JP2007327122A - TREATMENT METHOD FOR MOLTEN IRON BY Nd AND Ca ADDITION - Google Patents

TREATMENT METHOD FOR MOLTEN IRON BY Nd AND Ca ADDITION Download PDF

Info

Publication number
JP2007327122A
JP2007327122A JP2006160828A JP2006160828A JP2007327122A JP 2007327122 A JP2007327122 A JP 2007327122A JP 2006160828 A JP2006160828 A JP 2006160828A JP 2006160828 A JP2006160828 A JP 2006160828A JP 2007327122 A JP2007327122 A JP 2007327122A
Authority
JP
Japan
Prior art keywords
concentration
molten iron
inclusions
dissolved
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006160828A
Other languages
Japanese (ja)
Other versions
JP4656007B2 (en
Inventor
Mitsuhiro Numata
光裕 沼田
Toru Matsuo
亨 松尾
Naotada Yoshida
直嗣 吉田
Masaaki Igarashi
正晃 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006160828A priority Critical patent/JP4656007B2/en
Publication of JP2007327122A publication Critical patent/JP2007327122A/en
Application granted granted Critical
Publication of JP4656007B2 publication Critical patent/JP4656007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method for molten iron by which soluble P concentration in the molten iron can be reduced by producing P compound by the addition of a little quantity of Nb and the molten iron excellent in continuous castability and high in cleanliness can be produced. <P>SOLUTION: In this treatment method, the Nd is added into the molten iron containing ≥0.0001% to ≤0.5% P, ≤0.005% S and ≤0.005% O(oxygen), then the Nd concentration in the molten iron is controlled so as to satisfy inequalities (1) and (2) according to P, S and O concentrations in the molten iron, and then Ca is added into the molten metal and the Ca concentration is controlled so as to satisfy ineqality (3) according to the Nd concentration in the molten iron. A=0.24[P]+0.82[S]+0.85[O]...(1). A+0.005≤[Nd]≤A+0.03...[2]. 1.2×10<SP>-2</SP>×[Nd]<SP>2/3</SP>≤[Ca]≤1.6×10<SP>-2</SP>×[Nd]<SP>2/3</SP>+0.15...(3). Wherein, [P], [S], [O], [Nd] and [Ca] denote concentrations (mass%) of respective elements. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鋼中に溶解するP濃度または鋼中に固溶するP濃度を低減する溶鉄の精錬方法に関し、さらに詳しくは、溶鉄中にNd、次いでCaを添加してPをNd−P系介在物およびCa−P系介在物とすることにより、溶解または固溶するP濃度を低減する精錬方法に関する。   The present invention relates to a method for refining molten iron that reduces the P concentration dissolved in steel or the P concentration dissolved in steel, and more specifically, Nd and then Ca are added to the molten iron to add P to the Nd-P system. The present invention relates to a refining method for reducing the concentration of dissolved or dissolved P by using inclusions and Ca-P inclusions.

鋼中に固溶した燐(P)(以下、「固溶P」とも記す)は、結晶粒界あるいは鋳片中心部などにおいて濃化し、鋼材の高温延性、耐食性、溶接性などの特性を著しく悪化させるため、鋼中の固溶P濃度を低減することが重要とされている。固溶Pは、鋼中において単体の元素として存在するが、この固溶Pは、溶鉄中では溶解したP(以下、「溶解P」とも記す)として存在している。   Phosphorus (P) dissolved in the steel (hereinafter also referred to as “solid solution P”) is concentrated at the grain boundaries or at the center of the slab, and the properties of the steel such as high temperature ductility, corrosion resistance, and weldability are remarkably increased. In order to make it worse, it is important to reduce the concentration of solute P in steel. Solid solution P exists as a single element in steel, but this solid solution P exists as dissolved P (hereinafter also referred to as “dissolved P”) in molten iron.

一般に、鋼中の固溶P濃度を低減する方法として、製鋼段階において溶鉄から溶解Pを除去する脱燐処理が用いられている。脱燐処理は、脱燐に適したスラグあるいはフラックスを溶鉄に添加し、酸化雰囲気下で溶鉄中のPを酸化物としてスラグまたはフラックスに移行吸収させる方法である。   In general, as a method for reducing the concentration of solute P in steel, a dephosphorization process for removing dissolved P from molten iron in a steelmaking stage is used. The dephosphorization process is a method in which slag or flux suitable for dephosphorization is added to molten iron, and P in the molten iron is transferred as oxide to slag or flux in an oxidizing atmosphere.

従来、脱燐効率をより高めるとともに、より低い溶解P濃度まで脱燐することを目的として、多数の溶銑脱燐技術、溶鋼脱燐技術が開発されてきた。一方、近年、鋼材に対する要求性能が高まると同時に、高級鋼の需要が増加している。この要求性能と需要に対応するためには、より簡便な方法により鋼中の固溶P濃度を従来以上に低減する必要が生じてきた。   Conventionally, a large number of hot metal dephosphorization techniques and molten steel dephosphorization techniques have been developed for the purpose of increasing the dephosphorization efficiency and dephosphorizing to a lower dissolved P concentration. On the other hand, in recent years, the demand for high-grade steel has increased at the same time as the required performance for steel materials has increased. In order to meet this required performance and demand, it has become necessary to reduce the concentration of solute P in steel more than before by a simpler method.

しかしながら、従来の脱燐処理には、(a)低減可能なP濃度の下限に経済的および熱力学的限界がある、(b)徹底した脱燐処理を行うと排出スラグ量が増加する、(c)還元精錬条件下では脱燐ができない、などの課題があり、上記要求に応えることが困難であった。   However, conventional dephosphorization treatment has (a) an economical and thermodynamic limit at the lower limit of the P concentration that can be reduced, and (b) exhaust slag increases when thorough dephosphorization treatment is performed. c) There was a problem that dephosphorization was not possible under reducing refining conditions, and it was difficult to meet the above requirements.

上述したとおり、従来の考え方に基づくフラックスあるいはスラグを用いて溶解P濃度を低減する脱燐処理によって近年の低燐化に対応するには、(1)脱燐能力の限界からくる生産性の低下および精錬コストの上昇、(2)精錬末期において脱燐処置ができないことに起因する過剰脱燐処理、(3)排出スラグ量の増加による廃棄物量の増加、などが課題となっていた。   As described above, in order to cope with the recent low phosphatization by the dephosphorization treatment that reduces the dissolved P concentration by using flux or slag based on the conventional concept, (1) a decrease in productivity due to the limit of dephosphorization ability Further, there have been problems such as an increase in refining costs, (2) excessive dephosphorization treatment due to the fact that dephosphorization treatment cannot be performed at the end of refining, and (3) an increase in waste amount due to an increase in the amount of discharged slag.

一方、脱燐に対する新しい考え方として、溶鉄中においてPとREMとからなる化合物(介在物)を生成さて、溶解Pの一部を化合物として固定することにより、溶解P濃度を低減させるという技術も開発された。例えば、特許文献1には、非酸化性雰囲気下に保持された溶融金属に、レアアースメタル(以下「REM」とも記す)を0.1質量%以上添加するとともに溶融金属を攪拌し、生成したスラグを除去した後に酸化精錬する脱燐方法が開示されている。この方法は、REMとPとの化合物を溶融金属中で生成させ、攪拌してこれを浮上させた後、P化合物を含むスラグを除去し、さらにその後、溶融金属中のREMを酸化精錬により除去する方法である。   On the other hand, as a new approach to dephosphorization, a technology has been developed to reduce the concentration of dissolved P by generating a compound (inclusion) consisting of P and REM in molten iron and fixing a part of the dissolved P as a compound. It was done. For example, Patent Document 1 discloses that slag produced by adding 0.1% by mass or more of rare earth metal (hereinafter also referred to as “REM”) to molten metal maintained in a non-oxidizing atmosphere and stirring the molten metal. A dephosphorization method is disclosed in which oxidative refining is carried out after removing slag. In this method, a compound of REM and P is generated in the molten metal, stirred and floated, and then the slag containing the P compound is removed, and then the REM in the molten metal is removed by oxidation refining. It is a method to do.

しかしながら、REMを用いて溶解PをREMとの化合物とすることにより、溶解P濃度を低減させる従来の方法では、P化合物の生成および浮上処理やスラグの除去、ならびにその後の酸化精錬など複数の処理が必要であることから、処理コストの面で改善の余地があった。   However, in the conventional method of reducing dissolved P concentration by using dissolved REM as a compound with REM using REM, a plurality of treatments such as P compound generation and levitation treatment, slag removal, and subsequent oxidation refining are performed. Therefore, there is room for improvement in terms of processing costs.

上記の課題を解決すべく、本発明者らは、溶鉄にNdを添加した場合の溶鉄中におけるNdP介在物の生成反応について詳細に調査し、P濃度とNd濃度とを適正に制御することにより、介在物の浮上処理、スラグ除去および酸化精錬を行う必要のない新しい溶解P
濃度の低減方法を、先に特許文献2として提案した。さらに、溶解P濃度の低減に及ぼす溶鉄中酸素(以下、「O」とも記す)および硫黄(以下、「S」とも記す)の阻害作用を排除し、優れた溶解P濃度の低減効果を確保できる溶鉄の処理方法を特許文献3として提案した。
In order to solve the above problems, the present inventors have investigated in detail the formation reaction of NdP inclusions in molten iron when Nd is added to molten iron, and appropriately controlling the P concentration and the Nd concentration. , New melted P that does not require flotation of inclusions, slag removal and oxidative refining
A method for reducing the concentration was previously proposed as Patent Document 2. Furthermore, the inhibitory action of oxygen in molten iron (hereinafter also referred to as “O”) and sulfur (hereinafter also referred to as “S”) on the reduction of dissolved P concentration can be eliminated, and an excellent effect of reducing dissolved P concentration can be ensured. The processing method of the molten iron was proposed as Patent Document 3.

これらの方法は、生産性が高く、処理コストを低減でき、しかもP濃度の低減に及ぼすOおよびSの阻害作用を排除して鋼の清浄度を確保できる優れた処理方法であるが、さらに、連続鋳造性に優れた溶解P濃度の低減方法が望まれる。   These methods are high in productivity, can reduce processing costs, and are excellent processing methods that can secure the cleanliness of steel by eliminating the inhibitory action of O and S on the reduction of P concentration. A method for reducing the dissolved P concentration with excellent continuous castability is desired.

特公平6−21288号公報(特許請求の範囲および3頁左欄8〜13行)Japanese Patent Publication No. 6-21288 (Claims and page 3, left column, lines 8 to 13) 特願2006−003257号(特許請求の範囲など)Japanese Patent Application No. 2006-003257 (claims, etc.) 特願2006−003489号(特許請求の範囲など)Japanese Patent Application No. 2006-003489 (claims, etc.) 特開平5−43929号公報(特許請求の範囲および段落[0010]〜[0012 ])JP-A-5-43929 (Claims and paragraphs [0010] to [0012])

本発明者らが前記の特許文献2および特許文献3に提案した溶鉄へのNd添加による処理方法によれば、溶鉄の清浄度を悪化させることなくNdP介在物を効率よく生成させ、溶解P濃度を低減させることができる。また、溶鉄中のNd濃度が過度に高くなることを回避するとともに、介在物やスラグの除去処理を不要としたため、生産性が高く、また処理コストを低減できる点で優れている。加えて、Nd添加効果に及ぼす溶鉄中のOおよびSによる阻害効果を回避して、さらに高い効率のもとに溶解P濃度の低減を達成することが可能である。   According to the treatment method by adding Nd to molten iron proposed by the inventors in Patent Document 2 and Patent Document 3, NdP inclusions are efficiently generated without deteriorating the cleanliness of the molten iron, and the dissolved P concentration Can be reduced. Moreover, since it avoids that the Nd density | concentration in molten iron becomes high too much and the removal process of the inclusion and slag is made unnecessary, it is excellent at the point that productivity is high and processing cost can be reduced. In addition, it is possible to avoid the inhibitory effect due to O and S in the molten iron on the Nd addition effect, and achieve a reduction in dissolved P concentration with higher efficiency.

一方、これまでに提示された方法は、Ndのみによる溶解P濃度の低減技術であったため、溶鉄中のNd濃度を比較的高い濃度とする必要があった。Nd添加による溶鉄の処理方法は、徹底した溶鉄の脱燐処理を行うよりも精錬コストは低減できるが、これに加えてNdの使用量を低減できれば、溶鉄の処理コストをさらに一段と削減することができる。   On the other hand, since the method presented so far was a technique for reducing the dissolved P concentration only by Nd, it was necessary to make the Nd concentration in the molten iron relatively high. The method of treating molten iron by adding Nd can reduce the refining cost compared to thorough dephosphorization of molten iron, but if the amount of Nd used can be reduced in addition to this, the treatment cost of molten iron can be further reduced. it can.

