JP2014028998A - Cold rolled steel sheet, electrogalvanized cold rolled steel sheet, hot-dip galvanized cold rolled steel sheet and galvannealed cold rolled steel sheet having excellent deep drawability, and method of manufacturing the same - Google Patents

Cold rolled steel sheet, electrogalvanized cold rolled steel sheet, hot-dip galvanized cold rolled steel sheet and galvannealed cold rolled steel sheet having excellent deep drawability, and method of manufacturing the same Download PDF

Info

Publication number
JP2014028998A
JP2014028998A JP2012170317A JP2012170317A JP2014028998A JP 2014028998 A JP2014028998 A JP 2014028998A JP 2012170317 A JP2012170317 A JP 2012170317A JP 2012170317 A JP2012170317 A JP 2012170317A JP 2014028998 A JP2014028998 A JP 2014028998A
Authority
JP
Japan
Prior art keywords
steel sheet
rolled steel
cold
rolling
deep drawability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012170317A
Other languages
Japanese (ja)
Other versions
JP5978838B2 (en
Inventor
Natsuko Sugiura
夏子 杉浦
Shigeru Yonemura
繁 米村
Naoki Maruyama
直紀 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012170317A priority Critical patent/JP5978838B2/en
Publication of JP2014028998A publication Critical patent/JP2014028998A/en
Application granted granted Critical
Publication of JP5978838B2 publication Critical patent/JP5978838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cold rolled steel sheet, an electrogalvanized cold rolled steel sheet, a hot-dip galvanized cold rolled steel sheet and a galvannealed cold rolled steel sheet having excellent deep drawability, and a method for manufacturing them.SOLUTION: A cold rolled steel sheet contains, in mass%, C:0.0005-0.0045%, Si:1.0% or less, Mn:0.10-1.6%, P:0.01-0.15%, S:0.010% or less, Al:0.10% or less, N:0.006% or less, Ti:0.002-0.150% and B:0.0002-0.0010% so as to satisfy the formula: {0.2<(Mn(mass%)-Mn*(mass%))/(B(ppm)-B*(ppm))≤0.5}. In a 1/4 thick position in the cold rolled steel sheet, a random intensity ratio (A) of a {332}<110> orientation is greater than 3.0, both a random intensity ratio (B) of a {557}<9 16 5> orientation and a random intensity ratio (C) of a {111}<112> orientation are 7 or more, and they satisfy the formula: {2.0≤(B)/(A)<5.0}.

Description

本発明は、深絞り性に優れた冷延鋼鈑、電気亜鉛系めっき冷延鋼板、溶融亜鉛めっき冷延鋼板、合金化溶融亜鉛めっき冷延鋼板、及び、それらの製造方法に関するものである。   The present invention relates to a cold-rolled steel sheet excellent in deep drawability, an electrogalvanized cold-rolled steel sheet, a hot-dip galvanized cold-rolled steel sheet, an alloyed hot-dip galvanized cold-rolled steel sheet, and a method for producing them.

自動車分野においては、燃費改善の観点から車体軽量化のニーズが高まっており、衝突安全性確保の観点から、各種高強度鋼板が自動車部材に適用されるようになっている。また、近年は、ドア、フード、フェンダー等のパネル用内板、外板にも高強度鋼板が提供されつつある。このような、外板やパネル部品等には、高い加工性、特に深絞り性が要求されており、従来より、加工性の良好な高強度鋼板に関して多くの技術が開示されている。これらのパネル用高強度鋼板等に関する技術の多くは、NbやTiを添加した極低炭素鋼をMnやPで固溶強化した340〜440MPa級IFハイテンであるが、IF軟鋼と比較して深絞り性の指標であるr値が低く、特にr値の異方性が大きい。そのため、異方性の指標であるΔrを小さくするための技術も多く開示されている。   In the automobile field, there is an increasing need for weight reduction from the viewpoint of improving fuel efficiency, and various high-strength steel sheets are applied to automobile members from the viewpoint of ensuring collision safety. In recent years, high-strength steel plates are being provided for inner panels and outer panels for panels such as doors, hoods, and fenders. Such outer plates, panel parts, and the like are required to have high workability, particularly deep drawability. Conventionally, many techniques have been disclosed regarding high-strength steel sheets having good workability. Many of these technologies related to high-strength steel sheets for panels, etc. are 340 to 440 MPa class IF high strength obtained by solid solution strengthening of ultra-low carbon steel added with Nb and Ti with Mn and P, but they are deeper than IF mild steel. The r value that is an index of the drawability is low, and the anisotropy of the r value is particularly large. Therefore, many techniques for reducing Δr which is an index of anisotropy are also disclosed.

例えば、特許文献1は、仕上温度800〜900℃の低温熱延を行い、650℃以下の低温巻取りを行うことと、830℃以上の高温焼鈍を行うことで、二次加工性を確保しつつ、鋼板のΔrを低減する技術に関するものである。しかしながら、特許文献1に記載の技術のように、830℃以上の高い焼鈍温度を常に確保することは、生産性を著しく低下させるという問題がある。   For example, Patent Document 1 secures secondary workability by performing low temperature hot rolling at a finishing temperature of 800 to 900 ° C., performing low temperature winding at 650 ° C. or lower, and performing high temperature annealing at 830 ° C. or higher. However, the present invention relates to a technique for reducing Δr of a steel sheet. However, as in the technique described in Patent Document 1, always ensuring a high annealing temperature of 830 ° C. or more has a problem of significantly reducing productivity.

また、特許文献2は、Cr,Mo,Wの何れか1種又は2種以上を0.05%添加することで、Mn添加による鋼板のr値の劣化を抑制するものである。また、特許文献2では、MnとBの複合添加による相互作用が変態挙動に及ぼす影響ついて言及されている。しかしながら、特許文献2に記載の技術では、B量と巻取温度から決定される冷延率の範囲での冷延を行う必要があり、製造上の制約が大きい。   Patent Document 2 suppresses the deterioration of the r value of the steel sheet due to the addition of Mn by adding 0.05% of any one or more of Cr, Mo, and W. Further, Patent Document 2 mentions the influence of the interaction due to the combined addition of Mn and B on the transformation behavior. However, in the technique described in Patent Document 2, it is necessary to perform cold rolling within the range of the cold rolling rate determined from the amount of B and the coiling temperature, and there are large manufacturing restrictions.

また、特許文献3は、低温熱延・高温巻取を行うことによって、高い平均r値と低Δrを有する鋼板を提供する技術である。しかしながら、特許文献3に記載の技術のように、860℃以下の低温で熱延を行い、その後、700〜800℃で巻き取ることは、現行設備への負荷が極めて高い。   Patent Document 3 is a technique for providing a steel sheet having a high average r value and a low Δr by performing low temperature hot rolling and high temperature winding. However, as in the technique described in Patent Document 3, performing hot rolling at a low temperature of 860 ° C. or lower and then winding at 700 to 800 ° C. has a very high load on the current equipment.

また、特許文献4は、フェライト域熱延を施すことで鋼板のr値を高める技術に関するものである。しかしながら、特許文献4においては、平均r値だけが評価されており、異方性に関する記述はない。   Moreover, patent document 4 is related with the technique which raises r value of a steel plate by giving a ferrite region hot rolling. However, in Patent Document 4, only the average r value is evaluated, and there is no description regarding anisotropy.

また、特許文献5は、Ti−Mg−O系の酸化物のサイズと密度を規定することで、鋼板のr値の面内異方性を小さくする技術である。この技術は、r値の異方性を大きくする{110}<001>と{100}<110>の核生成及び成長を、酸化物で阻害することでr値を高め、Δrを低減する技術である。しかしながら、特許文献5においては、その他のr値を高める方位の制御に関する記述はなく、また、個々の方向のr値の開示もない。   Patent Document 5 is a technique for reducing the in-plane anisotropy of the r value of a steel sheet by defining the size and density of a Ti—Mg—O-based oxide. This technology increases the r value and inhibits Δr by inhibiting the nucleation and growth of {110} <001> and {100} <110>, which increase the anisotropy of the r value, with an oxide. It is. However, in Patent Document 5, there is no description regarding the control of the other direction for increasing the r value, and there is no disclosure of the r value in each direction.

以上説明したように、従来の技術の多くは、異方性の制御の指標としてΔrを用いている。しかしながら、Δrは、圧延方向と圧延直角方向のr値の平均値と45°方向のr値の差であるために、例えば、圧延方向のr値が低くても圧延直角方向のr値が高ければΔrは大きくならないケースがある。また、実際のプレス成形を考えると、r値が低い方向が一つでもあると、その方向から割れやしわが生じることから、Δrだけではなく、各方向のr値の絶対値を上げることが重要である。   As described above, many conventional techniques use Δr as an index for controlling anisotropy. However, since Δr is the difference between the average value of r values in the rolling direction and the perpendicular direction of rolling and the r value in the 45 ° direction, the r value in the perpendicular direction of rolling can be increased even if the r value in the rolling direction is low. In some cases, Δr does not increase. Considering actual press forming, if there is even one direction with a low r value, cracks and wrinkles will occur from that direction, so that not only Δr but also the absolute value of the r value in each direction can be increased. is important.

特開平5―247540号公報JP-A-5-247540 特開平10−270768号公報JP-A-10-270768 特開2005−15882号公報JP 2005-15882 A 特開平6−2069号公報JP-A-6-2069 特開平11−323476号公報JP-A-11-323476

本発明は上記問題に鑑みてなされたものであり、圧延方向、圧延直角方向、及び45°方向のr値が、何れも1.4以上で、かつ、平均r値が1.6以上、Δrが0.2以下で、r値の面内異方性が小さく、深絞り性に優れた冷延鋼鈑、電気亜鉛系めっき冷延鋼板、溶融亜鉛めっき冷延鋼板、合金化溶融亜鉛めっき冷延鋼板、及び、それらの製造方法を提供することを目的とするものである。   The present invention has been made in view of the above problems, and the r values in the rolling direction, the direction perpendicular to the rolling direction, and the 45 ° direction are all 1.4 or more, the average r value is 1.6 or more, Δr Is 0.2 or less, the in-plane anisotropy of the r value is small, and cold drawn steel sheet, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold steel excellent in deep drawability An object of the present invention is to provide a rolled steel sheet and a manufacturing method thereof.

本発明者らは、上記問題を解決するため、鋭意研究を行った。この結果、Cの添加量を低減し、さらに、Nb及びTiを添加することで固溶C量を極力低減した鋼に、またさらに、Mn,P,Bを適正な範囲で添加し、熱間圧延条件を最適化させることにより、面内異方性を低減できることを知見した。すなわち、上記条件を採用することにより、その後の冷間圧延及び焼鈍中に、γファイバー方位の一つである{111}<112>を発達させるとともに、45°及び圧延直角方向のr値が高いが圧延方向のr値が低い{557}<9 16 5>方位と、圧延方向のr値が極めて高い{332}<110>方位をバランスさせることで、面内異方性の小さな冷延鋼板を製造できることを見出した。
本発明は、上述のように、面内異方性を低減させ、深絞り性に優れた冷延鋼鈑、電気亜鉛系めっき冷延鋼板、溶融亜鉛めっき冷延鋼板、合金化溶融亜鉛めっき冷延鋼板、及び、それらの製造方法であり、その要旨は以下のとおりである。
In order to solve the above problems, the present inventors have conducted intensive research. As a result, the amount of addition of C is reduced, and further, Nb and Ti are added to the steel in which the amount of dissolved C is reduced as much as possible. Further, Mn, P, and B are added within an appropriate range, It has been found that in-plane anisotropy can be reduced by optimizing rolling conditions. That is, by adopting the above conditions, {111} <112>, which is one of the γ fiber orientations, is developed during the subsequent cold rolling and annealing, and the r value in the 45 ° and perpendicular direction of rolling is high. Has a low in-plane anisotropy by balancing the {557} <9 16 5> orientation with a low r value in the rolling direction and the {332} <110> orientation with a very high r value in the rolling direction. It was found that can be manufactured.
As described above, the present invention reduces the in-plane anisotropy and is excellent in deep drawability, such as cold-rolled steel sheet, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold steel. It is a rolled steel sheet and manufacturing methods thereof, and the gist thereof is as follows.

[1] 質量%で、C:0.0005〜0.0045%、Si:1.0%以下、Mn:0.10〜1.6%、P:0.01〜0.15%、S:0.010%以下、Al:0.10%以下、N:0.006%以下、Ti:0.002〜0.150%、B:0.0002〜0.0010%を、下記(1)式を満足するように含有し、残部が鉄及び不可避的不純物からなる鋼組成を有し、板厚1/4厚位置での{332}<110>方位のランダム強度比(A)が3.0超、{557}<9 16 5>方位のランダム強度比(B)及び{111}<112>方位のランダム強度比(C)が何れも7以上で、かつ、次式{2.0≦(B)/(A)<5.0}を満足することを特徴とする深絞り性優れた冷延鋼板。
0.2<(Mn(mass%)−Mn*(mass%))/(B(ppm)−B*(ppm))≦0.5 ・・・・・(1)
但し、上記(1)式において、
Mn*(mass%)=55S(mass%)/32
B*(ppm)=10(N(mass%)−14Ti(mass%)/48)/14×10000
であり、Mn*<0、B*<0の場合は、B*を0とする。
[1] By mass%, C: 0.0005 to 0.0045%, Si: 1.0% or less, Mn: 0.10 to 1.6%, P: 0.01 to 0.15%, S: 0.010% or less, Al: 0.10% or less, N: 0.006% or less, Ti: 0.002-0.150%, B: 0.0002-0.0010%, the following formula (1) And the balance is a steel composition consisting of iron and inevitable impurities, and the {332} <110> orientation random strength ratio (A) at a thickness of ¼ thickness is 3.0. The random intensity ratio (B) of {557} <9 16 5> orientation and the random intensity ratio (C) of {111} <112> orientation are both 7 or more and the following expression {2.0 ≦ ( B) / (A) A cold-rolled steel sheet excellent in deep drawability characterized by satisfying <5.0}.
0.2 <(Mn (mass%) − Mn * (mass%)) / (B (ppm) −B * (ppm)) ≦ 0.5 (1)
However, in the above equation (1),
Mn * (mass%) = 55S (mass%) / 32
B * (ppm) = 10 (N (mass%)-14Ti (mass%) / 48) / 14 × 10000
When Mn * <0 and B * <0, B * is set to 0.

