JPH01149917A - Manufacture of steel ingot with very slight segregation of phosphorus - Google Patents

Manufacture of steel ingot with very slight segregation of phosphorus

Info

Publication number
JPH01149917A
JPH01149917A JP62305964A JP30596487A JPH01149917A JP H01149917 A JPH01149917 A JP H01149917A JP 62305964 A JP62305964 A JP 62305964A JP 30596487 A JP30596487 A JP 30596487A JP H01149917 A JPH01149917 A JP H01149917A
Authority
JP
Japan
Prior art keywords
steel
rem
molten steel
phosphorus
segregation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62305964A
Other languages
Japanese (ja)
Inventor
Kenkichi Yushimo
湯下 憲吉
Yoshiko Funabashi
船橋 佳子
Taiji Matsumura
泰治 松村
Hidenari Kitaoka
北岡 英就
Toshikazu Sakuratani
桜谷 敏和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62305964A priority Critical patent/JPH01149917A/en
Publication of JPH01149917A publication Critical patent/JPH01149917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To manufacture a steel ingot with very slight segregation of phosphorus by adding Ca to molten steel before solidification to fix S and O, adding a specified amt. of a rare earth element and immediately solidifying the molten steel. CONSTITUTION:The amts. of S, O and P as impurities in molten steel are reduced to <=about 0.008% S, <=about 0.005% O and <=about 0.01% P before solidification and about 0.002-0.023% Ca is added to the molten steel to fix S and O. A rare earth element is then added by an amt. satisfying an inequality 0.05<[wt.% REM]/[wt.% P]<=4 (where wt.% REM is the concn. of the rare earth element in the steel and wt.% P is the concn. of phosphorus in the steel) in accordance with the concn. of P in the molten steel and immediately the molten steel is solidified. A steel ingot with very slight segregation of phosphorus is obtd. with the existing equipment.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、りん偏析の極めて小さな鋼塊の製造方法に
関し、特に溶鋼中に不可避に混入するりんについて、そ
の効果的な偏析防止を図ったものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a steel ingot with extremely low phosphorus segregation, and in particular aims to effectively prevent the segregation of phosphorus that is inevitably mixed into molten steel. It is something.

(従来の技術) 最近、厚板用鋼材で極低硫化により延性、異方性及び耐
ラメラティア性の向上が確認され、またパイプライン用
鋼板として用いられる低温用鋼板では低りん化により低
温靭性が向上することが知られている。このように、鋼
材の品質を向上させるために不純物濃度を低下させるこ
とが一つの大きな流れになっている。しかしながら硫黄
、りんは、綱材の凝固過程において偏析しやすいため、
偏析の軽減が大きな技術的課題となっている。というの
は、硫黄、りんはその偏析部位で鋼材の脆性破壊を発生
あるいは、亀裂を伝播するなど有害な作用を惹起させる
からである。
(Prior art) Recently, it has been confirmed that ultra-low sulfurization improves ductility, anisotropy, and lamellar tear resistance in steel plates for thick plates, and low-temperature toughness has been improved in low-temperature steel plates used as pipeline steel plates due to low phosphorus content. known to improve. As described above, reducing the impurity concentration has become a major trend in order to improve the quality of steel materials. However, sulfur and phosphorus tend to segregate during the solidification process of the rope, so
Reducing segregation is a major technical challenge. This is because sulfur and phosphorus cause harmful effects such as causing brittle fracture in steel materials or propagating cracks at their segregation sites.

このため、溶銑予備処理過程は勿論のこと、転炉でのフ
ラックス吹き込みやCa添加などの精錬過程の改良によ
って上記不純物元素の軽減化が図られ、さらには鋳造温
度の適正化、電磁誘導撹拌、またとくに連続鋳造におい
てはロール間隔の縮小、軽圧下鋳造などの凝固過程の制
御によりそれらの偏析の軽減が図られている。
For this reason, efforts have been made to reduce the above impurity elements by improving not only the hot metal pretreatment process but also the refining process such as flux injection in the converter and Ca addition, as well as optimizing the casting temperature, electromagnetic induction stirring, Particularly in continuous casting, efforts are being made to reduce their segregation by reducing the distance between rolls and controlling the solidification process such as light reduction casting.

