0020%, the r value is significantly reduced. For this reason, it is desirable that the B content be 0.0020% or less. If the B content is 0.0003% or more and 0.0010% or less, the effect of B addition can be enjoyed efficiently, which is desirable.

(Cu:1.0%以下、Ni:1.0%以下、Cr:1.0%以下)
Cu、Ni、Crは、いずれも、強度を確保するために含有してもよい。しかし、過剰に添加しても効果は飽和し製造コストが嵩むだけとなる。そこで、Cu、Ni、Crそれぞれの含有量は、いずれも、1.0%以下とすることが望ましい。
(Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less)
Cu, Ni, and Cr may all be contained in order to ensure strength. However, even if added excessively, the effect is saturated and the manufacturing cost only increases. Therefore, the contents of Cu, Ni, and Cr are all preferably set to 1.0% or less.

上述した以外の組成は、Feおよび不純物である。
次に、本実施の形態の極低炭素鋼板の製造方法を、工程順に説明する。
Compositions other than those described above are Fe and impurities.
Next, the manufacturing method of the ultra-low carbon steel plate of this Embodiment is demonstrated in order of a process.

(転炉精錬および真空精錬を含む精錬工程、および連続鋳造工程)
転炉等の製鋼炉で脱炭処理を行い、C濃度が0.04%から0.07%である低炭素溶鋼として、未脱酸のまま取鍋などの容器に出鋼する。Cを含む溶鋼は、さらにRH装置等の真空脱ガス装置に搬送されて真空脱炭処理が行われ、C濃度が0.025%以下である極低炭素溶鋼となる。この際の脱炭反応には溶鋼にCと反応するOを含有していることが要求され、そのO濃度は転炉から出鋼された段階で0.03%から0.08%程度である。
(Refining process including converter refining and vacuum refining, and continuous casting process)
A decarburization process is performed in a steelmaking furnace such as a converter, and the steel is discharged into a container such as a ladle without deoxidization as low carbon molten steel having a C concentration of 0.04% to 0.07%. The molten steel containing C is further transported to a vacuum degassing apparatus such as an RH apparatus and subjected to vacuum decarburization treatment, and becomes an ultra-low carbon molten steel having a C concentration of 0.025% or less. In this decarburization reaction, it is required that the molten steel contains O that reacts with C, and the O concentration is about 0.03% to 0.08% when the steel is discharged from the converter. .

この真空脱炭に要する処理時間の溶鋼温度低下を補償するために、溶鋼の加熱処理が真空脱炭処理の前後にしばしば行われる。この加熱処理には、溶鋼をAl等の金属と酸素ガスとの酸化反応により加熱する方法や、黒鉛電極から電弧を発生させて溶鋼に通電してジュール熱の供給により電気加熱する方法があり、本発明ではいずれであってもよい。なお、Alの酸化反応による加熱処理の場合は、Alの燃焼によって生じるAl系介在物の多量の懸濁を生じるので、後述するTi調整前の成分調整の段階で、環流等の溶鋼撹拌操作により酸化物系介在物の組成制御を阻害しない程度に除去することが望ましい。一方、Al添加は本発明の微量Al含有を満たす一手段にもなり、また酸素ガス供給は、Ti調整前の酸素濃度の調整の一手段となる。 In order to compensate for the molten steel temperature drop during the processing time required for this vacuum decarburization, heat treatment of the molten steel is often performed before and after the vacuum decarburization treatment. In this heat treatment, there is a method of heating the molten steel by an oxidation reaction between a metal such as Al and oxygen gas, or a method of generating an electric arc from a graphite electrode and electrically heating the molten steel by supplying Joule heat, Any may be used in the present invention. In the case of heat treatment by Al oxidation reaction, a large amount of suspension of Al 2 O 3 inclusions generated by Al combustion is generated, so in the stage of component adjustment before Ti adjustment described later, molten steel such as reflux It is desirable to remove to the extent that the composition control of the oxide inclusions is not hindered by the stirring operation. On the other hand, the addition of Al also serves as a means for satisfying the trace Al content of the present invention, and the oxygen gas supply serves as a means for adjusting the oxygen concentration before Ti adjustment.

真空精錬による脱炭後に、Ti以外の酸素との親和力の弱い元素の成分調整を行う。ここで、Si、Nb、Bといった元素はフェロシリコン、フェロニオブ、フェロボロンといった合金鉄により成分調整を行うと、これらが含有する少量のAlによって溶鋼中に微量のAlを含有させることの補助的な役割を果たすことができる。   After decarburization by vacuum refining, the components of elements having a weak affinity with oxygen other than Ti are adjusted. Here, when elements such as Si, Nb, and B are adjusted by alloying iron such as ferrosilicon, ferroniobium, and ferroboron, an auxiliary role of containing a small amount of Al in the molten steel by a small amount of Al contained in these elements. Can be fulfilled.

Ti以外の元素の成分調整を概ね実施した後に、O濃度の調整を行う。O濃度の調整は、成分調整時のSi、Mn濃度、O濃度、取鍋スラグの組成制御およびスラグ改質剤の添加、溶鋼環流等の撹拌操作などによって実施することができる。O濃度の制御は、従来から実施されている半経験的な制御方法や、近年実用化の域にあるO濃度の迅速分析装置による分析値を用いたフィードバック制御などが適用できる。   After substantially adjusting the components of elements other than Ti, the O concentration is adjusted. Adjustment of O concentration can be carried out by stirring operations such as Si, Mn concentration, O concentration, composition control of ladle slag, addition of slag modifier, molten steel reflux, etc. during component adjustment. For the control of the O concentration, a semi-empirical control method that has been conventionally used, feedback control using an analysis value by a rapid analyzer of O concentration that has been put into practical use in recent years, and the like can be applied.