また、溶鉄中のNd濃度を高めた場合には、P系のNd介在物とともに酸化物系のNd介在物が生成し、これらの介在物によって連続鋳造時にノズルの閉塞が発生しやすいといった課題があった。つまり、連続鋳造機による鋳造操業は可能であるものの、ノズルが閉塞傾向となる場合があり、このために連続鋳造回数に制約が発生し、生産性の確保に限界が生ずるという問題である。このため、Nd添加処理を行っても連続鋳造回数に制約を受けない処理方法、すなわち鋳造性に優れた溶鉄の処理方法を開発することができれば、さらにコスト低減および生産性の向上を図ることができる。   In addition, when the Nd concentration in the molten iron is increased, oxide-based Nd inclusions are generated together with P-based Nd inclusions, and these inclusions tend to cause nozzle clogging during continuous casting. there were. That is, although a casting operation by a continuous casting machine is possible, the nozzle may tend to be blocked, which causes a problem in that the number of continuous castings is limited, and the productivity is limited. For this reason, if it is possible to develop a processing method that does not restrict the number of continuous castings even if Nd addition processing is performed, that is, a molten iron processing method that is excellent in castability, it is possible to further reduce costs and improve productivity. it can.

本発明は、上記の問題に鑑みてなされたものであり、その課題は、少ないNd添加量のもとで溶解P濃度の低減を達成でき、かつ連続鋳造性に優れた清浄度の高い溶鉄を製造できる溶鉄の処理方法を提供することにある。   The present invention has been made in view of the above problems, and the problem is to achieve a high cleanliness of molten iron that can achieve a reduction in the dissolved P concentration under a small Nd addition amount and is excellent in continuous castability. It is providing the processing method of the molten iron which can be manufactured.

本発明は、溶解Pをスラグ中などへ移行させて溶解P濃度を低減する一般的な脱燐処理方法には属さず、溶鉄中にNdを添加後さらにCaを添加してPの化合物を生成させることにより、溶解P濃度を低減し、その結果として固溶P濃度を低減させる精錬方法である。すなわち、本発明の要旨は、下記に示される溶鉄の処理方法にある。   The present invention does not belong to a general dephosphorization treatment method in which dissolved P is transferred into slag and the like to reduce the concentration of dissolved P. Nd is added to molten iron, and then Ca is added to produce a P compound. This is a refining method in which the dissolved P concentration is reduced, and as a result, the solid solution P concentration is reduced. That is, the gist of the present invention resides in a molten iron treatment method shown below.

「質量%で、P:0.0001%以上0.5%以下、S:0.005%以下、およびO(酸素):0.005%以下を含有する溶鉄にNdを添加した後に、Caを添加する溶鉄の処理方法であって、溶鉄中のP濃度、S濃度およびO濃度に応じて下記(1)式および(2)式により表される関係を満足するように溶鉄中のNd濃度を制御した後、溶鉄にCaを添加して、溶鉄中のNd濃度に応じて下記(3)式により表される関係を満足するように溶鉄中のCa濃度を制御することを特徴とする溶鉄の処理方法。   “After adding Nd to molten iron containing, by mass%, P: 0.0001% or more and 0.5% or less, S: 0.005% or less, and O (oxygen): 0.005% or less, Ca is added. A method for treating the molten iron to be added, wherein the Nd concentration in the molten iron is set so as to satisfy the relationship expressed by the following formulas (1) and (2) according to the P concentration, S concentration and O concentration in the molten iron. After the control, Ca is added to the molten iron, and the Ca concentration in the molten iron is controlled so as to satisfy the relationship represented by the following formula (3) according to the Nd concentration in the molten iron. Processing method.

A=0.24[P]+0.82[S]+0.85[O] ・・・・(1)
A+0.005≦[Nd]≦A+0.03 ・・・・(2)
1.2×10-2×[Nd]2/3≦[Ca]≦1.6×10-2×[Nd]2/3+0.0015 ・・・・(3)
ここで、[P]、[S]、[O]、[Nd]および[Ca]は、溶鉄中における各元素
の濃度(質量%)を表す。」
なお、以下の説明において、鋼の成分組成表示における「%」の記載は、「質量%」を意味する。
A = 0.24 [P] +0.82 [S] +0.85 [O] (1)
A + 0.005 ≦ [Nd] ≦ A + 0.03 (2)
1.2 × 10 −2 × [Nd] 2/3 ≦ [Ca] ≦ 1.6 × 10 −2 × [Nd] 2/3 +0.0015 (3)
Here, [P], [S], [O], [Nd] and [Ca] represent the concentration (mass%) of each element in the molten iron. "
In the following description, the description of “%” in the component composition display of steel means “mass%”.

本発明者らは、前述の課題を解決するために、Nd−P系化合物およびCa−P系化合物の効率的生成条件および介在物制御効果の調査および解析を行い、下記の(a)〜(c)の知見を得て、上記の本発明を完成させた。   In order to solve the above-mentioned problems, the present inventors have investigated and analyzed efficient production conditions and inclusion control effects of Nd-P compounds and Ca-P compounds, and have the following (a) to ( The above-mentioned present invention was completed by obtaining the knowledge of c).

(a)対象溶鉄のP、SおよびO濃度の適正範囲
P:0.0001%以上0.5%以下
Pは、鋼材の高温延性、耐食性、溶接性などの特性を悪化させる不純物元素であり、その濃度は低いほど好ましい。しかし、現実には、材料特性などの面から固溶P濃度が0.0001%未満においてさらに溶解P濃度の低減を必要とすることは殆どないことから、対象とするP濃度を0.0001%以上とした。一方、P濃度が0.5%を超えて高い場合には、本発明の方法を用いなくても、通常の脱燐処理により0.5%まで容易に低下させることができる。そこで、P濃度の適正範囲を0.0001%以上0.5%以下とした。
(A) Appropriate range of P, S and O concentration of the target molten iron P: 0.0001% or more and 0.5% or less P is an impurity element that deteriorates properties such as high temperature ductility, corrosion resistance and weldability of the steel material, The lower the concentration, the better. However, in reality, it is rarely necessary to further reduce the dissolved P concentration when the solid solution P concentration is less than 0.0001% in terms of material characteristics and the like. That is all. On the other hand, when the P concentration exceeds 0.5%, it can be easily reduced to 0.5% by ordinary dephosphorization treatment without using the method of the present invention. Therefore, an appropriate range of P concentration is set to 0.0001% to 0.5%.

S:0.005%以下
硫黄(以下、単に「S」とも記す)は、溶鉄中において、PとNdとの親和力よりもNdとの強い親和力を有すると考えられる元素である。S濃度が0.005%を超えて高くなると、NdPの生成に優先して生成されるNd硫化物の生成量が多くなり、NdPの生成が抑制される。また、同様に、SはCaとも強い親和力を有するため、CaSの生成量が増加し、後述するCa濃度の増加を妨げる。そこで、S濃度の適正範囲を0.005%以下とした。
S: 0.005% or less Sulfur (hereinafter, also simply referred to as “S”) is an element that is considered to have a stronger affinity for Nd than for P and Nd in molten iron. If the S concentration exceeds 0.005%, the amount of Nd sulfide produced in preference to the production of NdP increases, and the production of NdP is suppressed. Similarly, since S has a strong affinity for Ca, the amount of CaS produced increases, preventing an increase in Ca concentration, which will be described later. Therefore, the appropriate range of S concentration is set to 0.005% or less.

O(酸素):0.005%以下
酸素(以下、単に「O」とも記す)は、溶鉄中において、PとNdとの親和力よりもNdとの強い親和力を有すると考えられる元素である。O濃度が0.005%を超えて高くなると、NdPの生成に優先して生成されるNd酸化物の生成量が多くなり、NdPの生成が抑制される。また、同様に、OはCaとも強い親和力を有するため、CaOの生成量が増加し、後述するCa濃度の増加を妨げる。そこで、O濃度の適正範囲を0.005%以下とした。
O (oxygen): 0.005% or less Oxygen (hereinafter also simply referred to as “O”) is an element considered to have a stronger affinity for Nd than for P and Nd in molten iron. When the O concentration exceeds 0.005%, the amount of Nd oxide produced in preference to the production of NdP increases, and the production of NdP is suppressed. Similarly, since O has a strong affinity for Ca, the amount of CaO produced increases, preventing an increase in Ca concentration described later. Therefore, the appropriate range of O concentration is set to 0.005% or less.

(b)Ca−P系化合物の生成条件
1)酸素活量の低減による溶鉄中Ca濃度の上昇
鋳造性を改善するための方法として、例えば特許文献4に開示されたように、Caを溶鉄に添加して溶鉄中の介在物を低融点組成に改質する方法が公知である。しかし、Nd系介在物をCa−Nd系介在物に改質したとしても、その融点は溶鋼温度よりも高く、鋳造性を改善することは難しい。つまり、Ndを含有する溶鉄に単純にCaを添加しただけでは、従来鋼のように鋳造性を改善することはできない。
(B) Conditions for generating Ca-P compound 1) Increase in Ca concentration in molten iron by reducing oxygen activity As a method for improving castability, for example, as disclosed in Patent Document 4, Ca is converted into molten iron. A method of adding and modifying inclusions in molten iron to a low melting point composition is known. However, even if the Nd-based inclusion is modified to a Ca—Nd-based inclusion, the melting point is higher than the molten steel temperature, and it is difficult to improve the castability. That is, simply adding Ca to molten iron containing Nd cannot improve castability as in conventional steel.

さらに、Ndを含有する溶鉄中では、Nd−O脱酸平衡により酸素活量が非常に低い値まで低下していると考えられる。Ca−O脱酸平衡による酸素活量よりも、Nd−O脱酸平衡による酸素活量が低い場合には、Nd含有鋼にCaを添加しても、Nd系介在物をCaにより改質することすらできない。したがって、上述のこれらの理由から、単純にCaを添加することのみでは鋳造性を改善することは困難である。   Furthermore, in the molten iron containing Nd, it is considered that the oxygen activity is reduced to a very low value due to Nd-O deoxidation equilibrium. When the oxygen activity due to the Nd-O deoxidation equilibrium is lower than the oxygen activity due to the Ca-O deoxidation equilibrium, the Nd inclusions are modified with Ca even if Ca is added to the Nd-containing steel. I can't even do that. Therefore, for these reasons described above, it is difficult to improve castability by simply adding Ca.

一方、CaとPとは、Ca32なる化合物を形成することが知られており、これは、CaもNdと同様に溶鉄中で燐化合物を生成し、溶解P濃度を低減する可能性を有することを示している。しかし、溶鉄中におけるCa−P介在物の生成あるいはその確認に関する報告はなされていない。 On the other hand, it is known that Ca and P form a compound called Ca 3 P 2 , which means that Ca, like Nd, forms a phosphorus compound in molten iron and can reduce the dissolved P concentration. It has shown that it has. However, there has been no report on the formation of Ca-P inclusions in molten iron or the confirmation thereof.

従来の知見を総括すると、下記のとおりとなる。すなわち、(1)Nd含有鋼に対して単純にCa添加処理を行っても、鋳造性の改善は期待できない、および、(2)Ndと同様にCa添加によりCa−P系介在物を生成させて溶解P濃度を低減できる可能性はあるものの、溶鉄中でのCa−P介在物の生成を確認したとの報告はない。以上の知見によれば、NdとCaとを併用しても、鋳造性の改善や溶解P濃度低減による改善効果はほとんど期待できないことになる。   The following is a summary of conventional knowledge. That is, (1) improvement in castability cannot be expected even if Ca addition treatment is simply performed on Nd-containing steel, and (2) Ca—P inclusions are generated by addition of Ca as in Nd. Although there is a possibility that the dissolved P concentration can be reduced, there is no report that the formation of Ca-P inclusions in the molten iron has been confirmed. According to the above knowledge, even if Nd and Ca are used in combination, almost no improvement effect due to improvement in castability or reduction in dissolved P concentration can be expected.

これらに対して、本発明者らは、上述した従来の知見にとらわれずに検討を重ねた結果、下記の着想に至った。   On the other hand, as a result of repeated examinations by the present inventors without being bound by the above-described conventional knowledge, the following idea has been reached.

