JP2001089828A - Steel sheet for can, good in surface property and suitable for three piece can - Google Patents

Steel sheet for can, good in surface property and suitable for three piece can

Info

Publication number
JP2001089828A
JP2001089828A JP28643098A JP28643098A JP2001089828A JP 2001089828 A JP2001089828 A JP 2001089828A JP 28643098 A JP28643098 A JP 28643098A JP 28643098 A JP28643098 A JP 28643098A JP 2001089828 A JP2001089828 A JP 2001089828A
Authority
JP
Japan
Prior art keywords
less
rem
oxide
inclusions
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28643098A
Other languages
Japanese (ja)
Other versions
JP4051778B2 (en
Inventor
Akio Tosaka
章男 登坂
Masatoshi Araya
昌利 荒谷
Yuji Miki
祐司 三木
Makoto Araya
誠 荒谷
Hideo Kukuminato
英雄 久々湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP28643098A priority Critical patent/JP4051778B2/en
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to PCT/JP1999/001843 priority patent/WO1999053113A1/en
Priority to DE69937481T priority patent/DE69937481T2/en
Priority to CN99800472A priority patent/CN1101482C/en
Priority to US09/445,404 priority patent/US6221180B1/en
Priority to KR1019997011531A priority patent/KR100615380B1/en
Priority to EP99912131A priority patent/EP0999288B1/en
Publication of JP2001089828A publication Critical patent/JP2001089828A/en
Application granted granted Critical
Publication of JP4051778B2 publication Critical patent/JP4051778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a steel sheet for a three piece can small in rust, almost free from deterioration in deformability caused by inclusions and precipitates, also free from surface defects caused by clusterlike inclusions, good in surface properties and excellent in formability in the weld zone. SOLUTION: This steel sheet for a three piece can good in surface properties is composed of extra low carbon steel and has a composition containing, by weight, 0.015 to 0.10% Ti, 0.001 to 0.01% Al, <=0.02% N and one or two kinds of Ca and REM by 0.0005 to 0.01% in total, in which the contents of S and one or two kinds of Ca and REM satisfy the relation in the following inequality of S-5×((32/40) Ca+(32/140) REM)<=0.0014 wt.%, and the balance Fe with inevitable impurities, in which, also, oxide inclusions with the grain size of 1 to 50 μm contain Ti oxide and one or two kinds of CaO oxide and REM oxide, tensile strength is controlled to <540 MPa, and the (r) value of the stock is controlled to <=1.0 in the L or C direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、表面性状が良好
で、かつ、錆び難い3ピース缶に用いてとくに好適な缶
用鋼板(めっき等の表面被覆を施したものを含む)に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel plate for a can (having a surface coating such as plating) which is particularly suitable for use in a three-piece can having good surface properties and which is not easily rusted.

【0002】[0002]

【従来の技術】3ピース缶用鋼板は、製缶時には軟質で
容易に製缶できることが要求され、一方、製缶後の缶体
としてはさまざまな外力負荷に対して十分な缶体強度が
要求される。また、3ピース缶は溶接部のフランジ成形
性が良好であることが重要であり、成分、製造方法が不
適切であると、フランジ成形の不具合から巻締め不良を
起こすことがある。このような溶接部の伸びフランジ加
工性を向上させることが、3ピース缶用に用いられる鋼
板の特性として重要である。
2. Description of the Related Art A steel plate for a three-piece can is required to be soft and easy to make at the time of can-making, while a sufficient strength of the can after the can-making is required for various external loads. Is done. Further, it is important that the three-piece can has good flange formability at the welded portion, and if the components and the manufacturing method are inappropriate, insufficient tightening may occur due to a failure in the flange formation. Improving the stretch flangeability of such welds is important as a property of a steel plate used for a three-piece can.

【0003】溶接部を含む鋼板の成形性向上に関して、
特開昭63−192849号号公報に示されるような介
在物の組成制御により介在物の低融点化を図る方法、特
開平2−220735号公報に開示されるような鋼中の
溶存酸素を調整してTiN 、MnS の析出を制御する方法な
どが提案されている。しかしながら、圧延工程で長く延
びるMnS や鋼中の酸化物の存在により、局部変形能が劣
化してしまうので、未だ十分な変形能を得ることは困難
であった。また、特開平5−9549号公報に開示され
る方法では、介在物は、CaO −Al 2O3 系となって、錆の
起点となり、耐食性が劣化するという問題点があった。
Regarding the improvement of formability of a steel sheet including a weld,
As disclosed in JP-A-63-192849.
A method for lowering the melting point of inclusions by controlling the composition of the inclusion
In steel as disclosed in Japanese Unexamined Patent Publication No. Hei.
A method to control the precipitation of TiN and MnS by adjusting the dissolved oxygen
Which have been proposed. However, long rolling in the rolling process
Due to the presence of MnS and oxides in steel
It is still difficult to obtain sufficient deformability
Met. Also disclosed in JP-A-5-9549.
In the method, the inclusion is CaO-Al TwoOThreeBecome a system, rust
There is a problem that it becomes a starting point and the corrosion resistance is deteriorated.

【0004】[0004]

【発明が解決しようとする課題】この発明は、従来技術
が抱える上述した問題を解決するために実験、調査、検
討を加えた結果、開発したものであり、錆が少なく、介
在物や析出物による変形能の劣化がほとんどなく、か
つ、クラスター状介在物による表面欠陥のない、表明性
状が良好な溶接部の成形性に優れる3ピースに適した缶
用鋼板を提案することを目的とする。
SUMMARY OF THE INVENTION The present invention has been developed as a result of experiments, investigations, and studies in order to solve the above-mentioned problems of the prior art, and has low rust, inclusions and precipitates. It is an object of the present invention to propose a steel sheet for cans which is hardly deteriorated in deformability due to deformation and has no surface defects due to cluster-like inclusions, and has excellent expressiveness and is suitable for three-pieces having excellent formability of a welded portion.

【0005】[0005]

【課題を解決するための手段】発明者らは、上記の目的
を達成すべく鋭意研究を重ねた結果、鋼中に残留する酸
化物及び硫化物の組成を制御することが、これらの問題
を解決するための重要な因子であることに思い至った。
すなわち、これら介在物の組成を適正な範囲に制御する
こと、かつ、より好適には、これらの鋼板の製造工程を
最適化することで、最終製品として錆び難く、表面性状
が良好でかつ、溶接部の成形性が良好な3ピース缶に適
した缶用鋼板が得られることを見出した。
Means for Solving the Problems The inventors of the present invention have made intensive studies to achieve the above object, and as a result, controlling the composition of oxides and sulfides remaining in steel has solved these problems. I came to realize that this is an important factor to solve.
That is, by controlling the composition of these inclusions in an appropriate range, and more preferably, by optimizing the production process of these steel sheets, it is difficult to rust as a final product, the surface properties are good, and welding is performed. It has been found that a steel plate for a can suitable for a three-piece can having a good formability of a part can be obtained.

【0006】すなわち、鋼中の酸化物系介在物を制御
し、巨大クラスター状介在物の生成を抑制して50μm 以
下の大きさの介在物に微細分散化を図り、かつ、鋼中の
MnS の量を低減して、鋼中の全ての酸化物、硫化物を微
細化、非延性化することにより、3ピース缶として要求
される製缶特性、また溶接缶としての溶接部の加工性に
優れる極薄(板厚0.3 mm以下)の鋼板が得られることを
見出した。この発明は、上記の知見に立脚するものであ
る。
That is, the oxide-based inclusions in the steel are controlled, the formation of giant cluster-like inclusions is suppressed, and fine dispersion into inclusions having a size of 50 μm or less is achieved.
By reducing the amount of MnS and making all oxides and sulfides in steel finer and non-ductile, the required can-making properties as a three-piece can and the workability of the weld as a weld can It has been found that an extremely thin (thickness of 0.3 mm or less) steel sheet having excellent resistance can be obtained. The present invention is based on the above findings.

【0007】すなわち、この発明は、 C:0.005 wt%を超え0.10wt%以下、 Si:0.2 wt%以下、 Mn:0.05〜1.0 wt%、 P:0.04wt%以下、 Ti:0.015 〜0.10wt%、 Al:0.001 〜0.01wt%、 N:0.02wt%以下及びCa,REM の1 種又は2 種を合計で
0.0005〜0.01wt%を含み、更に、S及びCa,REM の1 種
又は2 種の含有量が次式 S− 5×((32/40) Ca+(32/140) REM) ≦0.0014wt% の関係を満たして残部はFe及び不可避的不純物の組成に
なり、粒径1 〜50μm の酸化物系介在物がTi酸化物及び
CaO ,REM 酸化物の1 種又は2 種を含有し、引張強度が
540 MPa 未満でかつ、再結晶集合組織が圧延方向および
圧延直角方向(板面上で圧延方向と90°をなす方向)の
少なくとも一方のr値で0.1 以下に相当する、表面性状
が良好な3ピース缶に適した缶用鋼板である。また、こ
の発明は、 C:0.005 wt%を超え0.10wt%以下、 Si:0.2 wt%以下、 Mn:0.05〜1.0 wt%、 P:0.04wt%以下、 Ti:0.015 〜0.10wt%、 Al:0.001 〜0.01wt%、 N:0.02wt%以下及びCa,REM の1 種又は2 種を合計で
0.0005〜0.01wt%を含み、かつ、 Ni:0.005 〜1.0 wt%、 Cr:0.005 〜1.0 wt%、 Nb:0.002 〜0.04wt%、 B:0.0002〜0.005 wt% の1 種又は2 種以上を含有し、更に、S及びCa,REM の
1 種又は2 種の含有量が次式 S− 5×((32/40) Ca+(32/140) REM) ≦0.0014wt% の関係を満たして残部はFe及び不可避的不純物の組成に
なり、粒径1 〜50μm の酸化物系介在物がTi酸化物及び
CaO ,REM 酸化物の1 種又は2 種を含有し、引張強度が
540 MPa 未満でかつ、再結晶集合組織が圧延方向および
圧延直角方向の少なくとも一方のr値で1.0 以下に相当
する、表面性状が良好な3ピース缶に適した缶用鋼板で
ある。この発明においては、粒径1 〜50μm の酸化物系
介在物がTi酸化物:20wt%以上90wt%以下、CaO ,REM
酸化物の1 種又は2 種の合計:10wt%以上40wt%以下、
Al2O3 :40%以下(Ti酸化物、CaO ,REM 酸化物の1 種
又は2 種、Al2O3 の合計は100 %以下)であることが好
適であり、また、粒径15μm 以下の均一かつ微細な結晶
粒からなることが、より望ましい。
That is, the present invention relates to: C: more than 0.005 wt% and 0.10 wt% or less, Si: 0.2 wt% or less, Mn: 0.05 to 1.0 wt%, P: 0.04 wt% or less, Ti: 0.015 to 0.10 wt% , Al: 0.001 to 0.01 wt%, N: 0.02 wt% or less and one or two of Ca and REM in total
0.0005 to 0.01 wt%, and the content of one or two of S and Ca, REM is expressed by the following formula: S−5 × ((32/40) Ca + (32/140) REM) ≦ 0.0014 wt% The balance satisfies the relationship and the remainder has the composition of Fe and unavoidable impurities, and the oxide-based inclusions having a particle size of 1 to 50 μm are composed of Ti oxide and
Contains one or two CaO and REM oxides, and has a tensile strength
Good surface texture, with a recrystallization texture of less than 540 MPa and an r value in at least one of the rolling direction and the direction perpendicular to the rolling direction (a direction at 90 ° to the rolling direction on the sheet surface) of 0.1 or less. A steel plate for cans suitable for piece cans. Further, the present invention provides: C: more than 0.005 wt% and 0.10 wt% or less, Si: 0.2 wt% or less, Mn: 0.05 to 1.0 wt%, P: 0.04 wt% or less, Ti: 0.015 to 0.10 wt%, Al: 0.001 to 0.01 wt%, N: 0.02 wt% or less and one or two of Ca and REM in total
0.0005 to 0.01 wt%, Ni: 0.005 to 1.0 wt%, Cr: 0.005 to 1.0 wt%, Nb: 0.002 to 0.04 wt%, B: 0.0002 to 0.005 wt% And S, Ca, REM
When the content of one or two types satisfies the relationship of S-5 × ((32/40) Ca + (32/140) REM) ≤ 0.0014 wt%, the balance is Fe and inevitable impurities, Oxide-based inclusions with a particle size of 1 to 50 μm
Contains one or two CaO and REM oxides, and has a tensile strength
A can steel sheet suitable for a three-piece can having good surface properties, having a recrystallization texture of less than 540 MPa and an r value of at least one of a rolling direction and a direction perpendicular to the rolling corresponding to 1.0 or less. In the present invention, the oxide-based inclusion having a particle size of 1 to 50 μm is composed of Ti oxide: 20 wt% to 90 wt%, CaO, REM
Total of one or two oxides: 10 wt% or more and 40 wt% or less,
Al 2 O 3 : preferably 40% or less (one or two of Ti oxide, CaO and REM oxide, and the total of Al 2 O 3 is 100% or less), and the particle size is 15 μm or less It is more preferable that the fine particles have uniform and fine crystal grains.

