JP2009084672A - Method of heating molten steel, and method for production of rolled steel material - Google Patents

Method of heating molten steel, and method for production of rolled steel material Download PDF

Info

Publication number
JP2009084672A
JP2009084672A JP2007259851A JP2007259851A JP2009084672A JP 2009084672 A JP2009084672 A JP 2009084672A JP 2007259851 A JP2007259851 A JP 2007259851A JP 2007259851 A JP2007259851 A JP 2007259851A JP 2009084672 A JP2009084672 A JP 2009084672A
Authority
JP
Japan
Prior art keywords
molten steel
mass
steel
oxygen
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007259851A
Other languages
Japanese (ja)
Other versions
JP5131827B2 (en
Inventor
Takayuki Nishi
隆之 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007259851A priority Critical patent/JP5131827B2/en
Publication of JP2009084672A publication Critical patent/JP2009084672A/en
Application granted granted Critical
Publication of JP5131827B2 publication Critical patent/JP5131827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molten steel-heating method for efficiently elevating the temperature of the molten steel using a circulating flow type vacuum degassing apparatus, and to provide a method for production of a steel material using the heating method. <P>SOLUTION: The molten steel-heating method using the vacuum degassing apparatus generating the circulating flow of the molten steel between a vacuum vessel and a ladle via an immersion tube includes: adding Al to the molten steel having the oxygen concentration before temperature-elevating operation of 0.010-0.070 mass%; blowing gaseous oxygen on the surface of the molten steel in the vacuum vessel; and reacting the gaseous oxygen and Al to heat the molten steel. The operation of Al addition is performed at least one time during a gaseous oxygen feeding process, and the Al amount per one Al addition operation is 0.1 to 0.5 kg based on 1 ton of the molten steel. The initial Al addition is performed after at least the lapse of a prescribed time τ which is decided based on the amount (t) and reflux flow (t/s) of the molten steel from the start of gaseous oxygen supply. A second addition or further addition is performed after the lapse of the time τ from the last addition. This method enables suppression of the remaining amount of an Al<SB>2</SB>O<SB>3</SB>-based inclusion in the molten steel. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、環流型真空脱ガス装置にて溶存酸素を一定量含有する溶鋼をAl添加および酸素ガス供給により溶鋼加熱を行う方法において、溶鋼に残留するAl系介在物量を減じることにより、溶鋼およびそれから得られる鋼材に含まれるAl系介在物量を可及的少量にする技術に関する。 The present invention relates to a method of heating molten steel by adding Al and supplying oxygen gas to molten steel containing a certain amount of dissolved oxygen in a circulating vacuum degassing apparatus, by reducing the amount of Al 2 O 3 inclusions remaining in the molten steel. relates to a technique to as much as possible a small amount of molten steel and Al 2 O 3 based inclusions amount contained in the steel material obtained therefrom.

転炉等の製鋼炉から出鋼して取鍋へ収容された溶鋼を精錬するいわゆる二次精錬の目的の一つに、溶鋼温度の調整がある。その理由は二次精錬の次工程である連続鋳造等の鋳造工程のために適正な温度に調整するためである。   One of the purposes of so-called secondary refining, in which molten steel is extracted from a steelmaking furnace such as a converter and stored in a ladle, is adjustment of the molten steel temperature. The reason is to adjust the temperature to an appropriate temperature for a casting process such as continuous casting which is the next process of secondary refining.

鋳造に適正な温度よりも高い場合には、精錬時間延長や冷鉄材の投入等で溶鋼温度を容易に下げることは可能であるが、そのコストが嵩む。一方、鋳造に適正な温度よりも低い場合には最悪の場合鋳造が不可能なこともあり、溶鋼温度を上昇させなければならない。   If the temperature is higher than the temperature suitable for casting, it is possible to easily lower the molten steel temperature by extending the refining time or introducing a cold iron material, but the cost increases. On the other hand, when the temperature is lower than the temperature suitable for casting, casting may be impossible in the worst case, and the molten steel temperature must be raised.

一方、鋼中の酸素濃度を低減し、酸素の親和力のある合金成分による効果を得るために、一般的に溶鋼段階で酸素と強い親和力を有するAlを添加し鋼中酸素濃度を低減させた鋼、いわゆるAl脱酸鋼が広く実用されている。例えば、薄板として広く用いられる極低炭素鋼では、転炉等の製鋼炉を未脱酸で出鋼し、真空脱ガス装置でさらに脱炭を行った後に、適宜Al等の脱酸剤が添加されてAl脱酸鋼として鋳造される。   On the other hand, in order to reduce the oxygen concentration in the steel and to obtain the effect of the alloy component having an affinity for oxygen, in general, steel having a strong affinity for oxygen in the molten steel stage is added to reduce the oxygen concentration in the steel. So-called Al deoxidized steel is widely used. For example, in ultra-low carbon steel that is widely used as a thin plate, a steelmaking furnace such as a converter is undeoxidized and further decarburized with a vacuum degasser, and then a deoxidizer such as Al is added as appropriate. And cast as Al deoxidized steel.

近年Al脱酸以外のより弱い脱酸状態の脱酸を行うことによって、Al脱酸鋼とは異なる鋼材特性を得る鋼種が増えてきている。このような鋼種では、製鋼工程で不可避的に含まれる非金属介在物のうち、Al酸化物を主体とする介在物(以下Al系介在物ともいう)が、圧延鋼材の表面疵の原因となったり、所望の鋼質に対して有害であったりする場合があり、このAl系介在物を残存させない製鋼方法が求められている。 In recent years, by deoxidizing weaker deoxidized states other than Al deoxidation, steel types that obtain steel material characteristics different from Al deoxidized steel are increasing. In such steel types, among non-metallic inclusions inevitably included in the steel making process, inclusions mainly composed of Al 2 O 3 oxide (hereinafter also referred to as Al 2 O 3 -based inclusions) There is a case where it causes surface flaws and is harmful to the desired steel quality, and a steelmaking method that does not leave the Al 2 O 3 inclusions is desired.

特許文献1には、アルミニウムレスの高品質溶鋼への昇熱法として、アルミニウムと酸化鉄からなる昇熱剤による方法が示されている。これは、15〜25重量%のアルミニウムと65〜85重量%の酸化鉄を主成分とする昇熱剤を溶鋼に添加して、溶鋼昇熱とともに生成したAlの速やかな除去を期待するものである。しかしながら、この技術は酸化鉄の分解によって昇熱効率が低いと推定される。また、生成したAlの除去機構には触れられていない。 Patent Document 1 discloses a method using a heat increasing agent composed of aluminum and iron oxide as a method for increasing the temperature of aluminum-free high-quality molten steel. This is because a heat-up agent mainly composed of 15 to 25% by weight of aluminum and 65 to 85% by weight of iron oxide is added to the molten steel, and the rapid removal of Al 2 O 3 produced along with the molten steel is expected to be rapidly removed. To do. However, this technique is presumed to have low heating efficiency due to decomposition of iron oxide. Moreover, it not mentioned in the removal mechanism of the generated Al 2 O 3.

特許文献2には、取鍋精錬装置で浸漬管内に底部より導入する不活性ガス量を制限し、かつ酸化反応するAlまたはSiを連続的に添加する昇熱方法が開示されている。この方法は、吹き付けた酸素が溶鋼表面近傍で酸化するAl等の金属と反応させることにより、溶鋼中の有価金属の反応を抑え処理時間の短縮を図るものである。しかしこの方法は、Alキルド鋼およびAl−Siキルド鋼を前提としており、また清浄化に関しても昇熱操作後に溶鋼撹拌操作を行うことを触れているに過ぎない。   Patent Document 2 discloses a heating method in which a ladle refining apparatus limits the amount of inert gas introduced from the bottom into a dip tube and continuously adds Al or Si that undergoes an oxidation reaction. In this method, the sprayed oxygen is reacted with a metal such as Al which is oxidized near the surface of the molten steel, thereby suppressing the reaction of valuable metals in the molten steel and shortening the processing time. However, this method is premised on Al killed steel and Al-Si killed steel, and only mentions that the molten steel stirring operation is performed after the heat-up operation with regard to cleaning.

特許文献3には、AlレスTi脱酸鋼の製造に際して、介在物組成を確実に制御して薄板材の表面欠陥の発生を防止し、かつ脱酸剤のコストの低減とTiの添加歩留まりの安定化を図るために、少量のAlを用いて先行脱酸を行い、溶鋼中のフリー酸素の濃度を予め下げてからTiを添加する方法を開示している。すなわち、重量比でC:0.06%以下、Al:0.01%以下、Ti:0.01〜0.40%を含む溶鋼を製造するに際して、未脱酸またはSiのみで脱酸した溶鋼に該溶鋼中のフリー酸素濃度に対して定める所定量のAlを添加し、該溶鋼中のトータルAl濃度を10〜80ppmとした後TiまたはTi合金を添加する方法である。この方法は、Al系介在物をTiO系介在物に確実に変化させることを目的とするものであるが、Alによる溶鋼昇熱についてはなんら触れられていない。 In Patent Document 3, in the production of Al-less Ti deoxidized steel, the inclusion composition is surely controlled to prevent the occurrence of surface defects in the thin plate material, and the cost of the deoxidizer and the addition yield of Ti are reduced. In order to achieve stabilization, a method is disclosed in which prior deoxidation is performed using a small amount of Al and Ti is added after the concentration of free oxygen in the molten steel is lowered in advance. That is, when producing molten steel containing C: 0.06% or less, Al: 0.01% or less, and Ti: 0.01-0.40% by weight ratio, molten steel deoxidized only with Si or deoxidized. A predetermined amount of Al determined with respect to the free oxygen concentration in the molten steel is added, the total Al concentration in the molten steel is adjusted to 10 to 80 ppm, and then Ti or a Ti alloy is added. This method aims to reliably change the Al 2 O 3 -based inclusions to TiO x -based inclusions, but does not mention anything about the temperature rise of molten steel due to Al.

一方、大規模製鉄所における低炭素および極低炭素の弱脱酸鋼の製造方法は、通常の製鋼法と比較して、精錬工程で以下のような特徴がある。転炉など製鋼炉で炭素を除く粗脱炭を行い、炭素濃度が0.03質量%から0.07質量%を含む低炭素溶鋼として、未脱酸あるいは弱脱酸の状態で出鋼する。出鋼された溶鋼は、さらに真空脱ガス装置を有する精錬工程で必要に応じて真空脱炭処理が行われ、さらに炭素濃度を0.025質量%以下含有する低炭素溶鋼となる。この際の脱炭反応には溶鋼に炭素と反応する酸素を含有していることが必要であり、この時の酸素濃度を示せば0.03質量%から0.08質量%程度含まれている。   On the other hand, a method for producing low-carbon and extremely low-carbon weakly deoxidized steel in a large-scale steelworks has the following characteristics in the refining process as compared with a normal steelmaking method. Rough decarburization excluding carbon is performed in a steelmaking furnace such as a converter, and steel is produced in a non-deoxidized or weakly deoxidized state as a low-carbon molten steel having a carbon concentration of 0.03% to 0.07% by mass. The discharged steel is further subjected to vacuum decarburization treatment as necessary in a refining process having a vacuum degassing device, and becomes a low carbon molten steel containing a carbon concentration of 0.025% by mass or less. In this case, it is necessary for the decarburization reaction to contain oxygen that reacts with carbon in the molten steel. If the oxygen concentration at this time is indicated, about 0.03 mass% to 0.08 mass% is included. .