すなわち、Ca−O脱酸平衡により定まる酸素活量(以下、「Ca−O脱酸平衡酸素活量」と記し、他の平衡により定まる酸素活量についても同様の標記法を用いる)は、Nd−O脱酸平衡酸素活量よりも高いが、これは、溶解Nd濃度と溶解Ca濃度とのバランスによって変化する。例えば、溶解Ca濃度が非常に高く、他方、溶解Nd濃度が非常に低い場合には、Ca−O脱酸平衡酸素活量の方が低くなる。ただし、蒸発性の高い溶解Ca濃度を上記の条件が満足される程度まで高めることは、通常の方法では困難である。したがって、溶解Ca濃度を十分に高めることができれば、Caを添加することによりCa−P介在物を生成させ、その結果、溶解P濃度を低減することができる可能性がある。   That is, the oxygen activity determined by the Ca—O deoxidation equilibrium (hereinafter referred to as “Ca—O deoxidation equilibrium oxygen activity”, and the same notation is used for the oxygen activity determined by other equilibrium) is Nd. Although higher than the -O deoxidation equilibrium oxygen activity, this varies with the balance between dissolved Nd concentration and dissolved Ca concentration. For example, when the dissolved Ca concentration is very high and the dissolved Nd concentration is very low, the Ca—O deoxidation equilibrium oxygen activity is lower. However, it is difficult to increase the dissolved Ca concentration having high evaporability to such an extent that the above conditions are satisfied by a normal method. Therefore, if the dissolved Ca concentration can be sufficiently increased, Ca-P inclusions can be generated by adding Ca, and as a result, the dissolved P concentration can be reduced.

ここで、問題となるのは、通常の方法では得られない高い溶解Ca濃度を確保する方法である。溶鉄中のCa濃度は、CaO=Ca+Oにより表される平衡反応により支配される。通常は、Caを添加することにより酸素活量が決定される。したがって、もし、Caの添加前に、別の手段により溶鉄中酸素活量をCa−O脱酸平衡酸素活量よりも低くすることが可能になれば、平衡Ca濃度を高めることができ、その結果、溶鉄中Ca濃度を非常に高い濃度にまで高めることができる。したがって、これが実現できれば、溶鉄へのCa添加により、鋳造性の改善および溶鉄中での溶解P濃度の低減を同時に達成することができる。   Here, a problem is a method of ensuring a high dissolved Ca concentration that cannot be obtained by a normal method. The Ca concentration in the molten iron is governed by an equilibrium reaction represented by CaO = Ca + O. Usually, the oxygen activity is determined by adding Ca. Therefore, if the oxygen activity in molten iron can be made lower than the Ca—O deoxidation equilibrium oxygen activity by another means before the addition of Ca, the equilibrium Ca concentration can be increased, As a result, the Ca concentration in molten iron can be increased to a very high concentration. Therefore, if this can be realized, improvement of castability and reduction of the dissolved P concentration in the molten iron can be achieved at the same time by adding Ca to the molten iron.

2)Ndの添加による溶解Ca濃度の上昇
Caの添加前に、Ca-O脱酸平衡酸素活量よりも溶鉄中の酸素活量を低下させる方法を検討した。Caの添加前にCa−O脱酸平衡酸素活量よりも溶鉄中酸素活量を低くするには、Caよりも強い脱酸力を有する元素を添加すればよい。その可能性を有する元素としては、NdおよびMgが挙げられる。Ndは、P化合物を生成するので、溶解P濃度を低減するためには、これを用いるのが好ましい。しかしながら、Ndを適切な方法で使用しない場合には、前述したような問題を生じる。つまり、Ndを用いるに際しては、適正なNdの濃度範囲が存在する。
2) Increase in dissolved Ca concentration due to addition of Nd Prior to the addition of Ca, a method for lowering the oxygen activity in molten iron over the Ca—O deoxidation equilibrium oxygen activity was examined. In order to make the oxygen activity in molten iron lower than the Ca—O deoxidation equilibrium oxygen activity before the addition of Ca, an element having a stronger deoxidizing power than Ca may be added. Examples of such elements include Nd and Mg. Since Nd produces a P compound, it is preferably used to reduce the dissolved P concentration. However, when Nd is not used in an appropriate manner, the above-described problems occur. That is, when Nd is used, there is an appropriate Nd concentration range.

この条件を熱力学的な計算により求めることは、下記の理由により困難である。すなわち、NdおよびCaは、いずれもOの他に、Sとも反応する。しかも、Caは非常に蒸発しやすい元素である。さらに、本発明の方法では、溶鉄中のPとの反応をも考慮する必要があるから、反応系は極めて複雑なものとなるが、このような複雑な多元系について計算を行うための熱力学的諸量も不足しているからである。   Obtaining this condition by thermodynamic calculation is difficult for the following reasons. That is, Nd and Ca both react with S in addition to O. Moreover, Ca is an element that is very easily evaporated. Furthermore, in the method of the present invention, since it is necessary to consider the reaction with P in molten iron, the reaction system becomes extremely complicated. However, the thermodynamics for calculating such a complex multi-component system is necessary. This is because there is a lack of target quantities.

そこで、実験によりこれらの条件を求めることとした。実験の目的は、溶鉄中においてCa−P系介在物を生成させる条件を求めることである。   Therefore, these conditions were determined by experiments. The purpose of the experiment is to determine conditions for generating Ca-P inclusions in the molten iron.

実験にはC:0.0015〜0.5%、Si:0.008〜0.8%、Mn:0.001〜1.5%を含み、Pを0.0001〜0.5%の範囲で、Ndを0.007〜0.1%の範囲で、Sを0.005%以下の範囲で、そしてOを0.005%以下の範囲で、それぞれ変化させた溶鉄15kgを用いた。   The experiment included C: 0.0015 to 0.5%, Si: 0.008 to 0.8%, Mn: 0.001 to 1.5%, and P in the range of 0.0001 to 0.5%. Then, 15 kg of molten iron having Nd in the range of 0.007 to 0.1%, S in the range of 0.005% or less, and O in the range of 0.005% or less was used.

溶鉄温度を1560〜1630℃とし、Nd濃度を所定濃度に調整した後、Caを添加した。一定時間保持した後に溶鉄からサンプルを採取し、急冷凝固させた。また、サンプル採取終了後、溶鉄を20℃/minの速度で冷却し、得られた鋼塊からもサンプルを切り出した。上記の二種類の方法で採取したサンプル中の非金属介在物(以下、「介在物」とも記す)をSEMにより観察するとともにEPMAを用いて介在物の組成を定量した。   The molten iron temperature was set to 1560 to 1630 ° C., the Nd concentration was adjusted to a predetermined concentration, and then Ca was added. After holding for a certain time, a sample was taken from the molten iron and rapidly solidified. Moreover, after completion | finish of sample collection, the molten iron was cooled at the speed | rate of 20 degree-C / min, and the sample was also cut out from the obtained steel ingot. Nonmetallic inclusions (hereinafter also referred to as “inclusions”) in the samples collected by the above two methods were observed by SEM and the composition of inclusions was quantified using EPMA.

はじめに、Ca濃度の増加について説明する。図1は、溶鉄中のCa濃度と溶鉄から採取した急冷サンプル中に存在した介在物中のCaO濃度との関係を示す図である。同図に示される実験では、いずれも、溶鉄中のAl濃度を0.04%として溶鉄中酸素濃度を0.0011〜0.0045%に調整し、さらに、P濃度を0.001%、およびS濃度を0.0004%とし、Nd濃度については、▲印で示すとおり0.025%、および○印で示すとおり無添加の2ケースとした。   First, an increase in the Ca concentration will be described. FIG. 1 is a diagram showing the relationship between the Ca concentration in molten iron and the CaO concentration in inclusions present in a quenched sample taken from molten iron. In all the experiments shown in the figure, the Al concentration in the molten iron was 0.04%, the oxygen concentration in the molten iron was adjusted to 0.0011 to 0.0045%, and the P concentration was 0.001%, and The S concentration was 0.0004%, and the Nd concentration was 0.025% as indicated by ▲ and no additive as indicated by ◯.

同図の結果に示されるとおり、Ndを添加しない場合には、溶鉄中のCa濃度の増加にともなって介在物中のCaO濃度が増加している。これは、Ca−O脱酸平衡酸素活量よりも溶鉄中酸素活量が高かったことからCaが酸素と反応したこと、およびCaが酸素と反応した結果、溶解Ca濃度が低下したことを示している。   As shown in the results of the figure, when Nd is not added, the CaO concentration in the inclusions increases as the Ca concentration in the molten iron increases. This shows that the oxygen activity in molten iron was higher than the Ca-O deoxidation equilibrium oxygen activity, so that Ca reacted with oxygen, and as a result of Ca reacting with oxygen, the dissolved Ca concentration decreased. ing.

一方、Nd濃度が0.025%の場合には、Ca濃度が0.002%未満の範囲ではCa濃度が増加しても介在物中のCaO濃度は増加せず、Ca濃度が0.0035%においても介在物中のCaO濃度は6%程度にすぎない。このことは、Ca−O脱酸平衡酸素活量よりも溶鉄中酸素活量が低かったこと、およびCaは介在物と反応せずに溶解Caとして存在していたことを示している。   On the other hand, when the Nd concentration is 0.025%, the Ca concentration in the inclusion does not increase even if the Ca concentration is increased in the range where the Ca concentration is less than 0.002%, and the Ca concentration is 0.0035%. However, the CaO concentration in inclusions is only about 6%. This indicates that the oxygen activity in molten iron was lower than the Ca—O deoxidation equilibrium oxygen activity, and that Ca was present as dissolved Ca without reacting with inclusions.

溶鉄中の溶解Ca濃度は、溶鉄中Ca濃度から介在物中のCa濃度を減じたものである。したがって、上述の実験結果から、溶鉄中にNdを添加することにより、溶解Ca濃度は高められることが確認された。   The dissolved Ca concentration in molten iron is obtained by subtracting the Ca concentration in inclusions from the Ca concentration in molten iron. Therefore, from the above experimental results, it was confirmed that the dissolved Ca concentration can be increased by adding Nd to the molten iron.

3)P系介在物生成のためのNd濃度範囲
Ca−P系介在物を生成させるための条件について説明する。前述したとおり、対象とする反応系が複雑であるため、単に実験回数を増加させて調査を行うのみでは適切な条件を把握することはできない。そこで、以下の方法により実験を行い、その結果を整理することとした。
3) Nd concentration range for generating P-based inclusions Conditions for generating Ca-P-based inclusions will be described. As described above, since the target reaction system is complicated, it is not possible to grasp appropriate conditions simply by increasing the number of experiments. Therefore, it was decided to conduct experiments by the following method and organize the results.

Ca濃度を増加させるため、Ca添加前において酸素活量を低くするためには、溶解Nd濃度の調整が重要である。しかし、Ca添加前に溶鉄中に添加されたNdは、Ca添加前に、溶鉄中のS、OおよびPと反応していると考えられる。したがって、溶解Nd濃度を求めるには、これらの元素と反応し、消費されたNd量を減じる必要がある。   In order to increase the Ca concentration, the adjustment of the dissolved Nd concentration is important in order to lower the oxygen activity before adding Ca. However, it is considered that Nd added to the molten iron before Ca addition reacts with S, O, and P in the molten iron before Ca addition. Therefore, in order to obtain the dissolved Nd concentration, it is necessary to reduce the amount of Nd consumed by reacting with these elements.

上記の反応により消費されたNdの減少分をAとすると、Aは下記(1)式により表される。   When the decrease in Nd consumed by the above reaction is A, A is represented by the following formula (1).

A=0.24[P]+0.82[S]+0.85[O] ・・・・(1)
ここで、[P]、[S]および[O]は、溶鉄中における各元素の濃度(%)を表す。また、[S]および[O]の各係数は、硫化物および酸化物中のNd原子量をそれぞれ硫化物および酸化物の分子量により除した値である。しかし、[P]の係数は、燐化合物中のNd原子量を燐化合物の分子量により除した値にはならない。なぜなら、本発明者らが既に提示したように、NdとPとの反応には一定の限界があり、添加したNdがPの全量と反応するわけではないからである。そこで、Pの原子量をNdの原子量で除した値(0.21)に、さらにNdとPとの反応限界を考慮して、NdとPとの反応比率を0.24とし、[P]の係数を決定した。
A = 0.24 [P] +0.82 [S] +0.85 [O] (1)
Here, [P], [S] and [O] represent the concentration (%) of each element in the molten iron. Each coefficient of [S] and [O] is a value obtained by dividing the weight of Nd atoms in sulfide and oxide by the molecular weight of sulfide and oxide, respectively. However, the coefficient of [P] is not a value obtained by dividing the Nd atomic weight in the phosphorus compound by the molecular weight of the phosphorus compound. This is because, as already shown by the present inventors, there is a certain limit in the reaction between Nd and P, and the added Nd does not react with the total amount of P. Therefore, the value obtained by dividing the atomic weight of P by the atomic weight of Nd (0.21), and further considering the reaction limit of Nd and P, the reaction ratio of Nd and P is 0.24, and [P] The coefficient was determined.