[2] さらに、質量%で、Nb:0.005〜0.040%を含有することを特徴とする上記[1]に記載の深絞り性に優れた冷延鋼板。
[3] さらに、質量%で、Mo:0.005〜0.500%、Cr:0.005〜3.000%、W:0.005〜3.000%、Cu:0.005〜3.000%、Ni:0.005〜3.000%の内の1種又は2種以上を含有することを特徴とする上記[1]又は[2]に記載の深絞り性に優れた冷延鋼板。
[4] 質量%で、Ca:0.0005〜0.1000%、Rem:0.0005〜0.1000%、V:0.001〜0.100%の内の1種又は2種以上を含有することを特徴とする上記[1]〜[3]の何れか1項に記載の深絞り性に優れた冷延鋼板。
[5] 圧延方向、圧延直角方向、及び45°方向のr値が、何れも1.4以上で、かつ、平均r値が1.6以上、Δrが0.2以下であることを特徴とする上記[1]〜[4]の何れか1項に記載の深絞り性に優れた冷延鋼板。
ここで、
平均r値=(rL+2×rD+rC)/4
Δr=|(rL+rC)−2×rD)/2|
であり、
rL:圧延方向のr値
rD:45°方向のr値
rC:圧延直角方向のr値
である。
[6] 上記[1]〜[5]の何れか1項に記載の深絞り性に優れた冷延鋼鈑の表面に、さらに、電気亜鉛系めっきが施されていることを特徴とする深絞り性に優れた電気亜鉛系めっき冷延鋼板。
[7] 上記[1]〜[5]の何れか1項に記載の深絞り性に優れた冷延鋼鈑の表面に、さらに、溶融亜鉛めっきが施されていることを特徴とする深絞り性に優れた溶融亜鉛めっき冷延鋼板。
[8] 上記[1]〜[5]の何れか1項に記載の深絞り性に優れた冷延鋼鈑の表面に、さらに、合金化溶融亜鉛めっきが施されていることを特徴とする深絞り性に優れた合金化溶融亜鉛めっき冷延鋼板。
[2] The cold-rolled steel sheet having excellent deep drawability according to the above [1], further comprising Nb: 0.005 to 0.040% by mass.
[3] Furthermore, by mass%, Mo: 0.005 to 0.500%, Cr: 0.005 to 3.000%, W: 0.005 to 3.000%, Cu: 0.005 to 3. The cold-rolled steel sheet having excellent deep drawability according to the above [1] or [2], comprising 000%, Ni: one or more of 0.005 to 3.000% .
[4] Containing one or more of Ca: 0.0005 to 0.1000%, Rem: 0.0005 to 0.1000%, and V: 0.001 to 0.100% by mass% The cold-rolled steel sheet excellent in deep drawability according to any one of [1] to [3] above.
[5] The r value in the rolling direction, the direction perpendicular to the rolling direction, and the 45 ° direction are all 1.4 or more, the average r value is 1.6 or more, and Δr is 0.2 or less. The cold-rolled steel sheet excellent in deep drawability according to any one of [1] to [4] above.
here,
Average r value = (rL + 2 × rD + rC) / 4
Δr = | (rL + rC) −2 × rD) / 2 |
And
rL: r value in the rolling direction rD: r value in the 45 ° direction rC: r value in the direction perpendicular to the rolling.
[6] A depth characterized in that the surface of the cold-rolled steel sheet excellent in deep drawability according to any one of [1] to [5] is further subjected to electrozinc plating. Electro-galvanized cold-rolled steel sheet with excellent drawability.
[7] Deep drawing, wherein the surface of the cold-rolled steel sheet excellent in deep drawing property according to any one of [1] to [5] is further hot-dip galvanized. Hot-dip galvanized cold-rolled steel sheet with excellent properties.
[8] The surface of the cold-rolled steel sheet excellent in deep drawability according to any one of [1] to [5] is further subjected to alloying galvanizing. Alloyed hot-dip galvanized cold-rolled steel sheet with excellent deep drawability.

[9] 上記[1]〜[4]の何れか1項に記載の化学成分を有する鋼片を1150℃以上に加熱し、次いで、仕上圧延の開始温度を1000〜1100℃として、下記(2)式で求められる(A変態温度−40)℃以上、960℃以下の温度範囲で、下記(3)式で決定される形状比(X)が3.0〜4.2となる圧延を、少なくとも1パス以上行い、次いで、700℃までを冷速40℃/s以下で冷却した後、550〜700℃の温度範囲で巻き取り、次いで、酸洗を行った後、圧下率が50〜90%の冷間圧延を施し、さらに、室温から650℃までの平均加熱速度2〜20℃/sで、700℃以上900℃以下に加熱し、1秒以上保持する焼鈍を行うことを特徴とする深絞り性に優れた冷延鋼板の製造方法。
(℃)=937.2−476.5C+56Si−19.7Mn−16.3Cu−26.6Ni−4.9Cr+38.1Mo+136.3Ti−19.1Nb+124.8V+198.4Al+3315.0B ・・・・・(2)
X(形状比)=ld/hm ・・・・・(3)
但し、上記(2)式において、C,Si,Mn,P,Cu,Ni,Cr,Mo,Ti.Nb,V,Al,Bは、各元素の含有量[質量%]である。
また、上記(3)式において、
ld(熱延ロールと鋼鈑の接触弧長):√(L×(hin−hout)/2)、
hm:(hin+hout)/2、
であり、また、
L:ロール直径、
hin:圧延ロール入側の板厚、
hout:圧延ロール出側の板厚、
である。
[9] The steel slab having the chemical component according to any one of [1] to [4] above is heated to 1150 ° C. or higher, and then the finish rolling start temperature is 1000 to 1100 ° C. ) expressions determined (a 3 transformation temperature -40) ° C. or higher, at a temperature range of 960 ° C. or less, the rolling following (3) shape ratio determined by the formula (X) is from 3.0 to 4.2 Then, after performing at least one pass and then cooling to 700 ° C. at a cooling rate of 40 ° C./s or less, winding in a temperature range of 550 to 700 ° C., and then pickling, the rolling reduction is 50 to It is characterized in that it is subjected to 90% cold rolling, and is further heated at 700 ° C. to 900 ° C. at an average heating rate of 2 to 20 ° C./s from room temperature to 650 ° C. and held for 1 second or longer. The manufacturing method of the cold-rolled steel plate excellent in deep drawability to do.
A 3 (° C.) = 937.2-476.5C + 56Si-19.7Mn-16.3Cu-26.6Ni-4.9Cr + 38.1Mo + 136.3Ti-19.1Nb + 124.8V + 198.4Al + 3315.0B (2 )
X (shape ratio) = ld / hm (3)
However, in the above equation (2), C, Si, Mn, P, Cu, Ni, Cr, Mo, Ti. Nb, V, Al, and B are the content [% by mass] of each element.
In the above equation (3),
ld (contact arc length of hot-rolled roll and steel plate): √ (L × (hin-hout) / 2),
hm: (hin + hout) / 2,
And also
L: roll diameter,
Hin: Thickness on the rolling roll entry side,
hout: thickness of the roll exit side,
It is.

[10] 上記[6]に記載の深絞り性に優れた電気亜鉛系めっき冷延鋼板を製造する方法であって、上記[9]に記載の方法で製造した鋼板の表面に電気亜鉛系めっきを施すことを特徴とする深絞り性に優れた電気亜鉛系めっき冷延鋼板の製造方法。
[11] 上記[7]に記載の深絞り性に優れた溶融亜鉛めっき冷延鋼板を製造する方法であって、上記[9]に記載の方法で製造した鋼板の表面に溶融亜鉛めっきを施すことを特徴とする深絞り性に優れた溶融亜鉛めっき冷延鋼板の製造方法。
[12] 上記[8]に記載の深絞り性に優れた合金化溶融亜鉛めっき冷延鋼板を製造する方法であって、上記[9]に記載の方法で製造した鋼板の表面に、上記[11]に記載の方法で溶融亜鉛めっきを施した後、さらに、450〜600℃までの温度範囲で10s以上の熱処理を行うことを特徴とする深絞り性に優れた合金化溶融亜鉛めっき冷延鋼板の製造方法。
[10] A method for producing an electrogalvanized cold-rolled steel sheet having excellent deep drawability according to [6] above, wherein the surface of the steel sheet produced by the method according to [9] is electrozinc-plated The manufacturing method of the electrogalvanized cold-rolled steel plate excellent in deep drawability characterized by performing this.
[11] A method for producing a hot-dip galvanized cold-rolled steel sheet having excellent deep drawability as described in [7] above, wherein the surface of the steel sheet produced by the method as described in [9] is hot-dip galvanized. A method for producing a hot-dip galvanized cold-rolled steel sheet excellent in deep drawability.
[12] A method for producing an alloyed hot-dip galvanized cold-rolled steel sheet having excellent deep drawability according to [8] above, wherein the surface of the steel sheet produced by the method according to [9] is 11], followed by hot dip galvanizing by the method described in [11], followed by heat treatment for 10 s or more in a temperature range from 450 to 600 ° C. A method of manufacturing a steel sheet.

本発明の深絞り性に優れた冷延鋼鈑、電気亜鉛系めっき冷延鋼板、溶融亜鉛めっき冷延鋼板、合金化溶融亜鉛めっき冷延鋼板、及び、それらの製造方法によれば、上記構成により、圧延方向、圧延直角方向、及び45°方向のr値が、何れも1.4以上で、かつ、平均r値が1.6以上、Δrが0.2以下で、r値の面内異方性が小さく、深絞り性に優れた冷延鋼板、電気亜鉛系めっき冷延鋼板、溶融亜鉛めっき冷延鋼板あるいは合金化溶融亜鉛めっき冷延鋼板を得ることができる。従って、例えば、ドア、フード、フェンダー等のパネル用内板、外板等の自動車部材に本発明を適用することにより、加工性の向上の他、燃費改善や車体軽量化のメリットを十分に享受することができることから、その社会的貢献は計り知れない。   According to the cold-rolled steel sheet excellent in deep drawability of the present invention, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof, the above configuration The r value in the rolling direction, the direction perpendicular to the rolling direction, and the 45 ° direction are all 1.4 or more, the average r value is 1.6 or more, Δr is 0.2 or less, and the r value is in the plane. A cold-rolled steel sheet, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet or alloyed hot-dip galvanized cold-rolled steel sheet having small anisotropy and excellent deep drawability can be obtained. Therefore, for example, by applying the present invention to automobile members such as inner panels for panels such as doors, hoods, and fenders, and outer panels, it is possible to fully enjoy the benefits of improving fuel efficiency and reducing vehicle weight in addition to improving workability. The social contribution is immeasurable.

本発明の実施形態である深絞り性に優れた冷延鋼鈑、電気亜鉛系めっき冷延鋼板、溶融亜鉛めっき冷延鋼板、合金化溶融亜鉛めっき冷延鋼板、及び、それらの製造方法について説明する図であり、ODF(Crystallite Orientation Distribution Function;φ2=45°断面)上の各結晶方位の位置を示す図である。DESCRIPTION OF EMBODIMENTS Embodiments of the present invention describe a cold-rolled steel sheet excellent in deep drawability, an electrogalvanized cold-rolled steel sheet, a hot-dip galvanized cold-rolled steel sheet, an alloyed hot-dip galvanized cold-rolled steel sheet, and a production method thereof. FIG. 4 is a diagram showing the position of each crystal orientation on ODF (Crystallite Orientation Distribution Function; φ2 = 45 ° cross section).

以下、本発明の実施形態である深絞り性に優れた冷延鋼鈑、電気亜鉛系めっき冷延鋼板、溶融亜鉛めっき冷延鋼板、合金化溶融亜鉛めっき冷延鋼板、及び、それらの製造方法について説明する。なお、本実施形態は、本発明の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り本発明を限定するものではない。   Hereinafter, a cold-rolled steel sheet excellent in deep drawability, an electrogalvanized cold-rolled steel sheet, a hot-dip galvanized cold-rolled steel sheet, an alloyed hot-dip galvanized cold-rolled steel sheet, and a production method thereof, which are embodiments of the present invention Will be described. In addition, since this embodiment is described in detail for better understanding of the gist of the present invention, the present invention is not limited unless otherwise specified.

本発明者等は、鋼板のr値を高める方位としてよく知られているγファイバー({111}<112>〜{111}<110>方位群))、及び、それに近い方位のr値の異方性を調査し、γファイバーから少しずれた{557}<9 16 5>という方位が圧延方向のr値が低く、45°方位と圧延直角方向のr値が高い方位であるのに対し、{332}<110>方位は圧延方向のr値が極めて高い方位であることから、γファイバー方位を高めるとともに、この二つの方位をバランス良く発達させることが、r値の異方性を低減させ、かつ、平均のr値を高めるための最良の方法であることを見出した。また、この二つの方位をバランスよく発達させるためには、熱延時に適度な剪断変形を与えて{557}<9 16 5>の元となる初期方位を与えるとともに、熱延板粒径を大きくし、冷延中の{332}<110>の発達を促すことが重要であることを見出した。また、このような冷延鋼板を焼鈍する際に、Mn,B間の弱い相互作用を活用して回復を適度に抑制することによって、上述の二つの方位が再結晶しやすくなることを新たに見出したものである。   The present inventors have known γ fibers ({111} <112> to {111} <110> orientation groups)), which are well known as orientations that increase the r value of a steel sheet, and the difference in r values of orientations close thereto. Investigating the directionality, the orientation of {557} <9 16 5> slightly deviated from the γ-fiber is a low r value in the rolling direction and a high r value in the 45 ° azimuth direction and the perpendicular direction of the rolling, Since the {332} <110> orientation is an orientation in which the r value in the rolling direction is extremely high, increasing the gamma fiber orientation and developing these two orientations in a balanced manner reduces the anisotropy of the r value. And it was found to be the best way to increase the average r value. In order to develop these two orientations in a well-balanced manner, an appropriate shear deformation is given at the time of hot rolling to give an initial orientation which is the basis of {557} <9 16 5>, and the hot-rolled plate grain size is increased. Then, it was found important to promote the development of {332} <110> during cold rolling. In addition, when annealing such a cold-rolled steel sheet, the above two orientations can be easily recrystallized by utilizing the weak interaction between Mn and B to moderately suppress recovery. It is what I found.

[冷延鋼鈑]
本発明の深絞り性に優れた冷延鋼鈑は、質量%で、C:0.0005〜0.0045%、Si:1.0%以下、Mn:0.10〜1.6%、P:0.01〜0.15%、S:0.010%以下、Al:0.10%以下、N:0.006%以下、Ti:0.002〜0.150%、B:0.0002〜0.0010%を、下記(1)式を満足するように含有し、残部が鉄及び不可避的不純物からなる鋼組成を有し、板厚1/4厚位置での{332}<110>方位のランダム強度比(A)が3.0超、{557}<9 16 5>方位のランダム強度比(B)及び{111}<112>方位のランダム強度比(C)が何れも7以上で、かつ、次式{2.0≦(B)/(A)<5.0}を満足するものである。
0.2<(Mn(mass%)−Mn*(mass%))/(B(ppm)−B*(ppm))≦0.5 ・・・・・(1)
但し、上記(1)式において、
Mn*(mass%)=55S(mass%)/32
B*(ppm)=10(N(mass%)−14Ti(mass%)/48)/14×10000
であり、Mn*<0、B*<0の場合は、B*を0とする。
[Cold rolled steel sheet]
The cold-rolled steel sheet excellent in deep drawability of the present invention is mass%, C: 0.0005 to 0.0045%, Si: 1.0% or less, Mn: 0.10 to 1.6%, P : 0.01 to 0.15%, S: 0.010% or less, Al: 0.10% or less, N: 0.006% or less, Ti: 0.002 to 0.150%, B: 0.0002 ˜0.0010% is contained so as to satisfy the following formula (1), and the balance has a steel composition composed of iron and inevitable impurities, and {332} <110> at a thickness of ¼ thickness. Random intensity ratio (A) of orientation exceeds 3.0, random intensity ratio (B) of {557} <9 16 5> orientation and random intensity ratio (C) of {111} <112> orientation are both 7 or more And the following expression {2.0 ≦ (B) / (A) <5.0} is satisfied.
0.2 <(Mn (mass%) − Mn * (mass%)) / (B (ppm) −B * (ppm)) ≦ 0.5 (1)
However, in the above equation (1),
Mn * (mass%) = 55S (mass%) / 32
B * (ppm) = 10 (N (mass%)-14Ti (mass%) / 48) / 14 × 10000
When Mn * <0 and B * <0, B * is set to 0.

「鋼組成」
以下、本発明において鋼組成を限定する理由についてさらに詳しく説明する。なお、以下の説明においては、特に指定の無い限り、「%」は質量%を表すものとする。
"Steel composition"
Hereinafter, the reason for limiting the steel composition in the present invention will be described in more detail. In the following description, “%” represents mass% unless otherwise specified.

(C:炭素)0.0005〜0.0045%
Cは、熱延鋼板内に固溶状態や粗大セメンタイトとして残存すると、冷延中に粒内に剪断帯を形成する他、焼鈍時の回復・再結晶を阻害し、r値の異方性を大きくする{110}<001>方位の発達や集合組織のランダム化を招くことから、含有量を0.0045%以下とする。また、この観点からは、C量は0.004%以下に制限することが望ましく、さらに望ましくは0.0035%以下である。一方、C量を0.0005%未満にするためには、真空脱ガス処理コストが大きくなりすぎることから、Cの下限は0.0005%とする。
(C: carbon) 0.0005 to 0.0045%
When C remains in the hot-rolled steel sheet as a solid solution state or coarse cementite, it forms a shear band in the grain during cold rolling, inhibits recovery / recrystallization during annealing, and increases the anisotropy of the r value. In order to increase the {110} <001> orientation and make the texture random, the content is set to 0.0045% or less. From this point of view, the C content is preferably limited to 0.004% or less, and more preferably 0.0035% or less. On the other hand, in order to make the amount of C less than 0.0005%, the vacuum degassing process cost becomes too high, so the lower limit of C is made 0.0005%.