近年の大規模製鉄所においては、真空脱ガス装置は二本の浸漬管を有し、真空槽と取鍋の間で溶鋼を環流させる環流型真空脱ガス装置(以下「RH装置」ともいう。)で行われることが多い。この装置の特徴は、溶鋼に対して強攪拌を付与する精錬装置であることである。   In recent large-scale steelworks, the vacuum degassing apparatus has two dip tubes, and is also referred to as a reflux-type vacuum degassing apparatus (hereinafter referred to as “RH apparatus”) that circulates molten steel between a vacuum tank and a ladle. ) Is often performed. The feature of this apparatus is that it is a refining apparatus that gives strong stirring to molten steel.

ところで、この装置を用いて溶鋼温度を上げるには、金属Alを添加するとともに酸素ガスを供給し、その酸化反応によって生じる熱を溶鋼に付与する方法が一般的に用いられる。このような方法を用いると、その酸化反応によって直径が数μmから数百μmのAlを含有する非金属介在物が懸濁することになる。この非金属介在物がAl系である場合には、前述のごとく所望の鋼質に対して悪影響を及ぼす場合が生じる。 By the way, in order to raise the molten steel temperature using this apparatus, a method of adding metal Al and supplying oxygen gas and applying heat generated by the oxidation reaction to the molten steel is generally used. When such a method is used, non-metallic inclusions containing Al 2 O 3 having a diameter of several μm to several hundred μm are suspended by the oxidation reaction. When the non-metallic inclusions are Al 2 O 3 type, as described above, the desired steel quality may be adversely affected.

このようなAl系介在物の生成を避ける方法としては、黒鉛電極から電弧を発生させて溶鋼に通電して、そのジュール熱により熱を供給する電気加熱方法がある。この方法は前述のようなAl系介在物の多量の懸濁は生じないものの、電力費や電極といったコストや全精錬時間の長時間化といった問題が生じる。さらには、電弧加熱時に取鍋スラグの影響を強く受けることから弱脱酸または未脱酸状態での成分制御が困難となったり、スラグそのものの巻き込みによって生成するスラグ系介在物が生じたりするなどの問題が生じることが考えられた。 As a method for avoiding the generation of such Al 2 O 3 inclusions, there is an electric heating method in which an electric arc is generated from a graphite electrode to energize molten steel and heat is supplied by its Joule heat. Although this method does not cause a large amount of suspension of Al 2 O 3 inclusions as described above, there are problems such as power costs, cost of electrodes, and long total refining time. In addition, since it is strongly affected by ladle slag during arc heating, it becomes difficult to control components in a weakly deoxidized or non-deoxidized state, or slag inclusions generated by entrainment of the slag itself, etc. It was thought that this would cause problems.

そこで、この環流型脱ガス装置を前提にして、最終的にAlを含有しない未脱酸または弱脱酸鋼において、一時的にAlを添加して溶鋼を昇熱しても、最終的には鋼材本来有する性質を発揮できるようにAl系属介在物を残存させない要件について鋭意研究し、その条件を見出すに至った。さらには、その条件を実現する鉄鋼量産製造方法を前提とした製鋼条件も確立するに至り、本発明を完成した。 Therefore, on the premise of this reflux type degassing apparatus, even in the case of non-deoxidized or weakly deoxidized steel that does not finally contain Al, even if Al is temporarily added and the molten steel is heated up, the steel material is finally obtained. The inventors have earnestly studied about the requirement not to leave Al 2 O 3 genus inclusions so that the inherent properties can be exhibited, and have found the conditions. Furthermore, the present invention was completed by establishing steelmaking conditions based on a mass production method of steel that realizes the conditions.

さらには上記方法を用いて、[sol.Al]≦0.003質量%かつ[O]=0.002〜0.008質量%、[Si]=0.01〜0.05質量%、[Mn]=0.10〜2.0質量%を基本成分として含む弱脱酸鋼で、さらに弱脱酸成分および濃度であるTi≦0.05質量%、Nb≦0.20質量%およびZr≦0.0030質量%からなる群から選ばれる一種または二種以上を含有するとともに、Ti≧0.01質量%、Nb≧0.02質量%およびZr≧0.0001質量%の少なくとも一条件を満たす化学組成を備え、鋼中Al量を0.001質量%以下、その他不純物を含み残部Feからなる圧延鋼材の製造方法技術を完成するに至った。
特開平7−252518号公報 特開平9−3523号公報 特開平10−219336号公報
Furthermore, using the above method, [sol. Al] ≦ 0.003 mass% and [O] = 0.002 to 0.008 mass%, [Si] = 0.01 to 0.05 mass%, [Mn] = 0.10 to 2.0 mass% Is a weakly deoxidized steel containing, as a basic component, a kind further selected from the group consisting of weakly deoxidized components and concentrations Ti ≦ 0.05 mass%, Nb ≦ 0.20 mass%, and Zr ≦ 0.0030 mass% Alternatively, it contains two or more kinds, and has a chemical composition that satisfies at least one of the conditions of Ti ≧ 0.01 mass%, Nb ≧ 0.02 mass%, and Zr ≧ 0.0001 mass%, and the amount of Al 2 O 3 in the steel Of 0.001% by mass or less and other impurities are included, and the manufacturing method technology of the rolled steel material made of the balance Fe has been completed.
JP-A-7-252518 Japanese Patent Laid-Open No. 9-3523 JP-A-10-219336

本発明は、鉄鋼量産製造法で製造可能で、実質Alを含有しない弱脱酸鋼または未脱酸鋼であって、環流型の真空脱ガス装置を用いて、Al添加と酸素ガス供給を行う溶鋼加熱法を実施しても、残留するAl系介在物量が可及的少量にすることを可能にする溶鋼の加熱方法、およびその加熱方法を用いる圧延鋼材の製造方法を提供することを目的とする。 The present invention is a weakly deoxidized steel or non-deoxidized steel that can be manufactured by a mass production method of steel and does not substantially contain Al, and performs Al addition and oxygen gas supply using a reflux type vacuum degassing apparatus. To provide a method for heating molten steel that enables the amount of residual Al 2 O 3 -based inclusions to be made as small as possible even when the molten steel heating method is performed, and a method for producing rolled steel using the heating method With the goal.

上記課題を解決するために提供される本発明は次のとおりである。
(1)浸漬管を介して真空槽と取鍋の間で溶鋼を環流させる真空脱ガス装置にて、昇熱操作前の酸素濃度が0.010〜0.070質量%の範囲の溶鋼に対してAl添加および真空槽内溶鋼表面に酸素ガスの吹き付けを行って酸素ガスとAlとを反応させて溶鋼を加熱する方法であって、酸素ガスを供給する工程の間にAl添加操作を1回のみ行うこととし、当該Al添加操作における1回あたりのAl添加量が溶鋼1tあたり0.1kg以上0.5kg以下であり、前記Al添加操作は、酸素ガスの供給開始から少なくとも下記式(I)で表される時間τ経過した後に行われることを特徴とする溶鋼の加熱方法。
τ(s)=0.3W/Q (I)
ここで、Wは溶鋼量(t)、Qは下記式(II)を満たす環流量(t/s)である。
Q=K・B1/3D4/3{ln[P1/P2]}1/3 (II)
なお、定数K=0.19、B:ガス流量(Nl/min)、D:浸漬管管径(m)、P1:ガス吹き込み点の圧力(torr)、およびP2:真空槽圧力(torr)である。
The present invention provided to solve the above problems is as follows.
(1) In a vacuum degassing apparatus that circulates molten steel between a vacuum vessel and a ladle via a dip tube, the oxygen concentration before the heating operation is in the range of 0.010 to 0.070 mass%. In this method, oxygen gas is sprayed onto the surface of the molten steel in the vacuum chamber to react the oxygen gas with Al to heat the molten steel, and the Al addition operation is performed once during the process of supplying oxygen gas. In this Al addition operation, the Al addition amount per one time is 0.1 kg or more and 0.5 kg or less per 1 ton of molten steel, and the Al addition operation is at least the following formula (I) from the start of the supply of oxygen gas A method for heating molten steel, which is performed after elapse of time τ represented by:
τ (s) = 0.3W / Q (I)
Here, W is the molten steel amount (t), and Q is the ring flow rate (t / s) that satisfies the following formula (II).
Q = K ・ B 1/3 D 4/3 {ln [P1 / P2]} 1/3 (II)
Here, constant K = 0.19, B: gas flow rate (Nl / min), D: dip tube diameter (m), P1: pressure of gas injection point (torr), and P2: vacuum chamber pressure (torr).

なお、加熱される溶鋼は、Al添加前のAl濃度で0.003質量%以下であることが好ましい。また、SiおよびMnをSi:0.01〜0.05質量%、Mn:0.10〜2.0質量%の範囲で含有することが好ましい。   In addition, it is preferable that the molten steel heated is 0.003 mass% or less by Al concentration before Al addition. Moreover, it is preferable to contain Si and Mn in the range of Si: 0.01-0.05 mass% and Mn: 0.10-2.0 mass%.