次に、溶解Ca濃度を増加させるための溶解Nd濃度を求めた。溶解Nd濃度は、溶鉄中のNd濃度から上記のAの値を減じた値であることから、この([Nd]−A)の値と溶解Ca濃度との関係を求めた。ここで、溶解Ca濃度を直接分析するのは困難であるため、溶鉄中Ca濃度と介在物中に含まれるCa濃度との差を溶鉄中Ca濃度により除した値、すなわち、B=(溶鉄中Ca濃度−介在物に含まれるCa濃度)/(溶鉄中Ca濃度)の値により評価した。上記のBの値が1の場合には、溶鉄中Ca濃度が溶解Ca濃度に等しく、溶解Ca濃度が高いことを示し、逆に、Bの値が小さい場合には、溶解Ca濃度は低いことを示す。   Next, the dissolved Nd concentration for increasing the dissolved Ca concentration was determined. Since the dissolved Nd concentration is a value obtained by subtracting the value of A from the Nd concentration in the molten iron, the relationship between the value of ([Nd] -A) and the dissolved Ca concentration was determined. Here, since it is difficult to directly analyze the dissolved Ca concentration, a value obtained by dividing the difference between the Ca concentration in molten iron and the Ca concentration contained in inclusions by the Ca concentration in molten iron, that is, B = (in molten iron Evaluation was made based on the value of Ca concentration-Ca concentration contained in inclusions / Ca concentration in molten iron. When the value of B is 1, the Ca concentration in the molten iron is equal to the dissolved Ca concentration and the dissolved Ca concentration is high. Conversely, when the B value is small, the dissolved Ca concentration is low. Indicates.

図2は、溶解Nd濃度([Nd]−A)と溶解Ca濃度(B)との関係を示す図である。同図において、Bは、前記のとおり、(溶鉄中Ca濃度−介在物に含まれるCa濃度)/(溶鉄中Ca濃度)の値を意味する。   FIG. 2 is a graph showing the relationship between dissolved Nd concentration ([Nd] -A) and dissolved Ca concentration (B). In the figure, B means the value of (Ca concentration in molten iron−Ca concentration contained in inclusions) / (Ca concentration in molten iron) as described above.

同図の結果から、([Nd]−A)の値が0.005以上においてBの値が1近傍まで増加することから、([Nd]−A)の値は0.005以上にする必要があることがわかる。一方、([Nd]−A)の値が0.03を超えて高くなると、Bの値はやや低下することから、([Nd]−A)の値は0.03以下とする必要のあることがわかる。なお、([Nd]−A)の値が0.03を超えた範囲においてBの値が若干低下する理由は、溶解Nd濃度が増加することによりCa活量が変化したことによると考えられるが、定かではない。   From the results shown in FIG. 9, when the value of ([Nd] -A) is 0.005 or more, the value of B increases to the vicinity of 1, so the value of ([Nd] -A) needs to be 0.005 or more. I understand that there is. On the other hand, if the value of ([Nd] -A) increases beyond 0.03, the value of B slightly decreases, so the value of ([Nd] -A) needs to be 0.03 or less. I understand that. The reason why the value of B slightly decreases in the range where ([Nd] -A) exceeds 0.03 is considered to be that the Ca activity is changed by increasing the dissolved Nd concentration. I'm not sure.

上述の結果から、溶鉄中のNd濃度の適正範囲は下記(2)式により表される。   From the above results, the appropriate range of the Nd concentration in the molten iron is expressed by the following equation (2).

A+0.005≦[Nd]≦A+0.03 ・・・・(2)
4)Ca−P系介在物生成のためのCa濃度範囲
Ca−P系介在物を生成させるための条件について説明する。前記のとおり、溶解Ca濃度に及ぼす溶鉄中のP、SおよびOの各濃度ならびに溶解Nd濃度の影響については、(1)式および(2)式により考慮されているので、最終的には、(1)式および(2)式を満足する濃度条件下において、Ca濃度とNd濃度との関係を求めればよい。
A + 0.005 ≦ [Nd] ≦ A + 0.03 (2)
4) Ca concentration range for generating Ca-P inclusions Conditions for generating Ca-P inclusions will be described. As described above, the effects of the concentrations of P, S and O in the molten iron and the dissolved Nd concentration on the dissolved Ca concentration are taken into account by the equations (1) and (2). What is necessary is just to obtain | require the relationship between Ca density | concentration and Nd density | concentration on the density | concentration conditions which satisfy | fill a formula (1) and (2) type | formula.

図3は、Ca−P系介在物の生成の有無に及ぼす溶鉄中Ca濃度ならびに(1)式および(2)式の関係を満足するNd濃度の影響を実験により求めた結果を示す図である。同図において、○印は、Ca−P系介在物、すなわち、CaP、Ca−O−P、Ca−O−P−S、Ca−P−Nd−O、Ca−P−Nd−O−X(−S)(ここで、XはSiまたはAlを表す)が生成したことを、また、×印は、Ca−P系介在物が生成しなかったことを、それぞれ示す。   FIG. 3 is a diagram showing the results of experimentally determining the influence of the Ca concentration in molten iron and the Nd concentration satisfying the relationship of the expressions (1) and (2) on the presence or absence of Ca—P inclusions. . In the figure, the circles indicate Ca-P inclusions, that is, CaP, Ca-OP, Ca-OP-S, Ca-P-Nd-O, Ca-P-Nd-O-X. (-S) (wherein X represents Si or Al) was generated, and the X mark indicates that no Ca-P inclusion was generated.

同図の結果から、Ca−P系介在物の生成する領域と生成しない領域との境界線は、下記(4A)式により表されることが判明した。また、Ca−P系介在物が生成するためには、(1)式および(2)式の関係を満たした溶鉄中Nd濃度、および溶鉄中Ca濃度が下記(4)式により表される関係を満足する必要のあることが確認された。   From the results shown in the figure, it was found that the boundary line between the region where the Ca—P inclusions are generated and the region where the Ca—P inclusions are not generated is expressed by the following equation (4A). Moreover, in order to produce | generate Ca-P type inclusions, the relationship in which the Nd concentration in molten iron that satisfies the relationship of the equations (1) and (2) and the Ca concentration in the molten iron is represented by the following equation (4): It was confirmed that it was necessary to satisfy.

1.2×10-2×[Nd]2/3=[Ca] ・・・・(4A)
1.2×10-2×[Nd]2/3≦[Ca] ・・・・(4)
したがって、溶鉄中のP、S、O、NdおよびCaの各成分が前記(1)式、(2)式および(4)式で表される関係を同時に満足するように制御することにより、下記の(1)〜(3)効果が得られる。
1.2 × 10 −2 × [Nd] 2/3 = [Ca] (4A)
1.2 × 10 −2 × [Nd] 2/3 ≦ [Ca] (4)
Therefore, by controlling each component of P, S, O, Nd and Ca in the molten iron so as to satisfy the relationship represented by the above formulas (1), (2) and (4) simultaneously, The effects (1) to (3) are obtained.

(1)溶鉄中でCa−P系介在物を生成させることにより、溶解P濃度を低減できる。   (1) The dissolved P concentration can be reduced by generating Ca-P inclusions in molten iron.

(2)Caにより溶解P濃度を低減できるので、従来の溶鉄の処理方法に比較して溶鉄中のNd濃度を低く抑えることができる。   (2) Since the dissolved P concentration can be reduced by Ca, the Nd concentration in the molten iron can be kept low as compared with the conventional molten iron processing method.

(3)溶鉄中に生成する介在物はCa系介在物であるため、鋳造用ノズルを閉塞するおそれがない。   (3) Since inclusions generated in the molten iron are Ca-based inclusions, there is no possibility of closing the casting nozzle.

上述したとおり、添加Caの補助的役割としてNdを適正条件で添加使用することにより、これまで確認されていなかったCaの添加による溶解P濃度の低減を図ることができる。   As described above, by adding and using Nd under an appropriate condition as an auxiliary role of added Ca, it is possible to reduce the dissolved P concentration by adding Ca that has not been confirmed so far.

さらに、本発明者らは、前記図3において、Ca濃度の適正範囲がNd濃度の適正範囲よりも一桁小さいことに着目した。溶鉄中でCa−P系介在物が生成した後に、溶鉄は鋳造され凝固するので、この時の温度降下にともない溶鉄中のCaとPとの反応はさらに進む。このとき、Caの濃度は低いため、ある温度まで低下した時点で、Caは反応により消費されて消失することとなる。その後も、P濃度を低減し続けるには、Caに代わってNdがPと反応すればよい。つまり、Caに代わってNdがPと反応し始めるためには、Ca濃度は高すぎない方が有利である。   Furthermore, the inventors of the present invention focused on the fact that the appropriate range of Ca concentration is an order of magnitude smaller than the appropriate range of Nd concentration in FIG. After the Ca—P inclusions are formed in the molten iron, the molten iron is cast and solidified, so that the reaction between Ca and P in the molten iron further proceeds with the temperature drop at this time. At this time, since the concentration of Ca is low, when Ca is lowered to a certain temperature, Ca is consumed by the reaction and disappears. Thereafter, in order to continue to reduce the P concentration, Nd may react with P instead of Ca. That is, in order for Nd to start reacting with P instead of Ca, it is advantageous that the Ca concentration is not too high.

そこで、この条件を調査するために、前記実験により得られた鋼塊中の介在物を調査した。その結果、Ca濃度が所定濃度以下の場合には、溶鉄中で生成したCa−P系介在物の他に、鋳造凝固による温度降下時に生成したNd−P系介在物が共存していることを見出した。この現象は、溶鉄段階ではCaによりCa−P系介在物を生成させて溶解P濃度を低減させ、さらに、凝固過程ではNdによりNd−P系介在物を生成させて固溶P濃度を低減させるという「二段階によるP濃度低減」が達成可能なことを示している。   Therefore, in order to investigate this condition, the inclusions in the steel ingot obtained by the experiment were investigated. As a result, when the Ca concentration is equal to or lower than the predetermined concentration, in addition to the Ca-P inclusions generated in the molten iron, Nd-P inclusions generated at the time of temperature drop due to casting solidification coexist. I found it. This phenomenon is caused by reducing the dissolved P concentration by generating Ca-P inclusions with Ca in the molten iron stage, and further reducing the dissolved P concentration by generating Nd-P inclusions with Nd in the solidification process. This indicates that “two-stage P concentration reduction” can be achieved.

図4は、Ca−P系介在物およびNd−P系介在物の生成の有無に及ぼす溶鉄中Ca濃度ならびに(1)式および(2)式の関係を満足するNd濃度の影響を示す図である。同図の結果は、前記図3に示した実験と同一実験において凝固後の鋼塊から採取したデータに基づいているため、Ca濃度およびCa濃度は図3の場合と同一濃度となっている。同図において、○印は、Ca−P系介在物(すなわち、CaP、Ca−O−P、Ca−O−P−S、Ca−P−Nd−O、Ca−P−Nd−O−X(−S)(ここで、XはSiまたはAlを表す))とともに、Nd−P系介在物が生成したことを、また、△印は、Ca−P系介在物のみが生成したことを、そして、×印は、Ca−P系介在物が生成しなかったことを、それぞれ示す。   FIG. 4 is a diagram showing the influence of the Ca concentration in molten iron and the Nd concentration satisfying the relationship of the equations (1) and (2) on the presence or absence of the formation of Ca—P inclusions and Nd—P inclusions. is there. Since the results in the figure are based on data collected from the steel ingot after solidification in the same experiment as the experiment shown in FIG. 3, the Ca concentration and the Ca concentration are the same as those in FIG. In the figure, a circle indicates a Ca-P inclusion (that is, CaP, Ca-OP, Ca-OP-S, Ca-P-Nd-O, Ca-P-Nd-O-X). (-S) (wherein X represents Si or Al)), Nd-P inclusions were generated, and Δ marks that only Ca-P inclusions were generated, And x mark shows that the Ca-P inclusion was not generated, respectively.

図4の結果から、Ca濃度が高い領域においてCa−P系介在物だけしか生成しなかったのは、CaがPとの反応で消失する温度が低くなりすぎ、代わって反応するNdとPとの充分な反応速度が得られなかったことによると推定される。また、CaおよびNdにより二段階で鋼中のP濃度の低減を図るには、Ca濃度が、(1)式および(2)式の関係を満たすNd濃度に対して、下記(5A)式により表される曲線よりもCa濃度が低い領域に存在する必要があることが判明した。すなわち、(1)式および(2)式の関係を満たした溶鉄中Nd濃度、および溶鉄中Ca濃度が下記(5)式により表される関係を満足する必要のあることが確認された。   From the results of FIG. 4, only Ca-P inclusions were generated in the region where the Ca concentration was high because the temperature at which Ca disappears by reaction with P becomes too low, and Nd and P react instead. It is estimated that the sufficient reaction rate was not obtained. Further, in order to reduce the P concentration in the steel in two steps with Ca and Nd, the following equation (5A) is used with respect to the Nd concentration that satisfies the relationship of the equations (1) and (2). It has been found that it needs to be present in a region where the Ca concentration is lower than the curve represented. That is, it was confirmed that the Nd concentration in molten iron that satisfies the relationship of the equations (1) and (2) and the Ca concentration in the molten iron must satisfy the relationship represented by the following equation (5).