(Si:シリコン)1.0%以下
Siは、その下限は規定しないが、脱酸元素であることから0.01%以上含まれていることが望ましい。また、Siは、固溶強化により強度を増加させる元素であることから、用途に応じて1.0%を上限に添加する。Siを、1.0%を超えて添加することは、加工性の劣化を招くことから、この値を上限とする。また、Siの添加は、Siスケールと呼ばれる熱延中のスケール疵の原因となる他、めっきの密着性を低下させることから、0.8%以下とすることがより望ましい。また、この観点から、Siの含有量は、さらに望ましくは0.6%以下である。
(Si: silicon) 1.0% or less Although the lower limit of Si is not specified, it is desirable that Si is contained in an amount of 0.01% or more because it is a deoxidizing element. Moreover, since Si is an element that increases the strength by solid solution strengthening, 1.0% is added to the upper limit depending on the application. Since addition of Si exceeding 1.0% causes deterioration of workability, this value is set as the upper limit. Further, addition of Si causes a scale flaw during hot rolling called Si scale, and lowers the adhesion of plating, so that it is more preferably 0.8% or less. From this point of view, the Si content is more preferably 0.6% or less.

(Mn:マンガン)0.10〜1.6%
Mnは、本発明において重要な元素である。Mnは、Bと複合添加することによって冷延後の焼鈍中の回復を抑制する。このように、回復を抑制されたγファイバー方位の加工粒からは、{557}<9 16 5>が再結晶しやすく、45°方向及び圧延直角方向のr値が向上する。そのため、本発明においては、Mnは0.10%以上添加する。また、この観点からは、Mnを0.3%以上添加することが望ましい。
(Mn: Manganese) 0.10 to 1.6%
Mn is an important element in the present invention. Mn suppresses recovery during annealing after cold rolling by being combined with B. As described above, {557} <9 16 5> is easily recrystallized from the processed grains of the γ fiber orientation in which recovery is suppressed, and the r value in the 45 ° direction and the direction perpendicular to the rolling direction is improved. Therefore, in this invention, Mn is added 0.10% or more. From this point of view, it is desirable to add 0.3% or more of Mn.

一方、Mnを1.6%超添加すると、焼き入れ性が上がり、熱延板組織がベイネティックフェライト化し、冷延焼鈍後の{332}<110>方位が弱くなる。また、Bとの相互作用による焼鈍中の回復抑制効果が強すぎるため、{557}<9 16 5>方位が強くなりすぎる。そのため、本発明においては、Mnの上限は1.6%とする。また、この観点からはMnは1.3%以下とすることがより望ましく、さらに望ましくは1.0%未満である。   On the other hand, when Mn is added in excess of 1.6%, the hardenability is improved, the hot-rolled sheet structure becomes bainetic ferrite, and the {332} <110> orientation after cold rolling annealing is weakened. Further, since the effect of suppressing the recovery during annealing due to the interaction with B is too strong, the {557} <9 16 5> orientation becomes too strong. Therefore, in the present invention, the upper limit of Mn is set to 1.6%. From this viewpoint, Mn is more preferably 1.3% or less, and further preferably less than 1.0%.

(P:リン)0.01〜0.15%
Pは、その下限は限定しないが、安価に強度を向上させることが出来る元素であることから、0.01%超添加することが望ましい。また、この観点からは、Pを0.03%以上添加することがより望ましい。一方、Pを0.15%以上添加することは、二次加工割れの原因となることから、0.15%を上限とする。また、この観点からは、P量は0.1%以下にすることがより望ましく、さらに望ましくは0.07%以下である。
(P: phosphorus) 0.01-0.15%
The lower limit of P is not limited, but it is desirable to add more than 0.01% because it is an element that can improve the strength at low cost. From this viewpoint, it is more desirable to add 0.03% or more of P. On the other hand, adding 0.15% or more of P causes secondary work cracking, so 0.15% is made the upper limit. From this point of view, the P content is more preferably 0.1% or less, and further preferably 0.07% or less.

(S:硫黄)0.010%以下
Sは、MnSを形成し、加工性の劣化を招くとともに、固溶Mn量を低減させることから、0.010%を上限とする。また、この観点からは、S量は、さらに望ましくは0.008%以下とする。
(S: Sulfur) 0.010% or less S forms MnS, causes deterioration of workability, and reduces the amount of solid solution Mn, so 0.010% is made the upper limit. From this point of view, the S amount is more preferably 0.008% or less.

(Al:アルミニウム)0.10%以下
Alは、脱酸調製剤であり、下限は特に限定しないが、脱酸作用の観点からは0.010%以上とすることが好ましい。一方、Alは変態点を著しく高める元素であり、0.10%超を添加すると、γ域圧延が困難となるので、その上限を0.10%とする。
(Al: aluminum) 0.10% or less Al is a deoxidation preparation agent, and the lower limit is not particularly limited, but is preferably 0.010% or more from the viewpoint of deoxidation action. On the other hand, Al is an element that remarkably raises the transformation point. If over 0.10% is added, γ region rolling becomes difficult, so the upper limit is made 0.10%.

(N:窒素)0.006%以下
Nは、鋼中に含まれる不純物であり、下限は特に設定しないが、0.0005%未満とすると製鋼コストが高くなることから、0.0005%以上とすることが好ましい。一方、Nは高温でTiとTiNを形成し、γ相での再結晶を抑制するが、TiNの量が増えすぎると加工性が劣化することから、上限は0.006%とする。また、この観点からは、N量は0.0040%、より好ましくは0.0020%以下とする。なお、TiNのTi等量(48Ti/14)以上のNを添加すると、残存したNがBNを形成し、固溶B量が低減して焼き入れ効果や回復抑制効果が低減することから、N量は48Ti/14以下とすることがさらに望ましい。
(N: Nitrogen) 0.006% or less N is an impurity contained in the steel, and the lower limit is not particularly set. However, if it is less than 0.0005%, the steelmaking cost increases, so it is 0.0005% or more. It is preferable to do. On the other hand, N forms Ti and TiN at a high temperature and suppresses recrystallization in the γ phase. However, if the amount of TiN increases too much, the workability deteriorates, so the upper limit is made 0.006%. From this point of view, the N content is 0.0040%, more preferably 0.0020% or less. If N equal to or greater than the Ti equivalent of TiN (48Ti / 14) is added, the remaining N forms BN, and the amount of solid solution B is reduced, so that the quenching effect and the recovery suppressing effect are reduced. More preferably, the amount is 48 Ti / 14 or less.

(Ti:チタン)0.002〜0.150%
Tiは、r値の向上に寄与する重要な元素である。Tiは、γ相高温域で窒化物を形成し、熱間圧延中での再結晶を抑制する。また、巻取中にTiCとして析出することで固溶C量を低減させ、γファイバー方位の発達を促し、r値を向上させる。さらに、Tiは、高温でTiNを形成することによって、BNの析出が抑制されるため、固溶Bが確保され、Mnとの相互作用により、r値向上に好ましい集合組織の発達が促進される。この効果を得るためには、Tiを0.002%以上添加することが必要である。一方、Tiを0.150%以上添加すると、加工性が著しく劣化することから、この値を上限とする。また、この観点からは、Ti量を0.100%以下にすることが好ましく、さらに好ましくは0.060%以下である。
(Ti: titanium) 0.002 to 0.150%
Ti is an important element that contributes to the improvement of the r value. Ti forms nitrides in the γ phase high temperature region and suppresses recrystallization during hot rolling. Moreover, it precipitates as TiC during winding, reduces the amount of solute C, promotes the development of γ fiber orientation, and improves the r value. Furthermore, since Ti forms TiN at a high temperature, the precipitation of BN is suppressed, so that solid solution B is secured, and the interaction with Mn promotes the development of a texture that is favorable for improving the r value. . In order to obtain this effect, 0.002% or more of Ti needs to be added. On the other hand, if 0.150% or more of Ti is added, the workability deteriorates remarkably, so this value is made the upper limit. From this point of view, the Ti content is preferably 0.100% or less, and more preferably 0.060% or less.

(B:ボロン)0.0002〜0.0010%
Bも、Tiと同様、本発明において重要な元素である。Bは、Mnと複合添加することによって冷延後の焼鈍中の回復を適度に遅延し、最適な集合組織形成に寄与する。この観点から、Bは、0.0002%以上添加し、より望ましくは0.0003%以上添加する。一方、0.001%超のBの添加は、焼き入れ性の向上により、熱延板組織がベイネティックフェライト化し、冷延焼鈍後の{332}<113>方位が弱くなる。また、Mnとの相互作用により、回復を遅延させる効果が大きすぎるために、{557}<9 16 5>方位が発達しすぎる。このため、B量は0.001%を上限とする。また、この観点からは、B量は0.0008%以下とすることが望ましく、さらに望ましくは0.0006%以下である。
(B: Boron) 0.0002 to 0.0010%
B, like Ti, is an important element in the present invention. B is added together with Mn to moderately delay the recovery during annealing after cold rolling and contribute to the formation of an optimal texture. In this respect, B is added by 0.0002% or more, more preferably 0.0003% or more. On the other hand, addition of B exceeding 0.001% improves the hardenability, and the hot-rolled sheet structure becomes bainetic ferrite, and the {332} <113> orientation after cold-rolling annealing is weakened. Further, the effect of delaying recovery due to the interaction with Mn is too great, and the {557} <9 16 5> orientation develops too much. For this reason, the amount of B makes 0.001% an upper limit. From this point of view, the B content is preferably 0.0008% or less, and more preferably 0.0006% or less.

(Mn量とB量の関係式)
次に、Mn量とB量の関係式である下記(1)式について詳細に説明する。
本発明では、MnとBは下記(1)式で表される関係を満足する範囲で添加することとする。
0.2<(Mn(mass%)−Mn*(mass%))/(B(ppm)−B*(ppm))≦0.5 ・・・・・(1)
但し、上記(1)式において、
Mn*(mass%)=55S(mass%)/32
B*(ppm)=10(N(mass%)−14Ti(mass%)/48)/14×10000
であり、Mn*<0、B*<0の場合は、B*を0とする。
(Relation between Mn content and B content)
Next, the following formula (1), which is a relational expression between the amount of Mn and the amount of B, will be described in detail.
In the present invention, Mn and B are added within a range satisfying the relationship represented by the following formula (1).
0.2 <(Mn (mass%) − Mn * (mass%)) / (B (ppm) −B * (ppm)) ≦ 0.5 (1)
However, in the above equation (1),
Mn * (mass%) = 55S (mass%) / 32
B * (ppm) = 10 (N (mass%)-14Ti (mass%) / 48) / 14 × 10000
When Mn * <0 and B * <0, B * is set to 0.

上記(1)式は、固溶Mn量と固溶B量の比を示すが、この値が、0.2以下では、MnとBの相互作用による回復の遅延が不十分となり、{557}<9 16 5>方位の減少を招くことから、この値を下限とする。また、この観点からは、上記(1)式で表される値は0.25を下限とすることがより望ましい。一方、上記(1)式で表される値が0.5を超えても、特段の効果が得られないだけでなく、{557}<9 16 5>方位が強くなりすぎることから、この値を上限とする。また、この観点からは、上記(1)式で表される値は、より望ましくは0.45以下、さらに望ましくは0.35以下である。   The above formula (1) shows the ratio of the solid solution Mn amount to the solid solution B amount. When this value is 0.2 or less, the delay in recovery due to the interaction between Mn and B becomes insufficient, and {557} <9 16 5> Since this causes a decrease in orientation, this value is set as the lower limit. From this point of view, it is more desirable that the value represented by the above formula (1) has a lower limit of 0.25. On the other hand, even if the value represented by the above formula (1) exceeds 0.5, not only a special effect is not obtained, but also the {557} <9 16 5> orientation becomes too strong. Is the upper limit. Further, from this viewpoint, the value represented by the above formula (1) is more preferably 0.45 or less, and further preferably 0.35 or less.

(Nb:ニオブ)0.005〜0.040%
本発明においては、上記の必須元素に加え、さらに、Nbを所定範囲で添加することが、より望ましい。ここで、Nbは、熱間圧延においてγ相を加工した際の再結晶を顕著に抑制し、γ相での加工集合組織の形成を顕著に促す。また、Nbは、巻取中にNbCを形成し、固溶Cを低減することによって深絞り性の向上に寄与する。この観点から、Nbは0.005%以上添加することが望ましく、0.015%以上添加することがより望ましい。しかしながら、Nbの添加量が0.04%を超えると、焼鈍時の再結晶が抑制され、深絞り性が劣化する。このため、Nb添加量の上限は0.04%とする。また、この観点からは、Nbの添加量は0.03%以下とすることがより望ましく、さらに望ましくは0.025%以下である。
(Nb: niobium) 0.005-0.040%
In the present invention, it is more desirable to add Nb in a predetermined range in addition to the above essential elements. Here, Nb remarkably suppresses recrystallization when the γ phase is processed in hot rolling, and significantly promotes the formation of a processed texture in the γ phase. Moreover, Nb contributes to the improvement of deep drawability by forming NbC during winding and reducing the solid solution C. In this respect, Nb is preferably added in an amount of 0.005% or more, and more preferably 0.015% or more. However, if the amount of Nb added exceeds 0.04%, recrystallization during annealing is suppressed and deep drawability deteriorates. For this reason, the upper limit of Nb addition amount is 0.04%. From this point of view, the amount of Nb added is more preferably 0.03% or less, and further preferably 0.025% or less.

さらに、本発明においては、鋼特性を改善するための元素として、Mo,Cr,W,Cu,Niの内の1種又は2種以上を添加することがより望ましい。具体的には、用途に応じて、それぞれ、Moは0.005〜0.500%、Cr、W、Cu、Niは、それぞれ0.005〜3.000%の範囲で1種又は2種以上添加することが望ましい。   Furthermore, in the present invention, it is more desirable to add one or more of Mo, Cr, W, Cu, and Ni as elements for improving the steel characteristics. Specifically, depending on the application, Mo is 0.005 to 0.500%, Cr, W, Cu, and Ni are 0.005 to 3.000%, respectively, or one or more of them in a range of 0.005 to 3.000%. It is desirable to add.

(Mo:モリブデン)0.005〜0.500%
Moは、焼入性を向上させるとともに、炭化物を形成して強度を高める効果を有する元素である。そのため、Moを添加する場合は、0.005%以上添加することが望ましい。一方、Moの0.5%超での添加は、延性や溶接性を低下させる。以上の観点から、Moは、0.005%以上、0.500%以下の範囲で、必要に応じて添加することが望ましい。
(Mo: Molybdenum) 0.005-0.500%
Mo is an element that has the effect of improving hardenability and forming carbides to increase strength. Therefore, when adding Mo, adding 0.005% or more is desirable. On the other hand, addition of Mo in excess of 0.5% reduces ductility and weldability. From the above viewpoint, it is desirable to add Mo as needed in the range of 0.005% to 0.500%.

(Cr:クロム)0.005%〜3.000%
Crも、焼入性を向上させるとともに、炭化物を形成して強度を高める効果を有する元素である。そのため、Crを添加する場合は、0.005%以上添加することが望ましい。一方、Crの3.000%超での添加は、延性や溶接性を低下させる。以上の観点から、Crは、0.005%以上、3.000%以下の範囲で、必要に応じて添加することが望ましい。
(Cr: chrome) 0.005% to 3.000%
Cr is also an element that has the effect of improving hardenability and forming carbides to increase strength. Therefore, when adding Cr, it is desirable to add 0.005% or more. On the other hand, addition of Cr in excess of 3.000% reduces ductility and weldability. From the above viewpoint, Cr is desirably added as necessary in the range of 0.005% to 3.000%.