Ti調整前のO濃度は0.004%以上0.015%以下である。その理由は、Ti調整前のO濃度が0.004%未満であると、Ti調整後の酸化物系介在物中のTiOx濃度および/またはAl濃度および/またはMgO等のその他酸化物濃度が高くなり、このような状態では溶鋼段階で液相を含む介在物形態を安定して得ることができない。また、酸素濃度が0.015%を超えると介在物中のMnO濃度および/またはSiO濃度が高くなり、凝固以降の圧延段階で塊状介在物を得ることができなくなる。 The O concentration before Ti adjustment is 0.004% or more and 0.015% or less. The reason is that if the O concentration before Ti adjustment is less than 0.004%, the TiOx concentration and / or Al 2 O 3 concentration in the oxide inclusions after Ti adjustment and / or other oxides such as MgO In such a state, the concentration cannot be obtained stably in the molten steel stage. On the other hand, if the oxygen concentration exceeds 0.015%, the MnO concentration and / or the SiO 2 concentration in the inclusions become high, and it becomes impossible to obtain massive inclusions in the rolling stage after solidification.

さらに、Ti調整によりTi濃度を0.005%以上0.05%以下とする際には、全酸素濃度を0.003%以上0.008%以下とする。その理由は前述のとおりである。
このように、Ti調整の前後における全酸素濃度を所定範囲に調整することにより、溶鋼段階での介在物の組成形態は、液相を含むTiOx系介在物とすることが可能となり、連続鋳造工程における浸漬ノズルの閉塞を抑制することができ、これにより、本実施の形態の鋼を、安定して量産することができるようになる。さらに、浸漬ノズルの閉塞およびこれを防ぐために実施される浸漬ノズルの内部でのArガスの吹き込みによって誘発されるスラブの表面性状の劣化、ひいてはこのスラブを母材とする圧延鋼材の表面性状の悪化を、いずれも抑制することができる。
Further, when the Ti concentration is adjusted to 0.005% or more and 0.05% or less by Ti adjustment, the total oxygen concentration is set to 0.003% or more and 0.008% or less. The reason is as described above.
Thus, by adjusting the total oxygen concentration before and after the Ti adjustment to a predetermined range, the composition form of inclusions at the molten steel stage can be a TiOx-based inclusion containing a liquid phase, which is a continuous casting process. In this way, it is possible to suppress the clogging of the immersion nozzle, and the steel according to the present embodiment can be mass-produced stably. Furthermore, the deterioration of the surface property of the slab induced by the blockage of the immersion nozzle and the injection of Ar gas inside the immersion nozzle performed to prevent this, and the deterioration of the surface property of the rolled steel material based on this slab. Any of these can be suppressed.

このように、本実施の形態の精錬工程および連続鋳造工程では、精錬を終了した溶鋼が、上述した化学組成を有するとともに、精錬工程におけるTi添加によるTi調整前の溶鋼の酸素濃度が0.004%以上0.015%以下の段階で溶鋼にTiを添加し、溶鋼中のTi濃度を0.005%以上0.05%以下とするとともに溶鋼中のO濃度を0.003%以上0.008%以下としてから、連続鋳造する。   Thus, in the refining process and the continuous casting process of the present embodiment, the molten steel that has been refined has the above-described chemical composition, and the oxygen concentration of the molten steel before Ti adjustment by adding Ti in the refining process is 0.004. Ti is added to the molten steel at a level of not less than 0.01% and not more than 0.015%, so that the Ti concentration in the molten steel is 0.005% to 0.05% and the O concentration in the molten steel is 0.003% to 0.008. % Or less, then continuous casting.

(連続鋳造での凝固以降)
上記操作を行うことによって、連続鋳造での凝固以降の圧延段階では、酸化物系介在物の組成はSiOが1.0%未満であり、その90%以上がTiOx、AlおよびMnOから構成され、TiOx、AlおよびMnOからなる3元系での組成範囲がTiOx:50.0%以上95.0%以下、Al:3.0%以上35.0%以下、MnO:2.0%以上25.0%以下を満たすことができる。これにより、Ti脱酸鋼としての諸特性の劣化がなく、しかも表面品質が美麗な薄鋼板を製造することができる。
(After solidification in continuous casting)
By performing the above operation, in the rolling stage after solidification in continuous casting, the composition of oxide inclusions is less than 1.0% of SiO 2 , 90% or more of which is TiOx, Al 2 O 3 and MnO. The composition range of a ternary system composed of TiOx, Al 2 O 3 and MnO is TiOx: 50.0% to 95.0%, Al 2 O 3 : 3.0% to 35.0% , MnO: 2.0% or more and 25.0% or less can be satisfied. Thereby, there is no deterioration of various properties as Ti deoxidized steel, and a thin steel plate having a beautiful surface quality can be produced.

連続鋳造の後工程における鋼板の製造方法は特に規定しないが、以下の方法に従うことが好ましい。
連続鋳造によって得られた鋼塊を再加熱するか、もしくは連続鋳造後の高温の鋼塊をそのまま、または補助加熱を行ってから、熱間圧延を行う。鋼塊は、表面性状を良好に保つために、加熱前に冷間もしくは温間で表面手入れすることが好ましい。加熱温度が低いと、圧延荷重が増大して圧延が困難になるため、加熱温度は1150℃越とすることが好ましい。
Although the manufacturing method of the steel plate in the subsequent process of continuous casting is not specified, it is preferable to follow the following method.
The steel ingot obtained by continuous casting is reheated, or the hot steel ingot after continuous casting is subjected to hot rolling as it is or after auxiliary heating. In order to keep the surface properties of the steel ingot in good condition, it is preferable that the surface of the steel ingot be kept cold or warm before heating. If the heating temperature is low, the rolling load increases and rolling becomes difficult, so the heating temperature is preferably over 1150 ° C.