なお上記した偏析軽減法は、硫黄、りんなどの偏析をま
とめて軽減させようとするものであり、それらを個別に
軽減しようとする方法は従来はなかった。
Note that the above-described segregation reduction method attempts to reduce the segregation of sulfur, phosphorus, etc. all at once, and there has been no conventional method that attempts to reduce them individually.

(発明が解決しようとする問題点) 前述した溶銑予備処理過程、転炉でのフラックス吹き込
み、Ca添加等の精錬過程の改良、更に鋳造温度の適正
化、電磁誘導撹拌、ロール間隔の縮小、軽圧下鋳造等に
よって、硫黄については、充分な低硫化が達成できるこ
ともあって、偏析部の濃度も問題のない程度まで充分低
下している。
(Problems to be solved by the invention) Improvements in the refining process such as the hot metal pretreatment process, flux injection in the converter, and Ca addition, as well as optimization of the casting temperature, electromagnetic induction stirring, reduction of the roll spacing, and light weight. With regard to sulfur, it is possible to achieve a sufficiently low sulfurization through reduction casting, etc., and the concentration of sulfur in the segregated portion is sufficiently reduced to a level where there is no problem.

しかしながら、りんに関しては、充分満足いくほどの濃
度低下は望み得ないことから凝固後の偏析部における濃
度が充分に低下しているとは言えないのが現状である。
However, with regard to phosphorus, it is impossible to hope for a satisfactory reduction in the concentration, so at present it cannot be said that the concentration in the segregated areas after solidification has been sufficiently reduced.

この発明は、上記の問題を有利に解決するもので、偏析
軽減のために必要とされる各種の鋳造設備の改造、改良
をすることなく既存設備の利用にてりん偏析の極めて小
さな鋼塊(連続鋳造片を含む。以下同じ)を得ることの
できる製造方法を提案することを目的とする。
The present invention advantageously solves the above-mentioned problems by using existing equipment without modifying or improving various casting equipment required to reduce segregation. The purpose is to propose a manufacturing method that can obtain continuously cast pieces (the same shall apply hereinafter).

(問題点を解決するための手段) この発明は、溶鋼を凝固させて鋼塊を製造するに当たり
、凝固前の溶鋼に、まずCaを添加してSとOとを固定
したのち、溶鋼中P濃度に応じて次式0.05< (w
tχREM) / [騨tχP〕≦4ここにwtχRU
M :希土類元素の鋼中濃度讐tχP :りんの鋼中濃
度 を満足する量の希土類元素を添加し、その後ただちに凝
固させることを特徴とするりん偏析の極めて小さな鋼塊
の製造方法である。
(Means for Solving the Problems) In the present invention, when solidifying molten steel to produce a steel ingot, Ca is first added to the molten steel before solidification to fix S and O, and then P in the molten steel is fixed. Depending on the concentration, the following formula 0.05 < (w
tχREM) / [tχP]≦4 wtχRU here
M: Concentration of rare earth elements in steel tχP: A method for producing a steel ingot with extremely low phosphorus segregation, which is characterized by adding rare earth elements in an amount that satisfies the concentration of phosphorus in steel, and solidifying immediately thereafter.

ここで希土類元素(以下REMと略記する)としては、
とくにLa、 Ce+ Pr、 Ndなどが好適である
Here, the rare earth elements (hereinafter abbreviated as REM) are:
In particular, La, Ce+Pr, Nd, etc. are suitable.

まずこの発明の解明経緯について説明する。First, the background to the elucidation of this invention will be explained.