(W:タングステン)0.005%〜3.000%
Wも、焼入性を向上させるとともに、炭化物を形成して強度を高める効果を有する元素である。そのため、Wを添加する場合は、0.005%以上添加することが望ましい。一方、Wの3.000%超での添加は、延性や溶接性を低下させる。以上の観点から、Wは、0.005%以上、3.000%以下の範囲で、必要に応じて添加することが望ましい。
(W: Tungsten) 0.005% to 3.000%
W is an element that has the effect of improving hardenability and forming carbides to increase strength. Therefore, when adding W, it is desirable to add 0.005% or more. On the other hand, addition of more than 3.000% of W decreases ductility and weldability. From the above viewpoint, W is preferably added as necessary in the range of 0.005% to 3.000%.

(Cu:銅)0.005%〜3.000%
Cuは、鋼板強度を上げるとともに、耐食性やスケールの剥離性を向上させる元素である。そのため、Cuを添加する場合は、0.005%以上添加することが望ましい。一方、Cuの3.000%超での添加は表面疵の原因となるため、0.005%以上、3.000%以下の範囲で必要に応じて添加することが望ましい。
(Cu: Copper) 0.005% to 3.000%
Cu is an element that increases the strength of the steel sheet and improves the corrosion resistance and the peelability of the scale. Therefore, when adding Cu, adding 0.005% or more is desirable. On the other hand, addition of Cu in excess of 3.000% causes surface defects. Therefore, it is desirable to add Cu within a range of 0.005% to 3.000% as necessary.

(Ni:ニッケル)0.005%〜3.000%
Niは、鋼板強度を上げるとともに、靭性を向上させる元素である。そのため、Niを添加する場合は、0.005%以上添加することが望ましい。一方、Niの3.000%超の添加は延性劣化の原因となるため、0.005%以上、3.000%以下の範囲で必要に応じて添加することが望ましい。
(Ni: nickel) 0.005% to 3.000%
Ni is an element that increases the steel sheet strength and improves toughness. Therefore, when adding Ni, it is desirable to add 0.005% or more. On the other hand, since addition of Ni exceeding 3.000% causes ductile deterioration, it is desirable to add as necessary within a range of 0.005% to 3.000%.

さらに、本発明においては、強度を高めたり、鋼板の材質を改善したりする効果を得るための元素として、さらに、Ca、REM(希土類元素)、V内の1種または2種以上を添加することが好ましい。   Further, in the present invention, Ca, REM (rare earth element), or one or more of V are added as an element for obtaining an effect of increasing the strength or improving the material of the steel sheet. It is preferable.

Ca及びREMの添加量が0.0005%未満、Vの添加量が0.001%未満では、上記の十分な効果が得られないことがある。一方、Ca及びREMの添加量が0.1000%超、Vの添加量が0.100%超になるように添加すると、延性を損なうことがある。従って、Ca、REM、Vを添加する場合には、それぞれ、Ca:0.0005〜0.1000%、REM:0.0005〜0.1000%、V:0.001〜0.100%の範囲で添加することが好ましい。  When the addition amount of Ca and REM is less than 0.0005% and the addition amount of V is less than 0.001%, the above-described sufficient effect may not be obtained. On the other hand, if Ca and REM are added so that the addition amount of Ca and REM exceeds 0.1000% and the addition amount of V exceeds 0.100%, ductility may be impaired. Therefore, when adding Ca, REM, and V, the ranges of Ca: 0.0005 to 0.1000%, REM: 0.0005 to 0.1000%, and V: 0.001 to 0.100%, respectively. It is preferable to add at.

また、本発明の鋼は、以上の元素の他にも、さらに、鋼特性を改善させるための元素を含んでいても良く、また、残部として、鉄を含むとともに、Sn、Asなどの不可避的に混入する元素(不可避的不純物)も含んでいても良い。   In addition to the above elements, the steel of the present invention may further contain an element for improving the steel characteristics, and the balance contains iron and inevitable Sn, As and the like. It may also contain elements (inevitable impurities) mixed in.

「結晶方位」
次に、本発明の冷延鋼板において結晶方位を限定する理由について説明する。
本発明の冷延鋼板は、板厚1/4厚位置での{332}<110>方位のランダム強度比(A)が3.0超、{557}<9 16 5>方位のランダム強度比(B)及び{111}<112>方位のランダム強度比(C)が何れも7以上で、かつ、次式{2.0≦(B)/(A)<5.0}を満足するものとして規定されている。
"Crystal orientation"
Next, the reason for limiting the crystal orientation in the cold-rolled steel sheet of the present invention will be described.
The cold-rolled steel sheet of the present invention has a {332} <110> orientation random strength ratio (A) of more than 3.0 and {557} <9 16 5> orientation random strength ratio at the 1/4 thickness position. Both (B) and {111} <112> orientation random intensity ratio (C) is 7 or more and satisfies the following formula {2.0 ≦ (B) / (A) <5.0} It is prescribed as

図1に、本発明の冷延鋼板の結晶方位が表示されるφ2=45°断面のODF(Crystallite Orientation Distribution Function)を示す。ここで、結晶の方位は、通常、板面に垂直な方位を[hkl]又は{hkl}、圧延方向に平行な方位を(uvw)又は<uvw>で表示する。{hkl}、<uvw>は、等価な面の総称であり、[hkl]、(uvw)は、個々の結晶面を指す。すなわち、本発明においては、b.c.c.構造を対象としているため、例えば、(111)、(−111)、(1−11)、(11−1)、(−1−11)、(−11−1)、(1−1−1)、(−1−1−1)面は等価であり、区別がつかない。このような場合、これらの方位を総称して{111}と称する。   FIG. 1 shows an ODF (Crystallite Orientation Distribution Function) having a φ2 = 45 ° cross section in which the crystal orientation of the cold rolled steel sheet of the present invention is displayed. Here, as for the crystal orientation, the orientation perpendicular to the plate surface is usually represented by [hkl] or {hkl}, and the orientation parallel to the rolling direction is represented by (uvw) or <uvw>. {Hkl} and <uvw> are generic names of equivalent planes, and [hkl] and (uvw) indicate individual crystal planes. That is, in the present invention, b. c. c. Since the structure is targeted, for example, (111), (-111), (1-11), (11-1), (-1-11), (-11-1), (1-1-1) ), (-1-1-1) planes are equivalent and cannot be distinguished. In such a case, these orientations are collectively referred to as {111}.

なお、ODFは、対称性の低い結晶構造の方位表示にも用いられるため、一般的には、φ1=0〜360°、Φ=0〜180°、φ2=0〜360°で表現され、個々の方位が[hkl](uvw)で表示される。しかしながら、本発明では、対称性の高い体心立方晶を対象としているため、Φとφ2については0〜90°の範囲で表現される。また、φ1は、計算を行う際に変形による対称性を考慮するか否かによって、その範囲が変わるが、本発明においては、対称性を考慮し、φ1=0〜90°で表記する、すなわち、本発明では、φ1=0〜360°での同一方位の平均値を、0〜90°のODF上に表記する方式を選択する。この場合は、[hkl](uvw)と{hkl}<uvw>は同義である。従って、例えば、図1に示した、φ2=45°断面におけるODFの(110)[1−11]のランダム強度比は、{110}<111>方位のランダム強度比である。   Note that ODF is also used to display the orientation of a crystal structure with low symmetry, and is generally expressed as φ1 = 0 to 360 °, Φ = 0 to 180 °, and φ2 = 0 to 360 °. Is displayed in [hkl] (uvw). However, since the present invention is intended for highly symmetrical body-centered cubic crystals, Φ and φ2 are expressed in the range of 0 to 90 °. Further, the range of φ1 varies depending on whether or not symmetry due to deformation is taken into account when performing calculation, but in the present invention, φ1 = 0 to 90 ° in consideration of symmetry, that is, In the present invention, a method of selecting an average value in the same orientation at φ1 = 0 to 360 ° on an ODF of 0 to 90 ° is selected. In this case, [hkl] (uvw) and {hkl} <uvw> are synonymous. Therefore, for example, the random intensity ratio of (110) [1-11] of the ODF in the φ2 = 45 ° section shown in FIG. 1 is the random intensity ratio of the {110} <111> orientation.

ここで、{332}<110>方位、{557}<9 16 5>方位、及び{111}<112>方位のランダム強度比は、X線回折によって測定される{110}、{100}、{211}、{310}極点図のうち、複数の極点図を基に級数展開法で計算した、3次元集合組織を表す結晶方位分布関数(ODF:Orientation Distribution Function)から求めればよい。なお、ランダム強度比とは、特定の方位への集積を持たない標準試料と供試材のX線強度を、同条件でX線回折法等によって測定し、得られた供試材のX線強度を標準試料のX線強度で除した数値である。   Here, the {332} <110> orientation, {557} <9 16 5> orientation, and {111} <112> orientation random intensity ratios are measured by X-ray diffraction {110}, {100}, What is necessary is just to obtain | require from the orientation distribution function (ODF: Orientation Distribution Function) showing the three-dimensional texture calculated by the series expansion method based on several pole figure among {211}, {310} pole figures. The random intensity ratio refers to the X-ray intensity of a standard sample that does not have accumulation in a specific orientation and the test material measured under the same conditions by the X-ray diffraction method or the like. It is a numerical value obtained by dividing the intensity by the X-ray intensity of the standard sample.

図1に示したように、本発明の冷延鋼板の結晶方位の一つである{332}<110>は、ODF上では、φ1=0°、Φ=65°、φ2=45°で表される。しかしながら、試験片加工や試料のセッティングに起因する測定誤差を生じることがあるため、{332}<110>方位のランダム強度比(A)の値は、φ1=0〜2°、Φ=63〜67°の範囲内での最大のランダム強度比とし、その下限を3.0超とする。この値が3.0以下になると、特に圧延方向のr値が低下してしまうことから、この値を上限とする。また、この観点からは、ランダム強度比(A)は3.5以上とすることがより望ましい。なお、ランダム強度比(A)の値の上限は、後述する{557}<9 16 5>方位のランダム強度比との関係を満足する限り、特に限定しない。   As shown in FIG. 1, {332} <110>, which is one of the crystal orientations of the cold-rolled steel sheet of the present invention, is represented on the ODF as φ1 = 0 °, φ = 65 °, φ2 = 45 °. Is done. However, since measurement errors due to specimen processing and sample setting may occur, the values of the random intensity ratio (A) in the {332} <110> orientation are φ1 = 0 to 2 °, φ = 63 to The maximum random intensity ratio within a range of 67 ° is set, and the lower limit is set to more than 3.0. When this value is 3.0 or less, particularly the r value in the rolling direction is lowered, so this value is the upper limit. From this viewpoint, the random intensity ratio (A) is more preferably 3.5 or more. The upper limit of the value of the random intensity ratio (A) is not particularly limited as long as the relationship with the random intensity ratio of the {557} <9 16 5> orientation described later is satisfied.

また、{557}<9 16 5>方位は、ODF上では、φ1=20°、Φ=45°、φ2=45°で表される。上述したように、本発明では、試験片加工等に起因する測定誤差を考え、{557}<9 16 5>方位のランダム強度比(B)の値は、図1中の斜線部で示したφ1=18〜22°、Φ=43〜47°の範囲内での最大ランダム強度比とし、その値の下限は7とする。この値が7未満では、r値の下限を満足することが出来ない。また、この観点からは、ランダム強度比(B)の値は9以上であることがより望ましい。なお、ランダム強度比(B)の上限は設けないが、ランダム強度比が30以上になることは、鋼板内の結晶粒の方位が全て揃っていること、すなわち単結晶になっていることを示し、ランダム強度比(A)との関係を満足できなくなることから、30未満とすることが望ましい。   Further, the {557} <9 16 5> orientation is represented by φ1 = 20 °, Φ = 45 °, and φ2 = 45 ° on the ODF. As described above, in the present invention, the measurement error due to the processing of the specimen is taken into consideration, and the value of the random intensity ratio (B) in the {557} <9 16 5> orientation is indicated by the hatched portion in FIG. The maximum random intensity ratio is within the range of φ1 = 18-22 ° and Φ = 43-47 °, and the lower limit of the value is 7. If this value is less than 7, the lower limit of the r value cannot be satisfied. From this viewpoint, the value of the random intensity ratio (B) is more preferably 9 or more. The upper limit of the random strength ratio (B) is not provided, but a random strength ratio of 30 or more indicates that all crystal grain orientations in the steel sheet are aligned, that is, a single crystal. Since the relationship with the random intensity ratio (A) cannot be satisfied, it is preferably less than 30.

また、{111}<112>方位は、ODF上では、φ1=90°、Φ=55°、φ2=45°で表される。本発明では、上述したような、試験片加工等に起因する測定誤差を考え、{111}<112>方位のランダム強度比(C)の値は、図中の斜線部で示したφ1=88〜90°、Φ=53〜57°の範囲内での最大ランダム強度比とし、その値の下限は7とする。この値が7未満では、r値の下限を満足することが出来ない。   The {111} <112> orientation is represented on the ODF as φ1 = 90 °, Φ = 55 °, and φ2 = 45 °. In the present invention, considering the measurement error due to the processing of the specimen as described above, the value of the random intensity ratio (C) in the {111} <112> orientation is φ1 = 88 indicated by the hatched portion in the figure. The maximum random intensity ratio within the range of -90 ° and Φ = 53-57 ° is set, and the lower limit of the value is 7. If this value is less than 7, the lower limit of the r value cannot be satisfied.

また、{332}<110>方位のランダム強度比(A)と{557}<9 16 5>方位のランダム強度比(B)は、次式{2.0≦(B)/(A)<5.0}を満足することとする。この値が2.0未満では、45°方向のr値が低下することから、これを下限とする。また、この観点からは、上記式で表される値が3.0以上であることがより好ましい。一方、この値が5.0超になると。圧延方向のr値が低下してしまうため、この観点からは、4.0以下とすることが望ましい。   Further, the random intensity ratio (A) of {332} <110> orientation and the random intensity ratio (B) of {557} <9 16 5> orientation are given by the following formula {2.0 ≦ (B) / (A) < 5.0}. If this value is less than 2.0, the r value in the 45 ° direction decreases, so this is the lower limit. Further, from this viewpoint, the value represented by the above formula is more preferably 3.0 or more. On the other hand, if this value exceeds 5.0. Since the r value in the rolling direction is lowered, it is desirable to set it to 4.0 or less from this viewpoint.

なお、X線回折用試料の作製は、次のようにして行う。
まず、鋼板を機械研磨や化学研磨などによって板厚方向に所定の位置まで研磨し、バフ研磨によって鏡面に仕上げた後、電解研磨や化学研磨によって歪みを除去すると同時に、1/4板厚部が測定面となるように調整する。ここで、測定面を正確に所定の板厚位置にすることは困難であるので、目標とする位置を中心として、板厚に対して3%の範囲内が測定面となるように試料を作製すればよい。また、X線回折による測定が困難な場合には、EBSP(Electron Back Scattering Pattern)法やECP(Electron Channeling Pattern)法により、統計的に十分な数の測定を行っても良い。
The X-ray diffraction sample is produced as follows.
First, the steel plate is polished to a predetermined position in the plate thickness direction by mechanical polishing or chemical polishing, and finished to a mirror surface by buff polishing, and then the distortion is removed by electrolytic polishing or chemical polishing, and at the same time, the 1/4 plate thickness part is Adjust to the measurement surface. Here, since it is difficult to accurately set the measurement surface to the predetermined plate thickness position, the sample is prepared so that the measurement surface is within a range of 3% of the plate thickness with the target position as the center. do it. When measurement by X-ray diffraction is difficult, a statistically sufficient number of measurements may be performed by an EBSP (Electron Back Scattering Pattern) method or an ECP (Electron Channeling Pattern) method.