【0008】[0008]

【発明の実施の形態】以下、この発明をより具体的に説
明する。この発明では、Alが0.001 wt%以上0.01wt%以
下、Tiが0.015 wt%以上であって、Ca及び/又はREM が
0.0005wt%以上0.01wt%以下の条件を満たすことで、錆
の少ない鋼板とする。このとき、介在物はTi2O3 −CaO
(及び/又はREN 酸化物系) −Al2O3 −SiO2の酸化物と
なっており、かつ、介在物中のCa濃度が40wt%以下であ
ると、錆の起点となることがない。Alの量が0.01wt%を
超えると介在物はAl2O3 −CaO 系(及び/又はREN 酸化
物系)となるので、介在物中のCa濃度が50%程度とな
り、錆の起点となって耐食性を劣化させる。溶接部を含
め鋼板の塑性変形能の向上のためには、 1)鋼中の酸化物を粗大化させないこと、 2)鋼中の硫化物を粗大化させないこと、 3)結晶組織を微細化すること が重要である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described more specifically. In the present invention, Al is 0.001 wt% or more and 0.01 wt% or less, Ti is 0.015 wt% or more, and Ca and / or REM is
By satisfying the condition of 0.0005 wt% or more and 0.01 wt% or less, a steel sheet with less rust is obtained. At this time, the inclusions are Ti 2 O 3 -CaO
(And / or REN oxide system) When it is an oxide of —Al 2 O 3 —SiO 2 and the Ca concentration in the inclusions is 40 wt% or less, it does not become a starting point of rust. If the amount of Al exceeds 0.01 wt%, the inclusions become Al 2 O 3 —CaO-based (and / or REN oxide-based), so the Ca concentration in the inclusions becomes about 50% and becomes the starting point of rust. Degrades corrosion resistance. In order to improve the plastic deformability of the steel sheet including the welded parts, 1) do not coarsen oxides in the steel, 2) do not coarsen sulfides in the steel, and 3) refine the crystal structure This is very important.

【0009】上記の1)の酸化物の粗大化防止について
は、Al量が0.001 wt%以上0.01wt%以下、Ti量が0.015
wt%以上であって、Ca及び/又はREM 量が0.0005wt%以
上0.01wt%以下という条件を満たすことで達成できる。
また、上記2)の硫化物の粗大化防止については、凝固時
に析出するMnS の抑制が重要である。これは、MnS があ
ると熱間圧延時に延びて、最終製品の製缶加工時の割れ
を助長するからである。この解決には、鋼中のSを、よ
り安定な硫化物をつくるCa及び/又はREM によって固定
(無害化)することが必要である。具体的には、S及び
Ca,REM の1 種又は2 種の含有量について、次式 S− 5×((32/40) Ca+(32/140) REM) ≦0.0014wt% (式中、SはS量(wt%)を、CaはCa量(wt%)を、RE
M はREM 量(wt%)をそれぞれ示す。)の関係を満たす
ことが必要との考えに至った。すなわち、CaS やREM 硫
化物の生成によってSを固定するためにはCaやREM の添
加量は多いほどよいが、その下限値は上記の不等式で示
されるとおり、固定されないS量として0.0014wt%以下
であることが必要であるとの実験結果を得たのである。
[0009] Regarding the prevention of the oxide coarsening of 1), the Al content is 0.001 wt% or more and 0.01 wt% or less, and the Ti content is 0.015 wt% or less.
It can be achieved by satisfying the condition that the content of Ca and / or REM is 0.0005 wt% or more and 0.01 wt% or less.
In order to prevent the sulfide from coarsening in 2), it is important to suppress MnS precipitated during solidification. This is because the presence of MnS extends during hot rolling and promotes cracking of the final product during can making. For this solution, it is necessary to fix (detoxify) S in the steel with Ca and / or REM which forms more stable sulfide. Specifically, S and
Regarding the content of one or two types of Ca and REM, the following formula: S-5 x ((32/40) Ca + (32/140) REM) ≤ 0.0014 wt% (where S is the S content (wt%) , Ca is the amount of Ca (wt%), RE
M indicates the amount of REM (wt%). ). That is, in order to fix S by forming CaS or REM sulfide, the larger the amount of Ca or REM added, the better. However, the lower limit is 0.0014 wt% or less as the amount of unfixed S as shown by the above inequality. It was obtained from the experimental result that it was necessary to be.

【0010】上記3)の結晶組織の微細化については、15
μm 以下の微細な結晶粒とすることで、溶接部、非溶接
部のいずれにおいても顕著な伸びフランジ性の改善効果
が確認された。なお、溶接部の結晶粒径を粗大化させな
いことも重要であり、そのためには介在物が微細である
こと、すなわち、上記1),2)のとおり、介在物の粗大化
を防止することが重要である。発明者らは、以上の実験
結果を基に種々検討した結果、この発明を得るに至った
のである。
Regarding the refinement of the crystal structure of the above 3), 15
By using fine crystal grains of μm or less, a remarkable effect of improving stretch flangeability was confirmed in both the welded portion and the non-welded portion. It is also important not to increase the crystal grain size of the welded part. For this purpose, the inclusions must be fine, that is, to prevent the inclusions from coarsening as described in 1) and 2) above. is important. As a result of various studies based on the above experimental results, the inventors have arrived at the present invention.

【0011】次に、この発明の缶用鋼板において、成分
組成範囲を限定した理由を説明する。 C:0.005 wt%を超え0.10wt%以下;Cは、この発明に
おいて重要な添加成分のひとつである。C量を増加させ
ることで鋼板の焼鈍ままの強度を決定することができ
る。C量が0.005 wt%以下であると、結晶粒が粗大にな
り過ぎる結果、缶用として適用した場合に肌荒れ現象を
生ずる危険性が増大する。しかしながら、C量を増加さ
せてその添加量が0.10wt%を上回ると、フェライト・パ
ーライト組織のパーライト量が増大して熱間圧延性と冷
間圧延性とのいずれもが劣化することに加え、耐食性の
低下も著しいものとなり缶用鋼板の用途としては好まし
くない。したがって、C量は0.005 wt%を超え0.10wt%
以下とする。C量は溶接部の硬度上昇に直接影響を及ぼ
すものであり、これが高くなるほど溶接部の硬度が上昇
し、結果として溶接部の成形性を低下させることから、
より優れた溶接部成形性を確保するには、0.07wt%以下
とすることが更に好適である。また、下限についても、
製品材質の安定性確保の観点からは0.010 wt%以上であ
ることが望ましい。
Next, the reason why the composition range of the steel sheet for cans of the present invention is limited will be described. C: more than 0.005 wt% and 0.10 wt% or less; C is one of the important additive components in the present invention. By increasing the amount of C, the strength of the steel sheet as-annealed can be determined. When the C content is 0.005 wt% or less, the crystal grains become too coarse, and the risk of causing a skin roughening phenomenon when applied for cans increases. However, when the amount of C is increased and the amount of addition exceeds 0.10 wt%, the amount of pearlite in the ferrite / pearlite structure is increased, and in addition to deterioration of both hot rolling property and cold rolling property, The corrosion resistance is significantly reduced, which is not preferable for use as a steel sheet for cans. Therefore, the C content exceeds 0.005 wt% and 0.10 wt%
The following is assumed. The C content has a direct effect on the increase in the hardness of the welded portion, and the higher the C content, the higher the hardness of the welded portion and, as a result, the lower the formability of the welded portion.
In order to ensure better weld formability, the content is more preferably not more than 0.07 wt%. Also, regarding the lower limit,
From the viewpoint of ensuring the stability of the product material, it is desirable that the content be 0.010 wt% or more.

【0012】Si:0.2 wt%以下(0 を含まない);Si
は、溶製時の脱酸に必要な成分であるが、添加量が増加
すると鋼が固溶強化され、熱間変形抵抗、冷間変形抵抗
及び焼鈍後の二次冷延における変形抵抗がいずれも増加
し好ましくない。また、詳細な機構は不明であるが、缶
用鋼板として使用した場合に耐食性の低下が顕著とな
る。以上のことから、Siの添加量の上限を0.2 wt%とし
た。なお、好ましい下限値は特に規制されないが、脱Si
に要する費用増加に鑑みて0.002wt %である。
Si: 0.2 wt% or less (excluding 0); Si
Is a component necessary for deoxidation at the time of smelting, but as the amount of addition increases, the steel is solid-solution strengthened, and any of hot deformation resistance, cold deformation resistance, and deformation resistance in secondary cold rolling after annealing Is also undesirably increased. Although the detailed mechanism is unknown, when used as a steel sheet for cans, the corrosion resistance is significantly reduced. From the above, the upper limit of the added amount of Si was set to 0.2 wt%. The preferred lower limit is not particularly limited, but the
0.002wt% in view of the increase in cost required for

【0013】Mn:0.05〜1.0 wt%;Mnは、Siと同様、溶
製時の脱酸に有効である。また、鋼の熱間脆性を抑制す
る効果もある。これらの望ましい効果を発揮させるため
には、おおむね0.05wt%以上の添加が望ましい。一方、
この発明は、3ピース缶用として円筒成形、フランジ成
形などを行う鋼板に関するものであり、特に伸びフラン
ジ加工性の向上が望まれる。ここに、Mn量が1.0 wt%以
下であれば、その含有による伸びフランジ加工性の低下
量は小さい。したがって、Mnは1.0 wt%を上限とした。
0.7 wt%以下であればより望ましい。
Mn: 0.05 to 1.0 wt%; Mn is effective for deoxidation during melting, like Si. It also has the effect of suppressing hot brittleness of steel. In order to exhibit these desirable effects, it is desirable to add approximately 0.05 wt% or more. on the other hand,
The present invention relates to a steel sheet which is subjected to cylindrical forming, flange forming, and the like for a three-piece can, and in particular, improvement in stretch flangeability is desired. Here, if the Mn content is 1.0 wt% or less, the decrease in stretch flangeability due to its content is small. Therefore, the upper limit of Mn was 1.0 wt%.
0.7 wt% or less is more desirable.

【0014】P:0.04wt%以下;Pは、鋼を強化する作
用があり、高強度の鋼板を得ようとする場合は添加が望
ましい成分であるが、偏析する傾向が強く、表面の耐食
性が低下する傾向になるのと、溶接部の接合界面の強度
を低下させるなどの特有な問題点がある。Pの添加量が
0.04wt%以下であればそのような問題は生じない。下限
は特に規定されないが、0.005 wt%程度が顕著な製造コ
ストの上昇を伴わずに低減できるレベルと考えられる。
P: not more than 0.04 wt%; P has the effect of strengthening the steel, and is a component that is desirable to be added when obtaining a high-strength steel sheet. However, P has a strong tendency to segregate, and the corrosion resistance of the surface is low. There are specific problems such as a tendency to decrease and a decrease in the strength of the joint interface of the welded portion. The amount of P added
If it is 0.04 wt% or less, such a problem does not occur. Although the lower limit is not particularly defined, about 0.005 wt% is considered to be a level that can be reduced without significantly increasing the production cost.