[Ca]=1.6×10-2×[Nd]2/3+0.0015 ・・・・(5A)
[Ca]≦1.6×10-2×[Nd]2/3+0.0015 ・・・・(5)
前記(4)式および上記(5)式の関係をまとめることにより、前記(3)式の関係が得られる。したがって、(1)式および(2)式の関係を満足するように溶鉄中のNd濃度を制御した後、Caを添加して、(3)式により表される関係を満足するようにCa濃度を制御することにより、低いNd濃度により良好な鋳造性を確保するとともに、溶鉄の段階ではCaによりCa−P系介在物を生成して溶解P濃度を低減し、さらに凝固過程ではNdによりNd−P系介在物を生成して固溶P濃度を低減する「二段階によるP濃度低減」を達成できる。これにより、Ndを単独で添加使用する場合に比較して、一段と高い生産性のもとに固溶P濃度をさらに一層低減した鋼材を製造することができる。
[Ca] = 1.6 × 10 −2 × [Nd] 2/3 +0.0015 (5A)
[Ca] ≦ 1.6 × 10 −2 × [Nd] 2/3 +0.0015 (5)
By summarizing the relationship between the equation (4) and the equation (5), the relationship of the equation (3) can be obtained. Therefore, after controlling the Nd concentration in the molten iron so as to satisfy the relationship of the equations (1) and (2), Ca is added, and the Ca concentration is satisfied so as to satisfy the relationship represented by the equation (3) By controlling the Nd, a good castability is ensured by a low Nd concentration, and at the molten iron stage, Ca-P inclusions are generated by Ca to reduce the dissolved P concentration. Further, in the solidification process, Nd- It is possible to achieve “two-stage P concentration reduction” in which P-based inclusions are generated to reduce the solid solution P concentration. Thereby, compared with the case where Nd is added and used alone, it is possible to manufacture a steel material in which the solid solution P concentration is further reduced with a higher productivity.

(c)介在物制御効果の確認
構造用高強度CrMo鋼SCM430相当鋼を対象として下記の試験を行い、介在物の制御効果を確認した。表1および表2に示す化学成分組成を有する5種類の鋼を真空高周波誘導溶解炉を用いて20kg溶製し、インゴットを作製した。
(C) Confirmation of Inclusion Control Effect The following test was conducted on structural high strength CrMo steel SCM430 equivalent steel to confirm the inclusion control effect. Five types of steel having chemical composition shown in Table 1 and Table 2 were melted in an amount of 20 kg using a vacuum high frequency induction melting furnace to produce an ingot.

Figure 2007327122
Figure 2007327122

Figure 2007327122
Figure 2007327122

同表において、(6)式および(7)式は、前記特許文献2において発明者らが開示した関係式を示している。すなわち、(6)式は、溶鉄中のPとNdとの反応によりNdP介在物が生成するために必要な溶鉄中のNd濃度:[Nd]とP濃度:[P]との間の関係を、そして、(7)式は、さらに加えて、介在物の粗大化を抑止するために必要な両濃度間の関係を示す。   In the same table, Expressions (6) and (7) indicate the relational expressions disclosed by the inventors in Patent Document 2. That is, the equation (6) shows the relationship between Nd concentration in molten iron: [Nd] and P concentration: [P] necessary for the formation of NdP inclusions by the reaction of P and Nd in molten iron. In addition, the formula (7) further shows the relationship between both concentrations necessary to suppress the coarsening of inclusions.

同表において、試験番号A1に用いた供試鋼は、予め徹底して脱燐した極低燐鋼であってCa添加を行ったものであるが、本発明で規定する(2)式および(3)式により表される関係を満足しない供試鋼であり、(6)式および(7)式の関係も満たしていない。試験番号A2に用いた供試鋼は、NdおよびCaを添加した供試鋼であり、(6)式および(7)式の関係は満足するが、本発明で規定する(2)式および(3)式の関係を満足しない供試鋼である。試験番号A3に用いた供試鋼は、NdおよびCaを添加した供試鋼であって、(6)式および(7)式の関係は満足するが、本発明で規定する(3)式の関係を満たさない供試鋼である。また、試験番号A4に使用した供試鋼は、本発明で規定する(1)式および(2)式の関係を満足するようにNd濃度を制御した後、(3)式の関係を満足するようにCa濃度を制御した供試鋼であり、もちろん、(6)式および(7)式の関係をも満足している。そして、試験番号A5に用いた供試鋼は、一般に用いられているP濃度の高い鋼であり、(6)式および(7)式ならびに(2)式および(3)式のいずれの関係をも満たさない供試鋼である。   In the same table, the test steel used for the test number A1 is an extremely low phosphorus steel thoroughly dephosphorized in advance and added with Ca, but the formula (2) and ( It is a test steel that does not satisfy the relationship represented by the equation (3), and does not satisfy the relationship between the equations (6) and (7). The test steel used for test number A2 is a test steel to which Nd and Ca are added, and although the relationship between the formulas (6) and (7) is satisfied, the formula (2) and ( 3) It is a test steel that does not satisfy the relationship of the formula. The test steel used for test number A3 is a test steel to which Nd and Ca are added, and the relationship between the formulas (6) and (7) is satisfied, but the formula (3) defined in the present invention is satisfied. It is a test steel that does not satisfy the relationship. The test steel used for test number A4 satisfies the relationship of formula (3) after controlling the Nd concentration so as to satisfy the relationship of formula (1) and formula (2) defined in the present invention. Thus, it is a test steel in which the Ca concentration is controlled and, of course, satisfies the relationship of the formulas (6) and (7). And the test steel used for test number A5 is a steel with a high P concentration that is generally used, and the relationship between formulas (6) and (7) and formulas (2) and (3) This is a test steel that does not satisfy.

得られたインゴットを1000℃にて2時間の均熱処理後、熱間プレスにより厚さ25mm、幅60mmの板材に鍛伸し、試験用素材とした。その素材を820℃にて1時間の均熱後、油焼入れした後、550℃にて1時間保持し空冷する焼き戻し処理を行って、供試材とした。供試材から鍛伸方向と直角方向に、JIS Z 2202で規定されるシャルピー衝撃試験片(10mm×10mm×55mm、深さ2mmのVノッチ付き)を採取し、試験温度を0℃〜100℃の間で変えて衝撃試験を行って、衝撃特性(衝撃吸収エネルギー)を評価した。   The obtained ingot was subjected to soaking treatment at 1000 ° C. for 2 hours, and then forged into a plate material having a thickness of 25 mm and a width of 60 mm by hot pressing to obtain a test material. The material was soaked at 820 ° C. for 1 hour and then quenched with oil, followed by tempering that was held at 550 ° C. for 1 hour and air-cooled to obtain a test material. A Charpy impact test piece (10 mm × 10 mm × 55 mm, with a V notch of 2 mm depth) defined by JIS Z 2202 is taken from the specimen in a direction perpendicular to the forging direction, and the test temperature is 0 ° C. to 100 ° C. The impact characteristics (impact absorption energy) were evaluated by performing an impact test while changing between.

表3に、各衝撃試験温度毎の衝撃吸収エネルギーを示した。   Table 3 shows the impact absorption energy at each impact test temperature.

Figure 2007327122
Figure 2007327122

また、図5には、各供試鋼毎のシャルピー衝撃試験温度と衝撃吸収エネルギーとの関係を示した。   FIG. 5 shows the relationship between the Charpy impact test temperature and impact absorption energy for each test steel.

表3および図5に示された結果から、下記のことが明らかとなった。焼戻し後の材料の衝撃特性は、通常の高P濃度鋼を用いた試験番号A5の場合に、衝撃吸収エネルギーが最も低く、劣った衝撃特性となっている。これに対して、予め脱燐した極低燐鋼であってCa添加を行ったものの、本発明で規定する(2)式および(3)式の関係を満足しない供試鋼を用いた試験番号A1では、衝撃吸収エネルギーが増加し、衝撃特性は顕著に改善されている。さらに、NdおよびCaが添加され、(6)式および(7)式の関係を満足するが、本発明で規定する(2)式および(3)式の関係を満足しない供試鋼を用いた試験番号A2では、衝撃吸収エネルギーがさらに一層増加し、衝撃特性が向上している。   From the results shown in Table 3 and FIG. 5, the following became clear. The impact properties of the material after tempering are inferior impact properties with the lowest impact absorption energy in the case of test number A5 using ordinary high P concentration steel. On the other hand, a test number using a test steel that was an ultra-low phosphorus steel dephosphorized in advance and added Ca, but did not satisfy the relationship of the formulas (2) and (3) defined in the present invention. In A1, the impact absorption energy increases and the impact characteristics are remarkably improved. Furthermore, Nd and Ca were added, and a test steel that satisfies the relationship of the formulas (6) and (7) but does not satisfy the relationship of the formulas (2) and (3) defined in the present invention was used. In test number A2, the impact absorption energy is further increased and the impact characteristics are improved.

また、NdおよびCaを添加した供試鋼であって、(6)式および(7)式の関係は満たすものの、本発明で規定する(3)式の関係を満たさない供試鋼を使用した試験番号A3では、試験番号A2とほぼ同程度の衝撃特性が得られた。そして、(6)式および(7)式の関係はもちろんのこと、本発明で規定する(1)〜(3)式の関係を満足するように、Nd濃度制御後にCa濃度制御を行った供試鋼を使用した試験番号A4では、衝撃吸収エネルギーが一段と増加して最も高くなっており、遷移温度の上昇に加えて上部棚エネルギーの値も上昇して、極めて良好な衝撃特性を示している。   Moreover, it was a test steel to which Nd and Ca were added, and the test steel that satisfied the relationship of the formulas (6) and (7) but did not satisfy the relationship of the formula (3) defined in the present invention was used. In the test number A3, impact characteristics almost the same as the test number A2 were obtained. In addition to the relationship between the equations (6) and (7), the Ca concentration control was performed after the Nd concentration control so as to satisfy the relationships (1) to (3) defined in the present invention. In the test number A4 using the test steel, the impact absorption energy is further increased and becomes the highest, and the value of the upper shelf energy is increased in addition to the increase of the transition temperature, which shows extremely good impact characteristics. .

以上の結果から、Nd添加処理、またはNdおよびCa添加処理を行ってP化合物を含む介在物を生成させることにより、溶解P濃度および固溶P濃度の良好な低減効果を得ることができること、および、本発明で規定する方法により溶鉄を処理してNd−P系化合物およびCa−P系化合物を効率的に生成させることにより、鋼材のさらに一段と高い衝撃特性を達成できる良好な介在物制御効果が得られることが確認された。   From the above results, by performing the Nd addition treatment or the Nd and Ca addition treatment to generate inclusions containing the P compound, it is possible to obtain a good effect of reducing the dissolved P concentration and the solid solution P concentration, and In addition, by processing molten iron by the method defined in the present invention to efficiently produce Nd-P compounds and Ca-P compounds, it is possible to achieve a better inclusion control effect that can achieve even higher impact properties of steel materials. It was confirmed that it was obtained.

本発明の溶鉄の処理方法によれば、溶鉄中のP、SおよびO濃度に応じて溶鉄中のNd濃度を制御した後、Nd濃度に応じて溶鉄中のCa濃度を制御することにより、低いNd濃度のもとに溶鉄中にCa−P系介在物およびNd−P系介在物を効率よく生成させて溶解P濃度ひいては製品中の固溶P濃度を効果的に低減することができるので、Pによる鋼品質の阻害作用を従来にない極めて低い水準にまで低減することができる。また、本発明の方法は、溶鉄中にCa系介在物を生成させるので、鋳造用ノズルの閉塞防止効果を有する連続鋳造性に優れた溶鉄を製造できる。   According to the molten iron treatment method of the present invention, the Nd concentration in the molten iron is controlled according to the P, S, and O concentrations in the molten iron, and then the Ca concentration in the molten iron is controlled according to the Nd concentration. Since Ca-P inclusions and Nd-P inclusions can be efficiently generated in the molten iron under the Nd concentration, the dissolved P concentration and thus the solid solution P concentration in the product can be effectively reduced. The steel quality hindering action by P can be reduced to an extremely low level unprecedented. Moreover, since the method of this invention produces | generates Ca inclusions in molten iron, it can manufacture the molten iron excellent in the continuous castability which has the obstruction | occlusion prevention effect of the nozzle for casting.