「製造方法」
次に、本発明の深絞り性に優れた冷延鋼板の製造条件の限定理由について詳しく述べる。
本発明の冷延鋼板の製造方法は、上述した深絞り性に優れた冷延鋼板を製造する方法であり、まず、上記化学成分を有する鋼片を1150℃以上に加熱し、次いで、仕上圧延の開始温度を1000〜1100℃として、下記(2)式で求められる(A変態温度−40)℃以上、960℃以下の温度範囲で、下記(3)式で決定される形状比(X)が3.0〜4.2となる圧延を、少なくとも1パス以上行う。次いで、700℃までを冷速40℃/s以下で冷却した後、550〜700℃の温度範囲で巻き取り、次いで、酸洗を行った後、圧下率が50〜90%の冷間圧延を施す。そして、室温から650℃までの平均加熱速度2〜20℃/sで、700℃以上900℃以下に加熱し、1秒以上保持する焼鈍を行う方法である。
(℃)=937.2−476.5C+56Si−19.7Mn−16.3Cu−26.6Ni−4.9Cr+38.1Mo+136.3Ti−19.1Nb+124.8V+198.4Al+3315.0B ・・・・・(2)
X(形状比)=ld/hm ・・・・・(3)
但し、上記(2)式において、C,Si,Mn,P,Cu,Ni,Cr,Mo,Ti.Nb,V,Al,Bは、各元素の含有量[質量%]である。
また、上記(3)式において、
ld(熱延ロールと鋼鈑の接触弧長):√(L×(hin−hout)/2)、
hm:(hin+hout)/2、
であり、また、
L:ロール直径、
hin:圧延ロール入側の板厚、
hout:圧延ロール出側の板厚、
である。
なお、上記(2)式において、Cu、Ni、Cr、Mo、Nb、Vを意図的に添加しない鋼板については、これらの、含有率を0%として、上記(2)式を用いれば良い。
"Production method"
Next, the reasons for limiting the production conditions of the cold-rolled steel sheet excellent in deep drawability of the present invention will be described in detail.
The method for producing a cold-rolled steel sheet of the present invention is a method for producing the above-described cold-rolled steel sheet having excellent deep drawability. First, the steel slab having the above chemical components is heated to 1150 ° C. or higher, and then finish rolling. the starting temperature of 1000 to 1100 ° C., the following equation (2) in determined (a 3 transformation temperature -40) ° C. or higher, at a temperature range of 960 ° C. or less, the shape ratio determined by the following equation (3) (X ) At least one pass or more is rolled. Next, after cooling to 700 ° C. at a cooling rate of 40 ° C./s or less, winding in a temperature range of 550 to 700 ° C., and then pickling, followed by cold rolling with a rolling reduction of 50 to 90% Apply. And it is the method of performing the annealing which heats to 700 degreeC or more and 900 degrees C or less with the average heating rate of 2-20 degrees C / s from room temperature to 650 degreeC, and hold | maintains for 1 second or more.
A 3 (° C.) = 937.2-476.5C + 56Si-19.7Mn-16.3Cu-26.6Ni-4.9Cr + 38.1Mo + 136.3Ti-19.1Nb + 124.8V + 198.4Al + 3315.0B (2 )
X (shape ratio) = ld / hm (3)
However, in the above equation (2), C, Si, Mn, P, Cu, Ni, Cr, Mo, Ti. Nb, V, Al, and B are the content [% by mass] of each element.
In the above equation (3),
ld (contact arc length of hot-rolled roll and steel plate): √ (L × (hin-hout) / 2),
hm: (hin + hout) / 2,
And also
L: roll diameter,
Hin: Thickness on the rolling roll entry side,
hout: thickness of the roll exit side,
It is.
In the above formula (2), for the steel sheet to which Cu, Ni, Cr, Mo, Nb, and V are not intentionally added, the above formula (2) may be used with the content rate being 0%.

本発明の製造方法では、まず、鋼を常法により溶製、鋳造し、熱間圧延に供する鋼片を得る。この鋼片は、鋼塊を鍛造又は圧延したものでも良いが、生産性の観点から、連続鋳造により鋼片を製造することが好ましい。また、薄スラブキャスター等を用いて製造してもよい。   In the production method of the present invention, first, steel is melted and cast by a conventional method to obtain a steel piece to be subjected to hot rolling. Although this steel slab may be a forged or rolled steel ingot, it is preferable to manufacture the steel slab by continuous casting from the viewpoint of productivity. Moreover, you may manufacture using a thin slab caster etc.

また、通常、鋼片は鋳造後、冷却し、熱間圧延を行うために、再度、加熱する。この場合、熱間圧延を行う際の鋼片の加熱温度は1150℃以上とする。これは、鋼片の加熱温度が1150℃未満であると、NbやTiが十分に固溶せず、熱間圧延中にr値に適した集合組織の形成が阻害されるためである。また、鋼片を効率良く均一に加熱するという観点からも、加熱温度を1150℃以上とする。加熱温度の上限は規定しないが、1300℃超に加熱すると、鋼板の結晶粒径が粗大になり、加工性を損なうことがある。なお、溶製した鋼を鋳造後、直ちに熱間圧延を行う連続鋳造−直接圧延(CC−DR)のようなプロセスを採用しても良い。   Usually, the steel slab is cooled again after casting, and then heated again for hot rolling. In this case, the heating temperature of the steel slab when hot rolling is set to 1150 ° C. or higher. This is because when the heating temperature of the steel slab is less than 1150 ° C., Nb and Ti are not sufficiently dissolved, and formation of a texture suitable for the r value is hindered during hot rolling. Also, from the viewpoint of heating the steel slab efficiently and uniformly, the heating temperature is set to 1150 ° C. or higher. The upper limit of the heating temperature is not specified, but when heated to over 1300 ° C., the crystal grain size of the steel sheet becomes coarse and the workability may be impaired. A process such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting the molten steel may be employed.

本発明において、仕上圧延の開始温度は重要であり、その温度範囲は1000〜1100℃とする。仕上圧延の開始温度が1100℃超となると、仕上圧延の前段での圧延中の歪が十分蓄積されず、熱間圧延中に加工集合組織が発達しない。また、この観点からは、仕上圧延は1050℃以下で開始することがより望ましい。一方、1000℃未満で圧延を開始すると、上記(2)式で求められる(A変態温度−40)℃以上で熱間圧延を終了することが困難になるとともに、r値を劣化させる方位が発達することから、1000℃を下限とする。また、この観点からは、仕上圧延の開始温度は1020℃以上とすることがより望ましい。 In the present invention, the start temperature of finish rolling is important, and the temperature range is 1000 to 1100 ° C. If the start temperature of finish rolling exceeds 1100 ° C., distortion during rolling in the preceding stage of finish rolling is not sufficiently accumulated, and the working texture does not develop during hot rolling. From this point of view, it is more desirable that the finish rolling is started at 1050 ° C. or less. On the other hand, when rolling is started at less than 1000 ° C., it becomes difficult to finish hot rolling at (A 3 transformation temperature −40) ° C. or higher determined by the above formula (2), and there is an orientation that degrades the r value. Since it develops, the lower limit is 1000 ° C. From this point of view, it is more desirable that the finish rolling start temperature is 1020 ° C. or higher.

また、本発明の冷延鋼板の製造方法においては、(A変態温度−40)℃以上960℃以下の温度域で、上記(3)式で決定される形状比(X)が3.0〜4.2となる圧延を、少なくとも1パス以上行う。 Further, in the method for manufacturing a cold-rolled steel sheet of the present invention, with (A 3 transformation temperature -40) ° C. or higher 960 ° C. or less of the temperature range, the shape ratio determined in the above (3) (X) is 3.0 The rolling to be -4.2 is performed at least one pass.

(A変態温度−40)℃未満で圧延が行われると、r値を低下させる方位が発達することから、この温度を下限とする。一方、960℃以下の再結晶が抑制された温度域で適度なせん断変形が加えられないと、冷延再結晶焼鈍時に{557}<9 16 5>方位の核生成サイトとなる初期組織が形成されないことから、この温度を上限とする。また、この観点からは、上記圧延温度は930℃以下とすることが好ましい。 When the rolling is performed in less than (A 3 transformation temperature -40) ° C., since the orientation lowering the r value develops and the temperature and the lower limit. On the other hand, if moderate shear deformation is not applied in a temperature range where recrystallization at 960 ° C. or lower is suppressed, an initial structure that forms nucleation sites in the {557} <9 16 5> orientation is formed during cold rolling recrystallization annealing. Since this is not done, this temperature is the upper limit. From this viewpoint, the rolling temperature is preferably 930 ° C. or lower.

上記(3)式で決定される形状比が3.0未満では、十分なせん断変形が加わらないことから、この値を下限とする。一方、4.2以上の形状比で圧延を行うと、熱延板最表層に、冷延・焼鈍後にr値を低下させる方位が発達することから、この値を上限とする。なお、圧延ロールの直径Lは、室温で測定したものであり、熱延中の扁平を考慮する必要はない。また、各圧延ロールの入側の板厚hin、及び、出側の板厚houtは、放射線等を用いてその場で測定してもよいし、圧延荷重より、変形抵抗等を考慮して計算で求めても良い。   If the shape ratio determined by the above equation (3) is less than 3.0, sufficient shear deformation will not be applied, so this value is taken as the lower limit. On the other hand, when rolling is performed at a shape ratio of 4.2 or more, an orientation that lowers the r value after cold rolling / annealing develops in the outermost surface layer of the hot rolled sheet, so this value is made the upper limit. In addition, the diameter L of a rolling roll is measured at room temperature, and it is not necessary to consider the flatness during hot rolling. Moreover, the thickness hin on the entry side and the thickness hout on the exit side of each rolling roll may be measured on the spot using radiation or the like, or calculated by considering deformation resistance and the like from the rolling load. You may ask for it.

次いで、上記熱延の終了後、700℃まで40℃/s以下の冷速で冷却する。冷却時の到達温度が700℃超で、冷却速度が40℃/s超になると、焼き入れ性が上がりすぎて熱延板組織がベイネティックフェライト化し、粒径も微細化することから、冷延・焼鈍後の{332}<113>の発達が不十分となり、r値の異方性が大きくなる。一方、熱延板の冷却速度を2℃未満にコントロールすることは、製造への負荷が高く、生産性も低下させるが、格段の効果も得られないことから、この値を下限とする。   Next, after the hot rolling is finished, the steel sheet is cooled to 700 ° C. at a cooling rate of 40 ° C./s or less. When the temperature reached during cooling is over 700 ° C. and the cooling rate is over 40 ° C./s, the hardenability is too high, the hot-rolled sheet structure becomes bainetic ferrite, and the grain size becomes fine. Development of {332} <113> after rolling and annealing becomes insufficient, and the anisotropy of the r value increases. On the other hand, controlling the cooling rate of the hot-rolled sheet to less than 2 ° C. has a high load on production and decreases productivity, but a remarkable effect cannot be obtained, so this value is set as the lower limit.

上記条件による冷却の後、550〜700℃の温度範囲で巻き取る。巻取温度が550℃未満になると、TiC又はNbCが析出せず、固溶Cが残存し、r値が低下する他、熱延板組織がベイネティックフェライト化し、粒径も小さくなることから、{332}<113>方位が減少する。そのため、上記範囲を巻取温度の下限とする。一方、巻取温度を700℃超とすることは、製造上の負荷が高くなるとともに、特段の効果も得られないことから、この温度を上限とする。   After cooling under the above conditions, winding is performed in a temperature range of 550 to 700 ° C. When the coiling temperature is less than 550 ° C., TiC or NbC does not precipitate, solute C remains, the r value decreases, and the hot-rolled sheet structure becomes bainetic ferrite, resulting in a smaller particle size. , {332} <113> orientation decreases. Therefore, the above range is set as the lower limit of the coiling temperature. On the other hand, when the coiling temperature is higher than 700 ° C., the manufacturing load is increased and a special effect is not obtained.

次いで、上記のような方法で製造された熱延鋼鈑を酸洗後、50〜90%の範囲の圧下率で冷間圧延を施す。冷間圧延における圧下率を50%未満にすることは、十分な冷延集合組織が発達せず、r値が低下することから、この値を下限とする。また、この観点からは、冷間圧延における圧下率は60%以上がより望ましく、さらに望ましくは65%以上である。一方、圧下率が90%超になると、冷延機への負荷が高くなるとともに、r値の異方性を大きくする方位である{110}<001>方位や、r値の絶対値を下げる{100}<012>方位の集積度が大きくなるため、この値を上限とする。また、この観点からは、冷間圧延における圧下率は85%以下とすることがより望ましく、さらに望ましくは80%以下である。   Next, the hot-rolled steel sheet produced by the above method is pickled and then cold-rolled at a rolling reduction in the range of 50 to 90%. When the rolling reduction in cold rolling is less than 50%, a sufficient cold-rolling texture does not develop and the r value decreases, so this value is the lower limit. From this point of view, the rolling reduction in cold rolling is more preferably 60% or more, and even more preferably 65% or more. On the other hand, when the rolling reduction exceeds 90%, the load on the cold rolling machine increases, and the {110} <001> orientation, which is the orientation that increases the anisotropy of the r value, and the absolute value of the r value are lowered. Since the integration degree of {100} <012> orientation increases, this value is set as the upper limit. From this point of view, the rolling reduction in cold rolling is more preferably 85% or less, and still more preferably 80% or less.

次いで、本発明の冷延鋼板の製造方法では、焼鈍を行うが、この際、室温から650℃までの平均加熱速度は2〜20℃/sとする。この加熱速度が2℃/s未満では、低温で再結晶が起こり、{557}<9 16 5>方位が弱くなることから、この値を下限とする。また、この観点からは、加熱速度を4℃/s以上とすることがより望ましい。一方、加熱速度が20℃/sを超えると、加熱中に再結晶が開始せず、{112}<110>方位が発達するために45°方向のr値の低下を招く。また、この観点からは、加熱速度を15℃/s以下とすることがより望ましい。   Next, in the method for producing a cold-rolled steel sheet according to the present invention, annealing is performed. At this time, the average heating rate from room temperature to 650 ° C. is 2 to 20 ° C./s. If this heating rate is less than 2 ° C./s, recrystallization occurs at a low temperature and the {557} <9 16 5> orientation becomes weak, so this value is set as the lower limit. From this point of view, the heating rate is more preferably 4 ° C./s or more. On the other hand, when the heating rate exceeds 20 ° C./s, recrystallization does not start during heating, and the {112} <110> orientation develops, leading to a decrease in the r value in the 45 ° direction. From this viewpoint, it is more desirable to set the heating rate to 15 ° C./s or less.

本発明の冷延鋼板の製造方法では、上記加熱速度で650℃まで加熱した後、さらに、700℃以上900℃以下に加熱し、1秒以上行うこととする。焼鈍温度が700℃以下では、冷延時の加工組織がそのまま残存するために成形性が著しく低下するため、この温度を焼鈍の下限値とする。一方、焼鈍温度が900℃超となると、集合組織が破壊され、形状凍結性が劣化することから、これを上限とする。   In the method for producing a cold-rolled steel sheet according to the present invention, after heating to 650 ° C. at the heating rate, the heating is further performed to 700 ° C. or higher and 900 ° C. or lower for 1 second or longer. When the annealing temperature is 700 ° C. or lower, the work structure at the time of cold rolling remains as it is, so that the formability is remarkably lowered. Therefore, this temperature is set as the lower limit of annealing. On the other hand, when the annealing temperature exceeds 900 ° C., the texture is destroyed and the shape freezing property is deteriorated.

なお、本発明の冷延鋼板の製造方法においては、上記条件による焼鈍の後、インライン又はオフラインで圧下率10%以下の調質圧延を施しても良い。   In the method for producing a cold-rolled steel sheet of the present invention, after annealing under the above conditions, temper rolling with a rolling reduction of 10% or less may be performed inline or offline.