熱間圧延の条件は特に規定しないが、オーステナイト低温域で仕上げ圧延を行って熱延鋼板の結晶粒を微細化し、焼鈍時に深絞り性に好ましい再結晶集合組織を発達させるために、Ar変態点以上(Ar変態点+100℃)以下の温度範囲で最終圧下を行うことが望ましく、890℃以上920℃未満で最終圧下を行えばさらに望ましい。また、スケール性の表面欠陥を抑制するために、仕上げ圧延の開始温度と仕上げ圧延の終了温度との差を100℃以上確保することが好ましい。 The hot rolling conditions are not particularly specified, but the Ar 3 transformation is used to refine the hot rolled steel sheet grains by performing finish rolling in a low temperature range of austenite and to develop a recrystallized texture preferable for deep drawability during annealing. It is desirable to perform the final reduction in a temperature range of not less than the point (Ar 3 transformation point + 100 ° C.) and less, and more desirably if the final reduction is performed in the range of 890 ° C. to less than 920 ° C. Moreover, in order to suppress the surface defect of a scale property, it is preferable to ensure the difference of 100 degreeC or more between the start temperature of finish rolling, and the finish temperature of finish rolling.

なお、仕上げ圧延をこれらの温度範囲で行うために、粗圧延と仕上げ圧延との間で粗圧延材を例えばバーヒーターにより加熱してもよい。この際、粗圧延材の後端が先端よりも高温となるように加熱することによって仕上げ圧延の開始時における粗圧延材の全長にわたる温度の変動を140℃以下に抑制することが望ましい。これにより、コイル内の製品特性の均一性を向上することができる。   In addition, in order to perform finish rolling in these temperature ranges, you may heat a rough rolling material with a bar heater between rough rolling and finish rolling. At this time, it is desirable to suppress the temperature fluctuation over the entire length of the rough rolled material at the start of finish rolling to 140 ° C. or less by heating so that the rear end of the rough rolled material is higher than the front end. Thereby, the uniformity of the product characteristic in a coil can be improved.

粗圧延材の加熱は、例えば、粗圧延機と仕上げ圧延機との間にソレノイド式誘導加熱装置を設けておき、この誘導加熱装置の上流側における長手方向の温度分布等に基づいて加熱昇温量を制御する方法が、例示される。   For the heating of the rough rolled material, for example, a solenoid induction heating device is provided between the rough rolling mill and the finish rolling mill, and the heating temperature is increased based on the longitudinal temperature distribution on the upstream side of the induction heating device. A method of controlling the amount is illustrated.

熱間圧延を終了した後に鋼板を冷却してコイル状に巻取る。スケールの生成による歩留まりの低下を招くために、700℃未満で巻き取ることが望ましい。一方、巻き取り後にTiおよびNbの炭窒化物を十分に析出させ、深絞り性に好ましい再結晶集合組織を発達させるために、巻取り温度は610℃越とすることが好ましい。   After the hot rolling is finished, the steel plate is cooled and wound into a coil. In order to reduce the yield due to the generation of scale, it is desirable to wind up at less than 700 ° C. On the other hand, in order to sufficiently precipitate Ti and Nb carbonitrides after winding and develop a recrystallized texture preferable for deep drawability, the winding temperature is preferably over 610 ° C.

冷間圧延は、酸洗等により脱スケールした後に、常法に従って行われる。冷間圧延後に行われる再結晶焼鈍によって深絞り性に好ましい再結晶集合組織を発達させるために、圧下率を70%以上とすることが好ましい。圧下率を過度に高くすると、圧延設備への負荷が高まり、生産性の低下を招く。したがって、圧下率は90%未満とし、最終板厚を0.40mm以上とすることが好ましい。   Cold rolling is performed according to a conventional method after descaling by pickling or the like. In order to develop a recrystallized texture preferable for deep drawability by recrystallization annealing performed after cold rolling, the rolling reduction is preferably set to 70% or more. If the reduction ratio is excessively high, the load on the rolling equipment increases, leading to a decrease in productivity. Therefore, it is preferable that the rolling reduction is less than 90% and the final plate thickness is 0.40 mm or more.

冷間圧延された鋼板は、必要に応じて公知の方法に従って脱脂などの処理が施され、再結晶焼鈍される。再結晶焼鈍時の加熱速度が速すぎるとフェライトが細粒化し、延性の劣化を招く。このため、均熱温度までの加熱速度は60℃/s未満とすることが好ましい。また、焼鈍温度がAc変態点以上となると、深絞り性に好ましい再結晶集合組織が変態により減少するので、焼鈍温度の上限をAc変態点未満とすることが好ましい。なお、再結晶焼鈍は、連続焼鈍または箱焼鈍のいずれによっても差し支えないが、生産性の観点からは連続焼鈍することが好ましい。焼鈍後に調質圧延を行ってもよい。 The cold-rolled steel sheet is subjected to a treatment such as degreasing according to a known method, if necessary, and is recrystallized and annealed. If the heating rate at the time of recrystallization annealing is too fast, ferrite becomes finer and ductility is deteriorated. For this reason, it is preferable that the heating rate to soaking temperature shall be less than 60 degreeC / s. In addition, when the annealing temperature is equal to or higher than the Ac 3 transformation point, the recrystallization texture preferable for deep drawability is reduced by transformation. Therefore, it is preferable that the upper limit of the annealing temperature is less than the Ac 3 transformation point. In addition, although recrystallization annealing may be performed by either continuous annealing or box annealing, it is preferable to perform continuous annealing from the viewpoint of productivity. Temper rolling may be performed after annealing.

焼鈍後は、常法に従って、溶融亜鉛めっき処理を施してもよい。生産性および耐食性の観点からは、連続溶融亜鉛めっき装置で再結晶焼鈍およびめっきを行い、さらに、合金化処理を施すことが好ましい。また、めっき前もしくはめっき後に調質圧延を行っても構わない。   After annealing, hot dip galvanizing treatment may be performed according to a conventional method. From the viewpoint of productivity and corrosion resistance, it is preferable to perform recrystallization annealing and plating with a continuous hot dip galvanizing apparatus, and to perform alloying treatment. Further, temper rolling may be performed before plating or after plating.