従来、溶鋼へのREM添加は、特公昭53−12333
5号公報、あるいは特公昭54−15523号公報に開
示されているように、凝固過程でREM硫化物を形成さ
せるために行われてきた。これは不純物としてのSがM
nSという、いわゆるA系介在物を形成して、ここに応
力集中が生じて割れの原因となることを防ぐためである
Conventionally, the addition of REM to molten steel was carried out in Japanese Patent Publication No. 53-12333.
As disclosed in Japanese Patent Publication No. 54-15523, this method has been used to form REM sulfides during the solidification process. This means that S as an impurity is M
This is to prevent the formation of so-called A-based inclusions called nS, where stress concentration occurs and causes cracks.

このようにRI!Mは、Sとの関係に注目され続けてき
たが、発明者らはREMとPとの関係に注目してこの発
明を完成させるに至ったのである。
Like this RI! Although M has continued to attract attention due to its relationship with S, the inventors focused on the relationship between REM and P and completed this invention.

かかるREMとPとの関係については、熱力学的データ
が報告されていないためREMりん化物生成能について
は全く判明されていなかった。そこで発明者らは表1に
示すようにP : 0.05 wt%(以下単に%で示
す)の溶鋼(極低S鋼)にLa、 Ce及びミツシュメ
タル(La : 30%、Ce:50%、Nd:20%
)を各々単独に添加し、凝固した鋼塊断面をEPMA 
 による介在物分析に供してみた。
Regarding the relationship between REM and P, no thermodynamic data have been reported, so the ability of REM to produce phosphide has not been clarified at all. Therefore, as shown in Table 1, the inventors added La, Ce, and Mitsushi metal (La: 30%, Ce: 50%, Nd: 20%
) were added individually, and the solidified steel ingot cross section was subjected to EPMA
I subjected it to inclusion analysis using

かくして得られた分析結果を表1に併記する。The analysis results thus obtained are also listed in Table 1.

同表より明らかなように、鋼塊中にREMりん化物が析
出しているのが認められた。このことより、溶鋼にRE
Mを添加すると、溶鋼中でREMりん化物が形成されて
固溶Pe、度が減少し、最終凝固部におけるP濃度の減
少、ひいてはP偏析の軽減が達成できると考えられるの
である。
As is clear from the table, it was observed that REM phosphides were precipitated in the steel ingot. From this, it can be said that RE
It is thought that when M is added, REM phosphides are formed in the molten steel and the solid solute Pe content is reduced, thereby reducing the P concentration in the final solidified zone and, in turn, reducing P segregation.

ところで、REMと0、及びREMとSは、化学的親和
力が強く、溶鋼中で化合物を形成することが従来より知
られている。前述したREFI添加による硫化物の形成
は、この性質を利用したものである。
By the way, it has been known that REM and 0 and REM and S have strong chemical affinity and form compounds in molten steel. The formation of sulfides by the addition of REFI mentioned above takes advantage of this property.

従って、溶鋼にREMを直接添加すると、REM酸化物
あるいはREM硫化物が生成して、REMりん化物の生
成は困難となることが推定される。
Therefore, it is presumed that if REM is directly added to molten steel, REM oxide or REM sulfide will be generated, making it difficult to generate REM phosphide.

そこで発明者らは、この問題を回避するために検討を重
ねた結果、溶鋼にまず0.Sとの親和力がREM以上に
大きなCaを添加してOとSとを固定し、しかる後にR
EMを添加することにより、REMO脱りんに関する有
効利用を達成したのである。
As a result of repeated studies to avoid this problem, the inventors found that the molten steel first had 0. Ca, which has a greater affinity for S than REM, is added to fix O and S, and then R
By adding EM, effective utilization for REMO dephosphorization was achieved.

(作 用) 溶鋼中の不純物成分につき、Sは、Caの添加前に0.
008%より多いと、Caを添加した場合に鋼塊の沈殿
高部あるいは連続鋳造片の1/4厚周辺の介在物集積部
に介在物が著しく集積し、鋼材の機械的性質を損なうの
で、Sは0.008%以下にする必要がある。
(Function) Regarding impurity components in molten steel, S is 0.0% before addition of Ca.
If it is more than 0.08%, when Ca is added, inclusions will accumulate significantly in the precipitation height of the steel ingot or in the inclusion accumulation area around 1/4 thickness of the continuously cast piece, impairing the mechanical properties of the steel material. S needs to be 0.008% or less.