【0015】Ti:0.015 〜0.10wt%;Tiはこの発明にお
いて重要な成分であり、Ti脱酸により、50μm 以下のサ
イズの微細酸化物系介在物を形成させ、冷延−焼鈍時の
粒成長性を制御して、結晶粒の微細化を達成するととも
に強度−伸びバランスを向上させる。更に、Tiの微細酸
化物は溶接部(特に熱影響部)の組織の粗大化を抑制す
ることで、溶接部の成形性を向上させることができる。
Tiの添加量が0.015 wt%未満では、添加効果、すなわち
微細酸化物の量が少な過ぎるため、所望の効果が得られ
ない。しかし、Tiの添加量が0.10wt%を超えると熱間圧
延性、冷間圧延性及び焼鈍後の二次冷間圧延性が顕著に
低下し、製品表面の性状も顕著に低下する。したがっ
て、Tiは0.015 〜0.10wt%の範囲とした。更に優れた表
面性状を確保するには、0.05wt%以下とすることがより
好適である。またTi添加は後述する鋼板のr値の制御に
おいても重要な元素である。
Ti: 0.015 to 0.10 wt%; Ti is an important component in the present invention, and fine oxide inclusions having a size of 50 μm or less are formed by Ti deoxidation, and grain growth during cold rolling and annealing. By controlling the properties, the crystal grains can be refined and the strength-elongation balance can be improved. Furthermore, the fine oxide of Ti can suppress the coarsening of the structure of the welded part (particularly, the heat-affected zone), thereby improving the formability of the welded part.
If the amount of Ti is less than 0.015 wt%, the desired effect cannot be obtained because the effect of addition, that is, the amount of the fine oxide is too small. However, if the added amount of Ti exceeds 0.10 wt%, the hot rolling property, the cold rolling property, and the secondary cold rolling property after annealing are significantly reduced, and the properties of the product surface are also significantly reduced. Therefore, Ti is set in the range of 0.015 to 0.10 wt%. In order to secure more excellent surface properties, it is more preferable that the content be 0.05 wt% or less. The addition of Ti is also an important element in controlling the r value of the steel sheet described later.

【0016】Al:0.001 〜0.01wt%;Alはこの発明にお
いて重要な成分であり、0.01wt%を超える量では、脱酸
がAl脱酸となって巨大Al2O3 クラスターが大量に生成
し、表面性状を劣化させるとともに、冷延−焼鈍時の粒
成長性を制御できる50μm 以下の微細酸化物が少なくな
るため、製缶時の肌荒れなどの不具合が問題となる危険
性が増大する。しかも、表面性状の改善効果が発揮され
ない。したがって、0.01wt%以下と限定した。更に重要
なことは、Al量が多いと介在物組成がAl2O3 −CaO 及び
/又はAl2O3 −REM 酸化物系となるため、かかる介在物
が錆の起点となり、耐食性を劣化させることであり、缶
用鋼板では重要となる耐食性が低下する傾向にある。こ
の点からもAlの上限は0.01wt%とした。一方、Alの下限
は、脱ガス及び連続鋳造の操業安定化の観点から、0.00
1 wt%とする。
Al: 0.001 to 0.01% by weight; Al is an important component in the present invention. If the amount exceeds 0.01% by weight, deoxidation becomes Al deoxidization and a large amount of Al 2 O 3 clusters are formed. In addition, since the amount of fine oxides of 50 μm or less that can control the grain growth during cold rolling and annealing is reduced while deteriorating the surface properties, the risk of problems such as rough skin during can making increases. In addition, the effect of improving the surface properties is not exhibited. Therefore, the content is limited to 0.01 wt% or less. More importantly, since the composition of inclusions and Al amount is large is Al 2 O 3 -CaO and / or Al 2 O 3-REM oxide, such inclusions become a starting point of rust, degrade the corrosion resistance In steel plates for cans, the important corrosion resistance tends to decrease. From this point, the upper limit of Al is set to 0.01 wt%. On the other hand, the lower limit of Al is 0.00% from the viewpoint of degassing and stabilizing the operation of continuous casting.
1 wt%.

【0017】N:0.02wt%以下(0 を含まない);N
は、固溶強化成分として寄与するため、この発明のごと
く極めて厳しい塑性加工に適用する場合は延性の低下に
つながるため、極力低減することが望ましい。N含有量
の増大に伴う延性の劣化量を考慮し、0.02wt%を上限と
した。なお、好ましい下限値は特に限定するものではな
いが、侵窒を防止するための製造コストアップと機械的
特性の変化を勘案すれば0.001 wt%である。また、好ま
しい上限値は0.005 wt%であり、0.003 wt%以下であれ
ばより好ましい。
N: 0.02 wt% or less (excluding 0); N
Contributes as a solid solution strengthening component, and when applied to extremely severe plastic working as in the present invention, it leads to a decrease in ductility. Therefore, it is desirable to reduce as much as possible. Considering the amount of ductility degradation accompanying an increase in the N content, the upper limit was made 0.02 wt%. The preferred lower limit is not particularly limited, but is 0.001 wt% in consideration of an increase in manufacturing cost for preventing nitrification and a change in mechanical properties. The preferred upper limit is 0.005 wt%, more preferably 0.003 wt% or less.

【0018】Ca,REM の1 種又は2 種を合計で0.0005〜
0.01wt%;Ca及び金属REM (La、Ceなどの希土類元素を
いう)は、この発明において重要な成分であり、Ca及び
REM のいずれか1種又は2種を0.0005wt%以上添加する
必要がある。すなわち、Ti脱酸した後、さらに0.0005wt
%以上になるようにCa及びREM のいずれか1種又は2種
を添加して、溶鋼中の酸化物組成を、Ti酸化物:20wt%
以上90wt%以下、好ましくは85wt%以下、CaO 及び/又
はREM 酸化物:5wt%以上40wt%以下、Al2O3 が40wt%
以下である低融点の酸化物系介在物とする。そうする
と、連続鋳造時に、地金を含んだTi酸化物のノズルへの
付着を有効に防止でき、ノズルの閉塞を防止できる。さ
らに、CaO 及び/又はREM 酸化物は、冷延−焼鈍後の粒
成長抑制、溶接部(特に熱影響部)の粗大化防止に寄与
できる。これらのことから、Ca,REM の1 種又は2 種を
合計で0.0005wt%以上含有させる。一方、Ca、REM の合
計量が0.01wt%を超えると逆に表面欠陥が発生する危険
が増大することと、缶用鋼板としては重要である耐食性
が低下するという欠点が顕在化することから、上限は0.
01 wt %に限定した。
One or two types of Ca and REM are added in a total amount of 0.0005 to
0.01 wt%; Ca and metal REM (refer to rare earth elements such as La and Ce) are important components in the present invention.
It is necessary to add at least 0.0005 wt% of one or two types of REM. That is, after Ti deoxidation, 0.0005wt
% Or more of Ca and REM are added so that the oxide composition in the molten steel is changed to Ti oxide: 20 wt%.
90 wt% or less, preferably 85 wt% or less, CaO and / or REM oxide: 5 wt% to 40 wt%, Al 2 O 3 40 wt%
The following low melting point oxide-based inclusions are used. Then, at the time of continuous casting, it is possible to effectively prevent the Ti oxide containing the metal from adhering to the nozzle, and to prevent the nozzle from being blocked. Further, CaO and / or REM oxide can contribute to suppressing grain growth after cold rolling and annealing and preventing the welded portion (particularly the heat affected zone) from becoming coarse. For these reasons, one or two of Ca and REM should be contained in a total of 0.0005 wt% or more. On the other hand, if the total amount of Ca and REM exceeds 0.01 wt%, the risk of surface defects increases, and the disadvantage of reduced corrosion resistance, which is important for steel sheets for cans, becomes apparent. The upper limit is 0.
Limited to 01 wt%.

【0019】(S− 5×((32/40) Ca+(32/140) REM)
≦0.0014wt%) Sは鋼の加工性に対して有害な成分であることから、極
力低減することが望ましい。しかし、過度の脱硫処理は
コストアップの要因となるため、脱硫処理に要する費用
と脱硫による機械的特性の改善効果とを勘案して、上限
は0.01wt%とする。更に好ましい上限値は0.005 wt%で
ある。また、Sは、鋼中で種々の硫化物として存在し得
るが、MnS 系の介在物として存在する場合は熱間圧延時
に圧延方向に顕著に展伸して、最終製品の製缶加工時の
割れを助長する。この点、Ca、REM を添加することによ
り硫化物の形態及び非延性が改善され、この発明が主眼
とする溶接部を含めた加工部の成形性の改善が顕著とな
る。発明者らの調査によれば、Ca、REM の添加により、
理由は不明であるが原子比でこれらの元素の約5 倍のS
までが無害の硫化物となると考えられる。したがって、
有害なS量、すなわちS− 5×((32/40) Ca+(32/140)
REM) の値が十分小さければ、硫化物による加工性の低
下は生じない。調査により、有害なS量は0.0014wt%以
下であれば、問題ないことがわかった。
(S−5 × ((32/40) Ca + (32/140) REM)
≦ 0.0014 wt%) S is a harmful component to the workability of steel, so it is desirable to reduce it as much as possible. However, excessive desulfurization treatment causes an increase in cost. Therefore, the upper limit is set to 0.01 wt% in consideration of the cost required for desulfurization treatment and the effect of improving mechanical properties by desulfurization. A more preferred upper limit is 0.005 wt%. In addition, S can exist as various sulfides in steel, but when present as MnS-based inclusions, it remarkably expands in the rolling direction during hot rolling, so that it can be used during can forming of a final product. Promote cracking. In this regard, by adding Ca and REM, the form and non-ductility of the sulfide are improved, and the formability of the processed portion including the welded portion, which is the main focus of the present invention, is significantly improved. According to the inventors' research, the addition of Ca and REM
For unknown reasons, the atomic ratio of S is about 5 times that of these elements.
Is considered to be harmless sulfide. Therefore,
Harmful S content, ie S-5 × ((32/40) Ca + (32/140)
If the value of (REM) is sufficiently small, the workability does not decrease due to sulfide. From the investigation, it was found that there was no problem if the amount of harmful S was 0.0014 wt% or less.

【0020】(O:0.010 wt%以下)Oは微細な酸化物
を生成させる観点からは必要な成分であるが、0.010 wt
%を超えて添加すると粗大なAl2O3 を多量に生成させ
て、加工時の延性、深絞り成形性が低下するので、0.01
0 wt%を上限とした。また、好ましい上限値は0.007 wt
%であり、0.005 wt%以下であればより望ましい。
(O: 0.010 wt% or less) O is a necessary component from the viewpoint of forming a fine oxide,
%, A large amount of coarse Al 2 O 3 is generated, and the ductility during processing and the deep drawability are reduced.
The upper limit was 0 wt%. Further, a preferable upper limit is 0.007 wt.
%, More preferably 0.005 wt% or less.

【0021】Ni:0.005 〜1.0 wt%:Cr:0.005 〜1.0
wt%;Ni及びCrは、鋼板を固溶強化することなく組織を
微細化すること、あるいは低温・高歪み速度環境での変
形を容易化することで、この発明が目標とする製缶工程
時の伸びフランジ特性の向上が可能である。また、いず
れの成分も鋼の変態点を低減する効果を有するため熱間
仕上温度の規制条件を緩和する点でも有効である。した
がって、この発明では必要に応じてNi及びCuの1 種又は
2 種を添加することができる。Ni及びCrのいずれも0.00
5 wt%以上の添加で顕著な効果を発揮し、複合して添加
した場合でもこの効果は相殺されることはない。しか
し、1.0 wt%を超えて添加してもその効果は飽和する傾
向にあるため、いずれも上限を1.0wt%とした。材質の
安定化という観点では0.01〜0.5 wt%の範囲が更に好適
である。
Ni: 0.005 to 1.0 wt%: Cr: 0.005 to 1.0
wt%; Ni and Cr are used during the can-making process, which is the target of the present invention, by making the structure finer without solid solution strengthening the steel sheet or by facilitating deformation in low temperature and high strain rate environments. Of the stretch flange characteristics can be improved. In addition, since each component has an effect of reducing the transformation point of steel, it is also effective in relaxing the regulation condition of the hot finishing temperature. Therefore, in the present invention, if necessary, one or more of Ni and Cu
Two types can be added. 0.00 for both Ni and Cr
A remarkable effect is exhibited by addition of 5 wt% or more, and this effect is not offset even when added in combination. However, the effect tends to be saturated even if added in excess of 1.0 wt%, so the upper limit was set to 1.0 wt% in each case. From the viewpoint of stabilizing the material, the range of 0.01 to 0.5 wt% is more preferable.