このように、本実施の形態では、連続鋳造での凝固以降における鋼材中の酸化物系介在物のSiOが1.0%未満であり、90.0%以上がTiOx、AlおよびMnOの3元系から構成され、この3元系での組成範囲がTiOx:50.0%以上95.0%以下、Al:3.0%以上35.0%以下、MnO:2.0%以上25.0%以下にあるようにする。 Thus, in this embodiment, SiO 2 of oxide inclusions in the steel after solidification in continuous casting is less than 1.0%, and 90.0% or more is composed of TiOx, Al 2 O 3 and The composition range of the ternary system of MnO is TiOx: 50.0% to 95.0%, Al 2 O 3 : 3.0% to 35.0%, MnO: 2 It should be in the range of 0% to 25.0%.

このようにして、本実施の形態の極低炭素鋼板が製造される。本実施の形態の極低炭素鋼板は、極低炭素濃度かつ極低Al濃度を有するTi脱酸鋼からなり、介在物酸素濃度を所定量含有し、特定組成のTiOx系介在物を含むことによって、強度や伸び、さらには深絞り性等の特性を維持しつつ、表面性状に優れるものであって、その素材であるスラブの連続鋳造時における浸漬ノズルの閉塞およびそれによって引き起こされる表面性状の劣化等も解決できる。   In this way, the ultra-low carbon steel plate of the present embodiment is manufactured. The ultra-low carbon steel sheet of the present embodiment is made of a Ti deoxidized steel having an ultra-low carbon concentration and an ultra-low Al concentration, contains a predetermined amount of inclusion oxygen concentration, and includes a TiOx-based inclusion having a specific composition. It has excellent surface properties while maintaining properties such as strength, elongation, and deep drawability, and the clogging of the immersion nozzle during continuous casting of the material slab and the deterioration of the surface properties caused thereby. Etc. can also be solved.

さらに、本発明を、実施例を参照しながらより具体的に説明する。
本発明における鋼組成と、介在物組成形態および鋼板特性との関係を明らかにするため、以下のような鋼板を試作した。
Furthermore, the present invention will be described more specifically with reference to examples.
In order to clarify the relationship between the steel composition according to the present invention, the inclusion composition form, and the steel sheet characteristics, the following steel sheets were made as prototypes.

不活性ガス雰囲気で溶解が可能な17kg誘導加熱炉により、表1に示す組成を有する鋼塊を製造した。鋳造の直前に溶鋼から直径17mmのボンブサンプルを採取し、溶鋼中の介在物形態を調査した。断面に観察される5μmの介在物を光学顕微鏡で観察して個数計測を行うとともに、全介在物個数に対して溶鋼段階で液相を呈したと考えられる球状介在物の割合が20%以上の場合、介在物が液相を有すると判定した。   Steel ingots having the compositions shown in Table 1 were produced by a 17 kg induction heating furnace capable of melting in an inert gas atmosphere. Immediately before casting, a bomb sample having a diameter of 17 mm was taken from the molten steel, and the form of inclusions in the molten steel was investigated. The number of inclusions observed on the cross section is observed with an optical microscope to count the number of inclusions, and the ratio of spherical inclusions that are considered to have exhibited a liquid phase at the molten steel stage with respect to the total number of inclusions is 20% or more. In the case, the inclusion was determined to have a liquid phase.

介在物に依る酸素濃度Oincは、酸化物系介在物の平均組成をエネルギー分散型X線マイクロアナライザーで求めるとともに、光学顕微鏡で粒度分布測定して、その単位面積あたりの介在物量から単位体積あたり介在物量を求め、両者から算出した。   The oxygen concentration Oinc due to inclusions is obtained by calculating the average composition of oxide inclusions with an energy dispersive X-ray microanalyzer and measuring the particle size distribution with an optical microscope. The quantity was calculated and calculated from both.

鋳造された鋼塊を鍛造して、幅210mm、長さ130mm、厚み20mmの素材を作製した後、さらに加熱温度1250℃に保持した後、仕上げ温度910℃で熱間圧延し、4.0mm厚の熱延鋼板を得た。熱間圧延後、直ちに水スプレー冷却により650℃まで冷却してこれを巻取り温度とし、同温度に保持された電気加熱炉中に装入して30分間保持した後、20℃/hの冷却速度で炉冷却して巻取り後の徐冷処理とした。   The cast steel ingot is forged to produce a material having a width of 210 mm, a length of 130 mm, and a thickness of 20 mm, and further maintained at a heating temperature of 1250 ° C., and then hot-rolled at a finishing temperature of 910 ° C. to a thickness of 4.0 mm A hot rolled steel sheet was obtained. Immediately after hot rolling, it is cooled to 650 ° C. by water spray cooling to make it a winding temperature, charged in an electric heating furnace maintained at the same temperature, held for 30 minutes, and then cooled at 20 ° C./h. The furnace was cooled at a speed and the annealing was performed after winding.

得られた熱延鋼板の断面、幅約100mmの位置で長手方向20mmでミクロ試料を採取し、その断面に観察される介在物を評価した。評価方法は、走査型電子顕微鏡およびエネルギー分散型X線分析装置を用いて、長さ4μm以上、幅2μm以上の酸化物系介在物を無作為に10個ないし20個を選んで組成分析を行い、化学量論組成を仮定して酸化物に換算し、その平均値を求めた。   A cross section of the obtained hot-rolled steel sheet, a micro sample was taken in the longitudinal direction at a position of about 100 mm in width, and inclusions observed in the cross section were evaluated. The evaluation method uses a scanning electron microscope and an energy dispersive X-ray analyzer to conduct composition analysis by randomly selecting 10 to 20 oxide inclusions having a length of 4 μm or more and a width of 2 μm or more. Assuming a stoichiometric composition, it was converted to an oxide, and the average value was obtained.