本発明は、前記のとおり、P:0.0001%以上0.5%以下、S:0.005%以下、およびO(酸素):0.005%以下を含有する溶鉄にNdを添加した後に、Caを添加する溶鉄の処理方法であって、溶鉄中のP濃度、S濃度およびO濃度に応じて前記(1)式および(2)式により表される関係を満足するように溶鉄中のNd濃度を制御した後、溶鉄にCaを添加して、溶鉄中のNd濃度に応じて前記(3)式により表される関係を満足するように溶鉄中のCa濃度を制御する溶鉄の処理方法である。以下に本発明の方法についてさらに詳しく説明する。   As described above, the present invention, after adding Nd to molten iron containing P: 0.0001% or more and 0.5% or less, S: 0.005% or less, and O (oxygen): 0.005% or less , A treatment method of molten iron to which Ca is added, and in the molten iron so as to satisfy the relationship represented by the equations (1) and (2) according to the P concentration, S concentration and O concentration in the molten iron After controlling Nd density | concentration, the process method of the molten iron which controls Ca density | concentration in molten iron so that Ca may be added to molten iron and the relationship represented by said Formula (3) may be satisfied according to Nd density | concentration in molten iron It is. Hereinafter, the method of the present invention will be described in more detail.

(a)NdおよびCaの添加方法
本発明において、溶鉄中のP、SおよびO濃度に応じて(1)式および(2)式の関係を満足するように溶鉄中のNd濃度を制御した後、溶鉄にCaを添加して、溶鉄中のNd濃度に応じて(3)式の関係を満足するように溶鉄中のCa濃度を制御する具体的方法について下記に説明する。
(A) Method of adding Nd and Ca In the present invention, after controlling the Nd concentration in the molten iron so as to satisfy the relationship of the formulas (1) and (2) according to the P, S, and O concentrations in the molten iron A specific method of adding Ca to the molten iron and controlling the Ca concentration in the molten iron so as to satisfy the relationship of the expression (3) according to the Nd concentration in the molten iron will be described below.

一般に、溶鉄中のP濃度の制御には最も高いコストを要し、次いで脱硫処理を施すS濃度の制御に高いコストを要する。脱酸剤を添加する脱酸処理は比較的容易であり、Ndを添加するだけで処理が可能なNd添加処理が最も容易である。したがって、溶鉄へのNdの添加前もしくはP濃度が変化する溶銑予備処理、または転炉、AODもしくはVOD処理後に、溶鉄中のP濃度を発光分光分析法などにより迅速分析し、その値を把握する。同様にして、S濃度についても測定する。溶鉄中の酸素濃度に規制がない場合には、Al、Siなどの脱酸剤を投入して溶鉄中の酸素濃度を調整する。   Generally, the highest cost is required to control the P concentration in the molten iron, and then the high cost is required to control the S concentration for performing the desulfurization treatment. The deoxidation treatment in which the deoxidizer is added is relatively easy, and the Nd addition treatment that can be performed only by adding Nd is the easiest. Therefore, before the addition of Nd to the molten iron or after the hot metal pretreatment where the P concentration changes, or after the converter, AOD or VOD treatment, the P concentration in the molten iron is quickly analyzed by emission spectroscopic analysis and the value is grasped. . Similarly, the S concentration is also measured. If there is no restriction on the oxygen concentration in the molten iron, a deoxidizer such as Al or Si is introduced to adjust the oxygen concentration in the molten iron.

このようにして、Ndの添加に先立って、溶鉄の処理中にP濃度およびS濃度を測定し、脱酸剤を添加することにより酸素濃度を調整した後に、前記(1)式および(2)式により求められるNd濃度範囲となるように、溶鉄中にNdを添加すればよい。溶鉄中における脱酸元素濃度と酸素濃度、あるいは添加したNdの歩留まりは、処理装置毎に過去の操業実績などから求めることができる。溶鉄中の酸素濃度に規格がある鋼種の場合には、従来法により、その酸素濃度規格を満足するように酸素濃度の調整を行った後、その調整後の酸素濃度を用いて、(1)式および(2)式によりNdの添加量を求めればよい。   In this way, prior to the addition of Nd, the P concentration and the S concentration are measured during the treatment of the molten iron, and after adjusting the oxygen concentration by adding a deoxidizing agent, the above-mentioned formulas (1) and (2) What is necessary is just to add Nd in molten iron so that it may become the Nd density | concentration range calculated | required by a type | formula. The deoxidation element concentration and oxygen concentration in the molten iron, or the yield of added Nd can be obtained from past operation results for each processing apparatus. In the case of a steel type having a standard for oxygen concentration in molten iron, after adjusting the oxygen concentration so as to satisfy the oxygen concentration standard by the conventional method, the oxygen concentration after the adjustment is used (1) What is necessary is just to obtain | require the addition amount of Nd by Formula and Formula (2).

例えば、転炉を用いたプロセスでは、溶鉄は、溶銑予備処理、転炉吹錬、RHなどの真空脱ガス処理、および連続鋳造の順に処理されるので、RH処理中に溶鉄中P濃度およびS濃度を測定する。さらに、脱酸条件から酸素濃度を求め、これらの各濃度に基づいて(1)式および(2)式からNdの添加量を求め、RH処理末期にNdを添加すればよい。また、RH処理後にP濃度およびS濃度はほとんど変化しないので、RH処理後に取鍋精錬装置を用いた処理中にNdを添加してもよいし、さらに、連続鋳造機のタンディッシュ内の溶鋼にNd添加を行ってもよい。   For example, in the process using the converter, the molten iron is processed in the order of hot metal pretreatment, converter blowing, vacuum degassing treatment such as RH, and continuous casting, so that the P concentration and S in the molten iron are increased during the RH treatment. Measure the concentration. Further, the oxygen concentration is obtained from the deoxidation conditions, the amount of Nd added is obtained from the equations (1) and (2) based on these concentrations, and Nd is added at the end of the RH treatment. Further, since the P concentration and the S concentration hardly change after the RH treatment, Nd may be added during the treatment using the ladle refining device after the RH treatment, and further, the molten steel in the tundish of the continuous casting machine is added. Nd addition may be performed.

電気炉、AODまたはVODを用いる場合においても同様である。すなわち、鋳造前の処理工程の末期に溶鉄中P濃度を測定してNdの添加量を決定し、その後、上記処理の終了期あるいは鋳造直前にNdを添加すればよい。ただし、Ndの添加は、前述したNd添加作用から明らかなとおり、Caの添加に先立って行う必要がある。   The same applies when an electric furnace, AOD or VOD is used. That is, the concentration of P in molten iron is measured at the end of the treatment step before casting to determine the amount of Nd added, and then Nd is added at the end of the treatment or immediately before casting. However, it is necessary to add Nd prior to the addition of Ca, as is apparent from the Nd addition action described above.

添加するNdの形態としては、総添加量を削減する目的から、金属Ndを用いることが好ましいが、Al、Si、FeなどとNdとの合金や混合物を用いてもよい。また、Ndの添加方法は、ホッパーなどの装入装置を用いた一括添加、インジェクションによる添加、ワイヤ供給方式よる添加など、一般に用いられている方法を用いることができる。   As a form of Nd to be added, it is preferable to use metal Nd for the purpose of reducing the total addition amount, but an alloy or a mixture of Al, Si, Fe, or the like and Nd may be used. As a method for adding Nd, commonly used methods such as batch addition using a charging device such as a hopper, addition by injection, and addition by a wire supply method can be used.

一方、Caは蒸発性の高い金属であることから、その添加量は、各設備毎の添加歩留まりを考慮して決定すればよい。Caは、Ndの添加後であれば鋳造までの間のどの時点で添加してもよく、精錬装置内の溶鉄に添加しても、タンディッシュ内の溶鉄に添加してもよい。   On the other hand, since Ca is a highly evaporable metal, its addition amount may be determined in consideration of the addition yield for each facility. Ca may be added at any time before casting as long as Nd is added, or may be added to the molten iron in the refining apparatus or to the molten iron in the tundish.

添加するCaの形態としては、金属Caのほかに、一般的なCa−Si合金などの合金、または金属CaもしくはCa合金とフラックスとを混合した混合物を用いてもよい。また、Caの添加方法は、Ndの場合と同様に、ホッパーなどの装入装置を用いた一括添加、インジェクションによる添加、ワイヤ供給方式よる添加など、一般に用いられている方法を用いることができる。   As a form of Ca to be added, in addition to metal Ca, an alloy such as a general Ca-Si alloy, or a mixture of metal Ca or Ca alloy and a flux may be used. In addition, as in the case of Nd, commonly used methods such as batch addition using a charging device such as a hopper, addition by injection, and addition by a wire supply method can be used as the Ca addition method.

本発明の方法を実施するに際して、P濃度を大幅に低減するほどの脱燐処理を行う必要はないが、CaおよびNdの添加量を削減するために、溶銑予備処理などにおいて脱燐処理を行ってもよい。また、CaおよびNdの添加歩留まりを向上させるために、Ndの添加前にスラグの改質を行っておくことが好ましい。   When carrying out the method of the present invention, it is not necessary to carry out a dephosphorization treatment so as to greatly reduce the P concentration, but in order to reduce the amount of Ca and Nd added, a dephosphorization treatment is carried out in a hot metal pretreatment or the like. May be. In order to improve the yield of addition of Ca and Nd, it is preferable to modify the slag before adding Nd.

(b)溶鉄およびスラグの好ましい成分組成範囲
1) 溶鉄の好ましい成分組成範囲
本発明の方法は、前記のとおり、S濃度が0.005%以下、およびO濃度が0.005%以下の溶鉄を対象としているが、好ましくは、Nd添加前におけるS濃度を0.0025%以下、およびO濃度を0.0030%以下とすることにより、Nd添加量およびCa添加量をさらに低減することができる。
(B) Preferred Component Composition Range of Molten Iron and Slag 1) Preferred Component Composition Range of Molten Iron As described above, the method of the present invention uses molten iron having an S concentration of 0.005% or less and an O concentration of 0.005% or less. Although it is the object, preferably, the Sd concentration before addition of Nd is 0.0025% or less and the O concentration is 0.0030% or less, whereby the Nd addition amount and the Ca addition amount can be further reduced.

また、S濃度については、Nd−P系介在物およびCa−P系介在物のより一層の分散を図るために、0.0003%以上であることが、また、O濃度については、同様の理由により0.0005%以上であることが、それぞれ好ましい。
Nd、P、SおよびO以外の溶鉄成分であってこれらの成分組成に影響を及ぼさない合金成分については、Nd添加後にそれらの成分調整を行ってもよい。
The S concentration is 0.0003% or more in order to further disperse the Nd-P inclusions and Ca-P inclusions, and the O concentration is the same reason. Is preferably 0.0005% or more.
For alloy components other than Nd, P, S, and O that do not affect the composition of these components, the components may be adjusted after Nd is added.

また、酸素濃度を効果的に低減することができるAl、Si、Mgなどは、Ndの添加前に添加することが好ましい。これらの元素をNdの添加前に添加することにより、溶鉄中の酸素濃度を低減できるため、酸素濃度の変動を小さくするとともに、NdおよびCaの添加量を削減することができる。さらに、前記(2)式および(3)式の関係を満足させやすい酸素濃度の範囲内であれば、Nd−P系介在物およびCa−P系介在物の生成を促進させることができる。   Further, Al, Si, Mg, etc. that can effectively reduce the oxygen concentration are preferably added before the addition of Nd. By adding these elements before the addition of Nd, the oxygen concentration in the molten iron can be reduced, so that fluctuations in the oxygen concentration can be reduced and the addition amounts of Nd and Ca can be reduced. Furthermore, the generation of Nd-P inclusions and Ca-P inclusions can be promoted as long as the oxygen concentration is within a range that easily satisfies the relationship of the expressions (2) and (3).

次に、C、Si、Mn、Si、Alその他の成分組成の好ましい範囲について述べる。   Next, preferred ranges of C, Si, Mn, Si, Al and other component compositions will be described.

C:3.5%以下およびSi:2.5%以下
CおよびSiは、その濃度が高いと、鋼中におけるPの活量を高める作用を有する元素である。C濃度が3.5%を超えて高いと、Pの活量に与える影響が顕著となり、P化合物の生成条件が変化するおそれがあることから、C濃度は3.5%以下であることが好ましい。同様の理由により、Si濃度は2.5%以下であることが好ましい。
C: 3.5% or less and Si: 2.5% or less C and Si are elements having an action of increasing the activity of P in steel when the concentration is high. If the C concentration is higher than 3.5%, the effect on the activity of P becomes significant, and the production conditions of the P compound may change. Therefore, the C concentration may be 3.5% or less. preferable. For the same reason, the Si concentration is preferably 2.5% or less.

なお、C濃度は、鋼材特性の確保および安定した脱酸作用の確保の観点から、0.0015%以上の範囲であることがさらに好ましく、また、Si濃度は、予備脱酸を行う観点から0.01%以上の範囲であることがさらに好ましい。   The C concentration is more preferably in the range of 0.0015% or more from the viewpoint of securing the steel material characteristics and the stable deoxidation action, and the Si concentration is 0 from the viewpoint of performing preliminary deoxidation. More preferably, it is in the range of 0.01% or more.