【0022】Nb:0.002 〜0.04wt%;Nbは鋼板の結晶粒
の微細化に極めて有効である。したがって、この発明で
は必要に応じてNbを添加することができる。結晶粒を微
細化することにより特にこの発明が対象とする3ピース
缶用鋼板においては成形後の表面荒れの防止及びこれに
関連して延性向上に対して顕著な効果を発揮する。Nbは
おおむね0.002 wt%以上の添加で顕著な効果を発揮す
る。しかし、0.04wt%を超えてNbを添加してもその効果
は飽和する傾向にあり、逆に鋼の熱間及び冷間の変形抵
抗を顕著に増加させるという不具合を生ずるおそれがあ
るため、0.002 〜0.04wt%の範囲とした。材質の安定化
という観点では0.01〜0.025wt %が更に好適である。
Nb: 0.002 to 0.04 wt%; Nb is extremely effective in refining the crystal grains of the steel sheet. Therefore, in the present invention, Nb can be added as needed. By refining the crystal grains, the present invention particularly exerts a remarkable effect on the prevention of surface roughness after forming and the improvement of ductility in relation to the three-piece steel plate for the present invention. Nb exerts a remarkable effect when added at about 0.002 wt% or more. However, even if Nb is added in excess of 0.04 wt%, the effect tends to be saturated, and conversely, there is a possibility that a problem of significantly increasing the hot and cold deformation resistance of the steel may occur. -0.04 wt%. From the viewpoint of stabilizing the material, 0.01 to 0.025 wt% is more preferable.

【0023】B:0.0002〜0.005 wt%;Bを添加するこ
とにより、Nbと同様に、鋼板の組織の微細化に有効に寄
与する。この望ましい効果が発揮されるにはおおむね0.
0002wt%以上の添加が必要である。しかし、0.005 wt%
を超えて添加してもその効果が飽和することに加えて鋼
の熱間変形抵抗が顕著に増加する。以上のことから0.00
02〜0.005 wt%の範囲とした。
B: 0.0002 to 0.005 wt%; The addition of B effectively contributes to the refinement of the structure of the steel sheet, like Nb. To achieve this desired effect, it is almost 0.
It is necessary to add 0002 wt% or more. However, 0.005 wt%
If the addition exceeds the above range, the effect is saturated and the hot deformation resistance of the steel is significantly increased. From the above, 0.00
The range was from 02 to 0.005 wt%.

【0024】以上の成分組成範囲を満足する鋼におい
て、粒径1 〜50μm の酸化物系介在物がTi酸化物及びCa
O ,REM 酸化物の1 種又は2 種を含有する介在物である
ことが、この発明では特に重要である。かかる脱酸生成
物としての介在物が、Ti酸化物及びCaO ,REM 酸化物の
1 種又は2 種を含有するもの、より詳しくは、Ti酸化物
−CaO 及び/又はREM 酸化物−Al2O3 −SiO2系の酸化物
系の介在物になることにより、錆の少なく、介在物、析
出物による変形能の劣化がほとんどなく、かつ、クラス
ター状介在物による表面欠陥がなく、しかも地金を含ん
だTi酸化物のノズルへの付着がない、この発明で所期し
た缶用鋼板となる。
In a steel satisfying the above composition ranges, oxide inclusions having a particle size of 1 to 50 μm contain Ti oxide and Ca
It is particularly important in the present invention that the inclusions contain one or two of O 2 and REM oxides. Inclusions as such deoxidation products include Ti oxide and CaO, REM oxide.
One containing one or two, more specifically, Ti oxide-CaO and / or REM oxide-Al 2 O 3- SiO 2 oxide-based inclusions, less rust, Cans expected in this invention, with little deterioration of deformability due to inclusions and precipitates, no surface defects due to cluster-like inclusions, and no adhesion of Ti oxide containing metal to the nozzle Steel sheet.

【0025】なお、この発明で規定する酸化物系介在物
を粒径1 〜50μm のものに限定しているのは、かかる範
囲の介在物が脱酸により生成した介在物と見なすことが
できるからであり、粒径が50μm を超える介在物は一般
に、スラグかモールドパウダーなどの外来性の介在物が
主因である。なお、Al2O3 系クラスターには、これより
巨大なものもあるが、粒径50μm 以下の介在物の酸化物
組成が上記要件を満たしていれば、巨大なAl2O3 系クラ
スターも十分減少しているとみなすことができる。ま
た、このような介在物は80wt%以上にする。その理由
は、80wt%未満だと、介在物の制御が不十分であり、コ
イルの表面欠陥やノズルつまりの原因となるためであ
る。
The reason why the oxide inclusions specified in the present invention are limited to those having a particle diameter of 1 to 50 μm is that inclusions in such a range can be regarded as inclusions formed by deoxidation. Inclusions having a particle size of more than 50 μm are generally caused mainly by exogenous inclusions such as slag or mold powder. Some Al 2 O 3 clusters are larger than this, but if the oxide composition of inclusions with a particle size of 50 μm or less satisfies the above requirements, a large Al 2 O 3 cluster can be sufficient. It can be considered that it is decreasing. The content of such inclusions is set to 80% by weight or more. The reason is that if the content is less than 80 wt%, the control of inclusions is insufficient, which may cause a surface defect of the coil or a nozzle clogging.

【0026】上述の粒径1 〜50μm の酸化物系介在物の
組成は、Ti酸化物:20wt%以上90wt%以下、CaO ,REM
酸化物の1 種又は2 種の合計:10wt%以上40wt%以下、
Al2O 3 :40%以下(Ti酸化物、CaO ,REM 酸化物の1 種
又は2 種、Al2O3 の合計は100 %以下)であることが、
より好ましい。
The above-mentioned oxide-based inclusions having a particle size of 1 to 50 μm
Composition: Ti oxide: 20 wt% or more and 90 wt% or less, CaO, REM
Total of one or two oxides: 10 wt% or more and 40 wt% or less,
AlTwoO Three: 40% or less (one of Ti oxide, CaO, REM oxide
Or 2 types, AlTwoOThreeIs less than 100%)
More preferred.

【0027】上記介在物のTi酸化物が20wt%に満たない
場合はTi脱酸鋼ではなく、Al脱酸鋼となり、Al2O3 濃度
が高まるためにノズル詰まりが発生する。また、CaO, R
EM酸化物濃度が高くなると発錆性が著しくなるため、Ti
酸化物濃度は20%wt%以下とする。一方、Ti酸化物濃度
が90wt%を超えると、CaO, REM酸化物の割合が少なくな
って、かえってノズル詰まりが発生することから、Ti酸
化物濃度は20wt%以上90wt%以下とする。より好ましく
は30wt%以上80wt%以下とする。
If the content of Ti oxides in the inclusions is less than 20% by weight, Ti deoxidized steel is used instead of Ti deoxidized steel, and nozzle clogging occurs because the Al 2 O 3 concentration increases. Also, CaO, R
As the EM oxide concentration increases, the rusting property becomes remarkable.
The oxide concentration is set to 20% wt% or less. On the other hand, if the Ti oxide concentration exceeds 90 wt%, the proportion of CaO and REM oxides decreases, and nozzle clogging rather occurs. Therefore, the Ti oxide concentration is set to 20 wt% or more and 90 wt% or less. More preferably, the content is 30 wt% or more and 80 wt% or less.

【0028】また、上記介在物中のCaO ,REM 酸化物の
1 種又は2 種の合計が10wt%に満たないと、介在物が低
融点とならず、前述のようにノズルの閉塞を引き起こ
す。一方、40wt%を超えると介在物がその後にSを吸収
して水溶性に変化し、錆の起点となるため耐食性が低下
する。なお、より好ましい範囲は20〜40wt%である。
The CaO and REM oxides in the inclusions
If the total of one or two kinds is less than 10% by weight, the inclusion does not have a low melting point and causes the nozzle to be blocked as described above. On the other hand, if it exceeds 40% by weight, the inclusions subsequently absorb S and change to water-soluble, and become the starting point of rust, so that the corrosion resistance decreases. In addition, a more preferable range is 20 to 40 wt%.

【0029】また、上記介在物中のAl2O3 については、
40wt%を超えると高融点組成となるためにノズル閉塞が
起きるだけでなく、介在物の形状がクラスター状にな
り、製品板での非金属介在物性の欠陥が増加する。な
お、鋼中にAlがほとんど含有していない場合には、介在
物中のAl2O3 もほとんど無視し得るだけの濃度になる。
Further, regarding Al 2 O 3 in the above inclusions,
If it exceeds 40% by weight, the composition will have a high melting point and not only will the nozzle be clogged, but also the inclusions will be clustered and defects of non-metallic inclusions on the product plate will increase. When Al is hardly contained in steel, the concentration of Al 2 O 3 in inclusions is almost negligible.

【0030】なお、上記酸化物系介在物中には、上掲し
たもの以外の酸化物が混入する場合もあり、その場合に
上掲したもの以外の酸化物の量については、特に限定す
るものではないが、SiO2については、30wt%以下、MnO
については、15wt%以下に制御するのが好ましい。この
理由は、これらがそれぞれの量を上回ると、この発明で
対象とするチタンキルド鋼とはいえないし、こうした組
成のもとでは、Ca添加を行わなくてもノズル詰まりはな
く、発錆の問題も無くなるためである。しかも、介在物
中にSiO2, MnO を含有させるためには、酸化物の形成傾
向を考慮すると溶鋼のSi, Mn濃度をMn/Ti>100 、Si/
Ti>50にすることが好ましいのであるが、この場合、鋼
の硬質化、表面性状の劣化などを招く。
The oxide-based inclusions may contain oxides other than those listed above. In such a case, the amount of the oxides other than those listed above is particularly limited. but not, for SiO 2 is less than 30wt%, MnO
Is preferably controlled to 15 wt% or less. The reason for this is that if they exceed the respective amounts, they cannot be said to be the titanium-killed steels targeted in the present invention.Under such a composition, there is no nozzle clogging without Ca addition, and there is no problem of rusting. It is because it disappears. Moreover, in order to include SiO 2 and MnO in the inclusions, the Si and Mn concentrations of the molten steel are set to Mn / Ti> 100 and Si /
It is preferable to set Ti> 50, but in this case, hardening of the steel and deterioration of the surface properties are caused.

【0031】この発明の鋼板は、引張強度が540 MPa 未
満のものである。引張強度(TS)が540 MPa 以上で
は、母材と溶接部(熱影響部)との強度差が拡大し、溶
接部に加工変形が集中して加工時の不良につながり、ま
た、成形時の形状凍結性も強度上昇に伴う降伏強度の上
昇により劣化するからである。缶体強度の点からは400M
Pa 以上とすることが望ましい。なおTSは、主として強
化元素(Mn, Si, Pなど)の含有量と焼鈍後に行うスキン
パス圧延あるいは2次冷延の圧下率の制御により目標値
に制御する。
The steel sheet of the present invention has a tensile strength of less than 540 MPa. When the tensile strength (TS) is 540 MPa or more, the difference in strength between the base metal and the welded portion (heat affected zone) increases, and work deformation concentrates on the welded portion, leading to defects during processing. This is because the shape freezing property also deteriorates due to an increase in yield strength accompanying an increase in strength. 400M in terms of can body strength
It is desirable to set it to Pa or more. Note that TS is controlled to a target value mainly by controlling the content of the strengthening element (Mn, Si, P, etc.) and the rolling reduction of skin pass rolling or secondary cold rolling performed after annealing.