さらに熱延鋼板を酸洗した後、圧下率82.5%で厚さ0.7mmまで冷間圧延し、均熱温度850℃で焼鈍し、冷延鋼板とした。得られた冷延鋼板に伸び率1.0%の調質圧延を施した後、JIS5号引張試験片を採取して引張試験を行い、圧延方向の降伏応力(YS)、引張強度(TS)および全伸び(El)を求めた。r値は、圧延方向(0°方向)、圧延方向と45°をなす方向(45°方向)および圧延方向と直行する方向(90°方向)から採取したJIS5号引張試験片に引張試験を行い、0°方向のr値(r0°値)、45°方向のr値(r45°値)および90°方向のr値(r90°値)を用いて、平均r値=(r0°値+2×r45°値+r90°値)/4から平均r値を求めた。 Furthermore, after pickling the hot-rolled steel sheet, it was cold-rolled to a thickness of 0.7 mm at a rolling reduction of 82.5%, and annealed at a soaking temperature of 850 ° C. to obtain a cold-rolled steel sheet. After subjecting the obtained cold-rolled steel sheet to temper rolling with an elongation of 1.0%, a JIS No. 5 tensile test piece was sampled and subjected to a tensile test, yield stress (YS) in the rolling direction, and tensile strength (TS). The total elongation (El) was determined. The r value is obtained by conducting a tensile test on a JIS No. 5 tensile specimen taken from the rolling direction (0 ° direction), the direction forming 45 ° with the rolling direction (45 ° direction), and the direction orthogonal to the rolling direction (90 ° direction). Using the r value in the 0 ° direction (r 0 ° value), the r value in the 45 ° direction (r 45 ° value), and the r value in the 90 ° direction (r 90 ° value), the average r value = (r 0 ( Average value + 2 × r 45 ° value + r 90 ° value) / 4) to obtain an average r value.

冷間圧延材の疵の評価は、以下のような内容を実施した。冷間圧延材の表面幅約200mm、長さ900mmでスリバー状疵が観察され、そのスリバー状疵に酸化物系介在物と同様の組成の酸化物痕を認めた場合には、疵部の介在物を有りと判定した。   The evaluation of the cold rolled material was carried out as follows. When a cold rolled material has a surface width of about 200 mm and a length of 900 mm, sliver-like wrinkles are observed, and when oxide marks having the same composition as the oxide inclusions are observed in the sliver-like flaws, It was determined that there was an object.

結果を表1、2にまとめて示す。   The results are summarized in Tables 1 and 2.

Figure 2009270165
Figure 2009270165

Figure 2009270165
Figure 2009270165

表1、2における試料No.1−1〜1−7は、本発明で規定する条件を全て満足する実施例であり、試料No.1−8〜1−15はこれらのうちの少なくとも一つを満足しない比較例である。   Sample Nos. 1-1 to 1-7 are examples that satisfy all the conditions defined in the present invention. 1-8 to 1-15 are comparative examples that do not satisfy at least one of these.

試料No.1−1〜1−7は、強度や伸び、さらには深絞り性を維持し、特に平均r値が1.90以上であり深絞り性が良好であるとともに、溶鋼段階での介在物は液相を含む状態になっているとともに、疵部に介在物が観察される例もなかった。   Sample No. 1-1 to 1-7 maintain strength, elongation, and deep drawability. Particularly, the average r value is 1.90 or more and the deep drawability is good, and inclusions in the molten steel stage are liquid. There was no example in which inclusions were observed in the buttocks while being in a state containing phases.

これに対し、試料No.1−8、1−9、1−11、1−13および1−15では、介在物中のSiOが1%を超えて含まれるか、3元系介在物に換算してMnO濃度が25%を超えることにより、平均r値が不芳であった。 In contrast, sample no. In 1-8, 1-9, 1-11, 1-13, and 1-15, SiO 2 in inclusions is contained in excess of 1%, or the MnO concentration is 25 in terms of ternary inclusions. By exceeding%, the average r value was unsatisfactory.

また、試料No.1−10はTiO濃度が95.0%超であり、試料No.1−12ではAl濃度が35.0%超であり、さらに試料No.1−14ではMnO濃度が2.0%未満であるので、いずれも、溶鋼介在物に液相が認められない結果となり、また冷延鋼板の疵部に介在物痕が認められた。 Sample No. No. 1-10 has a TiO 2 concentration of more than 95.0%. In No. 1-12, the Al 2 O 3 concentration exceeds 35.0%. In 1-14, since the MnO concentration was less than 2.0%, in all cases, no liquid phase was observed in the molten steel inclusions, and inclusion traces were observed in the collar portion of the cold-rolled steel sheet.

溶鋼290トンを転炉で脱炭精錬し、その未脱酸溶鋼を収容した取鍋をRH装置へ移送し、RH装置で真空脱炭処理を行った。RH装置にて真空脱炭が終了した後、未脱酸溶鋼の予備脱酸と溶鋼の昇温操作を兼ねて金属Alを添加した。Al添加後に真空槽内の溶鋼に酸素を38Nm/minで供給して適宜酸化反応による溶鋼への熱付与を実施した。その後溶鋼に酸素濃度が含有される状態で既に含有されている濃度を勘案してTi以外の各種合金を添加調整し、最後にTiを添加調整し表3に示される化学組成になるように調整した。 290 tons of molten steel was decarburized and refined in a converter, the ladle containing the undeoxidized molten steel was transferred to an RH apparatus, and vacuum decarburization processing was performed using the RH apparatus. After the vacuum decarburization was completed in the RH apparatus, metal Al was added for both the preliminary deoxidation of the undeoxidized molten steel and the temperature raising operation of the molten steel. After addition of Al, oxygen was supplied to the molten steel in the vacuum chamber at 38 Nm 3 / min, and heat was applied to the molten steel by an appropriate oxidation reaction. Then adjust the addition of various alloys other than Ti in consideration of the concentration already contained in the molten steel in the state of oxygen concentration, and finally adjust the addition of Ti to the chemical composition shown in Table 3 did.