同様にCa添加前の0が0.005%より多いと、酸化
物系介在物が鋼塊の沈殿高部あるいは連続鋳造片の17
4厚周辺の介在物集積部に著しく集積し、鋼材の機械的
性質を損なうので、事前にAI!、脱酸処理などを行っ
て、0は0.005%以下にする必要がある。
Similarly, if the content of 0 before Ca addition is more than 0.005%, oxide inclusions may occur in the precipitated high part of the steel ingot or in the continuously cast piece.
AI! , it is necessary to perform deoxidation treatment and the like to reduce 0 to 0.005% or less.

ここにCaは、o、oo2%より少ないと、Ca酸化物
、Ca硫化物が生成し難く、後に添加するREMが、R
EM酸化物、178M硫化物の生成に消費されてREM
りん化物の生成に有効に寄与しなくなるので、0.00
2%以上含有させることが望ましい。一方Sが0.00
8%、0が0.005%のときに、Ca酸化物(Cab
) 、及びCa硫化物(CaS)を生成するのに必要な
Ca量は、0.023%であるのでCaは、0.023
%以下の範囲で含有させればよい。
If Ca is less than 2%, Ca oxides and Ca sulfides are difficult to form, and the REM added later is
REM is consumed in the production of EM oxide and 178M sulfide.
0.00 because it no longer contributes effectively to the production of phosphides.
It is desirable to contain 2% or more. On the other hand, S is 0.00
8% and 0 is 0.005%, Ca oxide (Cab
), and the amount of Ca required to generate Ca sulfide (CaS) is 0.023%, so Ca is 0.023%.
% or less.

さらにREQ添加前のPが0.01%より多いと、0.
04%を超える多量のREM添加が必要となるが、RE
Mは高価な元素であり、多量の添加は鋼材製品のコスト
高を招くため、Pは0.01%以下としておいてREM
の添加量を抑えるのが望ましい。
Furthermore, if the P content before REQ addition is more than 0.01%, 0.
Although it is necessary to add a large amount of REM exceeding 0.04%, RE
M is an expensive element, and adding a large amount will increase the cost of steel products, so P is kept at 0.01% or less in REM.
It is desirable to suppress the amount of addition.

12EMは、0.001%に満たないと、REMりん化
物が生成し難いため、0.001%以上とするのが望ま
しい。一方、前述のように0.04%より多いと、鋼材
製品のコスト高を引き起こすので0.0/1%以下に抑
えるのが望ましい。
If 12EM is less than 0.001%, it is difficult to generate REM phosphide, so it is desirable to set it to 0.001% or more. On the other hand, as mentioned above, if it exceeds 0.04%, it will increase the cost of steel products, so it is desirable to suppress it to 0.0/1% or less.

更に、R1?M量と、P濃度との関係を調べるために、
以下の実験を行った。
Furthermore, R1? In order to investigate the relationship between the amount of M and the concentration of P,
The following experiment was conducted.

災翌土 100 kg高周波真空誘導溶解炉テC: 0.05〜
0.08%、Si : 0.10〜0.25%、 Mn
 : 1.0〜1.5%、P:0、01〜0.05%、
 S : 0.001未満〜0.005 %、 AI 
:0.02〜0.05%及びO: 0.001〜0.0
05%の組成になる種々の鋼を溶製し、この溶鋼にCa
を0.003〜0.007%含有させ、しかる後にミツ
シュメタルを0.002〜o、oos%含有させた。な
お一部の鋼にっいては比較のためにCa、  REMを
添加しながった。
100 kg high frequency vacuum induction melting furnace Te C: 0.05~
0.08%, Si: 0.10-0.25%, Mn
: 1.0-1.5%, P: 0, 01-0.05%,
S: less than 0.001 to 0.005%, AI
:0.02~0.05% and O:0.001~0.0
Various steels with a composition of 0.5% are melted, and Ca is added to the molten steel.
was contained in an amount of 0.003 to 0.007%, and then Mitsushmetal was contained in an amount of 0.002 to o.oos%. Note that for some steels, Ca and REM were not added for comparison.