[電気亜鉛系めっき冷延鋼板、溶融亜鉛めっき冷延鋼板、合金化溶融亜鉛めっき冷延鋼板]
本発明の深絞り性に優れた電気亜鉛系めっき冷延鋼板は、上記本発明の冷延鋼鈑の表面に、さらに、電気亜鉛系めっきが施されたものである。また、本発明の深絞り性に優れた溶融亜鉛めっき冷延鋼鈑は、上記本発明の深絞り性に優れた冷延鋼鈑の表面に、さらに、溶融亜鉛めっきが施されたものである。また、本発明の深絞り性に優れた合金化溶融亜鉛めっき冷延鋼板は、上記本発明の冷延鋼鈑の表面に、さらに、合金化溶融亜鉛めっきが施されたものである。このように、本発明においては、冷延鋼鈑の表面に、用途に応じて、電気亜鉛系めっき、溶融亜鉛めっき又は合金化溶融亜鉛めっきを施してもよい。
[Electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet]
The electrogalvanized cold-rolled steel sheet excellent in deep drawability of the present invention is obtained by further electrogalvanizing the surface of the cold-rolled steel sheet of the present invention. Moreover, the hot-dip galvanized cold-rolled steel sheet excellent in deep drawability of the present invention is obtained by further hot-dip galvanizing on the surface of the cold-rolled steel sheet excellent in deep drawability of the present invention. . Moreover, the alloyed hot-dip galvanized cold-rolled steel sheet excellent in deep drawability of the present invention is obtained by further subjecting the surface of the cold-rolled steel sheet of the present invention to alloying hot-dip galvanizing. Thus, in the present invention, the surface of the cold rolled steel sheet may be subjected to electrogalvanizing, hot dip galvanizing, or alloyed hot dip galvanizing depending on the application.

本発明の電気亜鉛系めっき冷延鋼板の製造方法は、上記条件及び手順で製造した冷延鋼板の表面に、従来公知の方法で電気亜鉛系めっきを施す。また、本発明の溶融亜鉛めっき冷延鋼板(合金化溶融亜鉛めっき冷延鋼板)の製造方法は、上記条件及び手順で製造した冷延鋼板の表面に、従来公知の方法で溶融亜鉛めっきを施す。
この際、亜鉛めっきの組成としては、特に限定するものではなく、亜鉛のほか、Fe、Al、Mn、Cr、Mg、Pb、Sn、Ni等を必要に応じて添加しても構わない。
このような方法により、本発明の電気亜鉛系めっき冷延鋼板及び溶融亜鉛めっき冷延鋼板が得られる。
In the method for producing an electrogalvanized cold-rolled steel sheet according to the present invention, the surface of the cold-rolled steel sheet produced under the above conditions and procedures is subjected to electrozinc plating by a conventionally known method. Moreover, the manufacturing method of the hot-dip galvanized cold-rolled steel sheet (alloyed hot-dip galvanized cold-rolled steel sheet) of the present invention applies hot-dip galvanizing to the surface of the cold-rolled steel sheet manufactured under the above conditions and procedures by a conventionally known method. .
At this time, the composition of the galvanizing is not particularly limited, and in addition to zinc, Fe, Al, Mn, Cr, Mg, Pb, Sn, Ni, or the like may be added as necessary.
By such a method, the electrogalvanized cold-rolled steel sheet and hot-dip galvanized cold-rolled steel sheet of the present invention are obtained.

そして、本発明の合金化溶融亜鉛めっき冷延鋼板を製造する場合には、上記方法で得られた本発明の溶融亜鉛めっき冷延鋼板に対し、さらに、450〜600℃までの温度範囲で10s以上の熱処理を施すことで合金化処理を行う方法とすることができる。   And when manufacturing the galvannealed cold-rolled steel sheet of this invention, it is 10 s in the temperature range to 450-600 degreeC with respect to the hot-dip galvanized cold-rolled steel sheet of this invention obtained by the said method. It can be set as the method of performing an alloying process by performing the above heat processing.

上記の合金化処理(熱処理)は、450〜600℃の範囲内で行う必要がある。この温度が450℃未満では、合金化が十分に進行しないという問題があり、また、600℃以上では過度に合金化が進行し、めっき層が脆化するため、プレス等の加工によってめっきが剥離するなどの問題を誘発する。   The alloying treatment (heat treatment) needs to be performed within a range of 450 to 600 ° C. If this temperature is less than 450 ° C., there is a problem that alloying does not proceed sufficiently, and if it is 600 ° C. or more, alloying proceeds excessively and the plating layer becomes brittle. Trigger problems such as

また、合金化処理の時間は10s以上とする。合金化処理の時間が10s未満では、合金化が十分に進行しない。なお、合金化処理の時間の上限は特に規定しないが、通常、連続ラインに設置された熱処理設備によって行うため、3000sを超えて行うと、生産性を損なうか、又は、設備投資が必要となり、製造コストが高くなることから、これを上限とすることが好ましい。   Also, the alloying treatment time is 10 s or longer. When the alloying treatment time is less than 10 s, alloying does not proceed sufficiently. In addition, although the upper limit of the time of alloying treatment is not specified in particular, since it is usually performed by a heat treatment facility installed in a continuous line, if it exceeds 3000 s, productivity is impaired, or capital investment is required. Since manufacturing cost becomes high, it is preferable to make this into an upper limit.

なお、本発明においては、上記の合金化処理に先立ち、製造設備の構成に応じて、予め、Ac変態温度以下の焼鈍を施してもよい。合金化処理の前に行う焼鈍の温度が上記温度域以下の温度であれば、集合組織にはほとんど変化を生じさせないことから、r値の低下を抑えることが可能である。
また、本発明では、上述した調質圧延については、亜鉛めっき、合金化処理の後に行っても良い。
In the present invention, prior to the alloying treatment, annealing at an Ac 3 transformation temperature or lower may be performed in advance according to the configuration of the manufacturing equipment. If the temperature of the annealing performed before the alloying treatment is a temperature lower than the above temperature range, the texture is hardly changed, so that a decrease in the r value can be suppressed.
In the present invention, the temper rolling described above may be performed after galvanizing and alloying treatment.

以上説明したような、本発明の深絞り性に優れた冷延鋼鈑、電気亜鉛系めっき冷延鋼板、溶融亜鉛めっき冷延鋼板、合金化溶融亜鉛めっき冷延鋼板、及び、それらの製造方法によれば、上記構成により、圧延方向、圧延直角方向、及び45°方向のr値が、何れも1.4以上で、かつ、平均r値が1.6以上、Δrが0.2以下で、r値の面内異方性が小さく、深絞り性に優れた冷延鋼板、電気亜鉛系めっき冷延鋼板、溶融亜鉛めっき冷延鋼板あるいは合金化溶融亜鉛めっき冷延鋼板を得ることができる。
従って、例えば、ドア、フード、フェンダー等のパネル用内板、外板等の自動車部材に本発明を適用することにより、加工性の向上の他、燃費改善や車体軽量化のメリットを十分に享受することができることから、その社会的貢献は計り知れない。
As described above, the cold-rolled steel sheet excellent in deep drawability of the present invention, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof According to the above configuration, the r value in the rolling direction, the direction perpendicular to the rolling direction, and the 45 ° direction are all 1.4 or more, the average r value is 1.6 or more, and Δr is 0.2 or less. A cold-rolled steel sheet, an electrogalvanized cold-rolled steel sheet, a hot-dip galvanized cold-rolled steel sheet or an alloyed hot-dip galvanized cold-rolled steel sheet having a small in-plane anisotropy of r value and excellent deep drawability can be obtained. .
Therefore, for example, by applying the present invention to automobile members such as inner panels for panels such as doors, hoods, and fenders, and outer panels, it is possible to fully enjoy the benefits of improving fuel efficiency and reducing vehicle weight in addition to improving workability. The social contribution is immeasurable.

以下、本発明の深絞り性に優れた冷延鋼鈑、電気亜鉛系めっき冷延鋼板、溶融亜鉛めっき冷延鋼板、合金化溶融亜鉛めっき冷延鋼板、及び、それらの製造方法の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれるものである。   Examples of cold-rolled steel sheet, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof according to the present invention with excellent deep drawability The present invention will be described in more detail, but the present invention is not limited to the following examples, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all included in the technical scope of the present invention.

本実施例においては、まず、下記表1に示す組成を有する鋼を溶製して鋼片を製造し、この鋼片を加熱して、熱間で粗圧延を行った後、引き続いて、下記表2に示す条件で仕上圧延を行った。この仕上圧延のスタンドは全7段からなり、ロール径は650〜830mmである。また、最終パス後の仕上板厚は2.3mm〜4.5mmとした。さらに、下記表2において、SRT[℃]は鋼片の加熱温度、FT[℃]は仕上圧延の1パス目の入側温度、FT[℃]は仕上圧延の最終パス後、すなわち仕上出側の温度、冷却速度は仕上圧延終了後から700℃までの平均冷却速度、CT[℃]は巻取温度を示す。また、形状比の欄は7パス目の形状比を示す。冷延率は、熱延板の板厚と冷延終了後の板厚との差を熱延板の板厚で除した値であり、百分率として示した。加熱速度は室温から650℃までの平均加熱速度を表す。 In this example, first, steel having the composition shown in Table 1 below was melted to produce a steel slab, and this steel slab was heated and subjected to hot rough rolling, followed by the following. Finish rolling was performed under the conditions shown in Table 2. This finish rolling stand consists of seven stages, and the roll diameter is 650 to 830 mm. The finished plate thickness after the final pass was set to 2.3 mm to 4.5 mm. Furthermore, in Table 2 below, SRT [° C.] is the heating temperature of the steel slab, F 0 T [° C.] is the entrance temperature of the first pass of finish rolling, and FT [° C.] is after the final pass of finish rolling, that is, finish The outlet side temperature and cooling rate are the average cooling rate from the end of finish rolling to 700 ° C., and CT [° C.] indicates the coiling temperature. The shape ratio column shows the shape ratio of the seventh pass. The cold rolling rate is a value obtained by dividing the difference between the thickness of the hot-rolled plate and the thickness after completion of cold rolling by the thickness of the hot-rolled plate, and is expressed as a percentage. The heating rate represents an average heating rate from room temperature to 650 ° C.

Figure 2014028998
Figure 2014028998

Figure 2014028998
Figure 2014028998

なお、表1の空欄は、分析値が検出限界未満であったことを意味する。また、表1中に示す(1)式は、Mn,S,Ti,N,Bの含有量(質量%)によって計算した、下記(1)式の中辺の値であり、表1中に示す(2)式は、C,Si,Mn,Cu,Ni,Cr,Mo,Ti,Nb,Al,Bの各元素の含有量(質量%)によって計算した、次式{A変態温度(下記(2)式による)−40}℃の値である。
0.2<(Mn(mass%)−Mn*(mass%))/(B(ppm)−B*(ppm))≦0.5 ・・・・・(1)
但し、上記(1)式において、
Mn*(mass%)=55S(mass%)/32
B*(ppm)=10(N(mass%)−14Ti(mass%)/48)/14×10000
(℃)=937.2−476.5C+56Si−19.7Mn−16.3Cu−26.6Ni−4.9Cr+38.1Mo+136.3Ti−19.1Nb+124.8V+198.4Al+3315.0B ・・・・・(2)
The blank in Table 1 means that the analysis value was less than the detection limit. Moreover, the formula (1) shown in Table 1 is the value of the middle side of the following formula (1) calculated by the content (mass%) of Mn, S, Ti, N, and B. The expression (2) shown below is calculated by the content (mass%) of each element of C, Si, Mn, Cu, Ni, Cr, Mo, Ti, Nb, Al, and B. The following expression {A 3 transformation temperature ( It is a value of −40} ° C. according to the following formula (2).
0.2 <(Mn (mass%) − Mn * (mass%)) / (B (ppm) −B * (ppm)) ≦ 0.5 (1)
However, in the above equation (1),
Mn * (mass%) = 55S (mass%) / 32
B * (ppm) = 10 (N (mass%)-14Ti (mass%) / 48) / 14 × 10000
A 3 (° C.) = 937.2-476.5C + 56Si-19.7Mn-16.3Cu-26.6Ni-4.9Cr + 38.1Mo + 136.3Ti-19.1Nb + 124.8V + 198.4Al + 3315.0B (2 )

ここで、Mo,Ni,Cu,Crの含有量が不純物程度である場合、例えば、表1のMo、Ni、Cu、Crが空欄である場合には、これらの元素を「0」として上記(2)式を計算した。   Here, when the contents of Mo, Ni, Cu, and Cr are about impurities, for example, when Mo, Ni, Cu, and Cr in Table 1 are blank, these elements are set to “0” and the above ( 2) The formula was calculated.

また、得られた鋼板から圧延直角方向を長手方向として、JIS Z 2201に準拠した引張試験片を採取し、引張試験をJIS Z 2241に準拠して行い、引張強度を測定した。
また、r値は、圧延方向、45°方向、圧延直角方向を長手として、引張試験と同様にJIS Z 2201に準拠した引張試験片を採取し、歪み量15%で値を測定した。
Moreover, the tensile test piece based on JISZ2201 was extract | collected from the obtained steel plate by making the perpendicular direction of rolling into a longitudinal direction, the tensile test was done based on JISZ2241, and the tensile strength was measured.
In addition, the r value was measured by taking a tensile test piece according to JIS Z 2201 in the same manner as the tensile test, with the rolling direction, 45 ° direction, and the direction perpendicular to the rolling as the longitudinal direction, and measuring the value with a strain amount of 15%.

また、鋼板の板厚1/4位置での{332}<110>,{557}<9 16 7>、{111}<112>方位のランダム強度比は、以下のようにして測定した。まず、鋼板を機械研磨及びバフ研磨した後、さらに電解研磨して歪みを除去し、1/4板厚部が測定面となるように調整した試料を用いてX線回折を行った。なお、特定の方位への集積を持たない標準試料のX線回折も同条件で行った。
次に、X線回折によって得られた{110}、{100}、{211}、{310}極点図を基に、級数展開法でODFを得た。そして、このODFから、上記の方位のランダム強度比を決定した。
Further, the random strength ratios of {332} <110>, {557} <9 16 7>, and {111} <112> orientations at the position of the steel sheet thickness ¼ were measured as follows. First, after mechanically polishing and buffing the steel plate, the strain was further removed by electrolytic polishing, and X-ray diffraction was performed using a sample adjusted so that the ¼ plate thickness portion became the measurement surface. Note that X-ray diffraction of a standard sample having no accumulation in a specific orientation was performed under the same conditions.
Next, ODF was obtained by the series expansion method based on {110}, {100}, {211}, {310} pole figures obtained by X-ray diffraction. And the random intensity ratio of said direction was determined from this ODF.

また、これらの鋼板のうち、冷延焼鈍後に電気亜鉛系めっきを施した場合は表2中に「電気」、溶融亜鉛めっきを施した場合は、表2中に「溶融」と表記し、さらに、溶融亜鉛めっき後に、520℃で15秒保持する合金化処理を行い、合金化溶融亜鉛めっきを施した場合は、「合金」と表記した。
なお、本実施例における電気亜鉛系めっき処理としては、Zn−Niめっき(Ni=11mass%)を施した。
目付け量は、いずれも20g/mとした。
Of these steel sheets, when electrogalvanized plating is applied after cold rolling annealing, “electricity” is indicated in Table 2, and when hot dip galvanizing is applied, “melting” is indicated in Table 2. When the alloying treatment was carried out by holding at 520 ° C. for 15 seconds after the hot dip galvanizing and the hot galvanizing was applied, it was expressed as “alloy”.
In addition, as an electrogalvanizing process in a present Example, Zn-Ni plating (Ni = 11 mass%) was performed.
The basis weight was 20 g / m 2 in all cases.

本実施例における結果を下記表3に示す。なお、表3中におけるr値の欄のLは圧延方向、Dは圧延方向に対して45°方向、Cは圧延直角方向をそれぞれ意味する。   The results in this example are shown in Table 3 below. In Table 3, L in the r value column means the rolling direction, D means the 45 ° direction relative to the rolling direction, and C means the direction perpendicular to the rolling direction.