【0032】また、鋼板の集合組織の制御も3ピース缶
用素材としては重要である。製缶した場合に、缶胴の円
周方向に相当する素材(再結晶焼鈍後、2次圧延を施さ
ない状態)のr値が1.0 以下である集合組織を有するこ
とが製缶後のネックイン成形時にしわ等の不具合発生を
防止するために重要である。従って、通常のいわゆるノ
ーマルグレイン缶(缶胴円周方向が鋼板のL方向に相当
する缶)では鋼板のL方向(圧延方向)が、またリバー
スグレイン缶(缶胴円周方向が鋼板のC方向に相当する
缶)においては鋼板のC方向(圧延直角方向)のr値が
重要となる。これは種々の製缶実験を行った結果、缶胴
の円周方向に相当する方向の素材のr値が1.0 を越える
と、ネックイン成形時にしわ不良、形状不良を生じ易い
ことがあきらかとなったことに基づく。このような、L
あるいはC方向のr値を低下させた鋼板を製造するため
には本発明のTi−Ca添加鋼が適していることもあきらか
になった。r値の測定はいわゆる引張法により行なう
が、製品の製造段階で焼鈍後に2次冷延を行なったもの
では、延性が低下しているため容易にネッキングを生じ
易く、通常行なわれている15〜20%の歪を均一伸びの範
囲で付与することができない。種々の調査を行なった結
果、焼鈍ままの状態、あるいは数%の軽スキンパス付与
の状態で測定したr値が1.0 を越えなければ、その2次
冷延材でも同様にネックイン成形時に問題が生じないこ
とがわかった。すなわち再結晶集合組織が十分保たれた
状態(焼鈍まま、または軽スキンパスの状態)でのr値
が1.0 を越えないことがネックイン成形時の不具合発生
防止のために重要である。なお、素材でr値1.0 %以下
に相当する集合組織を得るには、Ti−Ca添加の他、1次
の冷間圧延において高圧下を行う、焼鈍を低温で行うな
どしてL,C方向ともr値を低下させる(Δrは多少負
の側に大きくなるが)ことが好ましい。この発明の鋼板
の板厚は、薄肉化のメリットが得られる0.3 mm以下とす
るのが望ましい。
Control of the texture of the steel sheet is also important as a material for a three-piece can. When a can is made, the material corresponding to the circumferential direction of the can body (without secondary rolling after recrystallization annealing) has a texture with an r value of 1.0 or less. It is important to prevent the occurrence of defects such as wrinkles during molding. Therefore, in a normal so-called normal grain can (a can body circumferential direction corresponding to the L direction of a steel sheet), the L direction (rolling direction) of the steel sheet is the reverse grain can (the circumferential direction of the can body is the C direction of the steel sheet). ), The r value in the C direction (direction perpendicular to the rolling direction) of the steel sheet is important. As a result of conducting various can-making experiments, it is clear that when the r-value of the material in the direction corresponding to the circumferential direction of the can body exceeds 1.0, wrinkle defects and shape defects are likely to occur during neck-in molding. Based on that. Like this, L
Alternatively, it has become clear that the Ti-Ca-added steel of the present invention is suitable for producing a steel sheet having a reduced r value in the C direction. The r value is measured by a so-called tensile method, but in the case of secondary cold rolling after annealing in the production stage of a product, necking easily occurs due to reduced ductility. 20% strain cannot be applied within the range of uniform elongation. As a result of various investigations, if the r-value measured in the as-annealed state or in the state in which a few percent of the skin pass is applied does not exceed 1.0, the secondary cold-rolled material similarly causes a problem during neck-in forming. I knew it wasn't. In other words, it is important that the r value not exceed 1.0 in a state where the recrystallized texture is sufficiently maintained (as annealed or in a light skin pass state) in order to prevent the occurrence of problems during neck-in molding. In addition, in order to obtain a texture equivalent to an r value of 1.0% or less in the material, in addition to the addition of Ti-Ca, the primary cold rolling is performed under a high pressure and annealing is performed at a low temperature in the L and C directions. In both cases, it is preferable to decrease the r value (although Δr slightly increases to the negative side). The thickness of the steel sheet of the present invention is desirably 0.3 mm or less, at which the advantage of thinning can be obtained.

【0033】この発明の鋼板は、結晶粒径が15μm 以下
の均一かつ微細な結晶粒からなる組織である場合に、極
薄鋼板においても成形後の表面荒れによる外観不良、こ
れに起因する伸びの低下などの問題を回避することが可
能となる。したがって、結晶粒径が15μm 以下の均一か
つ微細な結晶粒からなる組織とすることは好ましく、粒
径が12μm 以下とすることはさらに好適である。なお、
均一とは、粗大粒を含むいわゆる混粒組織ではないこと
を意味し、かかる均一かつ微細な組織は、鋼組成と熱延
条件(後述するスラブ加熱温度、仕上温度など)を調整
することにより、得ることができる。
When the steel sheet of the present invention has a structure composed of uniform and fine crystal grains having a crystal grain size of 15 μm or less, even in an ultra-thin steel sheet, poor appearance due to surface roughness after forming and elongation due to the poor appearance are caused. Problems such as reduction can be avoided. Therefore, it is preferable to have a structure composed of uniform and fine crystal grains having a crystal grain size of 15 μm or less, and it is more preferable that the grain size be 12 μm or less. In addition,
Uniform means that it is not a so-called mixed grain structure including coarse grains, and such a uniform and fine structure is obtained by adjusting the steel composition and hot rolling conditions (slab heating temperature, finishing temperature, etc. described later). Obtainable.

【0034】次に、この発明の鋼の製造方法について説
明する。この発明において、調整成分としてのTiを、T
i:0.015 wt%以上とする理由は、Tiが0.015 wt%未満
では脱酸素能力が弱く、溶鋼中の全酸素濃度が高くな
り、伸び、絞りなどの材料特性が悪化するためである。
この場合、Si, Mnの濃度を高めて脱酸力を増加すること
も考えられるが、Tiが0.015 wt%未満ではSiO2又はMnO
含有介在物が大量に生成し、鋼材質の硬化やめっき性の
劣化を招く。これを防ぐには (wt%Mn)/ (wt%Ti) <10
0 とするようにTiを含有させることが必要となる。その
場合、介在物中のTi酸化物濃度は20%以上となる。
Next, the method for producing steel according to the present invention will be described. In the present invention, Ti as an adjusting component is
The reason for setting i: 0.015 wt% or more is that if Ti is less than 0.015 wt%, the deoxidizing ability is weak, the total oxygen concentration in the molten steel increases, and the material properties such as elongation and drawing are deteriorated.
In this case, it is conceivable to increase the deoxidizing power by increasing the concentrations of Si and Mn. However, if Ti is less than 0.015 wt%, SiO 2 or MnO
Inclusion inclusions are generated in large quantities, causing hardening of the steel material and deterioration of the plating property. To prevent this, (wt% Mn) / (wt% Ti) <10
It is necessary to contain Ti so as to be 0. In that case, the Ti oxide concentration in the inclusion becomes 20% or more.

【0035】この発明に係るチタンキルド鋼板の製造に
あたっては、まず、溶鋼をFeTiなどのTi含有合金により
脱酸し、鋼中にTi酸化物を主体とする酸化物系介在物を
生成させる。その介在物は、Alで脱酸した時のような巨
大クラスター状ではなく、1〜50μm 程度の大きさの粒
状、破断状のものが多くを占める。ただし、このときAl
濃度が0.010 wt%を超えていると、巨大なAl2O3 クラス
ターが生成する。このようなAl2O3 クラスターは、Ti合
金を添加してTi濃度を増加しても還元できず、鋼中にク
ラスター状介在物として残存する。したがって、この発
明に係る鋼板については、製造の段階で、まず溶鋼中に
Ti酸化物を生成させることが好ましい。
In manufacturing the titanium-killed steel sheet according to the present invention, first, molten steel is deoxidized with a Ti-containing alloy such as FeTi to generate an oxide-based inclusion mainly composed of Ti oxide in the steel. The inclusions are not in the form of giant clusters as in the case of deoxidation with Al, but are mostly in the form of grains or fractures having a size of about 1 to 50 μm. However, at this time, Al
If the concentration exceeds 0.010 wt%, huge Al 2 O 3 clusters are formed. Such Al 2 O 3 clusters cannot be reduced even if the Ti concentration is increased by adding a Ti alloy, and remain as cluster-like inclusions in the steel. Therefore, regarding the steel sheet according to the present invention, during the manufacturing stage,
Preferably, a Ti oxide is formed.

【0036】なお、この発明のもとでは、Alで脱酸する
従来方法に比べると、Ti合金の歩留りが悪く、しかも、
Ca, REM を含有するため介在物組成調整用合金は高価で
ある。このことから、かかる合金の溶鋼中への添加は、
介在物の組成制御が可能な範囲内でできるかぎり少量で
済むように行うのが経済的で好ましい。この意味におい
て、Ti含有合金などの脱酸剤の添加の前には、溶鋼中の
溶存酸素、スラブ中のFeO, MnOを低下させるために予備
脱酸することが望ましい。この予備脱酸は、脱酸後の溶
鋼中のAlが0.010 wt%以下となるような少量のAlによる
脱酸、、SiやFeSi, MnやFeMnの添加によって行うのが好
ましい。
Under the present invention, the yield of Ti alloy is lower than that of the conventional method of deoxidizing with Al, and
Alloys for adjusting the composition of inclusions are expensive because they contain Ca and REM. From this, the addition of such alloys to molten steel
It is economically preferable that the amount of inclusions be controlled so as to be as small as possible within the controllable range. In this sense, prior to the addition of a deoxidizing agent such as a Ti-containing alloy, it is desirable to carry out preliminary deoxidation in order to reduce dissolved oxygen in the molten steel and FeO and MnO in the slab. This preliminary deoxidation is preferably carried out by deoxidation with a small amount of Al such that the content of Al in the molten steel after deoxidation becomes 0.010 wt% or less, and addition of Si, FeSi, Mn, or FeMn.

【0037】上述したように、Ti脱酸により生成したTi
2O3 が70%以上のTi酸化物系介在物を生成した鋼板とい
うのは、かかる介在物が2〜20μm 程度の大きさにて鋼
中に分散するため、クラスター状の介在物による表面欠
陥はなくなる。しかしながら、Ti酸化物は溶鋼中では固
相状態であり、また、極低炭素鋼は凝固の温度が高いた
めに、地金を取り込んだ形でタンディッシュノズルの内
面に成長し、ノズルの閉塞を誘発するおそれがある。
As described above, Ti produced by Ti deoxidation
A steel sheet in which 2 O 3 contains 70% or more of Ti oxide-based inclusions means that such inclusions are dispersed in the steel in a size of about 2 to 20 μm, and thus, surface defects due to cluster-like inclusions are generated. Is gone. However, Ti oxide is in a solid phase state in molten steel, and ultra-low carbon steel has a high solidification temperature. May trigger.

【0038】そこで、この発明に係る鋼板では、Ti合金
により脱酸した後、さらに0.0005wt%以上になるように
Ca及びREM のいずれか1種又は2種を添加して、溶鋼中
の粒径1 〜50μm の酸化物系介在物を、Ti酸化物:20wt
%以上90wt%以下、好ましくは85wt%以下、CaO 及び/
又はREM 酸化物:5wt%以上40wt%以下、Al2O3 が40wt
%以下である低融点の酸化物系介在物とする。そうする
と、地金を含んだTi酸化物のノズルへの付着を有効に防
止することが可能になる。より好ましい介在物の組成
は、Ti酸化物:30wt%以上80wt%以下、CaO ,REM 酸化
物(La2O3 、Ce2O 3 など):10wt%以上40wt%以下、Al
2O3 :20wt%以下、その他(SiO2、MnO 等) :10wt%以
下である。かかる酸化物系介在物の組成の測定は、EPMA
を用いて、あるいはEDX 機能のある走査型電子顕微鏡を
用いて、各介在物ことに定量分析を行うことで行われ
る。このようにして分析された鋼中の介在物の全てが上
記の組成を満たすことは最も望ましいところではある
が、実用上は1 〜50μm の大きさの介在物のうち個数で
50%以上のものが上記組成範囲となっていれば、この発
明の目的とする熱延鋼板の諸特性が達成される。なお、
粒径は、各粒における最大径を用いるものとする。
Therefore, in the steel sheet according to the present invention, the Ti alloy
After deoxidation, so that it becomes more than 0.0005wt%
Add one or two of Ca and REM and add
Oxide inclusions with a particle size of 1 to 50 μm
% To 90% by weight, preferably 85% by weight or less, CaO and / or
Or REM oxide: 5 wt% or more and 40 wt% or less, AlTwoOThreeIs 40wt
% Or less of low melting point oxide-based inclusions. Do so
Effectively prevents Ti oxides containing ingots from adhering to the nozzle.
It becomes possible to stop. More preferred inclusion composition
Is Ti oxide: 30 wt% or more and 80 wt% or less, CaO, REM oxidation
Things (LaTwoOThree, CeTwoO ThreeEtc.): 10 wt% or more and 40 wt% or less, Al
TwoOThree : 20 wt% or less, others (SiOTwo, MnO, etc.): 10 wt% or less
Below. The measurement of the composition of such oxide-based inclusions is based on EPMA
Or using a scanning electron microscope with EDX function
By performing quantitative analysis on each inclusion
You. All of the inclusions in the steel analyzed in this way are
It is most desirable to satisfy the above composition
However, in practice, the number of inclusions with a size of 1 to 50 μm
If 50% or more is within the above composition range, this
The various properties of the hot-rolled steel sheet aimed at in the light are achieved. In addition,
As the particle diameter, the maximum diameter of each particle is used.