該溶鋼を砂型に鋳込んで得た鋼塊について、第2図に示
す部位をマクロ・アナライザによる線分析に供し、Pに
ついて偏析率Pmax/Po (最大濃度を平均濃度で
割った値)を算出した。これらの結果を表2に示す。な
お偏析率が4未満であれば実用上問題ない。
Regarding the steel ingot obtained by pouring the molten steel into a sand mold, the parts shown in Figure 2 were subjected to line analysis using a macro analyzer, and the segregation rate Pmax/Po (the value obtained by dividing the maximum concentration by the average concentration) of P was calculated. did. These results are shown in Table 2. Note that if the segregation rate is less than 4, there will be no practical problem.

スJ(亀 180トン転炉より出鋼した溶鋼を、RH処理により合
金化処理及び脱酸を行い、C: 0.02〜0.10%
SJ (molten steel tapped from a 180-ton converter is alloyed and deoxidized by RH treatment, C: 0.02-0.10%
.

Si : 0.06〜0.25%、 Mn : 0.8
〜1.0%、P:0.02〜0.03%、  S : 
0.001未、満〜0.002%、 Al : 0.0
2〜0.04%及びO: 0.001〜0.003%組
成の溶鋼を得、さらにRH処理末期にCaFe合金の形
でCaを含有させ、Ca濃、度を0.002〜0.00
5%とした。しかる後に連鋳タンデイツシュ内の溶鋼に
ミツシュメタルを0.002〜0.02%含有させた。
Si: 0.06-0.25%, Mn: 0.8
~1.0%, P: 0.02-0.03%, S:
Less than 0.001, full to 0.002%, Al: 0.0
Molten steel with a composition of 2 to 0.04% and O: 0.001 to 0.003% is obtained, and further Ca is added in the form of a CaFe alloy at the end of the RH treatment to adjust the Ca concentration and degree to 0.002 to 0.00.
It was set at 5%. Thereafter, the molten steel in the continuous casting tandy was made to contain 0.002 to 0.02% Mitshu metal.

なお、一部の鋼については比較のためにCa、  RE
Mを添加しなかった。かくして得られた連鋳スラブC断
面をマクロアナライザによる分析に供し、鋳片厚み中央
部に見られるセミマクロ偏析の偏析率を算出した。得ら
れた結果を表3に示す。
In addition, for some steels, Ca, RE
No M was added. The cross section of the continuously cast slab C thus obtained was subjected to analysis using a macro analyzer, and the segregation rate of semi-macro segregation observed at the center of the thickness of the slab was calculated. The results obtained are shown in Table 3.

以上の実験1,2について(wt%REM) / [w
t%P]と、偏析率Pmaχ/Poとの関係について調
べた結果を第1図に示す。
Regarding experiments 1 and 2 above (wt%REM) / [w
t%P] and the segregation rate Pmaχ/Po is shown in FIG. 1.

同図から明らかなように、(wt%REM) / Cw
t%P〕〉0゜05の範囲において偏析率が4未満の良
好な結果が得られている。つまり、0.05< (wt
%REM) /(wt%P)を満足すれぼりん偏析を抑
えることができるわけである。一方、REMの添加によ
って生成するREMりん化物は、REMとPとの原子比
が1:1の化合物であるため、原子量の関係から重量%
でPの約4倍のREMを添加すれぼりん化物形成には充
分である。従ってREM量とP濃度との関係は次式 %式%] を満足させればよいことになる。
As is clear from the figure, (wt%REM) / Cw
Good results with a segregation rate of less than 4 were obtained in the range of t%P〉0°05. In other words, 0.05< (wt
%REM)/(wt%P), phosphorus segregation can be suppressed. On the other hand, REM phosphide produced by the addition of REM is a compound with an atomic ratio of REM and P of 1:1, so from the relationship of atomic weight, it is
Adding REM in an amount about 4 times as much as P is sufficient for formation of phosphorus. Therefore, the relationship between the amount of REM and the P concentration should satisfy the following formula (% formula %).