Figure 2014028998
Figure 2014028998

表3に示す結果から明らかなとおり、本発明の化学成分を有する鋼を適正な条件で製造した本発明例(表1〜3の備考欄における本発明例)の場合には、圧延方向、45°方向、圧延直角方向の何れの方向のr値も1.4以上、平均r値が1.6以上、Δrが0.2以下となっており、r値の面内異方性が小さいことが確認できる。また、これら本発明例においては、全体的にElが高く、深絞り性に優れていることが明らかである。   As is apparent from the results shown in Table 3, in the case of the present invention example (the present invention example in the remarks column of Tables 1 to 3) in which the steel having the chemical component of the present invention was produced under appropriate conditions, the rolling direction, 45 The r value in any direction of the ° direction and the direction perpendicular to the rolling is 1.4 or more, the average r value is 1.6 or more, and Δr is 0.2 or less, and the in-plane anisotropy of the r value is small. Can be confirmed. Moreover, in these examples of the present invention, it is clear that the overall El is high and the deep drawability is excellent.

一方、製造No.38〜44は、化学成分が本発明の範囲外である鋼No.P〜Vを用いた比較例である。製造No.38及びNo.41は、Siの添加量が高いか、又は、Alの添加量が高いために、(2)式の値が960℃を超えてしまった場合である。製造No.38の場合は、FTが(2)式の値よりも低くなっているためにα域熱延となり、r値を下げる{100}<012>方位が発達するとともに、ランダム強度比(A),(C)の値も低くなっていることから、圧延方向のr値が低下し、Δrも満足できない。一方、製造No.41は、(2)式の値よりも高い温度で熱延を終了しているが、960℃以下で剪断変形が加えられていないために、{557}<9 16 5>方位の発達が不十分であり、そのため、45°方向のr値が低下している。   On the other hand, production No. Nos. 38 to 44 are steel Nos. Whose chemical components are outside the scope of the present invention. It is a comparative example using PV. Production No. 38 and no. No. 41 is a case where the value of the formula (2) exceeds 960 ° C. because the addition amount of Si is high or the addition amount of Al is high. Production No. In the case of 38, since the FT is lower than the value of the expression (2), it becomes α region hot rolling, and the {100} <012> orientation is developed to reduce the r value, and the random intensity ratio (A), Since the value of (C) is also low, the r value in the rolling direction is lowered and Δr cannot be satisfied. On the other hand, production No. No. 41 finished hot rolling at a temperature higher than the value of equation (2), but no shear deformation was applied at 960 ° C. or lower, so the development of the {557} <9 16 5> orientation was not good. Therefore, the r value in the 45 ° direction is lowered.

製造No.39は、B添加量が多すぎる場合の例を示す。この場合、Mn,Bによる焼き入れ性や回復遅延効果が高すぎるために、{557}<9 16 5>方位が強くなりすぎるとともに、{332}<110>方位が弱くなるため、圧延方向のr値が低下する。
製造No.40は、C添加量が高すぎる場合である。この場合、熱延に固溶Cが残存するために、ランダム強度比(A),(B),(C)の何れの方位も発達が抑制される。
製造No.42、はMnが高すぎて、Tiが添加されていない場合の例である。この場合、固溶Cが残存するため、全体的に集合粗組織が弱くなるとともに、Mnが高すぎるために焼き入れ性が高くなりすぎ、(332)<110>方位が低減するため、r値の絶対値及びΔrともに満足できない。
製造No.43は、B量が少ない場合である。この場合、回復が抑制されないために、{557}<9 16 5>方位が弱く、45°方向のr値が低下し、Δrも満足出来ない。
製造No.44は、Ti量が多すぎる場合である。この場合、回復・再結晶が著しく抑制されるために、焼鈍後も部分的に未再結晶粒が残存するため、加工性が低下している。また、r値を劣化させる{112}<110>方位が残存し、{332}<110>が発達しないため、圧延方向のr値が劣化し、平均r値、Δr値ともに満足できない。
Production No. 39 shows an example in which the amount of B added is too large. In this case, since the hardenability and recovery delay effect by Mn and B are too high, the {557} <9 16 5> orientation becomes too strong and the {332} <110> orientation becomes weak, so The r value decreases.
Production No. 40 is the case where the amount of C added is too high. In this case, since solid solution C remains in the hot rolling, the development of any orientation of the random intensity ratios (A), (B), and (C) is suppressed.
Production No. 42 is an example when Mn is too high and Ti is not added. In this case, since the solid solution C remains, the aggregate coarse structure is weakened as a whole, the Mn is too high, the hardenability becomes too high, and the (332) <110> orientation is reduced, so the r value Neither the absolute value nor Δr is satisfactory.
Production No. 43 is a case where the amount of B is small. In this case, since recovery is not suppressed, the {557} <9 16 5> orientation is weak, the r value in the 45 ° direction is lowered, and Δr is not satisfactory.
Production No. 44 is a case where the amount of Ti is too large. In this case, since recovery and recrystallization are remarkably suppressed, unrecrystallized grains partially remain even after annealing, so that workability is degraded. In addition, since the {112} <110> orientation that degrades the r value remains and {332} <110> does not develop, the r value in the rolling direction deteriorates, and neither the average r value nor the Δr value can be satisfied.

鋼No.Cの比較例である製造No.7のように、熱延の最終パスの形状比が低すぎる場合、十分な剪断変形が導入されず、{557}<9 165>方位が弱いためにB/Aを満足できないことから、圧延方向のr値が低下している。
鋼No.Eの比較例である製造No.12のように、加熱温度が低く、十分なFTやFTが確保できない場合、α域熱延となるために{557}<9 165>方位は強くなるが、{332}<110>,{111}<112>方位が弱くなるため、圧延方向のr値が低下し、異方性が大きくなっている。
Steel No. C, which is a comparative example of C. 7, when the shape ratio of the final pass of hot rolling is too low, sufficient shear deformation is not introduced and the B / A cannot be satisfied because the {557} <9 165> orientation is weak, so the rolling direction The r value of is decreased.
Steel No. E, which is a comparative example of E. 12, when the heating temperature is low and sufficient F 0 T or FT cannot be secured, the {557} <9 165> orientation becomes strong due to α-region hot rolling, but {332} <110>, Since the {111} <112> orientation is weakened, the r value in the rolling direction is lowered and the anisotropy is increased.

鋼No.Fの比較例である製造No.15のように、焼鈍温度が高すぎる場合、γ域焼鈍となってしまうために集合組織が弱くなり、r値が低下している。
鋼No.Gの比較例である製造No.18のように、FTが高すぎる場合、{332}<110>方位が{557}<9 16 5>方位に比較して強くなりすぎるために、45°方向のr値が低下し、Δrが大きくなっている。
Steel No. F, which is a comparative example of F. As shown in FIG. 15, when the annealing temperature is too high, the γ region annealing is performed, so that the texture is weakened and the r value is lowered.
Steel No. Production No. 4 which is a comparative example of G. When F 0 T is too high as in 18, the {332} <110> orientation is too strong compared to the {557} <9 16 5> orientation, so the r value in the 45 ° direction decreases, Δr is increased.

鋼No.Hの比較例である製造No.20のように、熱延後の冷却速度が速く、冷延率が低い場合、{332}<110>方位が弱くなるとともに、{557}<9 16 5>,{111}<112>方位が弱くなるために、r値が全体的に低下するが、特に圧延方向のr値が低くなっている。
鋼No.Iの比較例である製造No.23のように、巻取温度が低すぎる場合、熱延板に固溶Cが残存するために{557}<9 16 5>、{111}<112>方位が十分に発達しないために、r値が低下している。
鋼No.Kの比較例である製造No.27のように、冷間圧延率が高くなりすぎると、({557}<9 16 5>)方位は強くなるが、{332}<110>,{111}<112>方位が弱くなるため、r値が確保出来ない結果となった。
Steel No. Production No. 1 which is a comparative example of H. When the cooling rate after hot rolling is high and the cold rolling rate is low as in 20, the {332} <110> orientation becomes weak and the {557} <9 16 5>, {111} <112> orientation Since it becomes weak, the r value decreases as a whole, but the r value in the rolling direction is particularly low.
Steel No. Production No. 1 which is a comparative example of I. 23, when the coiling temperature is too low, since the solid solution C remains in the hot-rolled sheet, the {557} <9 16 5> and {111} <112> orientations are not sufficiently developed. The value is decreasing.
Steel No. Production No. which is a comparative example of K. 27, when the cold rolling rate becomes too high, the ({557} <9 16 5>) orientation becomes strong, but the {332} <110>, {111} <112> orientation becomes weak, The r value could not be secured.

鋼No.Mの比較例である製造No.31のように、焼鈍時の加熱速度が速すぎると、{112}<110>方位が強くなり{557}<9 16 5>方位が弱くなることから、圧延方向及び圧延直角方向のr値が低下している。
鋼No.Nの比較例である製造No.34のように、焼鈍温度が低すぎると、再結晶が十分に進行せず、未再結晶が残存するために延性が低下するとともに、圧延方向と圧延直角方向のr値が劣化している。
鋼No.Oの比較例である製造No.37のように、形状比が高すぎる場合、冷延焼鈍後に{332}<110>方位が弱くなり{557}<9 16 5>方位が強くなることから、圧延方向のr値が低下している。
Steel No. Production No. which is a comparative example of M. If the heating rate at the time of annealing is too high as in 31, the {112} <110> orientation becomes strong and the {557} <9 16 5> orientation becomes weak, so the r value in the rolling direction and the direction perpendicular to the rolling direction is It is falling.
Steel No. N, which is a comparative example of N. As in 34, when the annealing temperature is too low, recrystallization does not proceed sufficiently and unrecrystallized remains, so that ductility is lowered and r values in the rolling direction and the direction perpendicular to the rolling are deteriorated.
Steel No. Production No. which is a comparative example of O. 37, when the shape ratio is too high, the {332} <110> orientation is weakened and the {557} <9 16 5> orientation is strengthened after cold rolling annealing, so that the r value in the rolling direction is reduced. Yes.

以上説明した実施例の結果より、本発明により、深絞り性に優れた冷延鋼鈑、電気亜鉛系めっき冷延鋼板、溶融亜鉛めっき冷延鋼板、合金化溶融亜鉛めっき冷延鋼板が実現可能となることが明らかである。   From the results of the examples described above, according to the present invention, it is possible to realize a cold-rolled steel sheet, an electrogalvanized cold-rolled steel sheet, a hot-dip galvanized cold-rolled steel sheet, and an alloyed hot-dip galvanized cold-rolled steel sheet excellent in deep drawability. It is clear that

本発明の深絞り性に優れた冷延鋼板は、例えば、自動車、家庭電気製品、建物等に使用される。また、本発明の深絞り性に優れた冷延鋼板は、表面処理をしない狭義の冷延鋼板と、防錆のために溶融Znめっき、合金化溶融Znめっき、電気亜鉛系めっきなどの表面処理を施した広義の冷延鋼板を含む。この表面処理には、アルミ系のめっき、各種めっき鋼板の表面への有機皮膜、無機皮膜の形成、塗装、それらを組み合わせた処理も含まれる。そして、本発明の冷延鋼板は、面内に異方性が少なく、かつ高いr値を有するため、従来の鋼板よりも複雑な形状でのプレスが可能となり、自動車の高機能化が可能になるとともに、これまで軟鋼しか適用できなかった部品に適用することで、板厚を減少させること、すなわち軽量化が可能になり、地球環境保全に寄与できることから、その社会的貢献は計り知れない。   The cold-rolled steel sheet excellent in deep drawability of the present invention is used in, for example, automobiles, home appliances, buildings and the like. In addition, the cold-rolled steel sheet excellent in deep drawability of the present invention is a cold-rolled steel sheet in a narrow sense without surface treatment, and surface treatment such as hot dip Zn plating, alloyed hot dip Zn plating, electrogalvanizing plating for rust prevention. Including cold-rolled steel sheets in a broad sense. This surface treatment includes aluminum plating, formation of an organic film on the surface of various plated steel sheets, formation of an inorganic film, painting, and a combination thereof. And since the cold-rolled steel sheet of the present invention has less in-plane anisotropy and a high r value, it is possible to press in a more complicated shape than conventional steel sheets, and to increase the functionality of automobiles. At the same time, by applying to parts that could only be applied to mild steel so far, it is possible to reduce the plate thickness, that is, to reduce the weight, and to contribute to the conservation of the global environment, so its social contribution is immeasurable.

特開平5―247540号公報JP-A-5-247540 特開2000−96183号公報(特願平10−270768)Japanese Unexamined Patent Publication No. 2000-96183 (Japanese Patent Application No. 10-270768) 特開2005−15882号公報JP 2005-15882 A 特開平6−2069号公報JP-A-6-2069 特開平11−323476号公報JP-A-11-323476

Claims (12)