【0039】この発明において、生成する介在物の組成
を上記のように制御した場合、連続鋳造時にタンディッ
シュノズル及びモールドの浸漬ノズル内面に酸化物など
が付着するのを完全に防止することができる。したがっ
て、タンディッシュや浸漬ノズル内に、酸化物などの付
着防止のためのArやN2などのガスを吹き込む必要がなく
なる。その結果、連続鋳造時のパウダー巻き込みによる
鋳片のパウダー性欠陥や、吹き込んだガスによる気泡性
の欠陥が鋳片に発生するのを防止できるという効果が得
られる。
In the present invention, when the composition of the formed inclusions is controlled as described above, it is possible to completely prevent oxides and the like from adhering to the inner surfaces of the tundish nozzle and the immersion nozzle of the mold during continuous casting. . Therefore, it is not necessary to blow a gas such as Ar or N 2 into the tundish or the immersion nozzle for preventing adhesion of oxides or the like. As a result, it is possible to obtain an effect that it is possible to prevent powdery defects of the cast slab due to powder entrainment during continuous casting and bubble-like defects due to the blown gas from being generated in the cast slab.

【0040】連続鋳造後の熱間圧延工程に関して、スラ
ブ加熱温度は900 〜1300℃であることが好ましい。900
℃未満のスラブ加熱温度では、圧延時の荷重負荷が高く
なり過ぎ、操業上の問題が生じる。一方、1300℃を超え
る高い温度では、圧延前の結晶粒径が大きくなり過ぎる
ため、熱延母板が微細化しない。したがって、スラブ加
熱温度は900 〜1300℃が好ましい。なかでも、1200℃以
下のスラブ加熱温度は、深絞り性の観点からは好まし
い。また、連続鋳造−直送圧延(CC-DR )や連続鋳造さ
れたスラブを温片で加熱炉に挿入するDHCR(ダイレクト
ホットチャージローリング)は省エネルギーの観点から
好ましい。
In the hot rolling step after continuous casting, the slab heating temperature is preferably 900 to 1300 ° C. 900
If the slab heating temperature is lower than 0 ° C., the load applied during rolling becomes excessively high, causing operational problems. On the other hand, at a high temperature exceeding 1300 ° C., the crystal grain size before rolling becomes too large, so that the hot-rolled mother plate does not become fine. Therefore, the slab heating temperature is preferably 900 to 1300 ° C. Above all, a slab heating temperature of 1200 ° C. or less is preferable from the viewpoint of deep drawability. Also, continuous casting-direct rolling (CC-DR) or DHCR (direct hot charge rolling) in which a continuously cast slab is inserted into a heating furnace with a hot piece is preferable from the viewpoint of energy saving.

【0041】熱間圧延終了温度は、650 〜960 ℃である
ことが好ましい。650 ℃より低い温度では鋼板の圧延時
の負荷が顕著に増加することに加え、組織が板厚方向、
幅方向及び長手方向のいずれに関しても不均一となり、
これによりこれらの各位置での材質のバラツキも顕著と
なる。960 ℃より高い温度では鋼板表面にスケール疵を
発生する危険性が極めて大きくなり、また結晶粒径が増
大する。また熱間圧延終了温度は鋼板の集合組織を制御
するうえでも重要であり、上記温度範囲内とすることが
好ましい。また、熱間圧延後のコイル巻取り温度は、高
温であるほど析出物の粗大化に有利であるが、高過ぎる
とスケールが厚くなり過ぎる、結晶粒径が増大するなど
の問題が生じるため、400 〜750 ℃が好ましい。
The hot rolling end temperature is preferably 650 to 960 ° C. At temperatures lower than 650 ° C, the load during rolling of the steel sheet increases remarkably, and the
It becomes uneven in both the width direction and the longitudinal direction,
As a result, the variation of the material at each of these positions becomes remarkable. At a temperature higher than 960 ° C., the risk of scale flaws on the steel sheet surface becomes extremely large, and the crystal grain size increases. The hot rolling end temperature is also important in controlling the texture of the steel sheet, and is preferably within the above temperature range. Further, the coil winding temperature after hot rolling, the higher the temperature, the more advantageous for the coarsening of precipitates, but if too high, the scale becomes too thick, and problems such as an increase in the crystal grain size occur. 400-750 ° C is preferred.

【0042】熱間圧延後は酸洗し、冷間圧延を施してか
ら焼鈍を行う。酸洗は通常の塩酸、硫酸により表面のス
ケール層を除去する。特に薄いスケール相の鋼板の場合
には、酸洗工程を省略することも可能である。冷間圧延
では、この発明の鋼板が対象とする極薄鋼板において
(一次)冷間圧延の圧下率を80%以上とすることが、均
一な素材を得るために好ましい。なおr値1.0 以下に相
当する集合組織を得るために好ましい冷延圧下率は90%
以上である。
After hot rolling, pickling is performed, cold rolling is performed, and then annealing is performed. In the pickling, the scale layer on the surface is removed with ordinary hydrochloric acid or sulfuric acid. Particularly in the case of a steel sheet having a thin scale phase, the pickling step can be omitted. In the cold rolling, it is preferable that the reduction ratio of the (primary) cold rolling of the ultra-thin steel sheet targeted for the steel sheet of the present invention be 80% or more in order to obtain a uniform material. In order to obtain a texture equivalent to an r value of 1.0 or less, the preferable rolling reduction is 90%.
That is all.

【0043】焼鈍は、連続焼鈍、バッチ焼鈍のいずれで
も適用可能であるが、焼鈍作業の効率、材質の均一性の
観点からは連続焼鈍が推奨される。焼鈍は再結晶温度以
上で行う必要がある。再結晶温度より低い温度では、部
分再結晶となって、焼鈍後の二次冷延後に、規格を満足
し得る鋼板の形状を得ることが極めて困難である。なお
所望の細粒及び再結晶集合組織を得るためには、焼鈍温
度は680 〜780 ℃の範囲とするのがとくに好ましい。
As the annealing, any of continuous annealing and batch annealing can be applied, however, continuous annealing is recommended from the viewpoint of the efficiency of the annealing operation and the uniformity of the material. Annealing must be performed at a temperature higher than the recrystallization temperature. At a temperature lower than the recrystallization temperature, partial recrystallization occurs, and it is extremely difficult to obtain a steel sheet shape that satisfies the specifications after secondary cold rolling after annealing. In order to obtain desired fine grains and recrystallized texture, it is particularly preferable that the annealing temperature is in the range of 680 to 780 ° C.

【0044】焼鈍後の二次冷延は、目標とする硬度を得
るために圧下率が調整される。おおむね40%以下が材質
の安定性の観点から推奨される。40%を超えて二次冷延
を加えた場合は、溶接部の特に熱影響部が顕著に軟化す
るため、溶接部をフランジ成形する場合に割れを生じる
危険性が顕著に増大するため、好ましくない。好ましい
二次冷延圧下率は1%〜15%程度である。
In the secondary cold rolling after annealing, the rolling reduction is adjusted to obtain a target hardness. About 40% or less is recommended from the viewpoint of material stability. When the secondary cold rolling is added in excess of 40%, particularly the heat-affected zone of the welded portion is significantly softened, and the risk of cracking when the welded portion is flanged is significantly increased. Absent. A preferred secondary cold rolling reduction is about 1% to 15%.

【0045】[0045]

【実施例】(実施例1)転炉出鋼後、300 ton の溶鋼を
RH脱ガス装置にて脱炭処理し、C=0.014 wt%、Si=0.
01wt%、Mn=0.25wt%、P=0.010 wt%、S=0.005 〜
0.009 wt%に調整するとともに、溶鋼温度を1585〜1615
℃に調整した。この溶鋼中に、Alを0.2〜0.8kg/ton 添
加して、3〜4分の予備脱酸を行い溶鋼中の溶存酸素濃
度を55〜260ppmまで低下させた。このときの溶鋼中のAl
濃度は0.001 〜0.005 wt%であった。そしてこの溶鋼
に、70wt%Ti−Fe合金を0.8 〜1.8kg/ton 添加して8〜
9分かけてTi脱酸した。その後、成分調整を行った後
に、溶鋼中には30wt%Ca−60wt%Si合金や、それに金属
Ca, Fe, 5 〜15wt%のREM を混合した添加剤、又は、90
wt%Ca−5 wt%Ni合金などのCa合金、REM 合金のFe被覆
ワイヤーを0.05〜0.5kg/ton 添加し処理を行った。この
処理の後のTi濃度は0.026 〜0.058 wt%、Al濃度は0.00
1 〜0.005 wt%、Ca濃度は0.0000〜0.0036wt%、REM 濃
度は0.0000〜0.0021wt%、CaとREM との濃度の和は0.00
05〜0.0043wt%であった。
[Example] (Example 1) After tapping the converter, molten steel of 300 ton was used.
Decarburized by RH degassing equipment, C = 0.014 wt%, Si = 0.
01wt%, Mn = 0.25wt%, P = 0.010wt%, S = 0.005 ~
Adjust the molten steel temperature to 1585 ~ 1615
Adjusted to ° C. Al was added to the molten steel in an amount of 0.2 to 0.8 kg / ton, and preliminarily deoxidized for 3 to 4 minutes to lower the dissolved oxygen concentration in the molten steel to 55 to 260 ppm. Al in molten steel at this time
The concentration was between 0.001 and 0.005 wt%. Then, 0.8 to 1.8 kg / ton of 70 wt% Ti-Fe alloy is added to
The Ti was deoxidized for 9 minutes. After adjusting the composition, the molten steel contained 30wt% Ca-60wt% Si alloy and metal
Ca, Fe, additive mixed with 5-15 wt% REM, or 90
The treatment was performed by adding 0.05 to 0.5 kg / ton of Fe-coated wire of Ca alloy such as wt% Ca-5 wt% Ni alloy and REM alloy. After this treatment, the Ti concentration is 0.026 to 0.058 wt%, and the Al concentration is 0.00
1 to 0.005 wt%, Ca concentration is 0.0000 to 0.0036 wt%, REM concentration is 0.0000 to 0.0021 wt%, and the sum of Ca and REM concentrations is 0.00
It was from 0.05 to 0.0043 wt%.

【0046】次に、この鋼を2ストランドスラブ連続鋳
造装置にて鋳造し連鋳スラブを製造した。鋳造時にはタ
ンディッシュならびに浸漬ノズル内にArガスを吹き込ま
なかった。連続鋳造後に観察したところでは、タンディ
ッシュならびに浸漬ノズル内には付着物はほとんどなか
った。
Next, the steel was cast by a two-strand slab continuous casting apparatus to produce a continuously cast slab. During casting, Ar gas was not blown into the tundish and the immersion nozzle. Observation after continuous casting showed that there was almost no deposit in the tundish and in the immersion nozzle.

【0047】次に、上記連鋳スラブを板厚1.8 mmに熱間
圧延した。熱延条件はスラブ加熱温度:1130℃、仕上圧
延温度:890 ℃、熱延巻取り温度:620 ℃であった。熱
延鋼板を酸洗し、冷延して板厚0.18mmの冷延板とした。
その後、740 ℃で20 s均熱の連続焼鈍型の短時間焼鈍を
行い、フランジ割れ評価試験及び錆発生の調査を行っ
た。鋼組成及びフランジ割れ性についての調査結果を表
1に示す。なお、このときの酸化物系介在物のサイズは
大部分が幅が50μm 以下のものであった。また、酸化物
の内訳は、Ti2O3 :60〜70%、CaO +REM 酸化物:20〜
30%、Al2O3 :15%以下であった。この冷延板にはヘ
ゲ、スリーバー、スケールなどの非金属介在物性の欠陥
は0.00〜0.02個/1000m−コイル以下しか認められなかっ
た。
Next, the continuous cast slab was hot-rolled to a thickness of 1.8 mm. The hot rolling conditions were as follows: slab heating temperature: 1130 ° C, finish rolling temperature: 890 ° C, hot rolling winding temperature: 620 ° C. The hot-rolled steel sheet was pickled and cold-rolled to obtain a cold-rolled sheet having a thickness of 0.18 mm.
Thereafter, short-time annealing was performed in a continuous annealing type at 740 ° C. for 20 s, and an evaluation test for flange cracking and an investigation of rust generation were performed. Table 1 shows the results of investigations on the steel composition and flange cracking properties. Note that the size of the oxide-based inclusions at this time was mostly 50 μm or less in width. The breakdown of oxides is as follows: Ti 2 O 3 : 60 to 70%, CaO + REM oxide: 20 to 70%
30%, Al 2 O 3 : 15% or less. Non-metallic inclusion defects such as barbs, slivers, scales and the like were found in the cold-rolled sheet only in an amount of 0.00 to 0.02 / 1000 m-coil or less.