これらの精錬を行った後、溶鋼を収容した取鍋を連続鋳造機に搬送し、幅960mm〜1200mm、厚さ250mmのスラブ形状の鋳片を得た。
得られた鋳片を表面手入れしてから、表4に示される条件で加熱して熱間圧延し、酸洗し、冷間圧延した。続いて、連続溶融亜鉛めっき設備により冷延板を焼鈍し、溶融亜鉛めっきし、合金化処理した。その後、伸び率1.0%で調質圧延を施し、合金化溶融亜鉛めっき鋼板を得た。一部の鋼板では、溶融亜鉛めっき後の合金化処理を省略し、溶融亜鉛めっき鋼板とした。また、一部の鋼板では、冷間圧延後、連続焼鈍設備で焼鈍し、伸び率1.0%で調質圧延を施して冷延鋼板とした。
After these refining, the ladle containing the molten steel was conveyed to a continuous casting machine to obtain a slab-shaped slab having a width of 960 mm to 1200 mm and a thickness of 250 mm.
After the surface of the obtained slab was cleaned, it was heated and hot rolled under the conditions shown in Table 4, pickled and cold rolled. Subsequently, the cold-rolled sheet was annealed by continuous galvanizing equipment, galvanized, and alloyed. Thereafter, temper rolling was performed at an elongation rate of 1.0% to obtain an galvannealed steel sheet. In some steel plates, the alloying treatment after hot dip galvanization was omitted, and hot dip galvanized steel plates were obtained. Moreover, in some steel plates, after cold rolling, they were annealed with a continuous annealing facility and subjected to temper rolling at an elongation rate of 1.0% to obtain cold rolled steel plates.

表4には、Ti調整前後の全酸素濃度を示す。また、表5には溶鋼段階での酸化物系介在物の組成形態と熱間圧延鋼材での酸化物系介在物の組成形態を示す。表5の介在物組成等の調査方法は実施例1に示した方法に準じている。溶鋼段階での介在物は、連続鋳造機のタンディッシュに収容された溶鋼からボンブサンプルを採取し、その鏡面仕上げした断面に観察される直径5μm以上の酸化物系介在物のうち球状介在物の割合を示した。また、圧延鋼材は、鋼帯の幅中央、板断面を圧延長手方向に3.2mm×20mmのミクロ試料を作製し、実施例1と同様の評価を行った。   Table 4 shows the total oxygen concentration before and after the Ti adjustment. Table 5 shows the composition form of oxide inclusions in the molten steel stage and the composition form of oxide inclusions in the hot-rolled steel. The investigation method of the inclusion composition, etc. in Table 5 is in accordance with the method shown in Example 1. Inclusions at the molten steel stage are bomb samples taken from molten steel contained in the tundish of a continuous casting machine, and spherical inclusions are observed among oxide inclusions having a diameter of 5 μm or more observed in the mirror-finished section. The percentage is shown. Moreover, the rolled steel material produced the micro sample of 3.2 mm x 20 mm in the width center of a steel strip and a plate cross section in the rolling longitudinal direction, and performed the same evaluation as Example 1.

表6には、連続鋳造工程での浸漬ノズルの閉塞状況の指標として、ノズル上部に設置された溶鋼流量を制御するスライディングゲートの開度の1ヒートあたりの上昇分を△%/ヒートを示した。また、冷延鋼板のスリバー疵については、鋼帯1000m当たりの表面欠陥発生個数を示した。そして、鋼帯の欠陥発生率が0.5個/1000m未満を良好とし、1.0個/1000m以上を不良とした。   Table 6 shows Δ% / heat as an index of the clogging state of the immersion nozzle in the continuous casting process, and the amount of increase per one heat of the sliding gate opening for controlling the flow rate of the molten steel installed on the upper part of the nozzle. . Moreover, about the sliver rod of a cold-rolled steel plate, the surface defect generation | occurrence | production number per 1000 m of steel strips was shown. And the defect incidence rate of the steel strip was considered to be good when it was less than 0.5 pieces / 1000 m, and 1.0 piece / 1000 m or more as bad.

溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板および冷延鋼板から、JIS5号引張試験片を採取し、引張試験を行い、圧延方向の降伏応力(YS)、引張強度(TS)および全伸び(El)を求めた。r値は実施例1と同様に求めた。   JIS No. 5 tensile specimens were collected from hot-dip galvanized steel sheets, galvannealed steel sheets, and cold-rolled steel sheets, subjected to tensile tests, and yield stress (YS), tensile strength (TS) and total elongation (El) in the rolling direction. ) The r value was determined in the same manner as in Example 1.

結果を表4〜6にそれぞれ示す。   The results are shown in Tables 4 to 6, respectively.

Figure 2009270165
Figure 2009270165

Figure 2009270165
Figure 2009270165

Figure 2009270165
Figure 2009270165

Figure 2009270165
Figure 2009270165

表3〜6における試料No.2−1〜2−4は、本発明で規定する条件を全て満足する実施例であり、試料No.2−5〜2−10はこれらのうちの少なくとも一つを満足しない比較例である。   Sample Nos. Examples 2-1 to 2-4 are examples that satisfy all the conditions defined in the present invention. 2-5 to 2-10 are comparative examples that do not satisfy at least one of these.

試料No.2−1〜2−4は、溶鋼中の介在物組成割合が30%以上と高く、そのためノズル閉塞の指標であるノズル開度の上昇も1ヒートあたり2%以下と少なく、安定して多連鋳が可能な状態である。さらには、鋼板の欠陥発生率が0.5個/1000mと少ないことから、本鋼の特徴である表面性状が美麗な薄鋼板が得られることがわかる。さらには、平均r値は1.8以上であり深絞り性も優れている。   Sample No. In 2-1 to 2-4, the inclusion composition ratio in the molten steel is as high as 30% or more, and therefore, the increase in the nozzle opening, which is an index of nozzle clogging, is also as small as 2% or less per heat, and is stable in multiples. Casting is possible. Furthermore, since the defect occurrence rate of the steel sheet is as small as 0.5 / 1000 m, it can be seen that a thin steel sheet having a beautiful surface property, which is a feature of the steel, can be obtained. Furthermore, the average r value is 1.8 or more and the deep drawability is excellent.

これに対し、試料No.2−5は、Ti調整前の全酸素濃度が高く、圧延鋼材中SiO濃度が1%を超え、平均r値が低下した。
試料No.2−6は、Ti濃度が少ないために介在物中MnO濃度およびSiO濃度が高くなり、平均r値が低下した。
In contrast, sample no. 2-5 has a high total oxygen concentration before Ti adjustment, the SiO 2 concentration in the rolled steel exceed 1%, the average r value is decreased.
Sample No. In 2-6, since the Ti concentration was small, the MnO concentration and the SiO 2 concentration in the inclusions were increased, and the average r value was decreased.