質量%で、
C :0.0005〜0.0045%、
Si:1.0%以下、
Mn:0.10〜1.6%、
P :0.01〜0.15%、
S :0.010%以下、
Al:0.10%以下、
N :0.006%以下、
Ti:0.002〜0.150%、
B :0.0002〜0.0010%
を、下記(1)式を満足するように含有し、残部が鉄及び不可避的不純物からなる鋼組成を有し、
板厚1/4厚位置での{332}<110>方位のランダム強度比(A)が3.0超、{557}<9 16 5>方位のランダム強度比(B)及び{111}<112>方位のランダム強度比(C)が何れも7以上で、かつ、次式{2.0≦(B)/(A)<5.0}を満足することを特徴とする深絞り性優れた冷延鋼板。
0.2<(Mn(mass%)−Mn*(mass%))/(B(ppm)−B*(ppm))≦0.5 ・・・・・(1)
但し、上記(1)式において、
Mn*(mass%)=55S(mass%)/32
B*(ppm)=10(N(mass%)−14Ti(mass%)/48)/14×10000
であり、Mn*<0、B*<0の場合は、B*を0とする。
% By mass
C: 0.0005 to 0.0045%,
Si: 1.0% or less,
Mn: 0.10 to 1.6%
P: 0.01 to 0.15%,
S: 0.010% or less,
Al: 0.10% or less,
N: 0.006% or less,
Ti: 0.002 to 0.150%,
B: 0.0002 to 0.0010%
In order to satisfy the following formula (1), and the balance has a steel composition consisting of iron and inevitable impurities,
Random intensity ratio (A) of {332} <110> orientation at a thickness of 1/4 thickness position is greater than 3.0, random intensity ratio (B) of {557} <9 16 5> orientation and {111} <112> Orientation random intensity ratio (C) is 7 or more, and satisfies the following formula {2.0 ≦ (B) / (A) <5.0}. Cold rolled steel sheet.
0.2 <(Mn (mass%) − Mn * (mass%)) / (B (ppm) −B * (ppm)) ≦ 0.5 (1)
However, in the above equation (1),
Mn * (mass%) = 55S (mass%) / 32
B * (ppm) = 10 (N (mass%)-14Ti (mass%) / 48) / 14 × 10000
When Mn * <0 and B * <0, B * is set to 0.
さらに、質量%で、
Nb:0.005〜0.040%
を含有することを特徴とする請求項1に記載の深絞り性に優れた冷延鋼板。
Furthermore, in mass%,
Nb: 0.005 to 0.040%
The cold-rolled steel sheet having excellent deep drawability according to claim 1.
さらに、質量%で、
Mo:0.005〜0.500%、
Cr:0.005〜3.000%、
W :0.005〜3.000%、
Cu:0.005〜3.000%、
Ni:0.005〜3.000%
の内の1種又は2種以上を含有することを特徴とする請求項1又は請求項2に記載の深絞り性に優れた冷延鋼板。
Furthermore, in mass%,
Mo: 0.005 to 0.500%,
Cr: 0.005 to 3.000%
W: 0.005 to 3.000%,
Cu: 0.005 to 3.000%,
Ni: 0.005 to 3.000%
The cold-rolled steel sheet excellent in deep drawability according to claim 1 or 2, characterized by containing one or more of the above.
質量%で、
Ca:0.0005〜0.1000%、
Rem:0.0005〜0.1000%、
V :0.001〜0.100%
の内の1種又は2種以上を含有することを特徴とする請求項1〜請求項3の何れか1項に記載の深絞り性に優れた冷延鋼板。
% By mass
Ca: 0.0005 to 0.1000%,
Rem: 0.0005 to 0.1000%,
V: 0.001 to 0.100%
The cold-rolled steel sheet excellent in deep drawability according to any one of claims 1 to 3, comprising one or more of the above.
圧延方向、圧延直角方向、及び45°方向のr値が、何れも1.4以上で、かつ、平均r値が1.6以上、Δrが0.2以下であることを特徴とする請求項1〜請求項4の何れか1項に記載の深絞り性に優れた冷延鋼板。
ここで、
平均r値=(rL+2×rD+rC)/4
Δr=|(rL+rC)−2×rD)/2|
であり、
rL:圧延方向のr値
rD:45°方向のr値
rC:圧延直角方向のr値
である。
The r value in the rolling direction, the direction perpendicular to the rolling direction, and the 45 ° direction are all 1.4 or more, the average r value is 1.6 or more, and Δr is 0.2 or less. The cold-rolled steel sheet excellent in deep drawability according to any one of claims 1 to 4.
here,
Average r value = (rL + 2 × rD + rC) / 4
Δr = | (rL + rC) −2 × rD) / 2 |
And
rL: r value in the rolling direction rD: r value in the 45 ° direction rC: r value in the direction perpendicular to the rolling.
請求項1〜請求項5の何れか1項に記載の深絞り性に優れた冷延鋼鈑の表面に、さらに、電気亜鉛系めっきが施されていることを特徴とする深絞り性に優れた電気亜鉛系めっき冷延鋼板。   The surface of the cold-rolled steel sheet excellent in deep drawability according to any one of claims 1 to 5 is further excellent in deep drawability characterized in that electrogalvanizing is further applied. Electro-galvanized cold-rolled steel sheet. 請求項1〜請求項5の何れか1項に記載の深絞り性に優れた冷延鋼鈑の表面に、さらに、溶融亜鉛めっきが施されていることを特徴とする深絞り性に優れた溶融亜鉛めっき冷延鋼板。   The surface of the cold-rolled steel sheet excellent in deep drawability according to any one of claims 1 to 5 is further excellent in deep drawability characterized by being further hot-dip galvanized. Hot-dip galvanized cold-rolled steel sheet. 請求項1〜請求項5の何れか1項に記載の深絞り性に優れた冷延鋼鈑の表面に、さらに、合金化溶融亜鉛めっきが施されていることを特徴とする深絞り性に優れた合金化溶融亜鉛めっき冷延鋼板。   The surface of the cold-rolled steel sheet excellent in deep drawability according to any one of claims 1 to 5 is further subjected to alloying hot dip galvanizing, and the deep drawability is characterized. Excellent galvannealed cold-rolled steel sheet. 請求項1〜請求項4の何れか1項に記載の化学成分を有する鋼片を1150℃以上に加熱し、
次いで、仕上圧延の開始温度を1000〜1100℃として、下記(2)式で求められる(A変態温度−40)℃以上、960℃以下の温度範囲で、下記(3)式で決定される形状比(X)が3.0〜4.2となる圧延を、少なくとも1パス以上行い、
次いで、700℃までを冷速40℃/s以下で冷却した後、550〜700℃の温度範囲で巻き取り、
次いで、酸洗を行った後、圧下率が50〜90%の冷間圧延を施し、
さらに、室温から650℃までの平均加熱速度2〜20℃/sで、700℃以上900℃以下に加熱し、1秒以上保持する焼鈍を行うことを特徴とする深絞り性に優れた冷延鋼板の製造方法。
(℃)=937.2−476.5C+56Si−19.7Mn−16.3Cu−26.6Ni−4.9Cr+38.1Mo+136.3Ti−19.1Nb+124.8V+198.4Al+3315.0B ・・・・・(2)
X(形状比)=ld/hm ・・・・・(3)
但し、上記(2)式において、C,Si,Mn,P,Cu,Ni,Cr,Mo,Ti.Nb,V,Al,Bは、各元素の含有量[質量%]である。
また、上記(3)式において、
ld(熱延ロールと鋼鈑の接触弧長):√(L×(hin−hout)/2)、
hm:(hin+hout)/2、
であり、また、
L:ロール直径、
hin:圧延ロール入側の板厚、
hout:圧延ロール出側の板厚、
である。
A steel slab having the chemical component according to any one of claims 1 to 4 is heated to 1150 ° C or higher,
Next, the finish rolling start temperature is set to 1000 to 1100 ° C., and is determined by the following equation (3) in a temperature range of (A 3 transformation temperature −40) ° C. to 960 ° C. determined by the following equation (2). Rolling at a shape ratio (X) of 3.0 to 4.2 is performed at least one pass,
Next, after cooling to 700 ° C. at a cooling rate of 40 ° C./s or less, winding in a temperature range of 550 to 700 ° C.,
Next, after pickling, cold rolling with a rolling reduction of 50 to 90% is performed,
Furthermore, cold rolling excellent in deep drawability characterized by performing annealing at 700 to 900 ° C. at an average heating rate of 2 to 20 ° C./s from room temperature to 650 ° C. and holding for 1 second or more. A method of manufacturing a steel sheet.
A 3 (° C.) = 937.2-476.5C + 56Si-19.7Mn-16.3Cu-26.6Ni-4.9Cr + 38.1Mo + 136.3Ti-19.1Nb + 124.8V + 198.4Al + 3315.0B (2 )
X (shape ratio) = ld / hm (3)
However, in the above equation (2), C, Si, Mn, P, Cu, Ni, Cr, Mo, Ti. Nb, V, Al, and B are the content [% by mass] of each element.
In the above equation (3),
ld (contact arc length of hot-rolled roll and steel plate): √ (L × (hin-hout) / 2),
hm: (hin + hout) / 2,
And also
L: roll diameter,
Hin: Thickness on the rolling roll entry side,
hout: thickness of the roll exit side,
It is.
請求項6に記載の深絞り性に優れた電気亜鉛系めっき冷延鋼板を製造する方法であって、
請求項9に記載の方法で製造した鋼板の表面に電気亜鉛系めっきを施すことを特徴とする深絞り性に優れた電気亜鉛系めっき冷延鋼板の製造方法。
A method for producing an electrogalvanized cold-rolled steel sheet excellent in deep drawability according to claim 6,
The manufacturing method of the electrogalvanized cold-rolled steel plate excellent in the deep drawability characterized by performing electrogalvanizing on the surface of the steel plate manufactured by the method of Claim 9.
請求項7に記載の深絞り性に優れた溶融亜鉛めっき冷延鋼板を製造する方法であって、
請求項9に記載の方法で製造した鋼板の表面に溶融亜鉛めっきを施すことを特徴とする深絞り性に優れた溶融亜鉛めっき冷延鋼板の製造方法。
A method for producing a hot-dip galvanized cold-rolled steel sheet excellent in deep drawability according to claim 7,
A method for producing a hot-dip galvanized cold-rolled steel sheet excellent in deep drawability, wherein hot-dip galvanizing is performed on the surface of the steel sheet produced by the method according to claim 9.
請求項8に記載の深絞り性に優れた合金化溶融亜鉛めっき冷延鋼板を製造する方法であって、
請求項9に記載の方法で製造した鋼板の表面に、請求項11に記載の方法で溶融亜鉛めっきを施した後、さらに、450〜600℃までの温度範囲で10s以上の熱処理を行うことを特徴とする深絞り性に優れた合金化溶融亜鉛めっき冷延鋼板の製造方法。
A method for producing an alloyed hot-dip galvanized cold-rolled steel sheet excellent in deep drawability according to claim 8,
After performing hot dip galvanizing on the surface of the steel sheet manufactured by the method according to claim 9 by the method according to claim 11, heat treatment for 10 s or more is further performed in a temperature range of 450 to 600 ° C. A method for producing an alloyed hot-dip galvanized cold-rolled steel sheet with excellent deep drawability.
JP2012170317A 2012-07-31 2012-07-31 Cold-rolled steel sheet excellent in deep drawability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof Active JP5978838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012170317A JP5978838B2 (en) 2012-07-31 2012-07-31 Cold-rolled steel sheet excellent in deep drawability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012170317A JP5978838B2 (en) 2012-07-31 2012-07-31 Cold-rolled steel sheet excellent in deep drawability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof

Publications (2)

Publication Number Publication Date
JP2014028998A true JP2014028998A (en) 2014-02-13
JP5978838B2 JP5978838B2 (en) 2016-08-24

Family

ID=50201741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012170317A Active JP5978838B2 (en) 2012-07-31 2012-07-31 Cold-rolled steel sheet excellent in deep drawability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof

Country Status (1)

Country Link
JP (1) JP5978838B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206086A (en) * 2014-04-22 2015-11-19 新日鐵住金株式会社 High young's modulus cold rolled steel, high young's modulus electrogalvanized cold rolled steel, high young's modulus hot-dip galvanized cold rolled steel, high young's modulus hot-dip galvannealed cold rolled steel and production methods for them
JP2015212405A (en) * 2014-05-01 2015-11-26 新日鐵住金株式会社 440 MPa CLASS HIGH STRENGTH ALLOYED GALVANIZED STEEL SHEET EXCELLENT IN SECONDARY PROCESSING BRITTLENESS RESISTANCE AND MANUFACTURING METHOD THEREFOR
JP2016151059A (en) * 2015-02-19 2016-08-22 株式会社神戸製鋼所 Production method for hot rolled steel sheet with beautiful appearance
WO2019167933A1 (en) 2018-02-28 2019-09-06 Jfeスチール株式会社 Cold-rolled steel sheet and method for manufacturing same
US10704116B2 (en) 2015-06-05 2020-07-07 Posco High-strength thin steel sheet with excellent drawability and bake hardenability, and method for manufacturing same
US11421294B2 (en) 2016-08-12 2022-08-23 Posco High strength steel sheet having excellent formability and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059698A (en) * 1991-07-09 1993-01-19 Nippon Steel Corp Production of high-strength galvannealed steel sheet having excellent formability and painting baking hardenability
JP2008214700A (en) * 2007-03-05 2008-09-18 Sumitomo Metal Ind Ltd High-strength cold rolled steel sheet, high-strength galvannealed steel sheet, and method for manufacturing them
JP2008308718A (en) * 2007-06-13 2008-12-25 Sumitomo Metal Ind Ltd High-strength steel sheet, and method for producing the same
JP2009270165A (en) * 2008-05-08 2009-11-19 Sumitomo Metal Ind Ltd Extra-low carbon steel sheet, and method for producing the same
JP2010059477A (en) * 2008-09-03 2010-03-18 Sumitomo Metal Ind Ltd High tensile strength cold rolled steel sheet
JP2011219845A (en) * 2010-04-14 2011-11-04 Nippon Steel Corp Sn-Zn PLATING HIGH-STRENGTH STEEL SHEET FOR PRESS WORKING EXCELLENT IN CORROSION RESISTANCE, AND MANUFACTURING METHOD THEREFOR

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059698A (en) * 1991-07-09 1993-01-19 Nippon Steel Corp Production of high-strength galvannealed steel sheet having excellent formability and painting baking hardenability
JP2008214700A (en) * 2007-03-05 2008-09-18 Sumitomo Metal Ind Ltd High-strength cold rolled steel sheet, high-strength galvannealed steel sheet, and method for manufacturing them
JP2008308718A (en) * 2007-06-13 2008-12-25 Sumitomo Metal Ind Ltd High-strength steel sheet, and method for producing the same
JP2009270165A (en) * 2008-05-08 2009-11-19 Sumitomo Metal Ind Ltd Extra-low carbon steel sheet, and method for producing the same
JP2010059477A (en) * 2008-09-03 2010-03-18 Sumitomo Metal Ind Ltd High tensile strength cold rolled steel sheet
JP2011219845A (en) * 2010-04-14 2011-11-04 Nippon Steel Corp Sn-Zn PLATING HIGH-STRENGTH STEEL SHEET FOR PRESS WORKING EXCELLENT IN CORROSION RESISTANCE, AND MANUFACTURING METHOD THEREFOR

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206086A (en) * 2014-04-22 2015-11-19 新日鐵住金株式会社 High young's modulus cold rolled steel, high young's modulus electrogalvanized cold rolled steel, high young's modulus hot-dip galvanized cold rolled steel, high young's modulus hot-dip galvannealed cold rolled steel and production methods for them
JP2015212405A (en) * 2014-05-01 2015-11-26 新日鐵住金株式会社 440 MPa CLASS HIGH STRENGTH ALLOYED GALVANIZED STEEL SHEET EXCELLENT IN SECONDARY PROCESSING BRITTLENESS RESISTANCE AND MANUFACTURING METHOD THEREFOR
JP2016151059A (en) * 2015-02-19 2016-08-22 株式会社神戸製鋼所 Production method for hot rolled steel sheet with beautiful appearance
US10704116B2 (en) 2015-06-05 2020-07-07 Posco High-strength thin steel sheet with excellent drawability and bake hardenability, and method for manufacturing same
US11421294B2 (en) 2016-08-12 2022-08-23 Posco High strength steel sheet having excellent formability and manufacturing method thereof
WO2019167933A1 (en) 2018-02-28 2019-09-06 Jfeスチール株式会社 Cold-rolled steel sheet and method for manufacturing same
KR20200112929A (en) 2018-02-28 2020-10-05 제이에프이 스틸 가부시키가이샤 Cold rolled steel sheet and its manufacturing method
US11345974B2 (en) 2018-02-28 2022-05-31 Jfe Steel Corporation Cold rolled steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JP5978838B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
EP3650569B1 (en) Hot-rolled steel sheet and method for manufacturing same
JP6052471B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
EP3128027B1 (en) High-strength cold rolled steel sheet having high yield ratio, and production method therefor
JP5582274B2 (en) Cold-rolled steel sheet, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP4772927B2 (en) High-strength steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet having excellent fatigue characteristics and elongation and impact characteristics, and methods for producing them
EP3187613B1 (en) High-strength cold-rolled steel sheet and method for producing same
JP6465256B1 (en) steel sheet
EP3128026B1 (en) High-strength cold rolled steel sheet exhibiting excellent material-quality uniformity, and production method therefor
WO2016113789A1 (en) High-strength hot-dip galvanized steel sheet and production method thereof
JP5043248B1 (en) High-strength bake-hardening cold-rolled steel sheet and manufacturing method thereof
WO2013046476A1 (en) High strength steel plate and manufacturing method thereof
KR102084867B1 (en) High-strength steel sheet and production method for same
WO2016021195A1 (en) High-strength steel sheet and method for manufacturing same
JP2006193819A (en) High-strength cold-rolled steel sheet superior in deep drawability, and manufacturing method therefor
JP5978838B2 (en) Cold-rolled steel sheet excellent in deep drawability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
EP3447159A1 (en) Steel plate, plated steel plate, and production method therefor
WO2015059902A1 (en) High-strength steel sheet with small in-plane anisotropy of elongation and manufacturing method therefor
JP6264861B2 (en) High Young&#39;s modulus cold-rolled steel sheet excellent in workability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP6248782B2 (en) High Young&#39;s modulus cold-rolled steel sheet, high Young&#39;s modulus electrogalvanized cold-rolled steel sheet, high Young&#39;s modulus hot-dip galvanized cold-rolled steel sheet, high Young&#39;s modulus galvannealed cold-rolled steel sheet, and methods for producing them
JP5817805B2 (en) High strength steel sheet with small in-plane anisotropy of elongation and method for producing the same
JP7136335B2 (en) High-strength steel plate and its manufacturing method
TWI650434B (en) Steel plate
JP2019099846A (en) Hot rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160530

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R151 Written notification of patent or utility model registration

Ref document number: 5978838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350