(実施例) 災酪桝上 100 kg高周波真空誘導溶解炉にて表4に示す組成
になる鋼を溶製し、この溶鋼にCaを含有させ、しかる
のちにミツシュメタルを含有させた。該溶鋼を砂型に鋳
込んで得た鋼塊について、第2図に示す部位とマクロ・
アナライザによる線分析に供し、Pについて偏析率を算
出した。
(Example) Steel having the composition shown in Table 4 was melted in a 100 kg high-frequency vacuum induction melting furnace, and the molten steel was made to contain Ca and then Mitshu metal. Regarding the steel ingot obtained by casting the molten steel into a sand mold, the parts and macroscopic areas shown in Figure 2 are as follows.
It was subjected to line analysis using an analyzer, and the segregation rate of P was calculated.

Ca、  REM含有量及び偏析率について表4に併記
する。
Table 4 also shows the Ca, REM content, and segregation rate.

同表から明らかなように、この発明に従う適合例Aは、
Ca及びREMを添加していない比較例AあるいはCa
添加なしにREMを添加した比較例Bと比較して、りん
偏析が著しく低下している。
As is clear from the table, the conforming example A according to the present invention is
Comparative example A or Ca without adding Ca and REM
Compared to Comparative Example B in which REM was added without addition, phosphorus segregation was significantly reduced.

尖施桝主 180トン転炉より出鋼した溶鋼をR1(処理により合
金化処理及び脱酸を行い、表5に示す組成になる溶鋼を
得、さらにR1+処理末期にCaFe0形でCaを含有
させ、しかる後に連鋳タンデイツシュ内の溶鋼にミツシ
ュメタルを含有させた。かくして得られた連鋳スラブC
断面をマクロ・アナライザによる分析に供し、鋼厚み中
央部に見られるセミマクロ偏析の偏析率を算出した。
The molten steel tapped from a 180-ton converter was alloyed and deoxidized by R1 (processing) to obtain molten steel having the composition shown in Table 5, and at the end of the R1+ process, Ca was added in the form of CaFe0. After that, the molten steel in the continuous casting tandy was made to contain Mitsushi metal.The continuous casting slab C obtained in this way
The cross section was analyzed using a macro analyzer, and the segregation rate of semi-macro segregation observed in the center of the steel thickness was calculated.

Ca、 REM添加量及び偏析率について表5に併記す
る。
The amounts of Ca and REM added and the segregation rate are also listed in Table 5.

同表から明らかなように、この発明に従う適合例Aは、
偏析率が小さい。またCa添加なしにタンデイツシュに
おいてREM添加を行った比較例Aは、REMがS及び
Oに消費されたことまた(wt%REM )/(wt%
P)<0.05であることを反映して、P偏析の改善が
見られない。
As is clear from the table, the conforming example A according to the present invention is
Segregation rate is small. In addition, in Comparative Example A, in which REM was added to the tandem dish without Ca addition, REM was consumed by S and O, and (wt% REM )/(wt%
No improvement in P segregation is seen, reflecting that P)<0.05.