試料No.2−7は、Ti調整後の酸素濃度が低くAl濃度が0.003%以上であるので、圧延鋼材中のAl濃度が35%を超え、その結果溶鋼段階での液相率が7%と低く、ノズル開度も1ヒート当たり5%以上となり、安定した多連鋳が困難な結果となった。 Sample No. In 2-7, since the oxygen concentration after Ti adjustment is low and the Al concentration is 0.003% or more, the Al 2 O 3 concentration in the rolled steel material exceeds 35%, and as a result, the liquid phase ratio in the molten steel stage is high. The nozzle opening was as low as 7%, and the nozzle opening was 5% or more per heat, making it difficult to achieve stable multiple casting.

試料No.2−8は、Ti調整前の全酸素濃度が高く、結果として圧延鋼材中の介在物のTiO濃度が50%を下回るため、平均r値が低い結果となった。
試料No.2−9は、Ti調整前の全酸素濃度が低く、Ti調整後の介在物組成制御が難しくなり、この例では結果として圧延鋼材中の介在物のその他酸化物濃度が10%を超えたため、平均r値が低い結果となった。
Sample No. In No. 2-8, the total oxygen concentration before Ti adjustment was high, and as a result, the TiO 2 concentration of inclusions in the rolled steel material was less than 50%, resulting in a low average r value.
Sample No. 2-9, since the total oxygen concentration before Ti adjustment is low, inclusion composition control after Ti adjustment becomes difficult, and as a result, the concentration of other oxides of inclusions in the rolled steel exceeded 10% in this example. The average r value was low.

さらに、試料No.2−10は、Ti濃度が0.05%を超えるため、圧延鋼材での介在物中のTiO濃度が95%を超え、また溶鋼中介在物の液相介在物割合も7%と低く、ノズル開度の変化も大きくなり多連鋳への適用が困難であり、Ti脱酸鋼の特徴である欠陥発生率の低減もできなかった。 Furthermore, sample no. 2-10, since the Ti concentration exceeds 0.05%, the TiO 2 concentration in inclusions in the rolled steel material exceeds 95%, and the liquid phase inclusion ratio of inclusions in the molten steel is as low as 7%. The change in the nozzle opening was also large, making it difficult to apply to multiple casting, and the defect rate, which is a feature of Ti deoxidized steel, could not be reduced.

Claims (4)

質量%で、C:0.0005%以上0.025%以下、Si:0.003%以上0.12%以下、Mn:0.05%以上2.5%以下、P:0.15%以下、S:0.02%以下、N:0.006%以下、sol.Al:0.0002%以上0.003%以下、Ti:0.005%以上0.05%以下、Nb:0.005%以上0.20%以下を含有し、全酸素濃度T.O:0.003%以上0.008%以下を含み、介在物に因る酸素濃度Oinc:0.0025%以上0.007%以下を含み、残部Feおよび不純物からなる化学組成を有するとともに、鋼材中の酸化物系介在物のSiOが1.0%未満であり、90.0%以上がTiOx、AlおよびMnOの3元系から構成され、該3元系での組成範囲がTiOx:50.0%以上95.0%以下、Al:3.0%以上35.0%以下、MnO:2.0%以上25.0%以下にあることを特徴とする極低炭素鋼板。 C: 0.0005% to 0.025%, Si: 0.003% to 0.12%, Mn: 0.05% to 2.5%, P: 0.15% or less , S: 0.02% or less, N: 0.006% or less, sol. Al: 0.0002% to 0.003%, Ti: 0.005% to 0.05%, Nb: 0.005% to 0.20%, and the total oxygen concentration T.I. O: 0.003% or more and 0.008% or less, oxygen concentration due to inclusions Oinc: 0.0025% or more and 0.007% or less, and having a chemical composition comprising the balance Fe and impurities, and steel material The oxide inclusions in the SiO 2 is less than 1.0%, 90.0% or more is composed of ternary system of TiOx, Al 2 O 3 and MnO, the composition range in the ternary system is TiOx: 50.0% or more and 95.0% or less, Al 2 O 3 : 3.0% or more and 35.0% or less, MnO: 2.0% or more and 25.0% or less Carbon steel plate. 前記化学組成が、Feの一部に代えて、質量%でB:0.0020%以下を有する請求項1に記載された極低炭素鋼板。   The ultra-low carbon steel sheet according to claim 1, wherein the chemical composition has B: 0.0020% or less in mass% instead of part of Fe. 前記化学組成が、Feの一部に代えて、質量%で、Cu: 1.0%以下、Ni: 1.0%以下、およびCr:1.0%以下からなる群から選ばれる1種または2種以上を有する請求項1または請求項2に記載された極低炭素鋼板。   The chemical composition may be one selected from the group consisting of Cu: 1.0% or less, Ni: 1.0% or less, and Cr: 1.0% or less in mass% instead of a part of Fe. The ultra-low carbon steel sheet according to claim 1 or 2 having two or more kinds. 転炉精錬および真空精錬を含む精錬を経て行う請求項1から請求項3までのいずれか1項に記載された極低炭素鋼板の製造方法であって、
質量%で、該精錬におけるTi添加によるTi調整前の溶鋼の酸素濃度が0.004%以上0.015%以下の段階で溶鋼にTiを添加し、溶鋼中のTi濃度を0.005%以上0.05%以下とするとともに溶鋼中のO濃度を0.003%以上0.008%以下としてから、連続鋳造することを特徴する極低炭素鋼板の製造方法。
It is the manufacturing method of the ultra-low-carbon steel sheet according to any one of claims 1 to 3, which is performed through refining including converter refining and vacuum refining,
When the oxygen concentration of the molten steel before Ti adjustment by Ti addition in the refining is 0.004% or more and 0.015% or less, Ti is added to the molten steel, and the Ti concentration in the molten steel is 0.005% or more. A manufacturing method of an ultra-low carbon steel sheet characterized by continuously casting after setting the O concentration in the molten steel to be 0.003% or more and 0.008% or less while being 0.05% or less.
JP2008122114A 2008-05-08 2008-05-08 Ultra-low carbon steel sheet and manufacturing method thereof Active JP4998365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008122114A JP4998365B2 (en) 2008-05-08 2008-05-08 Ultra-low carbon steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008122114A JP4998365B2 (en) 2008-05-08 2008-05-08 Ultra-low carbon steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009270165A true JP2009270165A (en) 2009-11-19
JP4998365B2 JP4998365B2 (en) 2012-08-15