(2)浸漬管を介して真空槽と取鍋の間で溶鋼を環流させる真空脱ガス装置にて、昇熱操作前の酸素濃度が0.010〜0.070質量%の範囲の溶鋼に対してAl添加および真空槽内溶鋼表面に酸素ガスの吹き付けを行って酸素ガスとAlとを反応させて溶鋼を加熱する方法であって、酸素ガスを供給する工程の間にAl添加操作を複数回行うこととし、当該Al添加操作における各回のAl添加量が溶鋼1tあたり0.1kg以上0.5kg以下であり、前記Al添加操作の第1回目は酸素ガスの供給開始から少なくとも下記式(I)で表される時間τ経過した後に行われ、第2回目以降は直前の添加からの時間間隔を前記時間τ以上とすることを特徴とする溶鋼の加熱方法。
τ(s)=0.3W/Q (I)
ここで、Wは溶鋼量(t)、Qは下記式(II)を満たす環流量(t/s)である。
Q=K・B1/3D4/3{ln[P1/P2]}1/3 (II)
なお、定数K=0.19、B:ガス流量(Nl/min)、D:浸漬管管径(m)、P1:ガス吹き込み点の圧力(torr)、およびP2:真空槽圧力(torr)である。
(2) With respect to the molten steel in which the oxygen concentration before the heating operation is in the range of 0.010 to 0.070% by mass in a vacuum degassing apparatus that circulates the molten steel between the vacuum vessel and the ladle through the dip tube. In this method, oxygen gas is sprayed onto the molten steel surface in the vacuum chamber and oxygen gas and Al are reacted to heat the molten steel, and the Al addition operation is performed a plurality of times during the process of supplying oxygen gas. The amount of Al added at each time in the Al addition operation is 0.1 kg or more and 0.5 kg or less per 1 ton of molten steel, and the first time of the Al addition operation is at least the following formula (I) from the start of supply of oxygen gas A method for heating molten steel, characterized in that the time interval from the last addition is set to be equal to or greater than the time τ after the second time τ has elapsed.
τ (s) = 0.3W / Q (I)
Here, W is the molten steel amount (t), and Q is the ring flow rate (t / s) that satisfies the following formula (II).
Q = K ・ B 1/3 D 4/3 {ln [P1 / P2]} 1/3 (II)
Here, constant K = 0.19, B: gas flow rate (Nl / min), D: dip tube diameter (m), P1: pressure of gas injection point (torr), and P2: vacuum chamber pressure (torr).

(3)上記(1)または(2)に記載される溶鋼の加熱方法を用いることを特徴とする、sol.Al≦0.003質量%、かつ、O=0.002〜0.008質量%、Si=0.01〜0.05質量%、Mn=0.10〜2.0質量%を基本成分として含有し、さらに、Ti≦0.05質量%、Nb≦0.20質量%およびZr≦0.0030質量%からなる群から選ばれる一種または二種以上を含有するとともに、Ti≧0.01質量%、Nb≧0.02質量%およびZr≧0.0001質量%の少なくとも一条件を満たす化学組成を備える圧延鋼材の製造方法。   (3) The method for heating molten steel described in the above (1) or (2) is used. Al ≦ 0.003% by mass and O = 0.002 to 0.008% by mass, Si = 0.01 to 0.05% by mass, Mn = 0.10 to 2.0% by mass as basic components And further containing one or more selected from the group consisting of Ti ≦ 0.05 mass%, Nb ≦ 0.20 mass% and Zr ≦ 0.0030 mass%, and Ti ≧ 0.01 mass% , Nb ≧ 0.02 mass% and Zr ≧ 0.0001 mass%, a method for producing a rolled steel material having a chemical composition satisfying at least one condition.

(4)上記(1)から(3)のいずれかに記載される方法を用いて溶鋼の加熱を行い、sol.Al≦0.003質量%、かつ、O:0.002〜0.008質量%、Si:0.01〜0.05質量%、Mn:0.10〜2.0質量%を基本成分として含有し、介在物中のAl含有率が50%以下であることを特徴とする、圧延鋼材の製造方法。 (4) The molten steel is heated using the method described in any one of (1) to (3) above, and sol. Al ≦ 0.003% by mass, O: 0.002 to 0.008% by mass, Si: 0.01 to 0.05% by mass, Mn: 0.10 to 2.0% by mass as basic components and, wherein the Al 2 O 3 content in the inclusions is 50% or less, the production method of the rolled steel.

本発明によれば、実質的にAlを含有しない弱脱酸鋼または未脱酸鋼に対して、鋼量産製造法における製造設備である環流型の真空脱ガス装置を用いて、Al添加と酸素ガス供給を行う溶鋼加熱法を実施しても、残留するAl系介在物量を可及的少量にすることが可能となる。 According to the present invention, for weakly deoxidized steel or non-deoxidized steel substantially not containing Al, a reflux type vacuum degassing apparatus, which is a production facility in a steel mass production method, is used to add Al and oxygen. Even if the molten steel heating method for supplying gas is performed, the amount of remaining Al 2 O 3 -based inclusions can be made as small as possible.

また残留するAl濃度を減少させた弱脱酸の圧延鋼材を得ることにより、弱脱酸鋼の性質を享受しつつ、圧延鋼材の表面品質を従来と同等にすることができる。 Further, by obtaining a weakly deoxidized rolled steel material in which the remaining Al 2 O 3 concentration is reduced, the surface quality of the rolled steel material can be made equivalent to that of the conventional steel while enjoying the properties of the weakly deoxidized steel.

以下に、本発明の最良の形態や製造条件の範囲およびこれらの設定理由について説明する。
1.Al源についての検討
大規模製鉄所での低炭素および極低炭素の弱脱酸鋼または未脱酸鋼の製造方法において、転炉など製鋼炉で炭素を除く粗脱炭を行い、炭素濃度が0.03質量%から0.07質量%を含む低炭素溶鋼として、未脱酸のまま取鍋などの容器に出鋼する。出鋼された溶鋼は、さらにRH装置等の真空脱ガス装置に搬送されて真空脱炭処理が行われ、必要に応じて炭素濃度を0.025質量%以下含有する低炭素溶鋼とする。この際の脱炭反応には溶鋼に炭素と反応する酸素を含有していることが必要であり、脱炭処理前でその酸素濃度は0.03質量%から0.08質量%程度含まれている。
The best mode of the present invention, the range of manufacturing conditions, and the reasons for setting them will be described below.
1. Study on Al 2 O 3 source In the production method of low- and ultra-low-carbon weakly deoxidized steel or non-deoxidized steel at large-scale steelworks, rough decarburization is performed by removing carbon in a steelmaking furnace such as a converter. As a low-carbon molten steel containing 0.03% by mass to 0.07% by mass of carbon, the steel is discharged into a container such as a ladle without being deoxidized. The discharged steel is further transported to a vacuum degassing device such as an RH device and subjected to a vacuum decarburization treatment, and if necessary, a low carbon molten steel containing a carbon concentration of 0.025% by mass or less is obtained. In this decarburization reaction, it is necessary that the molten steel contains oxygen that reacts with carbon, and the oxygen concentration before decarburization treatment is about 0.03 mass% to 0.08 mass%. Yes.

この真空脱炭およびその後の成分調整等に要する処理時間の溶鋼の温度低下を補償するために、溶鋼の加熱処理が真空脱炭処理の前後に行われる。この加熱処理には、溶鋼をAl等の金属と酸素ガスとの酸化反応による加熱を行う。しかしながら、この方法ではAlの燃焼によって生じるAl系介在物の多量の懸濁を生じることになる。一旦生成したAl系介在物は除去されがたい。しかも、除去するためには長時間のRH装置による環流操作といった方法が必要で、さらにコストが嵩み、溶鋼の清浄性が悪化する蓋然性が高まる。 In order to compensate for the temperature drop of the molten steel during the processing time required for this vacuum decarburization and subsequent component adjustment, the molten steel is heat-treated before and after the vacuum decarburization treatment. In this heat treatment, the molten steel is heated by an oxidation reaction between a metal such as Al and oxygen gas. However, this method causes a large amount of suspension of Al 2 O 3 inclusions caused by Al combustion. Al 2 O 3 inclusions once generated are difficult to remove. In addition, the removal requires a method such as a recirculation operation with a long-time RH device, which further increases the cost and the probability that the cleanliness of the molten steel deteriorates.

初めに溶鋼昇熱のために添加する金属Al以外のAl系介在物が生成する可能性をもたらすAl源について検討を行った。
第一には、FeSi等の合金鉄中に含まれる金属Al分である。第二には、取鍋スラグに含有されるAl分である。そして第三には、前の溶鋼処理から持ち来された取鍋内壁に付着したAl源、および前の溶鋼処理から持ち来された真空脱ガス装置内部に付着したAl源である。
First, an Al 2 O 3 source that causes the possibility of the formation of Al 2 O 3 -based inclusions other than metal Al added for heating the molten steel was examined.
The first is the metal Al content contained in the alloy iron such as FeSi. The second is Al 2 O 3 minutes contained in the ladle slag. And third, the Al 2 O 3 source adhering to the ladle inner wall brought from the previous molten steel treatment, and the Al 2 O 3 source adhering to the inside of the vacuum degassing device brought from the previous molten steel treatment It is.

第一については、FeSiやFeNb中に含まれるAl濃度は高々1〜3質量%程度であり、大きな影響を受けないと考えられた。一方第二については、転炉等の脱炭炉および電気炉では異なるが、多くはCaO等の塩基性成分と共存した溶滓になっており、単独のAl系介在物を形成する要因にはなり得ないと考えられた。第三については、相当量のAl源と考えられ、またバラツキの幅も大きいことが考えられた。しかしこれらのAl源は耐火材壁面に大きく付着しており、これらが剥離して一旦溶鋼に懸濁しても、浮上分離してスラグ等に吸収されるものと考えられた。また、第二および第三のAl源については、未脱酸や弱脱酸の溶鋼とは反応するものではなく、大きな要因にはならないと結論した。 As for the first, the Al concentration contained in FeSi and FeNb was at most about 1 to 3% by mass, and it was considered that there was no significant influence. On the other hand, the second is different in decarburization furnaces such as converters and electric furnaces, but most of them are hot metal coexisting with basic components such as CaO, forming a single Al 2 O 3 inclusion. It was thought that it could not be a factor. The third was considered to be a considerable amount of Al 2 O 3 source, and the range of variation was also considered large. However, it was considered that these Al 2 O 3 sources adhered to the refractory wall surface, and even if they separated and suspended in the molten steel, they floated and separated and absorbed by slag and the like. In addition, it was concluded that the second and third Al 2 O 3 sources do not react with undeoxidized or weakly deoxidized molten steel and do not become a major factor.

したがって、実質Alを最終的に含有しない未脱酸鋼または弱脱酸鋼において、Al系介在物が残留する主要因は、Al添加と酸素上吹きによる溶鋼昇熱に起因するAlの生成によるものと考えられる。なおAl添加は、溶鋼昇熱のみならず、溶鋼の真空(脱炭)処理後の溶鋼に残存する溶鋼中酸素濃度の迅速な除去にも有用であり、この際にもAl系介在物の多量の懸濁が不可避である。 Therefore, in undeoxidized steel or weakly deoxidized steel that does not finally contain substantial Al, the main factor that Al 2 O 3 inclusions remain is Al 2 resulting from molten steel heating due to Al addition and oxygen top blowing. This is thought to be due to the generation of O 3 . Incidentally Al addition is not molten steel Noborinetsu only also be useful for rapid removal of the molten steel in the oxygen concentration remaining molten steel after vacuum (decarburization) processing of the molten steel, even Al 2 O 3 based inclusions in the Large suspension of things is inevitable.