(発明の効果) この発明によれば、鋳造設備の改造を必要とすることな
く既存の設備で、単にCa添加に引き続いてREMを溶
鋼に添加するだけでりん偏析の極めて少ない鋼塊を得る
ことができる。
(Effects of the Invention) According to the present invention, a steel ingot with extremely low phosphorus segregation can be obtained by simply adding Ca and then REM to molten steel using existing equipment without requiring modification of the casting equipment. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、偏析率Pmax /Po  (最大濃度を平
均濃度で割った値)と、〔&4t%REM) / [w
t%P]との関係を示すグラフ、 第2図は、実験1で作成した鋼塊の、マクロ・アナライ
ザ分析に供した部位を示す図である。 第1図 Cwt%REMつ/〔WtガP)
Figure 1 shows the segregation rate Pmax /Po (value obtained by dividing the maximum concentration by the average concentration) and [&4t%REM) / [w
t%P] FIG. 2 is a diagram showing the parts of the steel ingot prepared in Experiment 1 that were subjected to macro analyzer analysis. Figure 1 Cwt%REM/[WtgaP]

Claims (1)

【特許請求の範囲】 1、溶鋼を凝固させて鋼塊を製造するに当たり、凝固前
の溶鋼に、まずCaを添加してSとOとを固定したのち
、溶鋼中P濃度に応じて次式0.05<〔wt%REM
〕/〔wt%p〕≦4ここにwt%REM:希土類元素
の鋼中濃度wt%p:りんの鋼中濃度 を満足する量の希土類元素を添加し、その後ただちに凝
固させることを特徴とするりん偏析の極めて小さな鋼塊
の製造方法。
[Claims] 1. When producing a steel ingot by solidifying molten steel, first add Ca to the molten steel before solidification to fix S and O, and then calculate the following equation according to the P concentration in the molten steel. 0.05<[wt%REM
]/[wt%p]≦4 where wt%REM: Concentration of rare earth element in steel wt%p: Rare earth element is added in an amount that satisfies the concentration of phosphorus in steel, and is then immediately solidified. A method for manufacturing steel ingots with extremely low phosphorus segregation.
JP62305964A 1987-12-04 1987-12-04 Manufacture of steel ingot with very slight segregation of phosphorus Pending JPH01149917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62305964A JPH01149917A (en) 1987-12-04 1987-12-04 Manufacture of steel ingot with very slight segregation of phosphorus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62305964A JPH01149917A (en) 1987-12-04 1987-12-04 Manufacture of steel ingot with very slight segregation of phosphorus

Publications (1)

Publication Number Publication Date
JPH01149917A true JPH01149917A (en) 1989-06-13

Family

ID=17951419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62305964A Pending JPH01149917A (en) 1987-12-04 1987-12-04 Manufacture of steel ingot with very slight segregation of phosphorus

Country Status (1)

Country Link
JP (1) JPH01149917A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186729A (en) * 2006-01-11 2007-07-26 Sumitomo Metal Ind Ltd TREATMENT METHOD FOR MOLTEN IRON BY Nd ADDITION
JP2007186722A (en) * 2006-01-11 2007-07-26 Sumitomo Metal Ind Ltd TREATMENT METHOD FOR MOLTEN IRON BY Nd ADDITION
JP2007327122A (en) * 2006-06-09 2007-12-20 Sumitomo Metal Ind Ltd TREATMENT METHOD FOR MOLTEN IRON BY Nd AND Ca ADDITION
JP2009024189A (en) * 2007-07-17 2009-02-05 Sumitomo Metal Ind Ltd METHOD FOR TREATING MOLTEN IRON BY ADDITION OF La AND/OR Ce
JP2010100923A (en) * 2008-10-27 2010-05-06 Sumitomo Metal Ind Ltd Steel sheet in which microsegregation of phosphorous is dispersed and continuously cast slab
JP2011026659A (en) * 2009-07-24 2011-02-10 Sumitomo Metal Ind Ltd Method for controlling of lanthanoid concentration in molten steel, method for simultaneously contolling lanthanoid concentration and non-metallic inclusion composition in molten steel, and method for treating molten steel
WO2022145066A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
WO2022145063A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186729A (en) * 2006-01-11 2007-07-26 Sumitomo Metal Ind Ltd TREATMENT METHOD FOR MOLTEN IRON BY Nd ADDITION
JP2007186722A (en) * 2006-01-11 2007-07-26 Sumitomo Metal Ind Ltd TREATMENT METHOD FOR MOLTEN IRON BY Nd ADDITION
JP4591354B2 (en) * 2006-01-11 2010-12-01 住友金属工業株式会社 Treatment method of molten iron by Nd addition
JP4609325B2 (en) * 2006-01-11 2011-01-12 住友金属工業株式会社 Treatment method of molten iron by Nd addition
JP2007327122A (en) * 2006-06-09 2007-12-20 Sumitomo Metal Ind Ltd TREATMENT METHOD FOR MOLTEN IRON BY Nd AND Ca ADDITION
JP4656007B2 (en) * 2006-06-09 2011-03-23 住友金属工業株式会社 Method of processing molten iron by adding Nd and Ca
JP2009024189A (en) * 2007-07-17 2009-02-05 Sumitomo Metal Ind Ltd METHOD FOR TREATING MOLTEN IRON BY ADDITION OF La AND/OR Ce
JP2010100923A (en) * 2008-10-27 2010-05-06 Sumitomo Metal Ind Ltd Steel sheet in which microsegregation of phosphorous is dispersed and continuously cast slab
JP2011026659A (en) * 2009-07-24 2011-02-10 Sumitomo Metal Ind Ltd Method for controlling of lanthanoid concentration in molten steel, method for simultaneously contolling lanthanoid concentration and non-metallic inclusion composition in molten steel, and method for treating molten steel
WO2022145066A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
WO2022145063A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material