Family

ID=41436981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008122114A Active JP4998365B2 (en) 2008-05-08 2008-05-08 Ultra-low carbon steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4998365B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101277611B1 (en) * 2011-09-28 2013-06-21 현대제철 주식회사 Rh refining method for manufacturing ultra-low-carbon steel
JP2014028998A (en) * 2012-07-31 2014-02-13 Nippon Steel & Sumitomo Metal Cold rolled steel sheet, electrogalvanized cold rolled steel sheet, hot-dip galvanized cold rolled steel sheet and galvannealed cold rolled steel sheet having excellent deep drawability, and method of manufacturing the same
CN108998613A (en) * 2018-08-08 2018-12-14 鞍钢股份有限公司 Method for controlling free oxygen in ultra-low carbon low aluminum steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170910A (en) * 1988-12-23 1990-07-02 Nippon Steel Corp Production of ti-containing non-ageing cold rolled steel plate having fewer detects caused by non-metallic inclusion
JPH10152755A (en) * 1996-11-25 1998-06-09 Nippon Steel Corp Steel for steel sheet for can few in defect and its production
JPH10226843A (en) * 1997-02-19 1998-08-25 Nippon Steel Corp Thin steel sheet small in defect and excellent in press formability and its production
JPH11279721A (en) * 1998-03-30 1999-10-12 Nippon Steel Corp Steel sheet for surface treatment good in workability and small in defect and its production
JP2004156116A (en) * 2002-11-07 2004-06-03 Sumitomo Metal Ind Ltd Thin steel sheet and deoxidation method for molten steel for thin steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170910A (en) * 1988-12-23 1990-07-02 Nippon Steel Corp Production of ti-containing non-ageing cold rolled steel plate having fewer detects caused by non-metallic inclusion
JPH10152755A (en) * 1996-11-25 1998-06-09 Nippon Steel Corp Steel for steel sheet for can few in defect and its production
JPH10226843A (en) * 1997-02-19 1998-08-25 Nippon Steel Corp Thin steel sheet small in defect and excellent in press formability and its production
JPH11279721A (en) * 1998-03-30 1999-10-12 Nippon Steel Corp Steel sheet for surface treatment good in workability and small in defect and its production
JP2004156116A (en) * 2002-11-07 2004-06-03 Sumitomo Metal Ind Ltd Thin steel sheet and deoxidation method for molten steel for thin steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101277611B1 (en) * 2011-09-28 2013-06-21 현대제철 주식회사 Rh refining method for manufacturing ultra-low-carbon steel
JP2014028998A (en) * 2012-07-31 2014-02-13 Nippon Steel & Sumitomo Metal Cold rolled steel sheet, electrogalvanized cold rolled steel sheet, hot-dip galvanized cold rolled steel sheet and galvannealed cold rolled steel sheet having excellent deep drawability, and method of manufacturing the same
CN108998613A (en) * 2018-08-08 2018-12-14 鞍钢股份有限公司 Method for controlling free oxygen in ultra-low carbon low aluminum steel

Also Published As

Publication number Publication date
JP4998365B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
US9771638B2 (en) Cold-rolled steel sheet
CN114480972A (en) Thin-specification Ni-free weathering steel produced based on CSP process and production method thereof
JP4360319B2 (en) High tensile hot dip galvanized steel sheet and its manufacturing method
JP4998365B2 (en) Ultra-low carbon steel sheet and manufacturing method thereof
JP4345827B2 (en) High-strength cold-rolled steel sheet, high-strength galvannealed steel sheet, and production method thereof
JP5331700B2 (en) Ferritic stainless steel excellent in workability of welds and corrosion resistance of steel materials and method for producing the same
JP4525813B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP2001089828A (en) Steel sheet for can, good in surface property and suitable for three piece can
KR100856306B1 (en) Ferritic stainless steel having excellent low temperature formability of welded zone
KR100825632B1 (en) Ferritic stainless steel having excellent formability of welded zone and corrosion resistance, and method for manufacturing the same
JP2007177303A (en) Steel having excellent ductility and its production method
JP5076480B2 (en) High-strength steel sheet excellent in strength-ductility balance and deep drawability and method for producing the same
JP2001020033A (en) Non-heattreated high tensile strength steel excellent in toughness of base material and weld heat-affected zone
JP5768405B2 (en) Steel sheet and manufacturing method thereof
KR100825630B1 (en) Ferritic stainless steel having excellent formability of welded zone, and method for manufacturing the same
JP4259097B2 (en) Ti-containing high workability ferritic chromium steel sheet excellent in ridging resistance and method for producing the same
KR101169510B1 (en) Cold-rolled steel sheet, galvannealed steel sheet and processes for production of both
JP3872595B2 (en) Cold rolled steel sheet with low in-plane anisotropy and excellent formability
JP4525814B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5239652B2 (en) High tensile cold-rolled steel sheet
JP2001020031A (en) Non-heattreated high tensile strength steel excellent in toughness of base material and weld heat-affected zone
JP5103964B2 (en) Deep drawing steel sheet with good surface properties and method for producing the same
JP6958459B2 (en) Fused Zn-Al-Mg alloy plated steel sheet and its manufacturing method
JP2018122312A (en) Mold powder for continuous casting
WO2010026934A1 (en) Steel sheet, hot-dip zinc-coated steel sheet and processes for production of same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120430

R150 Certificate of patent or registration of utility model

Ref document number: 4998365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350