Mn:3%以下
Mnは、その濃度が高いと鋼中におけるPの活量を低下させる作用を有する元素である。Mn濃度が3%を超えて高いと、Pの活量が著しく低下するため、P化合物の生成が困難となるおそれがある。したがって、Mn濃度は3%以下であることが好ましい。なお、Mn濃度は、鋼材強度を確保する観点から、0.2%以上の範囲であることがさらに好ましい。
Mn: 3% or less Mn is an element having an action of reducing the activity of P in steel when its concentration is high. If the Mn concentration is higher than 3%, the activity of P is remarkably reduced, and thus it may be difficult to produce a P compound. Therefore, the Mn concentration is preferably 3% or less. The Mn concentration is more preferably in the range of 0.2% or more from the viewpoint of securing the steel material strength.

Al:3%以下
Alは、鋼中の溶解酸素との平衡関係から、溶解酸素濃度に極めて大きな影響を及ぼす。Al濃度が3%を超えて高くなると、平衡溶解酸素濃度が急激に高くなり、アルミナ系酸化物介在物が増加して鋼の清浄性が悪化するおそれがあることから、Al濃度は3%以下であることが好ましい。また、Al濃度は、Ndの歩留まり向上およびその安定性確保の観点から、0.0035%以上の範囲であることがさらに好ましい。
Al: 3% or less Al has an extremely large influence on the dissolved oxygen concentration from the equilibrium relationship with dissolved oxygen in the steel. If the Al concentration exceeds 3%, the equilibrium dissolved oxygen concentration increases rapidly, and the alumina oxide inclusions increase, which may deteriorate the cleanliness of the steel. Therefore, the Al concentration is 3% or less. It is preferable that The Al concentration is more preferably in the range of 0.0035% or more from the viewpoint of improving the yield of Nd and ensuring its stability.

なお、本発明において、Al濃度とは、酸可溶Al(sol.Al)の濃度を意味する。   In the present invention, the Al concentration means the concentration of acid-soluble Al (sol. Al).

上記の溶鉄において、鉄の一部に替えて下記のNi、Mo、V、Ti、Crなどの元素が含有されていてもよい。これらの元素は、溶鉄中におけるNdとPとの反応にほとんど影響を及ぼさないからである。すなわち、0.01〜30%の濃度範囲のNi、0.01〜1%の濃度範囲のMo、0.001〜0.1%の濃度範囲のV、0.005〜0.3%の濃度範囲のTi、0.001〜35%の濃度範囲のCrなどである。   In said molten iron, it replaces with a part of iron and elements, such as following Ni, Mo, V, Ti, Cr, may contain. This is because these elements hardly affect the reaction between Nd and P in molten iron. That is, Ni in a concentration range of 0.01 to 30%, Mo in a concentration range of 0.01 to 1%, V in a concentration range of 0.001 to 0.1%, and a concentration of 0.005 to 0.3% Ti in the range, Cr in the concentration range of 0.001 to 35%, and the like.

2)スラグの好ましい成分組成範囲
本発明は、Ndとともに反応性の高いCaを併用使用することから、Ndを単独添加する場合と異なり、スラグの成分組成を制御する必要はないが、一層再現性良くNd−P系介在物を生成させる観点から、スラグ中のCaOとAl23の質量濃度比である(CaO/Al23)の値は0.7以上9以下であることが好ましく、上記の値は1以上2以下であることがさらに好ましい。また、CaOとSiO2の質量濃度比である(CaO/SiO2)の値は0.65以上であることが好ましい。スラグ中のT.Fe濃度とMnO濃度との合計であるスラグ中の低級酸化物の濃度は10%以下であることが好ましく、5%以下であることがさらに好ましい。NdやCaの酸化ロス量が低減し、添加金属の歩留まりが向上するからである。
2) Preferred component composition range of slag Since the present invention uses a highly reactive Ca together with Nd, it is not necessary to control the component composition of slag, unlike the case of adding Nd alone, but it is more reproducible. From the viewpoint of generating Nd—P inclusions well, the value of (CaO / Al 2 O 3 ), which is the mass concentration ratio of CaO and Al 2 O 3 in the slag, is preferably 0.7 or more and 9 or less. The above value is more preferably 1 or more and 2 or less. The value of (CaO / SiO 2 ), which is the mass concentration ratio of CaO and SiO 2 , is preferably 0.65 or more. T. in slag The concentration of the lower oxide in the slag, which is the sum of the Fe concentration and the MnO concentration, is preferably 10% or less, and more preferably 5% or less. This is because the amount of oxidation loss of Nd and Ca is reduced and the yield of the added metal is improved.

本発明では、スラグ成分組成が溶鉄の処理効果に及ぼす影響は少ないが、上記のスラグ成分組成の範囲に調整することにより、一層安定した処理効果が得られる。   In the present invention, the influence of the slag component composition on the treatment effect of the molten iron is small, but a more stable treatment effect can be obtained by adjusting to the above slag component composition range.

(試験方法)
鋼成分中のC、Si、Mn、Cr、MoおよびV濃度を前記表1に記載された供試鋼の成分濃度範囲と同範囲として、P、S、O、NdおよびCa濃度を変化させた鋼180kgを真空高周波誘導溶解炉により溶製した。溶製に際しては、溶解温度を1600℃とし、鋼中のP、SおよびO濃度を調整後に金属Ndを添加し、次いで金属Caを添加して成分濃度の調整を行った。なお、O濃度の制御は、酸素ガスの上吹きによりO濃度を上昇させた後、Cによる脱酸またはAlによる脱酸処理を行ってO濃度を低減させ、目標値とする方法により行った。溶鋼の成分組成を調整後、内径16mm、長さ200mmの耐火物性鋳造用ノズルを介して鋳型内に鋳造し、インゴットを作成した。
(Test method)
The C, Si, Mn, Cr, Mo, and V concentrations in the steel components were set to the same ranges as the component concentration ranges of the test steel described in Table 1, and the P, S, O, Nd, and Ca concentrations were varied. 180 kg of steel was melted in a vacuum high frequency induction melting furnace. At the time of melting, the melting temperature was 1600 ° C., and after adjusting the P, S, and O concentrations in the steel, the metal Nd was added, and then the metal Ca was added to adjust the component concentration. The O concentration was controlled by increasing the O concentration by blowing up oxygen gas and then reducing the O concentration by performing deoxidation treatment with C or deoxidation treatment with Al to obtain a target value. After adjusting the component composition of the molten steel, it was cast into a mold through a refractory casting nozzle having an inner diameter of 16 mm and a length of 200 mm to produce an ingot.

得られたインゴットは、1000℃にて2時間の均熱処理後、熱間プレスにて厚さ25mm、幅60mmの板材に鍛伸し、試験素材とした。その後、この試験素材を820℃にて1時間の均熱後、油焼入れした後、550℃にて1時間保持し空冷する焼戻し処理を行って、供試材とした。供試材から鍛伸方向と直角方向に、JIS Z 2202で規定されるシャルピー衝撃試験片(10mm×10mm×55mm、深さ2mmのVノッチ付き)を採取し、試験温度20℃にて、シャルピー衝撃試験を行って、衝撃吸収エネルギーを評価した。また、別途切り出したサンプル中の介在物についてSEMによる観察およびEPMAによる成分組成の定量を行うとともに、鋳造ノズルの内面を観察し、付着物の有無を調査確認した。   The obtained ingot was subjected to a soaking treatment at 1000 ° C. for 2 hours, and then forged into a plate material having a thickness of 25 mm and a width of 60 mm by a hot press to obtain a test material. Thereafter, the test material was soaked at 820 ° C. for 1 hour, then oil-quenched, and then subjected to a tempering process that was held at 550 ° C. for 1 hour and air-cooled to obtain a test material. A Charpy impact test piece (10 mm × 10 mm × 55 mm, with a V notch of 2 mm depth) specified in JIS Z 2202 is taken from the specimen in a direction perpendicular to the forging direction, and Charpy is tested at a test temperature of 20 ° C. An impact test was performed to evaluate the impact absorption energy. Further, the inclusions in the sample cut out separately were observed by SEM and the component composition was quantified by EPMA, and the inner surface of the casting nozzle was observed to check for the presence or absence of deposits.

(試験結果)
表4に、試験条件として、鋼中のP、S、O、NdおよびCa濃度、(1)式により算出されるA値、(2)式におけるNd濃度の下限値および上限値、(2)式の満足性、(3)式におけるCa濃度の下限値および上限値、ならびに(3)式の満足性を示した。
(Test results)
In Table 4, as test conditions, P, S, O, Nd and Ca concentrations in steel, A value calculated by equation (1), lower limit value and upper limit value of Nd concentration in equation (2), (2) Satisfaction with the formula, lower and upper limits of the Ca concentration in the formula (3), and satisfaction with the formula (3) were shown.

また、表5には、試験結果として、Ca−P系介在物およびNd−P系介在物生成の有無、衝撃吸収エネルギー、ならびに鋳造ノズル内の付着物の有無を示した。   Table 5 shows the presence or absence of Ca-P inclusions and Nd-P inclusions, impact absorption energy, and the presence or absence of deposits in the casting nozzle as test results.

Figure 2007327122
Figure 2007327122

Figure 2007327122
Figure 2007327122

試験番号1〜8は、前記(1)〜(3)式により表される関係を全て満足する本発明例についての試験である。これに対して、比較例1の試験番号9〜15は、Nd濃度の適正範囲を規定した(1)式および(2)式の関係は満足するものの、Ca濃度の適正範囲を規定した(3)式の関係を満足しない試験であり、また、比較例2の試験番号16〜23は、Nd濃度の適正範囲を規定した(1)式および(2)式の関係も、Ca濃度の適正範囲を規定した(3)式の関係をも満足しない試験である。また、比較例3の試験番号24は、予め極低燐レベルまでP濃度を低下させたがNdを添加しなかった試験である。   Test numbers 1 to 8 are tests for examples of the present invention that satisfy all of the relationships represented by the expressions (1) to (3). On the other hand, Test Nos. 9 to 15 of Comparative Example 1 defined the appropriate range of the Ca concentration (3) while satisfying the relationship between the expressions (1) and (2) that defined the appropriate range of the Nd concentration (3 ) Is a test that does not satisfy the relationship of the formula, and the test numbers 16 to 23 of Comparative Example 2 are the proper ranges of the Ca concentration in the relationships of the formulas (1) and (2) that define the appropriate range of the Nd concentration. This is a test that does not satisfy the relationship of the expression (3) that defines Test number 24 of Comparative Example 3 is a test in which the P concentration was reduced to an extremely low phosphorus level in advance but Nd was not added.

鋼中のNd濃度を本発明で規定する(1)式および(2)式の関係を満たすように添加調整した後、Ca濃度を同(3)式の関係を満足するように制御した本発明例についての試験である試験番号1〜8では、Ca−P系介在物およびNd−P系介在物がともに生成し、衝撃吸収エネルギーの高い極めて衝撃特性の良好な鋼材が得られた。さらに、鋳造後のノズル内面の調査結果によれば、付着物の生成が全く認められず、鋳造性にも優れた方法であることが確認された。これは、溶解P濃度の効率的低減効果に加えて、溶鋼中におけるCa−P系介在物の生成によるノズル閉塞防止効果が発揮されたことによる。   The present invention in which the Nd concentration in the steel is adjusted so as to satisfy the relationship of the formula (3) after adding and adjusting so as to satisfy the relationship of the formulas (1) and (2) defined in the present invention. In Test Nos. 1 to 8, which are tests for the examples, both Ca—P inclusions and Nd—P inclusions were produced, and steel materials with high impact absorption energy and extremely good impact characteristics were obtained. Furthermore, according to the result of the investigation of the inner surface of the nozzle after casting, it was confirmed that no deposit was formed and the method was excellent in castability. This is because, in addition to the effect of efficiently reducing the dissolved P concentration, the effect of preventing nozzle clogging due to the formation of Ca-P inclusions in the molten steel was exhibited.

これに対して、Nd濃度の適正範囲を規定した(1)式および(2)式の関係は満足するものの、Ca濃度の適正範囲を規定した(3)式の関係を満足しない比較例1の試験である試験番号9〜15では、Ca−P系介在物またはNd−P系介在物のいずれか一方の介在物しか生成せず、得られた鋼材の衝撃吸収エネルギーは、本発明例である試験番号1〜8に比較して低くなっている。また、Nd−P系介在物しか生成していない試験番号9、11および14では、ノズル内に付着物が認められ、鋳造性が劣る結果となった。   On the other hand, the relationship between the expressions (1) and (2) that define the appropriate range of the Nd concentration is satisfied, but the relationship of the expression (3) that defines the appropriate range of the Ca concentration is not satisfied. In test numbers 9 to 15 which are tests, only one of Ca-P inclusions and Nd-P inclusions is produced, and the impact absorption energy of the obtained steel is an example of the present invention. It is lower than test numbers 1-8. In Test Nos. 9, 11 and 14 in which only Nd-P inclusions were generated, deposits were observed in the nozzle, resulting in poor castability.