Similar Documents

Publication Publication Date Title
JP3803582B2 (en) Steel refinement method, steel refinement alloy and production method of refinement alloy
JP3626278B2 (en) Method for producing Al-killed steel without clusters
KR102204170B1 (en) Gray cast iron inoculant
CN110184548B (en) Method for refining solidification structure of high manganese steel continuous casting billet
US4286984A (en) Compositions and methods of production of alloy for treatment of liquid metals
EP0924313A1 (en) Non-ridging ferritic chromium alloyed steel
JPH01149917A (en) Manufacture of steel ingot with very slight segregation of phosphorus
JP3896650B2 (en) Method for producing Ti-containing ultra-low carbon steel
JP2000319750A (en) High tensile strength steel for large heat input welding excellent in toughness of heat-affected zone
JP4780084B2 (en) Titanium killed steel material with good surface properties and method for producing the same
CN113913676B (en) Metallurgy method for improving morphology of as-cast sulfide of medium-carbon high-sulfur free-cutting steel
JPH07138637A (en) Production of cast slab having fine sub-boundary and thick steel plate having fine metallic structure
CN113913704B (en) Tellurium-sulfur co-processed aluminum deoxidized steel and preparation method and application thereof
JP2000001718A (en) Manufacture of low carbon steel
JP2008266706A (en) Method for continuously casting ferritic stainless steel slab
JPH11279681A (en) High strength cast iron
CN115522136B (en) Method for controlling carbon manganese steel crystal structure through rare earth lanthanum iron microalloying
KR100331962B1 (en) Method for manufacturing high cleanliness tool steel with improved macro/micro-solidification structure
JP2006152444A (en) MELTING AND MANUFACTURING METHOD OF Ti-ADDED ULTRA-LOW CARBON STEEL
JPH042713A (en) Deoxidizing method in steelmaking process
JPH08238544A (en) Production of steel excellent in toughness at welding heat affected zone
JP2002371314A (en) METHOD FOR MANUFACTURING SLAB OF Ni-CONTAINING STEEL
JPH10265896A (en) Thick steel plate excellent in toughness in weld heat-affected zone
JP3070417B2 (en) Production method of steel ingot with extremely small Mn segregation
JP3537657B2 (en) Wire rod for steel wire and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040614

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

A131 Notification of reasons for refusal

Effective date: 20060112

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061026

A521 Written amendment

Effective date: 20061225

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070220

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20070228

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110309

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120309

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120309

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130309

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130309

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130309

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250