【0048】[0048]

【表1】 [Table 1]

【0049】一方、比較のために、転炉出鋼後、300 to
n の溶鋼をRH真空脱ガス装置にて脱炭処理し、C=0.01
4 wt%、Si=0.01wt%、Mn=0.25wt%、P=0.010 wt
%、S=0.002wt %に調整するとともに、溶鋼温度を15
90℃に調整した。この溶鋼中に、Alを1.2 〜1.6kg/ton
添加し脱酸処理を行った。脱酸処理後の溶鋼中のAl濃度
は0.041 wt%であった(Alキルド鋼)。その後、FeTiを
添加するとともに、成分調整を行った。この処理の後の
Ti濃度は0.040 wt%であった。
On the other hand, for comparison, 300 to
n is decarburized by RH vacuum degasser, and C = 0.01
4 wt%, Si = 0.01 wt%, Mn = 0.25 wt%, P = 0.010 wt
%, S = 0.002wt%, and the molten steel temperature was adjusted to 15%.
The temperature was adjusted to 90 ° C. 1.2-1.6kg / ton of Al in this molten steel
It was added and deoxidized. The Al concentration in the molten steel after the deoxidation treatment was 0.041 wt% (Al killed steel). Thereafter, FeTi was added and the components were adjusted. After this process
The Ti concentration was 0.040 wt%.

【0050】次に、この溶鋼を2ストランドスラブ連続
鋳造装置にて鋳造し連鋳スラブを製造した。なお、この
ときの、タンディッシュ内溶鋼の介在物の平均的な組成
は、95〜98wt%Al2O3, 5%以下のTi2O3 のクラスター状
の介在物が主体であった。
Next, the molten steel was cast by a two-strand slab continuous casting apparatus to produce a continuously cast slab. Incidentally, in this case, the average composition of inclusions in the tundish molten steel, a cluster-like inclusions of 95~98wt% Al 2 O 3, 5 % or less of Ti 2 O 3 was mainly.

【0051】鋳造時にタンディッシュならびに浸漬ノズ
ル内にArガスを吹き込まなかった場合には、著しくノズ
ルにAl2O3 が付着し、3チャージ目にスライディングノ
ズルの開度が著しく増加し、ノズル詰まりにより鋳込み
を中止した。また、Arガスを吹いた場合にも、ノズル内
にはAl2O3 が大量に付着しており、8チャージ目にはモ
ールド内の湯面の変動が大きくなり鋳込みを中止した。
When Ar gas was not blown into the tundish and the immersion nozzle during casting, Al 2 O 3 was remarkably adhered to the nozzle, and the opening of the sliding nozzle was significantly increased at the third charge. Casting was stopped. In addition, even when Ar gas was blown, a large amount of Al 2 O 3 adhered to the nozzle, and at the eighth charge, the level of the molten metal in the mold became large, and the casting was stopped.

【0052】次に、上記連鋳スラブはスラブ加熱温度:
1150℃、仕上圧延温度:890 ℃、巻取り温度:680 ℃で
1.8 mmまで熱間圧延したのち、酸洗・冷延して板厚0.18
mmの冷延板とした。その後、750 ℃で20 s均熱の連続焼
鈍型の短時間焼鈍を行い、介在物の調査、成形性調査試
験(伸びフランジ割れ発生試験)及び錆発生の調査を行
った。この冷延鋼板にはヘゲ、スリーバー、スケールな
どの非金属介在物性の欠陥は0.45個/1000m−コイル認め
られた。
Next, the continuous casting slab is heated at a slab heating temperature:
1150 ° C, Finish rolling temperature: 890 ° C, Winding temperature: 680 ° C
Hot rolled to 1.8 mm, pickled and cold rolled to a thickness of 0.18
mm cold-rolled sheet. After that, short-time annealing was performed in a continuous annealing mold at 750 ° C for 20 s soaking to investigate inclusions, formability investigation test (stretch flange crack generation test), and rust generation investigation. Non-metallic inclusion defects such as barbs, slivers and scales were found in the cold rolled steel sheet at 0.45 / 1000 m-coil.

【0053】得られた冷延板のフランジ割れ試験の結果
を、S− 5×((32/40) Ca+(32/140) REM) との関係で
表1に示す。ここで、比較例1〜6は、S、Ca、REM の
関係以外はこの発明に従う方法で製造した鋼であり、比
較例7は比較用に溶製したAlキルド鋼である。
The results of the flange crack test of the obtained cold-rolled sheet are shown in Table 1 in relation to S-5 × ((32/40) Ca + (32/140) REM). Here, Comparative Examples 1 to 6 are steels produced by the method according to the present invention except for the relationship between S, Ca and REM, and Comparative Example 7 is an Al-killed steel melted for comparison.

【0054】表1より、この発明の方法で溶製し、S−
5×((32/40) Ca+(32/140) REM)が0.0014wt%以下の
鋼板は、優れた伸びフランジ特性を示した。なお、鋼板
の錆発生率(0℃、湿度95%中に10時間放置後)につい
ては、発明鋼、比較鋼とも問題のない値であった。
From Table 1, it can be seen that the smelting by the method of the present invention
A steel sheet having 5 × ((32/40) Ca + (32/140) REM) of 0.0014 wt% or less exhibited excellent stretch flange properties. The rust generation rate of the steel sheet (after left at 0 ° C. and a humidity of 95% for 10 hours) was a value that had no problem in both the invention steel and the comparative steel.

【0055】(実施例2)表2に示す成分組成を含み、
残部は実質的に鉄からなる鋼を転炉で溶製し、この鋼ス
ラブを表3に示す条件で熱間圧延、冷間圧延、連続焼
鈍、そして二次冷延を行い、最終仕上板厚を0.16mmとし
た。そして、ハロゲンタイプの電気めっきラインにて25
番相当の錫メッキを連続的に施してぶりきに仕上げた。
比較として、同じ板厚に仕上げた従来鋼に対して同様の
錫めっきを施し、以降の各種評価に供した。
(Example 2) Including the components shown in Table 2,
The remainder is made of steel substantially made of iron in a converter, and the steel slab is subjected to hot rolling, cold rolling, continuous annealing, and secondary cold rolling under the conditions shown in Table 3 to obtain a final finished plate thickness. Was set to 0.16 mm. And 25 on the halogen type electroplating line
The tin plating equivalent to the number was continuously applied to finish the tinplate.
For comparison, similar tin plating was applied to conventional steel finished to the same plate thickness, and subjected to various evaluations thereafter.

【0056】[0056]

【表2】 [Table 2]

【0057】[0057]

【表3】 [Table 3]

【0058】このようにして得られた錫めっき鋼板の硬
さHR30T 、耐食性試験そして製缶後の評価としてネック
しわ発生率、フランジ割れ発生率の調査を行い、それを
表4に示した。なお、耐食性試験は5%NaCl水溶液を用
い、塩水噴霧試験機で溶接補修塗装部に塩水を連続噴霧
し、20日後の錆発生面積を計測し、比較として従来鋼の
数値に対して±20%以内を○、20%を超えるものを×、
−20%より少ないものを◎と評価し、表4に示した。ま
た、ネックしわ発生率の調査は、製缶機によりノーマル
グレーン法(圧延方向が缶の円周方向となるように円筒
成形する板取り方法)及びリバースグレーン法(圧延方
向と直角の方向が缶の円周方向となるように円筒成形す
る板取り方法)により、市販の190 g 缶と同径の缶胴部
を成形した後に、実験室の(口絞り加工機)により1段
ネックを行った際のネックしわ発生の目視検査により評
価し、また、フランジ割れ発生率の調査は、開口端部を
トリム後、円錐台状のパンチを開口端に挿入しながら実
缶のフランジ加工と同程度の加工率に至るまで開口端の
径を広げる試験を行い、その際の割れの発生率で評価し
た。
The tin-plated steel sheet thus obtained was examined for hardness HR30T, corrosion resistance test, and occurrence rate of neck wrinkling and flange cracking as evaluations after can-making. Table 4 shows the results. The corrosion resistance test was performed using a 5% NaCl aqueous solution, and salt water was continuously sprayed on the weld repair coating using a salt water spray tester. The rust generation area was measured 20 days later. ○ within, × over 20%
Those having less than -20% were evaluated as ◎, and are shown in Table 4. In addition, the investigation of the neck wrinkle occurrence rate was carried out by using a normal grain method (a method of forming a cylinder to form a cylinder so that the rolling direction is the circumferential direction of the can) and a reverse grain method (a direction perpendicular to the rolling direction was determined by a can making machine). A can body having the same diameter as that of a commercially available 190 g can was formed by a plate cutting method of forming a cylinder so as to be in the circumferential direction of the cylinder, and then a one-stage neck was formed by a (mouth drawing machine) in a laboratory. Evaluate the occurrence of neck wrinkles by visual inspection, and investigate the rate of occurrence of flange cracking.After trimming the open end, insert a truncated cone-shaped punch into the open end, and compare it with the actual can flange processing. A test was performed to increase the diameter of the opening end up to the processing rate, and the cracking rate at that time was evaluated.

【0059】表4から分かるように、発明鋼は従来鋼に
比して、ノーマルグレーン法、リバースグレーン法のい
ずれを問わずフランジ割れは全く発生していなかった。
また、ネックしわも全く発生しなかった。耐食性も従来
鋼に比べて優れていた。なお、表4中の酸化物系介在物
組成は粒径1〜50μm の介在物を調査し、平均値(介在
物サイズによる重み付けはせず)をとった。本発明の成
分組成範囲になる試料は、介在物の個数の50%以上がTi
酸化物:20wt%以上90wt%以下、CaO ,REM 酸化物の1
種又は2種の合計:10wt%以上40wt%以下、Al2O3 :40
%以下の範囲内になることを確認している。
As can be seen from Table 4, the inventive steel did not have any flange cracks, regardless of the normal grain method or the reverse grain method, as compared with the conventional steel.
Also, no neck wrinkles occurred. Corrosion resistance was also superior to conventional steel. The composition of the oxide-based inclusions in Table 4 was measured for inclusions having a particle size of 1 to 50 μm, and the average value was obtained (without weighting according to the size of the inclusions). In the sample having the composition range of the present invention, 50% or more of the number of inclusions was Ti
Oxide: 20 wt% or more and 90 wt% or less, one of CaO and REM oxides
Species or the sum of two: 10 wt% or more and 40 wt% or less, Al 2 O 3 : 40
%.