比較例2の試験のうち、Nd濃度が(1)式および(2)式で規定される濃度範囲よりも低く、Ca濃度も(3)式で規定される濃度範囲を外れる試験番号16〜19では、Nd−P系介在物およびCa−P系介在物のいずれの介在物も生成せず、得られた鋼材の衝撃吸収エネルギーは著しく低くなっている。   Among the tests of Comparative Example 2, Nd concentration is lower than the concentration range defined by Equations (1) and (2), and Ca concentration is outside the concentration range defined by Equation (3). Then, neither Nd-P inclusion nor Ca-P inclusion is generated, and the impact absorption energy of the obtained steel material is extremely low.

さらに、比較例2の試験のうち、試験番号20〜23では、Nd−P系介在物は生成されたものの、Nd濃度が(2)式で規定される濃度範囲の上限を超えていることから、鋼の清浄度が悪化し、その結果、比較例1の場合よりも衝撃吸収エネルギーが低くなっている。また、試験番号20〜23ではノズル内に付着物が生成した。   Furthermore, among the tests of Comparative Example 2, in test numbers 20 to 23, Nd-P inclusions were generated, but the Nd concentration exceeded the upper limit of the concentration range defined by the formula (2). The cleanliness of steel deteriorates, and as a result, the impact absorption energy is lower than that of Comparative Example 1. Moreover, in test numbers 20-23, the deposit | attachment produced | generated in the nozzle.

本発明例を比較例3の試験番号24と比較すると、本発明例では、予めP濃度を極低レベルまで低減した試験番号24よりも高い鋼材の衝撃吸収エネルギーが得られており、高いコストをかけて徹底した脱燐処理を行うよりも、本発明の方法を用いて溶鉄を処理する方が安価にして高性能の鋼材を供給できることがわかる。   When comparing the present invention example with test number 24 of comparative example 3, in the present invention example, a higher shock absorption energy of the steel material than test number 24 in which the P concentration was reduced to an extremely low level in advance was obtained. It can be seen that it is possible to supply a high-performance steel material at a lower cost by treating the molten iron by using the method of the present invention than by carrying out thorough dephosphorization treatment.

以上の試験結果から、本発明の溶鉄の処理方法を用いることにより、連続鋳造性に優れ、かつ、固溶P濃度を大幅に低減した鋼材を高い生産性のもとに製造できることか確認された。   From the above test results, it was confirmed that by using the molten iron treatment method of the present invention, it is possible to manufacture a steel material having excellent continuous castability and having a greatly reduced solid solution P concentration with high productivity. .

本発明の溶鉄の処理方法によれば、溶鉄中のP、SおよびO濃度に応じて溶鉄中のNd濃度を制御した後、Nd濃度に応じて溶鉄中のCa濃度を制御することにより、低いNd濃度のもとに溶鉄中にCa−P系介在物およびNd−P系介在物を効率よく生成させて溶解P濃度ひいては製品中の固溶P濃度を効果的に低減することができるので、Pによる鋼品質の阻害作用を従来にない極めて低い水準にまで低減することができる。また、本発明の方法は、溶鉄中にCa系介在物を生成させるので、鋳造用ノズルの閉塞防止効果を有する連続鋳造性に優れた溶鉄を製造できる。したがって、本発明の方法は、高い生産性のもとに溶解P濃度を低減し、かつ、連続鋳造性の良好な溶鉄を精錬供給できる溶鉄の処理方法として製鋼技術分野において広範に適用できる。   According to the molten iron treatment method of the present invention, the Nd concentration in the molten iron is controlled according to the P, S, and O concentrations in the molten iron, and then the Ca concentration in the molten iron is controlled according to the Nd concentration. Since Ca-P inclusions and Nd-P inclusions can be efficiently generated in the molten iron under the Nd concentration, the dissolved P concentration and thus the solid solution P concentration in the product can be effectively reduced. The steel quality hindering action by P can be reduced to an extremely low level unprecedented. Moreover, since the method of this invention produces | generates Ca inclusions in molten iron, it can manufacture the molten iron excellent in the continuous castability which has the obstruction | occlusion prevention effect of the nozzle for casting. Therefore, the method of the present invention can be widely applied in the steelmaking technical field as a molten iron treatment method capable of reducing the dissolved P concentration with high productivity and refining and supplying molten iron with good continuous castability.

溶鉄中のCa濃度と溶鉄から採取した急冷サンプル中に存在した介在物中のCaO濃度との関係を示す図である。It is a figure which shows the relationship between Ca density | concentration in molten iron, and the CaO density | concentration in the inclusion which existed in the rapidly cooled sample extract | collected from molten iron. 溶解Nd濃度([Nd]−A)と溶解Ca濃度(B)との関係を示す図である。It is a figure which shows the relationship between melt | dissolution Nd density | concentration ([Nd] -A) and melt | dissolution Ca density | concentration (B). Ca−P系介在物の生成の有無に及ぼす溶鉄中Ca濃度ならびに(1)式および(2)式の関係を満足するNd濃度の影響を示す図である。It is a figure which shows the influence of Nd density | concentration which satisfies the relationship of Ca density | concentration in molten iron and the presence or absence of the production | generation of Ca-P type inclusion, and (1) Formula and (2) Formula. Ca−P系介在物およびNd−P系介在物の生成の有無に及ぼす溶鉄中Ca濃度ならびに(1)式および(2)式の関係を満足するNd濃度の影響を示す図である。It is a figure which shows the influence of the Nd density | concentration which satisfies the relationship of Ca density | concentration in molten iron and the relationship of (1) type | formula and (2) type | formula to the presence or absence of the production | generation of Ca-P type inclusion and Nd-P type inclusion. シャルピー衝撃試験温度と衝撃吸収エネルギーとの関係を示す図である。It is a figure which shows the relationship between Charpy impact test temperature and impact absorption energy.

Claims (1)

質量%で、P:0.0001%以上0.5%以下、S:0.005%以下、およびO(酸素):0.005%以下を含有する溶鉄にNdを添加した後に、Caを添加する溶鉄の処理方法であって、溶鉄中のP濃度、S濃度およびO濃度に応じて下記(1)式および(2)式により表される関係を満足するように溶鉄中のNd濃度を制御した後、溶鉄にCaを添加して、溶鉄中のNd濃度に応じて下記(3)式により表される関係を満足するように溶鉄中のCa濃度を制御することを特徴とする溶鉄の処理方法。
A=0.24[P]+0.82[S]+0.85[O] ・・・・(1)
A+0.005≦[Nd]≦A+0.03 ・・・・(2)
1.2×10-2×[Nd]2/3≦[Ca]≦1.6×10-2×[Nd]2/3+0.0015 ・・・・(3)
ここで、[P]、[S]、[O]、[Nd]および[Ca]は、溶鉄中における各元素
の濃度(質量%)を表す。
After adding Nd to molten iron containing, by mass%, P: 0.0001% to 0.5%, S: 0.005% and O (oxygen): 0.005% or less, Ca is added A method of treating molten iron, wherein the Nd concentration in molten iron is controlled so as to satisfy the relationship expressed by the following formulas (1) and (2) according to the P concentration, S concentration and O concentration in the molten iron Then, Ca is added to the molten iron, and the concentration of Ca in the molten iron is controlled so as to satisfy the relationship represented by the following formula (3) according to the Nd concentration in the molten iron. Method.
A = 0.24 [P] +0.82 [S] +0.85 [O] (1)
A + 0.005 ≦ [Nd] ≦ A + 0.03 (2)
1.2 × 10 −2 × [Nd] 2/3 ≦ [Ca] ≦ 1.6 × 10 −2 × [Nd] 2/3 +0.0015 (3)
Here, [P], [S], [O], [Nd], and [Ca] represent the concentration (mass%) of each element in the molten iron.
JP2006160828A 2006-06-09 2006-06-09 Method of processing molten iron by adding Nd and Ca Active JP4656007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006160828A JP4656007B2 (en) 2006-06-09 2006-06-09 Method of processing molten iron by adding Nd and Ca

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006160828A JP4656007B2 (en) 2006-06-09 2006-06-09 Method of processing molten iron by adding Nd and Ca

Publications (2)

Publication Number Publication Date
JP2007327122A true JP2007327122A (en) 2007-12-20
JP4656007B2 JP4656007B2 (en) 2011-03-23

Family

ID=38927778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006160828A Active JP4656007B2 (en) 2006-06-09 2006-06-09 Method of processing molten iron by adding Nd and Ca

Country Status (1)

Country Link
JP (1) JP4656007B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100923A (en) * 2008-10-27 2010-05-06 Sumitomo Metal Ind Ltd Steel sheet in which microsegregation of phosphorous is dispersed and continuously cast slab
JP2011026659A (en) * 2009-07-24 2011-02-10 Sumitomo Metal Ind Ltd Method for controlling of lanthanoid concentration in molten steel, method for simultaneously contolling lanthanoid concentration and non-metallic inclusion composition in molten steel, and method for treating molten steel
JP2015190058A (en) * 2014-03-31 2015-11-02 新日鐵住金株式会社 Carbon steel casting piece and production method thereof
WO2022145063A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
WO2022145066A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149917A (en) * 1987-12-04 1989-06-13 Kawasaki Steel Corp Manufacture of steel ingot with very slight segregation of phosphorus
JP2005089775A (en) * 2003-09-12 2005-04-07 Nippon Steel Corp Method for adding rare-earth element into molten steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149917A (en) * 1987-12-04 1989-06-13 Kawasaki Steel Corp Manufacture of steel ingot with very slight segregation of phosphorus
JP2005089775A (en) * 2003-09-12 2005-04-07 Nippon Steel Corp Method for adding rare-earth element into molten steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100923A (en) * 2008-10-27 2010-05-06 Sumitomo Metal Ind Ltd Steel sheet in which microsegregation of phosphorous is dispersed and continuously cast slab
JP2011026659A (en) * 2009-07-24 2011-02-10 Sumitomo Metal Ind Ltd Method for controlling of lanthanoid concentration in molten steel, method for simultaneously contolling lanthanoid concentration and non-metallic inclusion composition in molten steel, and method for treating molten steel
JP2015190058A (en) * 2014-03-31 2015-11-02 新日鐵住金株式会社 Carbon steel casting piece and production method thereof
WO2022145063A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
WO2022145066A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
JP7469714B2 (en) 2020-12-28 2024-04-17 日本製鉄株式会社 Steel

Also Published As

Publication number Publication date
JP4656007B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
KR101150141B1 (en) Process for manufacturing the steel pipes excellent in sour resistance
EP2770077B1 (en) Bearing steel and method for producing same
CN100476003C (en) Steel for steel pipes
CN101346486B9 (en) Duplex stainless steel
JP5794397B2 (en) Case-hardened steel with excellent fatigue properties
JP4957872B2 (en) Steel for steel pipes with excellent resistance to sulfide stress cracking
WO2010050238A1 (en) Pearlite rail having superior abrasion resistance and excellent toughness
JP5794396B2 (en) Induction hardening steel with excellent fatigue properties
JP6786964B2 (en) How to prevent blockage of continuous casting nozzle of sulfur-added steel
CN106011688B (en) High Mn content Fe-Cr-Ni alloy and its manufacturing method
JP4656007B2 (en) Method of processing molten iron by adding Nd and Ca
JP6937190B2 (en) Ni-Cr-Mo-Nb alloy and its manufacturing method
JP5708349B2 (en) Steel with excellent weld heat affected zone toughness
JP5047477B2 (en) Secondary refining method for high Al steel
JP4544126B2 (en) Manufacturing method of low carbon sulfur free cutting steel
JP4609325B2 (en) Treatment method of molten iron by Nd addition
JP5056826B2 (en) Steel for continuous casting and method for producing the same
JP2008111181A (en) Method for smelting aluminum killed steel
JP3836249B2 (en) Method for melting high ferritic stainless steel with high Al content that suppresses refractory melting of refining vessel
JP5067053B2 (en) Method of processing molten iron by adding La and / or Ce
CN115852272B (en) Tellurium-containing high-speed steel and preparation method thereof
JP4591354B2 (en) Treatment method of molten iron by Nd addition
JP2007177296A (en) Method for deoxidizing molten steel
JPH09209025A (en) Production of hic resistant steel excellent in low temperature toughness in welded part
TW202132588A (en) Ferritic stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4656007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350