2.Al系介在物の残留を抑制する方法の検討
一方、環流型真空脱ガス装置における溶鋼中に一旦懸濁したAl系介在物は、弱脱酸状態、すなわち酸素を含む溶鋼中にあっては、溶鋼中の弱脱酸元素であるSiやMnの酸化物と融体を形成する場合もあり、このようなMnO-SiO-Al系酸化物が形成されれば、溶鋼への強攪拌により介在物の凝集を促進し、分離除去を可能にするものと考えられる。
2. Examination of method for suppressing residual of Al 2 O 3 inclusions On the other hand, Al 2 O 3 inclusions once suspended in molten steel in a reflux type vacuum degassing apparatus are in a weakly deoxidized state, that is, molten steel containing oxygen. In some cases, melts may be formed with oxides of Si and Mn, which are weak deoxidation elements in molten steel, and such MnO—SiO 2 —Al 2 O 3 oxides are not formed. For example, it is considered that the agglomeration of inclusions is promoted by vigorous stirring to the molten steel, thereby enabling separation and removal.

また上記酸化物系介在物であれば、さらに弱脱酸状態にした場合にも、それらと速やかに反応して所望の鋼質を得られるような脱酸状態になることが期待される。
ここでその弱脱酸状態を例示すれば、[sol.Al]≦0.003質量%、[O]:0.002〜0.008質量%、[Si]:0.01〜0.05質量%、および[Mn]:0.10〜2.0質量%を含有し、さらに[Ti]:0.01〜0.05質量%、[Nb]:0.02〜0.20質量%、および[Zr]:0.0001〜0.0030質量%からなる群から選ばれる一種または二種以上を含有するものである。
Moreover, if it is the said oxide type inclusion, even when it makes it a weak deoxidation state, it will anticipate that it will be in the deoxidation state which can react with them rapidly and can obtain desired steel quality.
If the weak deoxidation state is illustrated here, [sol. Al] ≦ 0.003 mass%, [O]: 0.002-0.008 mass%, [Si]: 0.01-0.05 mass%, and [Mn]: 0.10-2.0 mass And [Ti]: 0.01 to 0.05% by mass, [Nb]: 0.02 to 0.20% by mass, and [Zr]: 0.0001 to 0.0030% by mass. It contains one or more selected from the group.

このような機能に着目して、Al添加と酸素上吹きの方法と、さらには介在物の生成反応を考慮した検討を行った。
その基本的な着想は、溶鋼が酸素を含有する状態でのAl昇熱で生成したAlを極力溶鋼に残留させないためには、(1)酸素が高い状態の溶鋼表面にAlを接触させる、および(2)Alの生成は真空槽内で行う、すなわち真空槽内で生成したAlは真空槽から溶鋼が排出される下降管を通過する際に凝集肥大し、取鍋内での反転流で取鍋上面へ容易に分離される、という2点にある。これを言い換えれば、真空槽内でAl濃度が高い状態を形成し、このAl濃度が高い溶鋼が取鍋内の酸素の高い溶鋼と取鍋バルク内で混合・反応すればそのバルク内でAlが形成され、これは凝集肥大による浮上促進や反転流によって取鍋溶鋼上面へ分離させる機会がないということである。
Focusing on such functions, investigations were made in consideration of the method of Al addition and oxygen top blowing, and further the formation reaction of inclusions.
The basic idea is that in order to prevent Al 2 O 3 generated by Al heating in a state in which the molten steel contains oxygen from remaining in the molten steel as much as possible, (1) Al is brought into contact with the molten steel surface in a high oxygen state. And (2) production of Al 2 O 3 is carried out in a vacuum tank, that is, Al 2 O 3 produced in the vacuum tank agglomerates when passing through a downcomer pipe from which the molten steel is discharged from the vacuum tank, It is at two points that it is easily separated to the upper surface of the ladle by the reverse flow in the ladle. In other words, if a state in which the Al concentration is high is formed in the vacuum chamber and the molten steel having a high Al concentration is mixed and reacted in the ladle bulk with the molten steel having a high oxygen content in the ladle, Al 2 is contained in the bulk. O 3 is formed, which means that there is no opportunity for separation to the upper surface of the ladle molten steel by flotation promotion or reversal flow due to cohesive enlargement.

ここで、上述の着想を検討するために真空槽に約20t、取鍋溶鋼に約250tの溶鋼が収容された環流型脱ガス装置について考えた。溶存酸素濃度が0.050質量%から0.060質量%の溶鋼に対して、含有される酸素の脱酸に必要量の約1/2程度の100kgのAl添加を行い、溶鋼中の酸素濃度およびAl濃度がどのように変化するかを考えた。ここで、溶鋼環流量Qs:1.67t/s、Alはホッパーを介して徐々に添加し溶鋼に拡散溶解されるとして、30秒間に渡って濃度が上昇していくものとした。   Here, in order to examine the above idea, a circulating degassing apparatus in which about 20 t of molten steel was accommodated in a vacuum tank and about 250 t of molten steel was accommodated in a ladle molten steel was considered. About 100 kg of Al is added to the molten steel having a dissolved oxygen concentration of 0.050 mass% to 0.060 mass%, which is about 1/2 of the amount necessary for deoxidation of the contained oxygen, and the oxygen concentration in the molten steel And how the Al concentration changes. Here, the molten steel ring flow rate Qs: 1.67 t / s, Al was gradually added through the hopper and diffused and dissolved in the molten steel, and the concentration increased over 30 seconds.

このとき、Alの生成反応は2Al+3O=Al(s)で表されるが、前掲した着想にしたがって、真空槽内で形成されたAlは系外に除くとした。これによって真空槽内のAl濃度は取鍋バルク内で生成するAl量と関連づけられることになる。 At this time, the formation reaction of Al 2 O 3 is represented by 2Al + 3O = Al 2 O 3 (s), in accordance idea that supra, Al 2 O 3 formed in a vacuum chamber was excluded from the system . Thereby, the Al concentration in the vacuum chamber is related to the amount of Al 2 O 3 produced in the ladle bulk.

そのときの真空槽中のAl濃度および酸素濃度の挙動を模式的に第1図に示す。RH型脱ガス装置は真空槽中の溶鋼は全体に対して少ないので、一時的に多量のAlを添加すると、槽内の溶鋼中Al濃度は一次的に非常高くなる。すなわちAl脱酸状態となって真空槽内では酸素の高い溶鋼が真空槽内に入ることによって、また取鍋内ではAlの高い溶鋼が取鍋内に入ることによって、またAl系介在物の生成が生じるものと考えられた。すなわち、系内で酸素が過剰な状態で添加されたAlは全て溶鋼内部でAlとなるので、第1図のX軸と曲線で囲まれた面積がAl系介在物の生成量に相関するものと考えた。 FIG. 1 schematically shows the behavior of Al concentration and oxygen concentration in the vacuum chamber at that time. Since the RH type degassing apparatus has a small amount of molten steel in the vacuum tank, the Al concentration in the molten steel in the tank is temporarily extremely high when a large amount of Al is temporarily added. In other words, when Al is deoxidized, molten steel with high oxygen enters the vacuum chamber in the vacuum chamber, and molten steel with high oxygen enters the ladle within the ladle, and Al 2 O 3 series intervenes. It was thought that product formation occurred. That is, all the Al added in an excess state in the system becomes Al 2 O 3 inside the molten steel, so the area surrounded by the X axis and the curve in FIG. 1 is the Al 2 O 3 inclusions. It was considered to correlate with the production amount.

そこで、同じ未脱酸溶鋼に対して、予め酸素上吹き等による酸素ガスを0.21kg/t・sを実施しながら同様に100kgのAl添加をした場合の、真空槽中のAl濃度および酸素濃度の挙動を模式的に第2図に示す。この際の真空槽中酸素濃度は酸素ガスを予め付与しているので当然のことながら高くなるが、その後にAl添加を行っても真空槽中のAl濃度が高くなる時間は短くなり、その濃度は低下する。すなわち、この真空槽中の高いAl濃度を含有する溶鋼が後に未脱酸溶鋼と接してAl系介在物として生成するならば、Al系介在物の生成量は第2図のX軸と曲線で囲まれた面積に相関する量減少すると考えた。 Therefore, Al concentration and oxygen in the vacuum tank when 100 kg of Al was added to the same undeoxidized molten steel in advance while oxygen gas by oxygen top blowing or the like was 0.21 kg / t · s. The concentration behavior is schematically shown in FIG. In this case, the oxygen concentration in the vacuum chamber is naturally increased because oxygen gas has been applied in advance, but even if Al is added thereafter, the time during which the Al concentration in the vacuum chamber is increased is shortened and the concentration is increased. Will decline. That is, if the molten steel containing a high Al concentration in the vacuum chamber is subsequently produced as Al 2 O 3 inclusions in contact with the non-deoxidized molten steel, the amount of Al 2 O 3 inclusions produced is as shown in FIG. It was thought that the amount correlated with the area surrounded by the X-axis and the curve decreased.

第3図にAl添加開始時間を同じにして酸素ガスを付与した場合と付与しなかった場合の真空槽中のAl濃度の挙動を示すと、同一Al量100kgを添加しても、酸素ガスを付与した場合の方が真空槽中のAl濃度には低く維持されると考えられた。   FIG. 3 shows the behavior of the Al concentration in the vacuum chamber when oxygen gas is applied with the same Al addition start time and when oxygen gas is not applied. It was considered that the Al concentration in the vacuum chamber was kept lower when applied.

この検討では、Alおよび酸素の質量保存を考えただけで、実際の介在物生成挙動は調査する必要がある。そこで、真空槽に約20t、取鍋溶鋼に約220〜255tの溶鋼が収容された環流型脱ガス装置を用いて以下のような調査を行った。溶存酸素を含有する溶鋼に対して、酸素ガスの吹き付けを行った。酸素ガスの吹き付け速度Gは0.20〜0.22kg/t・sである。溶鋼に含有される酸素と吹き付けた酸素を除くために必要な化学量論比よりも1/3〜1/2程度であり、最終的に溶存酸素濃度で0.005質量%から0.020質量%が残るようにAl添加を行った。酸素ガスおよびAl添加が完了してから約120秒後に溶鋼サンプルを採取した。昇熱処理によりAl系介在物が取鍋内で生成しているかどうかは、鋼中介在物組成で判断することとした。すなわち、そのサンプル中に含まれる酸化物系介在物をX線マイクロアナライザーが付属した走査型電子顕微鏡で調べた。介在物は数μmから数十μm程度のものを無作為にn=10〜20程度選び、その中のAl濃度の平均値をとった。溶鋼組成にもよるが、溶存酸素を含有する溶鋼であれば、いわゆる弱脱酸元素と呼ばれるMnやSiは少量含まれている場合がある。その濃度範囲を例示すれば、[Mn]:0.10〜2.0質量%、[Si]:0.01〜0.05質量%程度である。観察される介在物は、Al系の場合、Alに少量のMnO、SiOが含まれる場合、MnOとAlからなる場合、MnO、SiOおよびAlからなる場合等があるが、介在物中Al濃度の平均値を平均値を用いることで、真空槽のAl濃度の高い溶鋼が取鍋の酸素濃度の高い溶鋼中へ流入することによってAl系介在物が生成したかどうかを把握できるものと考えた。ここで、Al−MnO−SiO系状態図で考えると、Al相と平衡する酸化物は、Al−MnO−SiO液相でありAl濃度で約50質量%の付近となる。したがって、平均Al濃度が50質量%を臨界的な指標として本発明技術を検討した。 In this study, it is necessary to investigate the actual inclusion formation behavior only by considering the mass conservation of Al and oxygen. Then, the following investigation was performed using the recirculation type degassing apparatus in which about 20 tons of molten steel was accommodated in the ladle and about 220 to 255 tons of molten steel was accommodated in the ladle molten steel. Oxygen gas was sprayed on the molten steel containing dissolved oxygen. The oxygen gas blowing speed G is 0.20 to 0.22 kg / t · s. It is about 1/3 to 1/2 of the stoichiometric ratio required for removing oxygen contained in molten steel and sprayed oxygen, and finally the dissolved oxygen concentration is 0.005 mass% to 0.020 mass. Al was added so that% remained. About 120 seconds after the addition of oxygen gas and Al was completed, a molten steel sample was taken. Whether or not Al 2 O 3 -based inclusions are generated in the ladle by the heat treatment was determined by the inclusion composition in steel. That is, the oxide inclusions contained in the sample were examined with a scanning electron microscope attached with an X-ray microanalyzer. Inclusions of about several μm to several tens of μm were selected at random from about n = 10 to 20, and the average value of the Al 2 O 3 concentration therein was taken. Although depending on the molten steel composition, in the case of molten steel containing dissolved oxygen, a small amount of Mn and Si called so-called weak deoxidation elements may be contained. For example, the concentration range is [Mn]: 0.10 to 2.0 mass% and [Si]: 0.01 to 0.05 mass%. The observed inclusions are Al 2 O 3 , Al 2 O 3 contains a small amount of MnO, SiO 2 , MnO and Al 2 O 3 , MnO, SiO 2 and Al 2 O 3 However, by using the average value of the Al 2 O 3 concentration in the inclusions, the molten steel with a high Al concentration in the vacuum tank flows into the molten steel with a high oxygen concentration in the ladle. It was considered that whether or not Al 2 O 3 inclusions were generated could be grasped. Here, considering the Al 2 O 3 —MnO—SiO 2 phase diagram, the oxide that balances with the Al 2 O 3 phase is the Al 2 O 3 —MnO—SiO 2 liquid phase and the Al 2 O 3 concentration is It becomes around 50 mass%. Therefore, the technique of the present invention was examined using an average Al 2 O 3 concentration of 50% by mass as a critical index.

ここで、RH装置における溶鋼環流量Q(t/s)および環流による均一混合に関連づけられる時間τについて説明する。
RH装置における溶鋼環流量Q(t/s)はいくつかの研究者による式が既に公知となっているが、本発明では次式(II)を用いた。
Here, the molten steel ring flow rate Q (t / s) in the RH apparatus and the time τ associated with the uniform mixing by the circulation will be described.
The molten steel flow rate Q (t / s) in the RH apparatus is already known by several researchers, but in the present invention, the following formula (II) is used.

Q=K・B1/3D4/3{ln[P1/P2]}1/3 (II)
ここで定数K=0.19、Bはガス流量(Nl/min)、Dは浸漬管管径(m)、P1およびP2は、それぞれガス吹き込み点および真空槽の圧力(torr)である。
Q = K ・ B 1/3 D 4/3 {ln [P1 / P2]} 1/3 (II)
Here, a constant K = 0.19, B is a gas flow rate (Nl / min), D is a dip tube diameter (m 2 ), P1 and P2 are a gas blowing point and a vacuum chamber pressure (torr), respectively.

次に均一混合に関連づける時間τについては、次式を用いた。
τ(s)=0.3W/Q (I)
ここでW:溶鋼量(t)、Q:環流量(t/s)である。
Next, for the time τ associated with uniform mixing, the following equation was used.
τ (s) = 0.3W / Q (I)
Here, W: molten steel amount (t), Q: ring flow rate (t / s).

第4図には酸素上吹き時間開始からAl添加までの時間τと介在物中Al濃度の平均値の関係を示す。誤差範囲は1σである。この試験は、溶鋼量Wが242t〜274t、環流量Q=1.67t/s一定の条件で行った。したがって、上式から計算されるτの値は43.5〜49.2である。図に示すように、ここで介在物中の平均Al濃度を50質量%を読みとると、48(s)となる。酸素上吹き開始時間からτ=48秒後以降にAl添加時期を設定することにより、介在物中の平均Al濃度を50質量%未満にすることができた。すなわちこのような介在物はSiO−MnO−Al系の比較的低融点の液相介在物が主体であることがわかる。 FIG. 4 shows the relationship between the time τ from the start of the oxygen top blowing time to the addition of Al and the average value of the Al 2 O 3 concentration in the inclusions. The error range is 1σ. This test was performed under the condition that the molten steel amount W was 242 t to 274 t and the ring flow rate Q = 1.67 t / s. Therefore, the value of τ calculated from the above equation is 43.5 to 49.2. As shown in the figure, when the average Al 2 O 3 concentration in the inclusion is read as 50% by mass, it is 48 (s). By setting the Al addition time after τ = 48 seconds after the oxygen top blowing start time, the average Al 2 O 3 concentration in the inclusions could be made less than 50 mass%. That is, such inclusions are mainly composed of SiO 2 —MnO—Al 2 O 3 -based liquid phase inclusions having a relatively low melting point.

第5図には、酸素上吹きを実施し、かつ時間τ秒後以降にAlを一回添加した時の溶鋼1tあたりのAl添加量と介在物中Al濃度平均値の関係を示す。図に示すように、Al添加量が0.5kg/t以下であれば、介在物中の平均Al濃度を50質量%未満にすることができた。 FIG. 5 shows the relationship between the amount of Al added per ton of molten steel and the average value of Al 2 O 3 concentration in inclusions when oxygen is blown over and Al is added once after τ seconds. . As shown in the figure, when the Al addition amount was 0.5 kg / t or less, the average Al 2 O 3 concentration in the inclusions could be less than 50% by mass.

第6図には、酸素上吹きを実施し、かつ時間τ秒後以降にAl添加0.3〜0.4kg/tを二回行った際の添加間隔時間と介在物中Al濃度平均値の関係を示す。ここで時間0(s)は0.72kg/tを一括して添加したものである。図に示すように、Al添加間隔時間をτ秒以上取ることにより、介在物中の平均Al濃度を50質量%未満にすることができた。 FIG. 6 shows the addition interval time and Al 2 O 3 concentration in inclusions when oxygen was blown over and Al addition 0.3 to 0.4 kg / t was performed twice after time τ seconds. The average value relationship is shown. Here, time 0 (s) is 0.72 kg / t added at once. As shown in the figure, the average Al 2 O 3 concentration in the inclusions could be made less than 50% by mass by taking the Al addition interval time of τ seconds or more.

3.本発明の適用範囲
本発明の適用範囲の限定を以下に説明する。
本発明における溶存酸素を含有する溶鋼とは、取鍋内に収容された溶鋼における酸素濃度でAl昇熱操作前に0.010質量%〜0.070質量%の範囲にあるものである。昇熱前の酸素濃度をこの範囲に限定する理由は、酸素濃度が0.010質量%未満であるということは既に何らかの脱酸元素が含有されている状態であり、本発明の適用外の状態と考えられるからである。さらに酸素濃度が0.070質量%を上回る場合には、共存する製鋼スラグ等が極めて過酸化な状態であって、本発明の安定した効果を得難くなると考えられるからである。この酸素濃度を溶鋼中Al濃度に関連づけていえば、Al昇熱操作前にAl濃度で0.003質量%以下である。なお酸素ガス供給時には真空槽内の溶鋼は一時的にこれを上回る場合がある。
3. Scope of application of the present invention The limitation of the scope of application of the present invention will be described below.
The molten steel containing dissolved oxygen in the present invention is the oxygen concentration in the molten steel accommodated in the ladle and is in the range of 0.010 mass% to 0.070 mass% before the Al heating operation. The reason for limiting the oxygen concentration before heating to this range is that the oxygen concentration is less than 0.010% by mass, because it already contains some deoxidizing element, and is not applicable to the present invention. Because it is considered. Further, when the oxygen concentration exceeds 0.070% by mass, the coexisting steelmaking slag and the like are in an extremely peroxidized state, and it is considered difficult to obtain the stable effect of the present invention. If this oxygen concentration is related to the Al concentration in the molten steel, the Al concentration is 0.003% by mass or less before the Al heating operation. When supplying oxygen gas, the molten steel in the vacuum chamber may temporarily exceed this.

溶鋼量は特に限定されないがRH処理が実施される大量溶鋼処理プロセスが前提であり、その量は50tから400t程度である。RH槽内の溶鋼量は装置構成に依存して特に限定されないが、3tから30t程度である。環流速度Qは、その算出式の例を前述したが、その範囲を例示すれば0.5t/sから4.0t/sである。酸素の供給速度Gは、酸素供給能力やランス・ガス羽口形状等に依存するが、その範囲を例示すれば0.0010Nm/t・sから0.0040Nm/t・sである。 Although the amount of molten steel is not particularly limited, it is premised on a mass molten steel treatment process in which RH treatment is performed, and the amount is about 50 t to 400 t. The amount of molten steel in the RH tank is not particularly limited depending on the apparatus configuration, but is about 3 to 30 t. The example of the calculation formula for the reflux velocity Q has been described above, but the range is 0.5 t / s to 4.0 t / s. The oxygen supply rate G depends on the oxygen supply capacity, the lance / gas tuyere shape, and the like, and is 0.0010 Nm 3 / t · s to 0.0040 Nm 3 / t · s, for example.

添加するAlについては、製鋼工程で使用される金属Alおよびそれを含む合金、金属Al含有物を意味する。合金や金属Al含有物の場合、金属Al純分で換算すれば良い。溶鋼との速やかな反応を考慮すれば、金属Al純分が95質量%以上のいわゆる製鋼用金属Alの使用が望ましい。   About Al to add, the metal Al used in a steelmaking process, the alloy containing it, and a metal Al containing material are meant. In the case of an alloy or a metal Al-containing material, the metal Al content may be converted. In consideration of a rapid reaction with molten steel, it is desirable to use a so-called metal Al for steel making having a pure metal Al content of 95% by mass or more.

なお、本発明において、Al添加量は、少なくとも0.1kg/t以上を添加する必要がある。Al添加量が0.1kg/t未満では、Alを添加して昇温する効果に乏しいからである。   In the present invention, it is necessary to add at least 0.1 kg / t or more of Al. This is because if the amount of Al added is less than 0.1 kg / t, the effect of adding Al to raise the temperature is poor.

本発明の前提となるRH型真空脱ガス装置について述べる。この装置の概要は、真空槽を減圧にすることにより槽内に溶鋼を吸い上げ、溶鋼を吸い上げるための二本の浸漬管の片側に不活性ガスを流すことにより上昇流を形成し、反対側に下降流を形成することによって、溶鋼を真空槽と取鍋の間で環流させることを特徴とするものである。この溶鋼の環流によって溶鋼は強く撹拌され、脱炭反応や脱酸反応が促進される。   An RH type vacuum degassing apparatus which is a premise of the present invention will be described. The outline of this device is that the vacuum tank is depressurized to suck up the molten steel into the tank, and an inert gas is flowed to one side of the two dip tubes for sucking up the molten steel, and the opposite side is By forming a downward flow, the molten steel is circulated between the vacuum chamber and the ladle. The molten steel is vigorously stirred by the recirculation of the molten steel, and the decarburization reaction and the deoxidation reaction are promoted.

4.鋼材
次にこのような操作で得られる鋼材について説明する。本発明は、鋼中[Al]濃度が0.003質量%以下の鋼に適用できるもので、実質Al濃度が非常に低い弱脱酸鋼となる。その酸素濃度は、全酸素濃度で0.002〜0.008質量%の範囲である。強脱酸の状態にしないので、典型的には0.003〜0.005質量%の酸素が含まれる。
4). Next, the steel material obtained by such operation will be described. The present invention can be applied to steel having an [Al] concentration of 0.003% by mass or less in steel, and is a weakly deoxidized steel having a very low real Al concentration. The oxygen concentration is in the range of 0.002 to 0.008 mass% in terms of total oxygen concentration. Since it is not made into the state of strong deoxidation, 0.003-0.005 mass% oxygen is typically contained.

本発明の操作により、Al昇熱を実施してもAl系介在物量が少なくなり、Al量は0.001質量%以下となる。このAl量は常法で求めたもので良く、例えば一般的に行われる酸不溶性Al濃度から化学組成がAlを仮定して求めた値をもちいることができる。 By the operation of the present invention, the amount of Al 2 O 3 inclusions is reduced even if Al heating is performed, and the amount of Al 2 O 3 is 0.001% by mass or less. The amount of Al 2 O 3 may be obtained by a conventional method, and for example, a value obtained by assuming that the chemical composition is Al 2 O 3 from a commonly performed acid-insoluble Al concentration can be used.

このようにAl量が低い圧延鋼材では、酸素濃度が高くても、鋼材表面の品質が良好である。すなわち冷間圧延鋼帯においてはスリバー疵が減少し、厚板鋼材においては、介在物性表面欠陥を抑制することができる。 As described above, in the rolled steel material having a low Al 2 O 3 content, the quality of the steel material surface is good even if the oxygen concentration is high. That is, sliver defects are reduced in the cold rolled steel strip, and inclusion physical surface defects can be suppressed in the thick steel plate.

鋼中[sol.Al]濃度が0.003質量%以下でかつ全酸素濃度が0.002質量%以上0.008質量%以下を得るためには、SiおよびMnについては以下に規定される範囲の含有量で、Ti、NbおよびZrについては、これらの1種または2種以上を以下に規定される範囲の含有量で、含有する必要がある。   In steel [sol. In order to obtain an Al] concentration of 0.003% by mass or less and a total oxygen concentration of 0.002% by mass or more and 0.008% by mass or less, the Si and Mn content is within the range specified below. About Ti, Nb, and Zr, it is necessary to contain these 1 type, or 2 or more types by content of the range prescribed | regulated below.

「Si」:0.01〜0.05質量%
Siは酸素と親和力があるので、Alを用いずに脱酸することを可能にする。全酸素濃度を0.008質量%以下にするためには、[Si]は0.01質量%以上必要である。[Si]が0.05質量%を超えると酸素濃度が0.002質量%未満となる。
“Si”: 0.01 to 0.05 mass%
Since Si has an affinity for oxygen, it can be deoxidized without using Al. In order to make the total oxygen concentration 0.008% by mass or less, [Si] is required to be 0.01% by mass or more. When [Si] exceeds 0.05 mass%, the oxygen concentration becomes less than 0.002 mass%.

「Mn」:0.10〜2.0質量%
Mnは酸素と親和力があるとともに、鋼の固溶強化を可能にする元素である。特にSiと共存することで弱いながら安定した脱酸を可能とする。全酸素濃度を0.008質量%以下にするためには、[Mn]は0.10質量%以上必要である。[Mn]が2.0質量%を超えると酸素濃度が0.002質量%未満となる。
“Mn”: 0.10 to 2.0 mass%
Mn has an affinity for oxygen and is an element that enables solid solution strengthening of steel. In particular, coexistence with Si enables stable deoxidation although it is weak. In order to make the total oxygen concentration 0.008% by mass or less, [Mn] needs to be 0.10% by mass or more. When [Mn] exceeds 2.0 mass%, the oxygen concentration becomes less than 0.002 mass%.

[Ti]:0.01〜0.05質量%
Tiは酸素と親和力があるとともに、圧延温度域では炭素や窒素と親和力があるので、鋼材強度や伸びを改善するために添加する元素である。
[Ti]: 0.01 to 0.05% by mass
Ti has an affinity for oxygen and has an affinity for carbon and nitrogen in the rolling temperature range, so it is an element added to improve steel strength and elongation.

全酸素濃度を0.008質量%以下にするためにTiを添加する場合であって、[Nb]及び[Zr]を不純物濃度を超えて含まない場合には、[Ti]は0.01質量%以上必要である。但し、[Ti]が単独でも0.05質量%を超えると酸素濃度が0.002質量%未満となる。   When Ti is added to make the total oxygen concentration 0.008% by mass or less, and [Nb] and [Zr] are not included exceeding the impurity concentration, [Ti] is 0.01% by mass. % Or more is necessary. However, even when [Ti] alone exceeds 0.05 mass%, the oxygen concentration becomes less than 0.002 mass%.

[Nb]:0.02〜0.20質量%
Nb圧延温度域では炭素や窒素と親和力があるので、鋼材強度や伸びを改善するために添加する元素である。
[Nb]: 0.02 to 0.20 mass%
Since it has an affinity for carbon and nitrogen in the Nb rolling temperature range, it is an element added to improve the strength and elongation of the steel material.

Nbは溶鋼にあっては、SiやTiよりもさらに酸素と親和力の小さい元素であるが、本発明のような弱脱酸鋼においては酸素濃度に関与する。全酸素濃度を0.008質量%以下にするためにNbを添加する場合であって、[Ti]及び[Zr]を不純物濃度を超えて含まない場合には、[Nb]は0.02質量%以上必要である。但し、[Nb]が単独でも0.20質量%を超えると、炭化物、窒化物等の析出物等により鋼質が著しく変化し、所望の圧延材には適さなくなる。   Nb is an element having a smaller affinity for oxygen than Si and Ti in molten steel, but Nb is involved in oxygen concentration in weakly deoxidized steel such as the present invention. When Nb is added to make the total oxygen concentration 0.008% by mass or less and [Ti] and [Zr] are not included exceeding the impurity concentration, [Nb] is 0.02% by mass. % Or more is necessary. However, when [Nb] alone exceeds 0.20% by mass, the steel quality is remarkably changed due to precipitates such as carbides and nitrides, and is not suitable for a desired rolled material.

[Zr]:0.0001〜0.0030質量%
Zrは反対に強脱酸元素であるが、微量添加すること鋼材に有効な性質を得られる場合がある。
[Zr]: 0.0001 to 0.0030 mass%
On the contrary, Zr is a strong deoxidizing element, but if it is added in a small amount, there are cases where an effective property can be obtained for the steel.

Zrは溶鋼にあっては、Alと同等の酸素と親和力を示す元素であるので、本発明のような弱脱酸鋼においては微量で酸素濃度に関与する。全酸素濃度が0.008質量%以下にするためにZrを添加する場合であって、[Ti]及び[Nb]を不純物濃度を超えて含まない場合には、[Zr]は0.0001質量%以上必要である。但し、[Zr]が単独でも0.003質量%を超えると酸素濃度が0.002質量%未満となる。   Zr is an element having an affinity for oxygen equivalent to that of Al in molten steel, and therefore, in weakly deoxidized steel such as the present invention, it is involved in a small amount of oxygen concentration. When Zr is added to make the total oxygen concentration 0.008% by mass or less and [Ti] and [Nb] are not included exceeding the impurity concentration, [Zr] is 0.0001% by mass. % Or more is necessary. However, even if [Zr] alone exceeds 0.003% by mass, the oxygen concentration becomes less than 0.002% by mass.

このような条件を満たし、かつ前述のAl昇熱の諸要件を満たすことにより、Al昇熱を実施して、かつ[sol.Al]≦0.003質量%、[%O]=0.002〜0.008質量%の範囲の鋼材を安定して製造することができ、かつその鋼材中に残留するAl量は0.001質量%以下にすることが可能となる。残留するAl量が0.001%を超えると、弱脱酸鋼であってもAl介在物に起因する表面疵等が発生し、弱脱酸鋼の利点の一つを享受できなくなる。 By satisfying such conditions and satisfying the above-mentioned requirements for Al heating, Al heating is performed, and [sol.Al] ≦ 0.003 mass%, [% O] = 0.002. A steel material in a range of ˜0.008 mass% can be stably produced, and the amount of Al 2 O 3 remaining in the steel material can be 0.001 mass% or less. If the amount of residual Al 2 O 3 exceeds 0.001%, even if it is weak deoxidized steel, surface flaws caused by Al 2 O 3 inclusions occur, and one of the advantages of weak deoxidized steel is You can not enjoy it.

本発明に好適な[C]濃度を例示すると、[C]:0.001〜0.025%の範囲である。この範囲が好適な理由は、[C]が0.025%を超えると、弱脱酸鋼では鋳片にブローホールが生成する等の製造上の課題が生じる。[C]が0.001%未満では炭素を除くための製造コストがかさむ。   When [C] density | concentration suitable for this invention is illustrated, it is the range of [C]: 0.001-0.025%. The reason why this range is suitable is that when [C] exceeds 0.025%, weak deoxidized steel has manufacturing problems such as formation of blow holes in the slab. If [C] is less than 0.001%, the production cost for removing carbon increases.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
溶鋼270tonを転炉で脱炭精錬し、その未脱酸溶鋼を収容した取鍋をRH装置へ移送し、RH装置で真空脱炭処理を行った。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
The molten steel 270 ton was decarburized and refined in a converter, the ladle containing the undeoxidized molten steel was transferred to the RH apparatus, and vacuum decarburization processing was performed with the RH apparatus.

RH装置は真空槽に約20tの溶鋼が収容され、その環流速度は吹き込みArガス量と真空度を調整することにより1.6〜2.0t/sの範囲とした。RH装置に真空脱炭が終了した後、未脱酸溶鋼の予備脱酸と溶鋼の昇温操作を兼ねてそれに必要な量の金属Alを添加した。このAl添加に先立って予め昇熱および溶鋼に残存させる酸素として必要量の酸素ガスをRH装置の真空槽上方に備えたランスから真空槽内の溶鋼に向かって吹き付け添加した。上吹きランスから酸素ガスは38Nm/minで4〜10min間上吹きを行った。このような操作によって必要な熱量および過剰な溶鋼中酸素濃度を除去するとともに、0.010〜0.070質量%の酸素濃度を含有する溶鋼とした。 In the RH apparatus, about 20 t of molten steel was accommodated in a vacuum tank, and the recirculation speed was adjusted to a range of 1.6 to 2.0 t / s by adjusting the amount of blown Ar gas and the degree of vacuum. After the vacuum decarburization was completed in the RH apparatus, a necessary amount of metal Al was added to both the preliminary deoxidation of the undeoxidized molten steel and the temperature raising operation of the molten steel. Prior to the addition of Al, a necessary amount of oxygen gas was added by spraying from the lance provided above the vacuum chamber of the RH device toward the molten steel in the vacuum chamber in advance as the oxygen remaining in the molten steel. From the top blowing lance, oxygen gas was blown up at 38 Nm 3 / min for 4 to 10 minutes. The necessary amount of heat and excess oxygen concentration in the molten steel were removed by such an operation, and a molten steel containing an oxygen concentration of 0.010 to 0.070 mass% was obtained.

なおその後さらに必要に応じて各種合金を添加し、所定の成分に調整した。その時の主要溶鋼成分を記載すれば、[C]=0.002〜0.004質量%、[Si]=0.01〜0.02質量%、[Mn]=0.36〜0.44質量%、[P]=0.012〜0.018質量%、[S]=0.002〜0.005質量%、[Ti]=0.01〜0.014質量%、[Nb]=0.01〜0.02質量%であった。
なお、Al添加および酸素上吹き実施して酸素上吹きを停止後、約120秒から240秒後に溶鋼試料を採取し、その中に含まれる直径5μmから20μmの酸化物系介在物を無作為に10ないし20個程度選び、そのAl濃度の平均値を得た。Al濃度が50質量%以下のものを○、30質量%以下のものを◎とし、一方50質量%を上回るものを×とした。
After that, various alloys were further added as necessary to adjust to predetermined components. If the main molten steel component at that time is described, [C] = 0.002 to 0.004 mass%, [Si] = 0.01 to 0.02 mass%, [Mn] = 0.36 to 0.44 mass %, [P] = 0.012-0.018 mass%, [S] = 0.002-0.005 mass%, [Ti] = 0.01-0.014 mass%, [Nb] = 0. It was 01-0.02 mass%.
In addition, after adding oxygen and blowing oxygen and stopping oxygen blowing, a molten steel sample was collected after about 120 to 240 seconds, and oxide inclusions having a diameter of 5 to 20 μm contained therein were randomly selected. About 10 to 20 pieces were selected and the average value of the Al 2 O 3 concentration was obtained. A sample having an Al 2 O 3 concentration of 50% by mass or less was marked with ◯, a sample with 30% by mass or less was marked with ◎, and a sample having an Al 2 O 3 concentration of 50% by mass or less was marked with ×.

本発明の実施例の諸条件とその結果、および本発明の条件から外れた比較例とその結果を表1に示す。   Table 1 shows various conditions and results of the examples of the present invention, and comparative examples and results outside the conditions of the present invention.

Figure 2009084672
Figure 2009084672

表1の実施例1および2に示すように、請求項1に記載の方法で介在物中(%Al)濃度の平均組成を50%以下にすることにより、Alの酸化反応を利用した溶鋼昇熱を行ってもAl系介在物の生成を抑制できていることがわかる。さらには表1の実施例3に示すように、Alを複数回添加し、Al添加量の総計が0.50kg/tを超えた場合でも、請求項2に記載の方法により所定時間間隔でAlを添加すると、介在物中(%Al)濃度の平均組成が50%以下となり、Al系介在物の生成を抑制できていることがわかる。 As shown in Examples 1 and 2 of Table 1, the oxidation reaction of Al is utilized by setting the average composition of (% Al 2 O 3 ) concentration in inclusions to 50% or less by the method of claim 1 It can be seen that the formation of Al 2 O 3 inclusions can be suppressed even when the molten steel is heated. Further, as shown in Example 3 of Table 1, even when Al is added a plurality of times and the total amount of added Al exceeds 0.50 kg / t, the method according to claim 2 allows Al to be added at predetermined time intervals. Is added, the average composition of the inclusions (% Al 2 O 3 ) concentration becomes 50% or less, which indicates that the formation of Al 2 O 3 inclusions can be suppressed.

一方比較例4および5に示すようにAl添加時間を充分に確保しない場合、比較例6,7に示すように一回のAl添加量を0.5kg/tを超える場合には、いずれもAl系介在物が残留して、介在物中の平均(%Al)濃度が50%を上回ってしまう。また比較例8からは、1回目のAl添加は本発明の範囲であっても2回目の添加間隔が短ければAl系介在物の残留が生じてしまうことがわかる。 On the other hand, as shown in Comparative Examples 4 and 5, when sufficient Al addition time is not secured, as shown in Comparative Examples 6 and 7, when the amount of Al addition exceeds 0.5 kg / t, both are Al. 2 O 3 inclusions remain, and the average (% Al 2 O 3 ) concentration in the inclusions exceeds 50%. Further, it can be seen from Comparative Example 8 that even if the first Al addition is within the range of the present invention, if the second addition interval is short, Al 2 O 3 inclusions remain.

さらに上記実施例で得た請求項1または請求項2に記載の本発明を用いて、Al昇熱を実施し、その後RH装置での溶鋼処理中に不足のC、Si、Mnを調整し、さらに必要に応じてTi、Nb、Zrを合金成分として添加して濃度を調整し、常法に従って連続鋳造法によってスラブを製造した。このスラブを素材として、熱間圧延および冷間圧延を実施し冷延鋼帯を得た。その結果を表2に示す。なお、表2における酸素濃度要件とは弱脱酸鋼の範疇にあるかどうかであり、鋼中の酸素含有量が0.002〜0.008質量%にあることであり、これを充足する場合には○、充足しない場合には×とした。   Furthermore, using the present invention according to claim 1 or claim 2 obtained in the above embodiment, Al heating is carried out, and then C, Si, Mn which are insufficient during the molten steel treatment in the RH apparatus are adjusted, Further, if necessary, Ti, Nb, and Zr were added as alloy components to adjust the concentration, and a slab was produced by a continuous casting method according to a conventional method. Using this slab as a raw material, hot rolling and cold rolling were performed to obtain a cold-rolled steel strip. The results are shown in Table 2. In addition, the oxygen concentration requirement in Table 2 is whether it is in the category of weakly deoxidized steel, that is, the oxygen content in the steel is in the range of 0.002 to 0.008% by mass, and this is satisfied In the case of not satisfying, it was marked as x.

Figure 2009084672
Figure 2009084672

実施例11から15では、弱脱酸鋼で酸素濃度が0.002〜0.008質量%の状態で、なおかつ表3に示す本発明のAl昇熱を実施することにより、Alも残留しない圧延鋼材が得られた。 In Examples 11 to 15, Al 2 O 3 was also obtained by carrying out the Al heating of the present invention shown in Table 3 in a weakly deoxidized steel with an oxygen concentration of 0.002 to 0.008% by mass. A non-residual rolled steel was obtained.

一方比較例16は、Si濃度が本発明の範囲を超え、比較例17はMn濃度が本発明の範囲を超え、比較例18はTi濃度が本発明の範囲を超え、比較例19はZr濃度が本発明の範囲を超えたため、強脱酸状態となり弱脱酸鋼としての要件を満たさなくなった。   On the other hand, Comparative Example 16 has a Si concentration exceeding the range of the present invention, Comparative Example 17 has a Mn concentration exceeding the range of the present invention, Comparative Example 18 has a Ti concentration exceeding the range of the present invention, and Comparative Example 19 has a Zr concentration. However, since it exceeded the scope of the present invention, it became a strong deoxidation state and no longer satisfies the requirements as a weakly deoxidized steel.

未脱酸溶鋼にAl添加した場合の真空槽内Al濃度および酸素濃度の経時変化を示すグラフである。It is a graph which shows a time-dependent change of Al concentration in a vacuum chamber, and oxygen concentration at the time of adding Al to undeoxidized molten steel. 未脱酸溶鋼に酸素上吹きをしながらAl添加した場合の真空槽内Al濃度および酸素濃度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of Al concentration in a vacuum chamber, and oxygen concentration at the time of adding Al, spraying oxygen on undeoxidized molten steel. 真空槽内Al濃度挙動の酸素上吹きをした場合としなかった場合の比較を示すグラフである。It is a graph which shows the comparison with the case where it does not carry out the oxygen top blowing of the Al concentration behavior in a vacuum chamber. 介在物中Al濃度に及ぼす酸素上吹き開始からAl添加までの時間の関係を示すグラフである。It is a graph showing the time relationship between the start-blown oxygen on on the concentration of Al 2 O 3 in inclusions to Al addition. 介在物中Al濃度に及ぼす酸素上吹き中のAl添加量の関係を示すグラフである。It is a graph showing the Al addition amount of relations in the blowing oxygen onto on the concentration of Al 2 O 3 in inclusions. 介在物中Al濃度に及ぼす酸素上吹き時に2回Al添加量をしたときの添加時間間隔の関係を示すグラフである。Is a graph showing the relationship between the addition time interval when the two Al amount when blowing oxygen onto on the concentration of Al 2 O 3 in inclusions.

Claims (4)

浸漬管を介して真空槽と取鍋の間で溶鋼を環流させる真空脱ガス装置にて、昇熱操作前の酸素濃度が0.010〜0.070質量%の範囲の溶鋼に対してAl添加および真空槽内溶鋼表面に酸素ガスの吹き付けを行って酸素ガスとAlとを反応させて溶鋼を加熱する方法であって、
酸素ガスを供給する工程の間にAl添加操作を1回のみ行うこととし、
当該Al添加操作におけるAl添加量が溶鋼1tあたり0.1kg以上0.5kg以下であり、
前記Al添加操作は、酸素ガスの供給開始から少なくとも下記式(I)で表される時間τ経過した後に行われる
ことを特徴とする溶鋼の加熱方法。
τ(s)=0.3W/Q (I)
ここで、Wは溶鋼量(t)、Qは下記式(II)を満たす環流量(t/s)である。
Q=K・B1/3D4/3{ln[P1/P2]}1/3 (II)
なお、定数K=0.19、B:ガス流量(Nl/min)、D:浸漬管管径(m)、P1:ガス吹き込み点の圧力(torr)、およびP2:真空槽圧力(torr)である。
Al is added to molten steel in the range of oxygen concentration in the range of 0.010 to 0.070 mass% before the heating operation in a vacuum degassing device that circulates molten steel between the vacuum tank and ladle through a dip tube. And a method of heating the molten steel by reacting oxygen gas and Al by spraying oxygen gas on the surface of the molten steel in the vacuum chamber,
During the process of supplying oxygen gas, the Al addition operation is performed only once,
Al addition amount in the Al addition operation is 0.1 kg or more and 0.5 kg or less per 1 ton of molten steel,
The method for heating molten steel, wherein the Al addition operation is performed at least after a time τ represented by the following formula (I) has elapsed from the start of supply of oxygen gas.
τ (s) = 0.3W / Q (I)
Here, W is the molten steel amount (t), and Q is the ring flow rate (t / s) that satisfies the following formula (II).
Q = K ・ B 1/3 D 4/3 {ln [P1 / P2]} 1/3 (II)
Here, constant K = 0.19, B: gas flow rate (Nl / min), D: dip tube diameter (m), P1: pressure of gas injection point (torr), and P2: vacuum chamber pressure (torr).
浸漬管を介して真空槽と取鍋の間で溶鋼を環流させる真空脱ガス装置にて、昇熱操作前の酸素濃度が0.010〜0.070質量%の範囲の溶鋼に対してAl添加および真空槽内溶鋼表面に酸素ガスの吹き付けを行って酸素ガスとAlとを反応させて溶鋼を加熱する方法であって、
酸素ガスを供給する工程の間にAl添加操作を複数回行うこととし、
当該Al添加操作における各回のAl添加量が溶鋼1tあたり0.1kg以上0.5kg以下であり、
前記Al添加操作の第1回目は酸素ガスの供給開始から少なくとも下記式(I)で表される時間τ経過した後に行われ、第2回目以降は直前の添加からの時間間隔を前記時間τ以上とする
ことを特徴とする溶鋼の加熱方法。
τ(s)=0.3W/Q (I)
ここで、Wは溶鋼量(t)、Qは下記式(II)を満たす環流量(t/s)である。
Q=K・B1/3D4/3{ln[P1/P2]}1/3 (II)
なお、定数K=0.19、B:ガス流量(Nl/min)、D:浸漬管管径(m)、P1:ガス吹き込み点の圧力(torr)、およびP2:真空槽圧力(torr)である。
Al is added to molten steel in the range of oxygen concentration in the range of 0.010 to 0.070 mass% before the heating operation in a vacuum degassing device that circulates molten steel between the vacuum tank and ladle through a dip tube. And a method of heating the molten steel by reacting oxygen gas and Al by spraying oxygen gas on the surface of the molten steel in the vacuum chamber,
During the process of supplying oxygen gas, the Al addition operation is performed a plurality of times,
The amount of Al added each time in the Al addition operation is 0.1 kg or more and 0.5 kg or less per 1 ton of molten steel,
The first Al addition operation is performed after at least the time τ represented by the following formula (I) has elapsed from the start of the supply of oxygen gas, and the second and subsequent times have a time interval from the previous addition equal to or greater than the time τ. A method for heating molten steel, characterized by:
τ (s) = 0.3W / Q (I)
Here, W is the molten steel amount (t), and Q is the ring flow rate (t / s) that satisfies the following formula (II).
Q = K ・ B 1/3 D 4/3 {ln [P1 / P2]} 1/3 (II)
Here, constant K = 0.19, B: gas flow rate (Nl / min), D: dip tube diameter (m), P1: pressure of gas injection point (torr), and P2: vacuum chamber pressure (torr).
請求項1または請求項2に記載される溶鋼の加熱方法を用いることを特徴とする、
sol.Al≦0.003質量%、かつ、O:0.002〜0.008質量%、Si:0.01〜0.05質量%、Mn:0.10〜2.0質量%を基本成分として含有し、
さらに、Ti≦0.05質量%、Nb≦0.20質量%およびZr≦0.0030質量%からなる群から選ばれる一種または二種以上を含有するとともに、Ti≧0.01質量%、Nb≧0.02質量%およびZr≧0.0001質量%の少なくとも一条件を満たす化学組成を備える圧延鋼材の製造方法。
The method for heating molten steel according to claim 1 or claim 2 is used.
sol. Al ≦ 0.003% by mass, O: 0.002 to 0.008% by mass, Si: 0.01 to 0.05% by mass, Mn: 0.10 to 2.0% by mass as basic components And
Furthermore, it contains one or more selected from the group consisting of Ti ≦ 0.05 mass%, Nb ≦ 0.20 mass%, and Zr ≦ 0.0030 mass%, and Ti ≧ 0.01 mass%, Nb A method for producing a rolled steel material having a chemical composition satisfying at least one condition of ≧ 0.02 mass% and Zr ≧ 0.0001 mass%.
請求項1から請求項3のいずれかに記載される方法を用いて溶鋼の加熱を行い、sol.Al≦0.003質量%、かつ、O:0.002〜0.008質量%、Si:0.01〜0.05質量%、Mn:0.10〜2.0質量%を基本成分として含有し、介在物中のAl含有率が50%以下であることを特徴とする、圧延鋼材の製造方法。 The molten steel is heated using the method according to any one of claims 1 to 3, and sol. Al ≦ 0.003% by mass, O: 0.002 to 0.008% by mass, Si: 0.01 to 0.05% by mass, Mn: 0.10 to 2.0% by mass as basic components and, wherein the Al 2 O 3 content in the inclusions is 50% or less, the production method of the rolled steel.
JP2007259851A 2007-10-03 2007-10-03 Method for heating molten steel and method for producing rolled steel Active JP5131827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259851A JP5131827B2 (en) 2007-10-03 2007-10-03 Method for heating molten steel and method for producing rolled steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259851A JP5131827B2 (en) 2007-10-03 2007-10-03 Method for heating molten steel and method for producing rolled steel

Publications (2)

Publication Number Publication Date
JP2009084672A true JP2009084672A (en) 2009-04-23
JP5131827B2 JP5131827B2 (en) 2013-01-30

Family

ID=40658471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259851A Active JP5131827B2 (en) 2007-10-03 2007-10-03 Method for heating molten steel and method for producing rolled steel

Country Status (1)

Country Link
JP (1) JP5131827B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216927A (en) * 2012-04-05 2013-10-24 Nippon Steel & Sumitomo Metal Corp Method for producing high purity steel material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102592447B (en) * 2011-12-20 2014-01-29 浙江工业大学 Method for judging road traffic state of regional road network based on fuzzy c means (FCM)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381417A (en) * 1976-12-28 1978-07-18 Nippon Steel Corp Vacuum degassing method for molten steel
JPH05171250A (en) * 1991-07-01 1993-07-09 Kobe Steel Ltd Operation of rh degassing
JPH07138633A (en) * 1993-11-15 1995-05-30 Kawasaki Steel Corp Production of extra-low carbon steel by vacuum degassing
JPH0881712A (en) * 1994-09-13 1996-03-26 Sumitomo Metal Ind Ltd Vacuum-degassing method of molten steel
JPH09235612A (en) * 1996-02-28 1997-09-09 Sumitomo Metal Ind Ltd Method for refining molten steel
JP2000001748A (en) * 1998-06-18 2000-01-07 Kawasaki Steel Corp Steel sheet for deep drawing, excellent in surface characteristic and stretch-flange formability, and its manufacture
JP2000017324A (en) * 1998-07-06 2000-01-18 Nippon Steel Corp Method for refining molten steel
JP2001089828A (en) * 1998-10-08 2001-04-03 Kawasaki Steel Corp Steel sheet for can, good in surface property and suitable for three piece can

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381417A (en) * 1976-12-28 1978-07-18 Nippon Steel Corp Vacuum degassing method for molten steel
JPH05171250A (en) * 1991-07-01 1993-07-09 Kobe Steel Ltd Operation of rh degassing
JPH07138633A (en) * 1993-11-15 1995-05-30 Kawasaki Steel Corp Production of extra-low carbon steel by vacuum degassing
JPH0881712A (en) * 1994-09-13 1996-03-26 Sumitomo Metal Ind Ltd Vacuum-degassing method of molten steel
JPH09235612A (en) * 1996-02-28 1997-09-09 Sumitomo Metal Ind Ltd Method for refining molten steel
JP2000001748A (en) * 1998-06-18 2000-01-07 Kawasaki Steel Corp Steel sheet for deep drawing, excellent in surface characteristic and stretch-flange formability, and its manufacture
JP2000017324A (en) * 1998-07-06 2000-01-18 Nippon Steel Corp Method for refining molten steel
JP2001089828A (en) * 1998-10-08 2001-04-03 Kawasaki Steel Corp Steel sheet for can, good in surface property and suitable for three piece can

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216927A (en) * 2012-04-05 2013-10-24 Nippon Steel & Sumitomo Metal Corp Method for producing high purity steel material

Also Published As

Publication number Publication date
JP5131827B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5262075B2 (en) Method for producing steel for pipes with excellent sour resistance
KR101055899B1 (en) Ultra Low Sulfur Low Nitrogen High Cleanness Solvent Method
JP2011208170A (en) Method of producing manganese-containing low carbon steel
JP5904237B2 (en) Melting method of high nitrogen steel
JP5428447B2 (en) Method for refining molten steel in RH vacuum degassing equipment
TWI593803B (en) Melting method of high cleanness steel
JP5063966B2 (en) Manufacturing method of molten steel
JP5131827B2 (en) Method for heating molten steel and method for producing rolled steel
JP5509876B2 (en) Melting method of low carbon high manganese steel
JPH10212514A (en) Production of high clean extra-low sulfur steel excellent in hydrogen induced cracking resistance
JP3627755B2 (en) Method for producing high cleanliness ultra low carbon steel with extremely low S content
JP4844552B2 (en) Melting method of low carbon high manganese steel
JP6604226B2 (en) Melting method of low carbon steel
JPWO2018216660A1 (en) Method of melting high manganese steel
WO2007116939A1 (en) Method of smelting highly clean steel with extremely low sulfur content
JP4085898B2 (en) Melting method of low carbon high manganese steel
JP2013167009A (en) Method for producing steel material having high cleanliness
JPH10298631A (en) Method for melting clean steel
JP2897639B2 (en) Refining method for extremely low sulfur steel
JPH11140530A (en) Production of ultra-low nitrogen stainless steel
JP2001172715A (en) Method of manufacturing molten ultra-low carbon stainless steel
JP3282530B2 (en) Method for producing high cleanliness low Si steel
JP2010196114A (en) Method for producing bearing steel
JPH11158536A (en) Method for melting extra-low carbon steel excellent in cleanliness
JPH0941028A (en) Production of high purity ultra-low carbon steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5131827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350