【0060】[0060]

【表4】 [Table 4]

【0061】[0061]

【発明の効果】この発明の鋼板は、その製造にあたり、
連続鋳造時に浸漬ノズルの閉塞を引き起こすことがな
く、極めて安定した連続鋳造が可能であり、また、錆が
少なく、介在物や析出物による変形能の劣化がほとんど
なく、かつ、クラスター状介在物による表面欠陥のな
い、表明性状が良好な溶接部の成形性に優れており、3
ピース缶用鋼板として極めて優れている。
The steel sheet of the present invention is manufactured by
Extremely stable continuous casting is possible without causing clogging of the immersion nozzle at the time of continuous casting, there is little rust, there is almost no deterioration of deformability due to inclusions and precipitates, and cluster-like inclusions Excellent weldability with no surface defects and good appearance properties.
Excellent as a steel plate for piece cans.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三木 祐司 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 荒谷 誠 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 久々湊 英雄 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuji Miki 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Inside the Technical Research Institute of Kawasaki Steel (72) Inventor Makoto Aratani 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki (72) Inventor Hideo Kukuminato 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Chiba Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C:0.005 wt%を超え0.10wt%以下、 Si:0.2 wt%以下、 Mn:0.05〜1.0 wt%、 P:0.04wt%以下、 Ti:0.015 〜0.10wt%、 Al:0.001 〜0.01wt%、 N:0.02wt%以下及びCa,REM の1 種又は2 種を合計で
0.0005〜0.01wt%を含み、更に、S及びCa,REM の1 種
又は2 種の含有量が次式 S− 5×((32/40) Ca+(32/140) REM) ≦0.0014wt% の関係を満たして残部はFe及び不可避的不純物の組成に
なり、粒径1 〜50μm の酸化物系介在物がTi酸化物及び
CaO ,REM 酸化物の1 種又は2 種を含有し、引張強度が
540 MPa 未満でかつ、再結晶集合組織が圧延方向および
圧延直角方向の少なくともいずれか一方のr値で1.0 以
下に相当する、表面性状が良好な3ピース缶に適した缶
用鋼板。
1. C: more than 0.005 wt% to 0.10 wt% or less, Si: 0.2 wt% or less, Mn: 0.05 to 1.0 wt%, P: 0.04 wt% or less, Ti: 0.015 to 0.10 wt%, Al: 0.001 ~ 0.01wt%, N: 0.02wt% or less and one or two of Ca and REM in total
0.0005 to 0.01 wt%, and the content of one or two of S and Ca, REM is expressed by the following formula: S−5 × ((32/40) Ca + (32/140) REM) ≦ 0.0014 wt% The balance satisfies the relationship and the remainder has the composition of Fe and unavoidable impurities, and the oxide-based inclusions having a particle size of 1 to 50 μm are composed of Ti oxide and
Contains one or two CaO and REM oxides, and has a tensile strength
A steel sheet for cans having a good surface texture, which is less than 540 MPa and whose recrystallization texture has an r value of 1.0 or less in at least one of the rolling direction and the direction perpendicular to the rolling direction.
【請求項2】C:0.005 wt%を超え0.10wt%以下、 Si:0.2 wt%以下、 Mn:0.05〜1.0 wt%、 P:0.04wt%以下、 Ti:0.015 〜0.10wt%、 Al:0.001 〜0.01wt%、 N:0.02wt%以下及びCa,REM の1 種又は2 種を合計で
0.0005〜0.01wt%を含み、かつ、 Ni:0.005 〜1.0 wt%、 Cr:0.005 〜1.0 wt%、 Nb:0.002 〜0.04wt%、 B:0.0002〜0.005 wt%の1 種又は2 種以上を含有し、
更に、S及びCa,REM の1 種又は2 種の含有量が次式 S− 5×((32/40) Ca+(32/140) REM) ≦0.0014wt% の関係を満たして残部はFe及び不可避的不純物の組成に
なり、粒径1 〜50μm の酸化物系介在物がTi酸化物及び
CaO ,REM 酸化物の1 種又は2 種を含有し、引張強度が
540 MPa 未満でかつ、再結晶集合組織が圧延方向および
圧延直角方向の少なくともいずれか一方のr値で1.0 以
下に相当する、表面性状が良好な3ピース缶に適した缶
用鋼板。
2. C: more than 0.005 wt% and 0.10 wt% or less, Si: 0.2 wt% or less, Mn: 0.05 to 1.0 wt%, P: 0.04 wt% or less, Ti: 0.015 to 0.10 wt%, Al: 0.001 ~ 0.01wt%, N: 0.02wt% or less and one or two of Ca and REM in total
0.0005 to 0.01 wt%, Ni: 0.005 to 1.0 wt%, Cr: 0.005 to 1.0 wt%, Nb: 0.002 to 0.04 wt%, B: 0.0002 to 0.005 wt% And
Further, the content of one or two of S and Ca, REM satisfies the following equation: S−5 × ((32/40) Ca + (32/140) REM) ≦ 0.0014 wt%, and the balance is Fe and The composition of unavoidable impurities causes oxide-based inclusions with a particle size of 1 to 50 μm to contain Ti oxides and
Contains one or two CaO and REM oxides, and has a tensile strength
A steel sheet for cans having a good surface texture, which is less than 540 MPa and whose recrystallization texture has an r value of 1.0 or less in at least one of the rolling direction and the direction perpendicular to the rolling direction.
【請求項3】 粒径1 〜50μm の酸化物系介在物がTi酸
化物:20wt%以上90wt%以下、CaO ,REM 酸化物の1 種
又は2 種の合計:10wt%以上40wt%以下、Al 2O3 :40%
以下(Ti酸化物、CaO ,REM 酸化物の1 種又は2 種、Al
2O3 の合計は100 %以下)であることを特徴とする請求
項1又は2記載の表面性状が良好な3ピース缶に適した
缶用鋼板。
3. An oxide-based inclusion having a particle size of 1 to 50 μm is made of Ti acid.
Compound: 20wt% or more and 90wt% or less, one of CaO and REM oxides
Or the sum of two types: 10 wt% or more and 40 wt% or less, Al TwoOThree: 40%
The following (one or two of Ti oxide, CaO, REM oxide, Al
TwoOThreeIs less than 100%)
Item 3 or 2 suitable for three-piece cans with good surface properties
Steel plate for cans.
【請求項4】 粒径15μm 以下の結晶粒からなる請求項
1〜3のいずれか1項に記載の表面性状が良好な3ピー
ス缶に適した缶用鋼板。
4. The steel sheet for cans suitable for a three-piece can having good surface properties according to claim 1, comprising crystal grains having a particle size of 15 μm or less.
JP28643098A 1998-04-08 1998-10-08 Steel plate for cans suitable for 3-piece cans with good surface properties Expired - Fee Related JP4051778B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP28643098A JP4051778B2 (en) 1998-10-08 1998-10-08 Steel plate for cans suitable for 3-piece cans with good surface properties
DE69937481T DE69937481T2 (en) 1998-04-08 1999-04-07 STEEL PLATE FOR A CAN AND MANUFACTURING METHOD THEREFOR
CN99800472A CN1101482C (en) 1998-04-08 1999-04-07 Steel sheet for can and manufacturing method thereof
US09/445,404 US6221180B1 (en) 1998-04-08 1999-04-07 Steel sheet for can and manufacturing method thereof
PCT/JP1999/001843 WO1999053113A1 (en) 1998-04-08 1999-04-07 Steel sheet for can and manufacturing method thereof
KR1019997011531A KR100615380B1 (en) 1998-04-08 1999-04-07 Steel sheet for can and manufacturing method thereof
EP99912131A EP0999288B1 (en) 1998-04-08 1999-04-07 Steel sheet for can and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28643098A JP4051778B2 (en) 1998-10-08 1998-10-08 Steel plate for cans suitable for 3-piece cans with good surface properties

Publications (2)

Publication Number Publication Date
JP2001089828A true JP2001089828A (en) 2001-04-03
JP4051778B2 JP4051778B2 (en) 2008-02-27

Family

ID=17704293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28643098A Expired - Fee Related JP4051778B2 (en) 1998-04-08 1998-10-08 Steel plate for cans suitable for 3-piece cans with good surface properties

Country Status (1)

Country Link
JP (1) JP4051778B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049218A (en) * 2001-08-07 2003-02-21 Nippon Steel Corp Method for producing steel plate for thin sheet and cast slab cast by using this method
WO2008136290A1 (en) 2007-04-26 2008-11-13 Jfe Steel Corporation Steel sheet for use in can, and method for production thereof
JP2009084672A (en) * 2007-10-03 2009-04-23 Sumitomo Metal Ind Ltd Method of heating molten steel, and method for production of rolled steel material
JP2009097045A (en) * 2007-10-18 2009-05-07 Nippon Steel Corp High-strength steel sheet for 3-pieces can excellent in expansion moldability and its production method
EP2305850A1 (en) * 2008-07-30 2011-04-06 Nippon Steel Corporation High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both
KR20170121277A (en) 2015-03-31 2017-11-01 제이에프이 스틸 가부시키가이샤 Steel sheet for cans and method for manufacturing steel sheet for cans
KR20180109964A (en) 2016-02-29 2018-10-08 제이에프이 스틸 가부시키가이샤 Steel sheet for can and method for manufacturing the same
WO2020045449A1 (en) 2018-08-30 2020-03-05 Jfeスチール株式会社 Steel sheet for can, and method for producing same
WO2020129482A1 (en) 2018-12-20 2020-06-25 Jfeスチール株式会社 Steel plate for can and method for producing same
KR20220004196A (en) 2019-06-24 2022-01-11 제이에프이 스틸 가부시키가이샤 Steel plate for cans and manufacturing method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049218A (en) * 2001-08-07 2003-02-21 Nippon Steel Corp Method for producing steel plate for thin sheet and cast slab cast by using this method
WO2008136290A1 (en) 2007-04-26 2008-11-13 Jfe Steel Corporation Steel sheet for use in can, and method for production thereof
US8795443B2 (en) 2007-04-26 2014-08-05 Jfe Steel Corporation Lacquered baked steel sheet for can
JP2009084672A (en) * 2007-10-03 2009-04-23 Sumitomo Metal Ind Ltd Method of heating molten steel, and method for production of rolled steel material
JP2009097045A (en) * 2007-10-18 2009-05-07 Nippon Steel Corp High-strength steel sheet for 3-pieces can excellent in expansion moldability and its production method
US8303734B2 (en) 2008-07-30 2012-11-06 Nippon Steel Corporation High strength thick steel material and high strength giant H-shape excellent in toughness and weldability and methods of production of same
EP2305850A4 (en) * 2008-07-30 2011-12-28 Nippon Steel Corp High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both
EP2305850A1 (en) * 2008-07-30 2011-04-06 Nippon Steel Corporation High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both
KR20170121277A (en) 2015-03-31 2017-11-01 제이에프이 스틸 가부시키가이샤 Steel sheet for cans and method for manufacturing steel sheet for cans
KR20180109964A (en) 2016-02-29 2018-10-08 제이에프이 스틸 가부시키가이샤 Steel sheet for can and method for manufacturing the same
US10941456B2 (en) 2016-02-29 2021-03-09 Jfe Steel Corporation Steel sheet for can and method for manufacturing the same
WO2020045449A1 (en) 2018-08-30 2020-03-05 Jfeスチール株式会社 Steel sheet for can, and method for producing same
WO2020129482A1 (en) 2018-12-20 2020-06-25 Jfeスチール株式会社 Steel plate for can and method for producing same
KR20210091795A (en) 2018-12-20 2021-07-22 제이에프이 스틸 가부시키가이샤 Steel plate for cans and manufacturing method thereof
KR20220004196A (en) 2019-06-24 2022-01-11 제이에프이 스틸 가부시키가이샤 Steel plate for cans and manufacturing method thereof

Also Published As

Publication number Publication date
JP4051778B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
US9017492B2 (en) Thin gauge steel sheet excellent in surface conditions, formability, and workability and method for producing the same
KR100615380B1 (en) Steel sheet for can and manufacturing method thereof
WO2010126161A1 (en) High-strength hot-dip zinc-coated steel sheet having excellent workability, weldability and fatigue properties, and process for production thereof
JP2000008136A (en) High strength steel plate excellent in stretch-flanging property and delayed fracture resistance
JP4051778B2 (en) Steel plate for cans suitable for 3-piece cans with good surface properties
JP3436857B2 (en) Thin steel sheet excellent in press formability with few defects and method for producing the same
KR101335826B1 (en) High-strength cold-rolled steel sheet excellent in weldability and process for production of same
JP3692797B2 (en) Steel plate for cans with good surface properties and excellent can stability
JP4998365B2 (en) Ultra-low carbon steel sheet and manufacturing method thereof
JP7207199B2 (en) Steel material and its manufacturing method
CN112176147A (en) Manufacturing method of normalized thick steel plate suitable for large-wire welding
JP3757633B2 (en) Steel plate for cans with excellent workability
JP2000119803A (en) Steel sheet for drum can good in surface property and drum can made of steel
CN111868283A (en) Steel plate
JP3872595B2 (en) Cold rolled steel sheet with low in-plane anisotropy and excellent formability
JP5239652B2 (en) High tensile cold-rolled steel sheet
JP3548314B2 (en) Steel sheet for cans with few defects and excellent aging and method for producing the same
JP2000001757A (en) Ferritic stainless steel good in surface property and excellent in corrosion resistance, forming workability and ridging resistance
JP2000119802A (en) Ultra-thin steel sheet excellent in surface characteristic
JP3874931B2 (en) Steel plate for processing with excellent weld strength and its manufacturing method
JPH1017994A (en) High strength alloyed galvanized steel sheet for deep drawing excellent in secondary working embrittlement resistance
JP3653990B2 (en) Hot rolled steel sheet with extremely good secondary work brittleness resistance after ultra deep drawing
JP3577383B2 (en) Steel sheet for cans with few defects and excellent bake hardenability and method for producing the same
JP2000008138A (en) Hot rolled steel sheet for re-roll and its production
JP2023549876A (en) Plated steel sheet with excellent strength, formability and surface quality, and its manufacturing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees