KR100331962B1 - Method for manufacturing high cleanliness tool steel with improved macro/micro-solidification structure - Google Patents
Method for manufacturing high cleanliness tool steel with improved macro/micro-solidification structure Download PDFInfo
- Publication number
- KR100331962B1 KR100331962B1 KR1019960015127A KR19960015127A KR100331962B1 KR 100331962 B1 KR100331962 B1 KR 100331962B1 KR 1019960015127 A KR1019960015127 A KR 1019960015127A KR 19960015127 A KR19960015127 A KR 19960015127A KR 100331962 B1 KR100331962 B1 KR 100331962B1
- Authority
- KR
- South Korea
- Prior art keywords
- molten steel
- steel
- rare earth
- less
- injection
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0006—Adding metallic additives
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/10—Handling in a vacuum
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
[발명의 분야][Field of Invention]
본 발명은 진공 유도로 용해 및 전기로 용해를 기본으로 하는 경희토류원소(Ce, La, Nd, Pr, Y 등 : 이하, REM으로 표기) 및 REM + Ca이 첨가된 고청정 합금공구강(열간공구강, 냉간공구강)과 고청정 고속도공구강의 제조 방법에 관한 것이다.The present invention is a light rare earth element (Ce, La, Nd, Pr, Y, etc .: based on REM) based on vacuum induction furnace melting and electric melting, and high-purity alloy steel oral steel (REM + Ca added) Cold work oral cavity) and a high-cleaning high speed oral cavity.
[종래 기술][Prior art]
최근 고급강의 수용의 증가에 따라 전기 용해로 출강후 진공처리를 실시하는 비율이 증가하고 있으며, 그 중요성이 더욱 강조되고 있다. 용강의 진공처리의 목적은, 전기 용해로 출강후의 용강을 낮은 압력하에서 환류시킴으로써 수소, 질소등의 성분을 감소시키거나, CO가스 발생에 의한 탈탄 및 탈산반응을 유도하여 극저탄소강을 제조하는데 있으며, 또한 용강교반이나 환류에 의해 용강내 비금속개재물을 분리시켜 청정강을 얻기 위함이다.Recently, as the acceptance of high-grade steel increases, the rate of vacuum treatment after the tapping of the electric melting furnace is increasing, and its importance is further emphasized. The purpose of vacuum treatment of molten steel is to produce ultra-low carbon steel by reducing the components such as hydrogen and nitrogen by refluxing molten steel after tapping in an electric melting furnace under low pressure, or by inducing decarburization and deoxidation by CO gas generation. In addition, to obtain clean steel by separating the non-metallic inclusions in the molten steel by molten steel stirring or reflux.
일반적으로 기존 공구강들에 존재된 알루미나(Al2O3) 및 망간 설파이드(MnS)와 같은 과량의 비금속개재물과 불순물들은 강재의 청정성을 해침과 동시에 충격특성, 피삭성, 열피로특성등 여러 가지 제특성을 저해하는 큰 요인으로 작용하고 있다, 또한, 열간압연이나 열간단조시 Al2O3등의 고경도 산화물은 가공성을 해치며, MnS는 가공방향으로 연신되어 가공방향과 가공 직각 방향의 기계적 성질에 현저한 차이를 나타내게 했다.In general, excessive non-metallic inclusions and impurities such as alumina (Al 2 O 3 ) and manganese sulfide (MnS) present in existing tool steels impair the cleanliness of the steel, and at the same time, various properties such as impact, machinability, thermal fatigue characteristics, etc. In addition, high hardness oxides such as Al 2 O 3 impair workability during hot rolling and hot forging, and MnS is stretched in the processing direction and mechanical properties in the direction perpendicular to the processing direction. To make a remarkable difference.
따라서, 오래전부터 강재의 청정성 향상과 개재물 형상제어를 위한 연구가 래들정련이나 진공정련에 의존하여 거듭되었으나 그 한계에 다다르고 있다.Therefore, researches for improving cleanliness and shape control of steel materials have been repeated depending on ladle refining or vacuum refining for a long time, but the limits have been reached.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 특정 성분범위로 용강을 용제한 후 래들정련시 황(S)의 함유량, 알루미늄(Al)의 함유량을 제어하도록 진공도의 제어와 예비탈산 및 예비탈황을 시행하고, 그 용강에 REM 및 REM+Ca의 첨가시기와 첨가방법을 조절하여 O, S, P, N 등의 불순물을 저감시키고, 유해 비금속개재물의 단독생성을 완전제어하여 총 비금속개재물량을 저감시킴과 동시에, 구상형태인 희토류(RE)계 복합개재물과 Ca이 함유된 RE계 복합개재물을 용강 내에 소량 잔존시켜 응고시 RE계 복합개재물의 불균질 핵생성을 이용하여 마크로·마이크로 응고조직을 개선시키는 고청정 공구강의 제조 방법을 제공하는 것을 목적으로 한다.The present invention has been made to solve the above problems, and after controlling the content of sulfur (S), the content of aluminum (Al) during ladle refining after melting molten steel in a specific component range and pre-deoxidation and Perform preliminary desulfurization, adjust the addition time and method of adding REM and REM + Ca to the molten steel to reduce impurities such as O, S, P, N, etc. At the same time, a small amount of spherical rare earth (RE) composite inclusions and Ca-containing RE composite inclusions remain in the molten steel to coagulate macro and micro coagulation using heterogeneous nucleation of the RE composite composites during solidification. It is an object of the present invention to provide a method for producing high-clean tool steel that improves the structure.
제 1도는 본 발명과 종래의 실시예에 따라 제조된 공구강 소재내의 비금속개재물의 형상을 보여주는 조직사진.Figure 1 is a tissue photograph showing the shape of the non-metallic inclusions in the tool steel material prepared according to the present invention and conventional embodiments.
제 2도는 본 발명과 종래의 실시예에 따라서 제조된 공구강 소재내의 마크로, 마이크로 응고조직을 보여주는 조직사진.2 is a tissue photograph showing a microcoagulation structure as a mark in a tool steel material manufactured according to the present invention and a conventional embodiment.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명의 고청정 열간공구강의 제조 방법은 중량%로 C : 0.1%∼1.0%, Si : 0.2%∼0.8%, Mn : 0.3%∼4.0%, Ni : 0.001%∼4.0%, Cr : 1.5%∼6.0%, Mo : 0.3%∼4.0%, V : 0.1%∼3.5%, W : 0.005%∼0.2%, Al : 0.005%∼0.1%를 함유하고, 잔량은 Fe와 전기로 제강시 함유될 수 있는 미량 불순물로 구성된 일반적인 열간공구강의 용강을 용제하는 단계; 용제한 강을 1 × 10-1torr이하의 진공도에서 산소 함량과 황 함량이 각각 15ppm이하, 100ppm이하가 되도록 탈산 및 탈황처리하는 단계; 예비탈산·탈황된 용강에 희토류 원소 0.0002%∼0.25%, Ca : 0.001∼0.1%의 범위에서 미쉬메탈(Ce, Nd, La, Pr, Fe)을 단독첨가하거나 칼슘과 복합첨가할 수 있고, 경희토류 원소(Ce, La, Nd, Pr, Y) 및 칼슘에 대하여 각각 단독첨가하거나 이들을 2성분 내지 3성분 이상 복합첨가할 수 있으며, 그 첨가시기는 진공정련 직후나, 강괴제조시 용강주입직전에 하주 주입관내로 투입하거나, 용강주입중 몰드내로 투입하며, 그 첨가방법은 상기 첨가시기에 100% 투입완료하거나, 주입초기부터 완료까지 일정시간과 일정량을 선택하거나, 용강주입초기에 40% 투입하고 나머지 60%는 주입완료 3분전까지 나누어 투입하는 단계; 1600℃±50℃에서 용강을 냉각시켜 강괴를 제조하는 단계; 및 강괴를 1200℃±50℃에서 열간압연 또는 단조하는 단계를 포함하고, 5㎛이하 구상 경희토류계 복합 개재물 또는 경희토류-칼슘계 복합 개재물을 0.06%이하로 잔존시키고, 최종 희토류 원소량과 칼슘량은 황원소량과 대비하여 REM%/S% = 2 ∼ 90, [REM%][5%] = 3 × 10-5∼100 × 10-5, Ca%/S% = 1 이하를 만족시키는 것을 특징으로 한다.In order to achieve the object of the present invention as described above, the manufacturing method of the high-clean hot-hole oral cavity of the present invention by weight% C: 0.1% to 1.0%, Si: 0.2% to 0.8%, Mn: 0.3% to 4.0%, Ni: 0.001% to 4.0%, Cr: 1.5% to 6.0%, Mo: 0.3% to 4.0%, V: 0.1% to 3.5%, W: 0.005% to 0.2%, Al: 0.005% to 0.1% Solving the remaining amount of the molten steel of the general hot-air oral cavity consisting of Fe and trace impurities that may be contained during steelmaking; Deoxidizing and desulfurizing the molten steel so that the oxygen content and the sulfur content are 15 ppm or less and 100 ppm or less, respectively, at a vacuum degree of 1 × 10 −1 torr or less; To the pre-deoxidation and desulfurized molten steel, rare earth elements 0.0002% to 0.25% and Ca: 0.001 to 0.1% can be added alone or in combination with calcium and lightly added with misc metal (Ce, Nd, La, Pr, Fe). Rare earth elements (Ce, La, Nd, Pr, Y) and calcium can be added alone or in combination of two to three or more components, and the addition time is immediately after vacuum refining or just before injection of molten steel during steel ingot manufacture. It is injected into the lower injection pipe, or it is injected into the mold during molten steel injection, and the method of addition is 100% injection completion at the time of addition, select a certain time and a certain amount from the initial injection to completion, or 40% injection at the beginning of molten steel injection. The remaining 60% is divided into three minutes before the completion of injection; Cooling the molten steel at 1600 ° C. ± 50 ° C. to produce a steel ingot; And hot rolling or forging the steel ingot at 1200 ° C. ± 50 ° C., and retains the spherical light rare earth-based composite inclusions or the light rare earth-calcium-based composite inclusions of 5 μm or less, and the final rare earth element content and calcium. The amount satisfies REM% / S% = 2 to 90, [REM%] [5%] = 3 × 10 -5 to 100 × 10 -5 , and Ca% / S% = 1 or less compared to the sulfur element amount. It features.
상기한 목적을 달성하기 위한 본 발명의 고청정 냉간공구강의 제조방법은 중량 %로 C : 1.0%∼1.7%, Si : 0.2%∼0.6%, Mn : 0.2%∼0.7%, Ni : 0.001%∼4.0%, Cr : 3.5%∼15.0%, Mo : 0.1%∼2.0%, V : 0.1%∼3.0%, W : 0.005%∼0.2%, Al : 0.005%∼0.1%를 함유하고, 잔량은 Fe와 전기로 제강시 함유될 수 있는 미량 불순물로 구성된 일반적인 냉간공구강의 용강을 용제하는 단계; 용제한 강을 1 ×10-1torr이하의 진공도에서 산소 함량과 황 함량이 각각 15ppm이하, 100ppm이하가 되도록 탈산 및 탈황처리하는 단계; 예비탈산·탈황된 용강에 희토류원소: 0.0002%∼0.25%, Ca : 0.001∼0.1%의 범위로 존재하도록 미쉬메탈(Ce, Nd, La, Pr, Y) 및 칼슘에 대하여 각각 단독첨가하거나 이들을 2성분 내지 3성분 이상 복합첨가할 수 있으며, 그 첨가시기는 진공정련 직후나, 강괴제조시 용강주입직전에 하주주입관내로 투입하거나, 용강주입중 몰드 내로 투입하며, 그 첨가방법은 상기 첨가시기에 100% 투입완료하거나, 주입 초기부터 완료까기 일정시간과 일정량을 선택하거나, 용강주입초기에 40%투입하고 나머지 60%는 주입완료 3분전까지 나누어 투입하는 단계; 1600℃±50℃에서 열간압연 또는 단조하는 단계를 포함하고, 5㎛이하 구상 경희토류계 복합개재물 또는 경희토류-칼슘계 복합 개재물을 0.06%이하로 잔존시키고, 최종 희토류 원소량과 칼슘량은 황 원소량과 대비하여 REM%/S% = 2∼90, [REM%][S%] = 3×10-5∼100×10-5, Ca%/S% = 1 이하를 만족시키는 것을 특징으로 한다.In order to achieve the above object, the manufacturing method of the high clean cold oral cavity of the present invention is C: 1.0% to 1.7%, Si: 0.2% to 0.6%, Mn: 0.2% to 0.7%, Ni: 0.001% to 4.0%, Cr: 3.5% to 15.0%, Mo: 0.1% to 2.0%, V: 0.1% to 3.0%, W: 0.005% to 0.2%, Al: 0.005% to 0.1%. Dissolving a molten steel of a general cold oral cavity composed of trace impurities that may be contained during steelmaking with electricity; Deoxidation and desulfurization treatment of the molten steel such that the oxygen content and the sulfur content are 15 ppm or less and 100 ppm or less, respectively, at a vacuum degree of 1 × 10 −1 torr or less; To the pre-deoxidation and desulfurized molten steel, rare earth elements: 0.0002% to 0.25%, and Ca: 0.001 to 0.1%, respectively, are added alone or added to the mismetals (Ce, Nd, La, Pr, Y) and calcium. Compound to three or more components can be added in combination, and the addition time is added into the lower injection pipe immediately after vacuum refining or just before injection of molten steel during the manufacture of ingot, or into the mold during injection of molten steel, and the addition method is 100% input completion, or a predetermined time and a predetermined amount from the initial injection to completion, or 40% in the initial molten steel injection and the remaining 60% divided into three minutes before completion of the injection; Hot rolling or forging at 1600 ° C. ± 50 ° C., and residual spherical light rare earth composite inclusions or light rare earth-calcium composite inclusions of 5 μm or less and less than 0.06%, and the final rare earth element content and calcium amount are sulfur It satisfies REM% / S% = 2 to 90, [REM%] [S%] = 3 × 10 -5 to 100 × 10 -5 , and Ca% / S% = 1 or less relative to the element amount do.
상기한 목적을 달성하기 위한 본 발명의 고청정 고속도공구강의 제조방법은 중량 %로 C : 0.1%∼1.0%, Si : 0.2%∼0.8%, Mn : 0.3%∼4.0%, V :0.1%∼3.5%, W : 0.005%∼0.2%, Al : 0.005%∼0.1%를 함유하고, 잔량은 Fe와 전기로 제강시 함유될 수 있는 미량 불순물로 구성된 일반적인 고청정 고속도공구강의 용강을 용제하는 단계; 용제한 강을 1×10-1torr이하의 진공도에서 산소 함량과 황 함량이 각각 15ppm이하, 50ppm이하가 되도록 탈산 및 탈황처리하는 단계; 예비탈산·탈황된 용강에 희토류원소: 0.0002%∼0.25%, Ca : 0.001∼0.1%의 범위로 존재하도록 미쉬메탈(Ce, Nd, La, Pr, Fe)을 단독첨가하거나 칼슘에 대하여 각각 단독첨가하거나 이들을 2성분 내지 3성분 이상 복합첨가할 수 있으며, 그 첨가시기는 진공정련 직후나, 강괴제조시 용강주입직전에 하주주입관내로 투입하거나, 용강주입중 몰드내로 투입하며, 그 첨가방법은 상기 첨가시기에 100% 투입완료하거나, 주입초기부터 완료까지 일정시간 일정량을 선택하거나, 용강주입초기에 40%투입하고 나머지 60%는 주입완료 3분전까지 나누어 투입하는 단계; 1600℃±50℃에서 용강을 냉각시켜 강괴를 제조하는 단계; 및 강괴를 1200℃±50℃에서 열간 압연 또는 단조하는 단계를 포함하고, 5㎛이하 구상 경희토류계 복합 개재물 또는 경희토류-칼슘계 복합 개재물을 0.06%이하로 잔존시키고, 최종 희토류 원소량과 칼슘량은 황 원소량과 대비하여 REM%/S% = 2 ∼ 90, [REM%][S%] = 3 ×10-5~100×10-5, Ca%/S% = 1 이하를 만족시키는 것을 특징으로 한다.In order to achieve the above object, the manufacturing method of the high-cleaning high speed oral cavity of the present invention is weight% C: 0.1% to 1.0%, Si: 0.2% to 0.8%, Mn: 0.3% to 4.0%, V: 0.1% to Solving the molten steel of the general high-clean high-speed coating steel containing 3.5%, W: 0.005% to 0.2%, Al: 0.005% to 0.1%, the remaining amount is composed of Fe and trace impurities that can be contained during steelmaking; Deoxidation and desulfurization treatment of the molten steel such that the oxygen content and the sulfur content are 15 ppm or less and 50 ppm or less, respectively, at a vacuum degree of 1 × 10 −1 torr or less; To the pre-deoxidation and desulfurized molten steel, rare earth elements: 0.0002% to 0.25%, and Ca: 0.001 to 0.1% are added in addition to the misch metals (Ce, Nd, La, Pr, Fe) alone or separately for calcium. They may be added in two to three components or more, and the addition time is immediately after vacuum refining or immediately before injection of molten steel during the manufacture of steel ingots, or into the mold during injection of molten steel. Adding 100% at the time of addition, or selecting a certain amount of time from the beginning of the injection to completion, or 40% at the beginning of the molten steel injection and dividing the remaining 60% until 3 minutes before the completion of injection; Cooling the molten steel at 1600 ° C. ± 50 ° C. to produce a steel ingot; And hot rolling or forging the steel ingot at 1200 ° C. ± 50 ° C., and retains the spherical light rare earth-based composite inclusion or the light rare earth-calcium-based composite inclusion below 5 μm, and the final rare earth element content and calcium. The amount satisfies REM% / S% = 2 to 90, [REM%] [S%] = 3 × 10 -5 to 100 × 10 -5 , and Ca% / S% = 1 or less compared to elemental sulfur. It is characterized by.
이하, 본 발명의 고청정공구강의 제조 방법에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the manufacturing method of the high clean mouth hole of this invention is demonstrated in detail.
본 발명은 Al 킬드강의 특성을 살리고 REM 첨가후 RE-Oxide의 단독생성을 제어함과 동시에 REM 첨가된 Al을 첨가하고 그 한정범위를 0.005 ∼ 0.1%로 함과 동시에 REM첨가 효과를 극대화하기 위하여, 충분한 예비 탈산을 목적으로 REM 첨가전 Al을 첨가하고 그 한정범위를 0.005∼0.1%로 함과 동시에 REM 첨가전 진공도를 1×10-1torr 이하로 하였다. 진공도가 1×10-1torr 보다 작거나 Al이 0.005%보다 작으면 충분한 예비탈산효과를 볼 수 없고 Al이 0.1% 이상이 되면 다량의 A12O3를 생성시키고 REM의 탈산, 탈황효과를 저해하므로 그 한계치를 둔다.In order to maximize the effect of addition of REM and at the same time to add Al with added REM and at the same time the limited range is 0.005 to 0.1%, while utilizing the properties of Al-kilted steel and controlling the sole generation of RE-Oxide after REM addition, Al was added before REM addition for the purpose of sufficient pre-oxidation, and the limited range was made into 0.005 to 0.1%, and the vacuum degree before REM addition was made into 1x10 <-1> rr or less. If the vacuum degree is less than 1 × 10 -1 torr or Al is less than 0.005%, there is no sufficient pre-oxidation effect. If Al is more than 0.1%, a large amount of A1 2 O 3 is produced and the deoxidation and desulfurization effects of REM are inhibited. So let's put that limit.
본 발명에서 요구하는 공구강의 고청정성 및 응고조직 개선효과를 얻기 위해서는 REM 첨가전 탈산 및 탈황처리를 통하여 용강내 0량을 15ppm이하로, S량을 100ppm과 50ppm 이하로 제어하여야 한다. REM 첨가전 용존산소량이 15ppm 이상이면 용강내 고경도산화물인 RE-Oxide의 생성이 자유로와지고 S량이 100ppm 이상이면 다량의 RE계 복합개재물을 생성시키므로 재질에 악영향을 미친다.In order to obtain the high cleanliness and solidification structure improvement effect of the tool steel required by the present invention, the amount of S in the molten steel should be controlled to less than 15 ppm and the amount of S to 100 ppm and 50 ppm or less through deoxidation and desulfurization treatment before REM addition. If dissolved oxygen is more than 15ppm before adding REM, the formation of RE-Oxide, which is a high hardness oxide in molten steel, is free. If the amount of S is more than 100ppm, a large amount of RE-based composite inclusions are generated, which adversely affects the material.
용강내 REM의 단독첨가나 REM + Ca의 복합첨가의 그 형태는 다음을 기본으로 한다. 첫째 mischmetal(Ce, La, Nd, Pr, Fe) 형태로 첨가, 둘째 경희토류원소들인 Ce, La, Nd, Pr, Y 등 각각에 대하여 단독첨가, 셋째 mischmetal + Ca 복합첨가, 넷째 Ce, La, Nd, Pr, Y, Ca을 2성분 내지 3성분 이상 첨가하는 것이다.The form of single addition of REM in molten steel or complex addition of REM + Ca is based on the following. Firstly added in the form of mischmetal (Ce, La, Nd, Pr, Fe), secondly added to each of the rare earth elements Ce, La, Nd, Pr, Y, etc., thirdly added mischmetal + Ca, fourth Ce, La, Nd, Pr, Y, and Ca are added two to three components or more.
또한, REM과 REM + Ca의 용강내 첨가시기는 일반적으로 제강공정중에서 진공정련후에 첨가, 강괴 제작시 용강주입직전에 하주 주입관내로 첨가, 몰드내로 용강주입중 몰드내에 첨가시키는 것을 기본으로 한다. 용해로내에 혹은 진공정련전에 첨가하지 않는 것은 다음식과 같이 REM 첨가후부터 조괴까지의 시간지연에 따른 복황반응과 Re-Oxide의 생성을 최소화시키기 위함이다.In addition, the timing of the addition of REM and REM + Ca in molten steel is generally added after vacuum refining in the steelmaking process, immediately before injection of molten steel in the manufacture of ingots, and added into the injecting tube before injection of molten steel, and added into the mold during molten steel injection into the mold. It is not added in the melting furnace or before vacuum refining to minimize the formation of bi-sulfur reaction and Re-Oxide due to the time delay from the addition of REM to the ingot as shown in the following equation.
2RES(S) + 2O = RE2O2S(S) + S2RES (S) + 2O = RE 2 O 2 S (S) + S
RE2O2S(S) + O = RE2O3(S) + SRE 2 O 2 S (S) + O = RE 2 O 3 (S) + S
용강내 REM과 REM +Ca을 많이 첨가할수록 Al2O3, MnS 등의 유해 비금속개재물량과 불순물들을 크게 저감시킬 수는 있지만, 과량 첨가시는 다량의 RE계 복합개재물들이 생성되어 일부는 부상분리에 의하여 제거되지만 일부는 용강내에 잔존되어 용강 응고후 강재 내에 남게 된다. 즉, 과량 첨가시에는 큰 탈산, 탈황효과는 있지만 제특성에는 오히려 역효과를 초래한다. 충분한 탈산, 탈황효과와 생성된 RE계 복합개재물을 강재 내에 소량 잔존시키는 두 가지 목적을 동시에 달성시키기 위해서는 적정 REM량과 Ca량이 필요하다. 따라서, 최종 REM 량을 0.0002%∼0.25%로 한정한다. 단, 최종 S량과 대비하여 REM%/S%=2∼90, [REM%][S%]=3×10-5∼100×10-5을 만족하는 것을 기본으로 한다. 0.0002%이하, REM%/S%=2이하, [REM%][S%]=3×10-5이하일때는 비금속개재물의 형상 제어가 충분하지 않고 0.25% 이상, REM%/S%=90이상, [REM%][S%]=100×10-5이상일 때는 첨가량 만큼 큰 탈산, 탈황효과를 볼 수 없고, 경제적이지 않을 뿐만 아니라 제특성에 악역향을 미친다. 용강내 REM과 Ca첨가에 의한 탈산, 탈황반응은 다음식과 같다.The more REM and REM + Ca in molten steel, the more harmful non-metallic inclusions and impurities such as Al 2 O 3 and MnS can be significantly reduced. But some remain in the molten steel and remain in the steel after molten steel solidification. That is, when excessively added, there is a large deoxidation and desulfurization effect, but rather adverse effects on the characteristics. In order to achieve both the purpose of sufficient deoxidation, desulfurization effect and small amount of RE-based composite inclusions in the steel, the appropriate amount of REM and Ca is required. Therefore, the final REM amount is limited to 0.0002% to 0.25%. However, it is based on satisfying REM% / S% = 2 to 90 and [REM%] [S%] = 3 × 10 −5 to 100 × 10 −5 as compared with the final amount of S. When 0.0002% or less, REM% / S% = 2 or less, and [REM%] [S%] = 3 × 10 -5 or less, the shape control of nonmetallic inclusions is not sufficient, 0.25% or more, REM% / S% = 90 or more When [REM%] [S%] = 100 × 10 -5 or more, the deoxidation and desulfurization effect as large as the added amount is not seen, and it is not economical and adversely affects the characteristics. Deoxidation and desulfurization reaction by adding REM and Ca in molten steel is as follows.
2RE + 2O = RE2O2S2RE + 2O = RE 2 O 2 S
xRE + yS = RExSy xRE + yS = RE x S y
Ca + (x + 1/3)Al2O3= CaOxAl2O3+2/3AlCa + (x + 1/3) Al 2 O 3 = CaO x Al 2 O 3 + 2 / 3Al
CaO + 2/3Al + S = CaS + 1/3Al2O3 CaO + 2 / 3Al + S = CaS + 1 / 3Al 2 O 3
용강내 REM과 REM + Ca 첨가방법은 적정 REM 첨가량을 일정시기에 모두 첨가하거나 적정 REM 첨가량을 일정시기에 시간간격을 두고 나누어 첨가하는 2가지 방법을 기본으로 한다.The method of adding REM and REM + Ca in molten steel is based on two methods of adding all the appropriate amounts of REM at a predetermined time or adding the appropriate amount of REM at a predetermined time interval.
REM 첨가량을 일정시기에 시간간격을 두고 나누어 첨가하는 것은 2가지 방법이 있으나 몰드내 또는 하주 주입관내 첨가 시기에 있어서 가장 효과적인 첨가 방법은 주입시간중 주입초기에 40%를 첨가하고 나머지 REM 량은 일정간격을 두고 나누어서 주입완료 3분전까지 100% 첨가완료 시키는 것이다. 최종 Ca량은 0.001% ∼0.1% 범위로 한정한다. 단, 최종 S량과 대비하여 Ca%/S%=1 이하로 한다. Ca이 0.001%이하일 때는 충분한 예비탈산효과와 비금속개재물 형상제어효과를 볼 수 없고, 0.1% 이상, Ca%/S%=1 이상일때는 REM 첨가효과를 저해하므로 한계치를 둔다.There are two ways to add the REM amount at regular time intervals, but the most effective method for the addition time in the mold or in the injection pipe is to add 40% at the beginning of the injection time and the remaining REM amount is constant. Divide at intervals and add 100% until 3 minutes before injection. The final Ca amount is limited to the range of 0.001% to 0.1%. However, compared with the final S amount, Ca% / S% = 1 or less. When Ca is less than 0.001%, sufficient pre-deoxidation effect and shape control effect of nonmetallic inclusions are not seen, and when it is 0.1% or more and Ca% / S% = 1 or more, the effect of REM addition is inhibited.
[실시예]EXAMPLE
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
<실시예 1><Example 1>
먼저, 열간 공구강을 제조하기 위하여, 60톤 전기로를 이용하고, 기존 제강법을 적용하여 일반적인 열간공구강의 조성범위, 즉 중량%로 C : 0.1%∼1.0%, Si : 0.2%∼0.8%, Mn : 0.3%∼4.0%, Ni : 0.001%∼4.0%, Cr : 1.5% ∼6.0%, Mo : 0.3% ∼4.0%, V :0.1%∼3.5%, W : 0.005%∼0.2%, Al : 0.005%∼0.1%를 함유하고, 잔량은 Fe와 전기로 제강시 함유될 수 있는 미량 불순물로 구성된 용강을 용제한 후 6톤 강괴 2개를 제작하여 강괴 하나는 U로 하고, 나머지 하나는 강괴 중부에서 스크랩을 내어 50kg급 진공 유도로를 이용하여 재 용해후, 표1에 기존 제강법을 적용한 시편 R과 발명법을 적용한 시편 A,C를 18kg급 강괴로 제작하였다. 60톤 전기로내 잔탕은 표1에 나타낸 발명법에 준하여 시편 B, D, E, F로 용제후 6톤 강괴로 제작하였다.First, in order to manufacture hot tool steel, a 60 ton electric furnace was used, and the conventional steelmaking method was applied, and the composition range of the general hot hole steel, that is, in weight%, C: 0.1% to 1.0%, Si: 0.2% to 0.8%, and Mn: 0.3% to 4.0%, Ni: 0.001% to 4.0%, Cr: 1.5% to 6.0%, Mo: 0.3% to 4.0%, V: 0.1% to 3.5%, W: 0.005% to 0.2%, Al: 0.005% It contains ˜0.1%, and the remaining amount is dissolved in molten steel composed of Fe and trace impurities that can be contained in steel making. Two 6-ton ingots are made, one is ingot and the other is scrap in the middle of the ingot. After remelting using a 50kg vacuum induction furnace, 18kg class steel ingots were prepared for specimens R and C, which were applied to the existing steelmaking method, and specimens A and C. Residual water in a 60 ton electric furnace was fabricated from specimens B, D, E, and F in 6 ton ingots according to the invention method shown in Table 1.
다음으로, 냉간공구강계와 고속도공구강계도 기존제강법을 적용하여 용강을 용제한 후, 앞의 열간공구강에의 시험광괴 제조 방법을 채택하여, 6톤 강괴와 18kg급 강괴를 제작하였다.Next, the cold oral and high speed oral systems also melted the molten steel by applying the existing steelmaking method, and then adopted the method of manufacturing the test mass in the hot oral cavity to produce 6 ton ingots and 18 kg ingots.
냉간공구강은 일반적인 냉간공구강의 조성범위, 즉 중량%로 C : 1.0%∼1.7%, Si : 0.2%∼0.6%, Mn : 0.2%∼0.7%, Ni : 0.001% ∼4.0%, Cr : 3.5%∼15.0% Mo : 0.1% ∼2.0%, V :0.1%∼3.0%, W : 0.005%∼0.2%, Al : 0.005%∼0.1%를 함유하고, 잔량은 Fe와 전기로 제강시 함유될 수 있는 미량 불순물로 구성된 용강을 용제한 다음, 열간공구강의 경우와 마찬가지로, 6톤 강괴 2개를 제작하여, 강괴 하나는 V로 하고, 나머지 하나는 강괴 중부에서 스크랩을 내어 50kg급 진공유도로를 이용하여 재 용해후, 표1에 기존 제강법을 적용한 시편 S와 발명법을 적용한 시편 H, J를18kg급 강괴로 제작하였다. 60톤 전기로내 잔탕은 표1에 나타낸 발명법에 준하여 시편 G, I, K, L로 용제후 6톤 강괴로 제작하였다.Cold work steels have a composition range of general cold work steels, that is, by weight%, C: 1.0% to 1.7%, Si: 0.2% to 0.6%, Mn: 0.2% to 0.7%, Ni: 0.001% to 4.0%, Cr: 3.5% -15.0% Mo: 0.1%-2.0%, V: 0.1%-3.0%, W: 0.005%-0.2%, Al: 0.005%-0.1%, the remaining amount can be contained during steelmaking with Fe and electricity After melting molten steel composed of trace impurities, two 6-ton ingots were made, similar to the case of hot working steel, one ingot was made of V, and the other was scrapped from the middle of the ingot, using a 50 kg vacuum induction furnace. After re-melting, specimen S, which applied the existing steelmaking method, and specimens H and J, which were applied to the invention method, were fabricated as 18kg steel ingot. Residual water in a 60 ton electric furnace was prepared in 6 ton ingots after solvent with specimens G, I, K and L according to the invention method shown in Table 1.
고속도공구강은 일반적인 고속도공구강의 조성범위 즉, 중량 %로 C : 0.5%∼1.5%, Si : 0.2%∼0.6%, Mn : 0.25∼0.5%, Ni : 0.08%이하, Cr : 4.0%∼6.0%, Mo : 3.5% ∼ 9.0%, V :1.0%∼5.0%, W : 4.0%∼13.0%, Al : 0.005%∼0.1%를 함유하고, 잔량은 Fe와 전기로 제강시 함유될 수 있는 미량 불순물로 구성된 용강을 용제한 다음, 6톤 강괴 2개를 제작하여 강괴 하나는 W로 하고, 나머지 하나는 강괴 중부에서 스크랩을 내어 50kg급 진공 유도로를 이용하여 재 용해후, 표1에 기존 제강법을 적용한 시편 T와 발명법을 적용한 시편 M, N을 18kg급 강괴로 제작하였다. 60톤 전기로내 잔탕은 표1에 나타낸 발명법에 준하여 시편 O, P, Q로 용제후 6톤 강괴로 제작하였다.The high speed coating oral is composed of the general high speed coating oral composition, that is, in weight%, C: 0.5% to 1.5%, Si: 0.2% to 0.6%, Mn: 0.25 to 0.5%, Ni: 0.08% or less, Cr: 4.0% to 6.0% , Mo: 3.5% to 9.0%, V: 1.0% to 5.0%, W: 4.0% to 13.0%, Al: 0.005% to 0.1%, and the remaining amount is trace impurities that may be contained during steelmaking with Fe and electricity. After melting molten steel consisting of two, 6 ton steel ingots were made, one ingot was made into W, the other was scrapped from the middle of the ingot, and remelted using a 50kg vacuum induction furnace. The applied specimen T and the specimens M and N to which the invention method was applied were made of 18 kg ingot. Residual water in a 60 ton electric furnace was prepared in 6 ton ingots after solvent with specimens O, P, and Q according to the invention method shown in Table 1.
표1에 표시한 강괴 시편을 다시 분류하면, A 내지 Q 는 본 발명의 방법을 적용한 것으로서, A, C는 열간공구강을 위한 18kg 강괴이고, B, D, E, F는 열간공구강을 위한 6ton강괴, H, J는 냉간공구강을 위한 18kg강괴이고, G, I, K, L은 냉간공구강을 위한 6ton 강괴, M, N은 고속도공구강을 위한 18kg강괴이고, O, P, Q는 고속도공구강을 위한 6ton강괴이다.Reclassifying the ingot specimens shown in Table 1, A to Q are the methods of the present invention, where A and C are 18 kg ingots for hot oral cavity, and B, D, E and F are 6 ton ingots for hot oral cavity. , H, J are 18kg ingots for cold oral steel, G, I, K, L are 6ton ingots for cold oral steel, M, N are 18kg ingots for high speed steel, O, P, Q are for high speed steel It is a 6ton ingot.
상기 시편들에서 6톤강괴는 1200℃에서 320ψ로 단조하였고, 18kg급 강괴는 1200℃에서 33ψ로 단조하였다.In the specimens, the 6-ton ingot was forged to 320 ψ at 1200 ° C., and the 18 kg ingot was forged to 33 ψ at 1200 ° C.
<표 1><Table 1>
준비한 시편들이 열간공구강, 냉간공구강, 고속도공구강으로 적정한지를 살펴보기 위하여 기존 제강법 및 발명법에 의하여 제조된 강괴내에 잔존된 O, S, P, N량과 총 Al량, 가용성(Souble) Al량을 강괴중부의 1/2위치에서 측정한 분석치와 단조된 소재내 잔존된 총 비금속개재물량의 측정치를 표2에 나타내었다.In order to examine whether the prepared specimens are suitable for hot work, cold work, and high speed work, the amount of O, S, P, N, total Al, and Soluble Al remaining in the steel ingot manufactured by the existing steelmaking and invention methods The analytical value measured at the 1/2 position of the ingot and the total nonmetallic inclusions remaining in the forged material are shown in Table 2.
<표 2><Table 2>
표2에서 볼 수 있듯이 발명법에 준하여 제조된 소재내 O량과 S량은 기존제강법과 비교법에 준하여 제조된 소재보다 현저하게 저감되었으며, P량과 N량은 기존제강법과 비교법에 의한 소재보다 다소 저감되었다. 총 Al량과 가용성의 Al량의 대비는 기존제강법과 비교법에서 약 50%이하를 나타낸 반면, 발명법을 적용한 소재에서는 80%이상을 나타내었다.As can be seen from Table 2, the amount of O and S in the material manufactured according to the invention method was significantly reduced than the material manufactured according to the existing steelmaking method and the comparative method, and the amount of P and N was somewhat lower than that of the conventional steelmaking method and the comparative method. Reduced. Compared with the total Al content and the Al content of the soluble Al was about 50% or less in the conventional steelmaking method and the comparative method, while the material using the invention method was more than 80%.
320ψ와 33ψ로 단조된 소재들의 1/2R 위치에서 KS D 0204에 준하여 총 비금속개재물량을 측정하고 그 결과를 표2에 나타내었는데, 본 발명법으로 제조된 소재에서의 총 비금속개재물량은 RE계 복합개재물과 Ca이 함유된 RE계 복합개재물이 형성된후 부상분리효과에 의하여 일부가 제거되므로써, 기존제강법과 비교법으로 제조된 소재에 비하여 최고 76.1%, 최저 29.5%로 저감되었다.Total non-metallic inclusions were measured in accordance with KS D 0204 at 1 / 2R positions of materials forged with 320ψ and 33ψ, and the results are shown in Table 2. The total nonmetallic inclusions in the material manufactured according to the present invention are based on RE system. After the composite inclusions and Ca-containing RE inclusions were formed, some of them were removed by the flotation separation effect, resulting in a reduction of up to 76.1% and at least 29.5%, compared to materials manufactured by conventional steelmaking and comparative methods.
제 1도는 비교법 R과 발명법 C, H, P에 준하여 제조된 소재의 총 비금속개재물량을 측정한 위치에서 비금속개재물 형상을 광학현미경으로 관찰한 것이다. 비교법으로 제조된 R 소재에서는 MnS가 단조방향으로 길게 연신되었고, Al2O3등의 고경도산화물은 단조시 깨어져 가공방향으로 길게 늘어섰으며, 형성위치는 초기 오스테나이트(Austenite) 입계였지만 발명법 C, H, P로 제조된 소재내에서 형성된 RE계 복합개재물과 Ca이 함유된 RE계 복합개재물들은 가공방향으로 연신됨이 미세한 구상형태를 그대로 유지하였으며 형성위치는 초기 오스테나이트 입계 뿐만아니라 입내에도 존재함에 따라 소재 전체에 고르게 분산되었다.1 shows the observation of the shape of the nonmetallic inclusions with an optical microscope at a position where the total amount of nonmetallic inclusions of the material prepared according to Comparative Method R and Inventive Methods C, H and P was measured. In the R material prepared by the comparative method, MnS was elongated in the forging direction, and high hardness oxides such as Al 2 O 3 were broken during the forging and elongated in the processing direction, and the formation position was the initial austenite grain boundary, but the invention method C RE-based composite inclusions and Ca-containing composite inclusions formed from H, P-based materials were elongated in the processing direction and maintained the fine spherical shape. The formation position was not only in the initial austenite grain boundary but also in the mouth. As it was, it was evenly distributed throughout the material.
제 2도는 비교법 R과 발명법 A, C로 제조된 강괴중부 횡단면의 마크로, 마이크로 응고조직을 관찰한 결과이다. 제 2도의 좌측에 위치한 마크로 현미경 사진으로부터, 비교법 R로 제조된 소재에 비하여 발명법 A, C로 제조된 강괴의 응고조직이 치밀하고 중심 Porosity와 P 편석립으로 대표되는 중심편석이 현저하게 감소되었다는 것을 알 수 있다.2 is a result of observing the microcoagulation structure of the cross section of the steel ingots produced by Comparative Method R and Inventive Methods A and C. FIG. From the macromicrograph on the left side of FIG. 2, the solidification structure of the steel ingots prepared by Inventive Methods A and C was dense and the central segregation represented by the central Porosity and P segregation was significantly reduced compared to the material prepared by Comparative Method R. It can be seen that.
또한, 도시하지는 않았지만, 본 발명법이 적용된 냉간공구강이나 고속도 공구강에서도 치밀한 응고조직을 나타내고 중심편석이 현저하게 감소되었다.In addition, although not shown, the cold working steel and the high speed tool steel to which the present invention was applied also exhibited a dense solidified structure and significantly reduced central segregation.
제 2도의 우측에 위치한 마이크로 응고조직으로부터, 본 발명법이 적용된 소재 A, C의 경우 미고용 용질원소집적영역(흑색영역)이 현저하게 감소되었으며 MC와M2C 탄화물의 크기가 상당히 미세해졌다.From the microcoagulation structure located on the right side of FIG. 2, in the case of the materials A and C to which the present invention was applied, the unsolubilized solute accumulation region (black region) was significantly reduced and the size of the MC and M 2 C carbides became considerably finer.
상기된 바와 같이, 본 발명의 고청정공구강의 제조방법은 표3에서 나타낸 바와 같이 열간공구강, 냉간공구강, 고속도공구강 모두에 대하여 REM 첨가전 용강내 O량을 15ppm이하로, S량을 100ppm과 50ppm 이하로 제어하고 REM량을 다양한 첨가방법과 첨가시기를 적용하여 REM%/S%=2∼82, [REM%][S%]=5×10-5∼92×10-5, Ca%/S%=0.33이하로 함에 따라 고청정화된 소재를 얻을 수 있다.As described above, the manufacturing method of the high-cleaning steel ball of the present invention is as shown in Table 3, the amount of O in the molten steel before the addition of REM less than 15ppm, S content 100ppm and 50ppm REM% / S% = 2 ~ 82, [REM%] [S%] = 5 × 10 -5 ~ 92 × 10 -5 , Ca% / By setting S% = 0.33 or less, highly purified materials can be obtained.
<표 3><Table 3>
또한, 비금속개재물의 완전제거를 꾀하지 않고 RE계 복합개재물과 Ca이 함유된 RE계 복합개재물들을 소량 생성시키고 잔존시킴에 따라 마크로, 마이크로 응고조직 역시 현저하게 개선되었다.In addition, the macro- and microcoagulation structure was also remarkably improved as a small amount of RE-based composite inclusions and RE-based composite inclusions containing Ca were left without attempting to completely remove non-metallic inclusions.
여기에서는 본 발명의 특정 실시예에 대하여 설명하고 도시하였지만, 당업자에 의하여 이에 대한 수정과 변형을 할 수 있다. 따라서, 이하, 특허청구의 범위는 본 발명의 진정한 사상과 범위에 속하는 한 모든 수정과 변형을 포함하는 것으로 이해할 수 있다.Although specific embodiments of the present invention have been described and illustrated herein, modifications and variations can be made by those skilled in the art. Accordingly, the following claims are to be understood as including all modifications and variations as long as they fall within the true spirit and scope of the present invention.
이상에서 설명한 바와 같이, 본 고청정 공구강의 제조 방법은, 경희토류 원소와 Ca를 첨가하여 불순물과 총 비금속개재물량을 저감시킴으로써, 청정성을 향상시켰고, 응고시 RE계 복합개재물의 불균질핵생성능을 이용하여 마크로·마이크로 응고조직을 개선시켜 고청정 공구강을 얻었다.As described above, the present method for manufacturing high-clean tool steel improves cleanliness by adding light rare earth elements and Ca to reduce impurities and total non-metallic inclusions, and improves heterogeneous nucleation performance of RE-based composite inclusions during solidification. The macromicro coagulation structure was improved to obtain a high clean tool steel.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960015127A KR100331962B1 (en) | 1996-05-08 | 1996-05-08 | Method for manufacturing high cleanliness tool steel with improved macro/micro-solidification structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960015127A KR100331962B1 (en) | 1996-05-08 | 1996-05-08 | Method for manufacturing high cleanliness tool steel with improved macro/micro-solidification structure |
Publications (2)
Publication Number | Publication Date |
---|---|
KR970074947A KR970074947A (en) | 1997-12-10 |
KR100331962B1 true KR100331962B1 (en) | 2002-11-27 |
Family
ID=37479398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019960015127A KR100331962B1 (en) | 1996-05-08 | 1996-05-08 | Method for manufacturing high cleanliness tool steel with improved macro/micro-solidification structure |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100331962B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104946851A (en) * | 2015-07-15 | 2015-09-30 | 武汉钢铁(集团)公司 | Smelting method capable of lowering O in ultra-low carbon steel water in vacuum induction furnace to be no greater than 0.001 percent |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010046367A (en) * | 1999-11-12 | 2001-06-15 | 이구택 | Method for Manufacturing Tool Steel |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61243740A (en) * | 1985-04-17 | 1986-10-30 | Matsushita Graphic Commun Syst Inc | Automatic paper feeder |
JPH01111846A (en) * | 1987-10-27 | 1989-04-28 | Daido Steel Co Ltd | Hot-working tool |
JPH01159349A (en) * | 1987-09-24 | 1989-06-22 | Hitachi Metals Ltd | Low-alloy high-speed tool steel and its production |
JPH01176054A (en) * | 1987-12-28 | 1989-07-12 | Aichi Steel Works Ltd | Cold working tool steel |
JPH01225747A (en) * | 1988-03-03 | 1989-09-08 | Sumitomo Metal Ind Ltd | Manufactured article of high-speed steel having excellent surface treatability and its manufacture |
KR950006016A (en) * | 1993-08-31 | 1995-03-20 | 서순화 | Hot die tool steel and manufacturing method |
KR970027340A (en) * | 1995-11-08 | 1997-06-24 | 사몬스 Iii 하비 오 | Corrosion resistance, high vanadium, powder metallurgy tool steel products with improved metal wear resistance and methods of production thereof |
-
1996
- 1996-05-08 KR KR1019960015127A patent/KR100331962B1/en not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61243740A (en) * | 1985-04-17 | 1986-10-30 | Matsushita Graphic Commun Syst Inc | Automatic paper feeder |
JPH01159349A (en) * | 1987-09-24 | 1989-06-22 | Hitachi Metals Ltd | Low-alloy high-speed tool steel and its production |
JPH01111846A (en) * | 1987-10-27 | 1989-04-28 | Daido Steel Co Ltd | Hot-working tool |
JPH01176054A (en) * | 1987-12-28 | 1989-07-12 | Aichi Steel Works Ltd | Cold working tool steel |
JPH01225747A (en) * | 1988-03-03 | 1989-09-08 | Sumitomo Metal Ind Ltd | Manufactured article of high-speed steel having excellent surface treatability and its manufacture |
KR950006016A (en) * | 1993-08-31 | 1995-03-20 | 서순화 | Hot die tool steel and manufacturing method |
KR970027340A (en) * | 1995-11-08 | 1997-06-24 | 사몬스 Iii 하비 오 | Corrosion resistance, high vanadium, powder metallurgy tool steel products with improved metal wear resistance and methods of production thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104946851A (en) * | 2015-07-15 | 2015-09-30 | 武汉钢铁(集团)公司 | Smelting method capable of lowering O in ultra-low carbon steel water in vacuum induction furnace to be no greater than 0.001 percent |
CN104946851B (en) * | 2015-07-15 | 2017-04-12 | 武汉钢铁(集团)公司 | Smelting method capable of lowering O in ultra-low carbon steel water in vacuum induction furnace to be no greater than 0.001 percent |
Also Published As
Publication number | Publication date |
---|---|
KR970074947A (en) | 1997-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4810287A (en) | Process for producing steel for valve springs | |
EP2110454B1 (en) | Forging steel, and forged products obtainable therefrom | |
KR100309192B1 (en) | Titanium killed steel sheet with good surface properties and a method of producing the same | |
US20090038439A1 (en) | Process for producing steel for high-carbon steel wire material with excellent drawability and fatique characteristics | |
CN113969376A (en) | Preparation method of wire rod for suspension cable steel wire | |
KR101574446B1 (en) | Boron-containing stainless steel having excellent hot workability and excellent surface properties | |
JP6642174B2 (en) | Continuous casting method of high carbon molten steel | |
JP7260731B2 (en) | High purity steel and its refining method | |
CN113549734A (en) | QD08 steel refining slag system and method for smelting QD08 steel | |
JP4656007B2 (en) | Method of processing molten iron by adding Nd and Ca | |
KR100331962B1 (en) | Method for manufacturing high cleanliness tool steel with improved macro/micro-solidification structure | |
US3907547A (en) | Method of preparing vacuum-treated steel for making ingots for forging | |
CN115488298A (en) | Continuous casting billet for high-carbon steel wire and preparation method thereof | |
JP7492118B2 (en) | Steel product with low ductile MnS, steel slab, and manufacturing method thereof | |
KR102103382B1 (en) | Steel material and manufacturing method thereof | |
JPH01149917A (en) | Manufacture of steel ingot with very slight segregation of phosphorus | |
CN112063928A (en) | High-hardenability and high-carburization rare earth CrMnTi gear steel and preparation method thereof | |
KR101657850B1 (en) | Medium carbon free cutting steel having excellent hardenability and method for manufacturing the same | |
JPH0873923A (en) | Production of clean steel having excellent hydrogen induced crack resistance | |
RU2795068C1 (en) | Complex alloy for microalloying and deoxidation of steel based on iron | |
JPH07103416B2 (en) | High carbon steel wire manufacturing method | |
KR100226926B1 (en) | The refining method of low phosphorous molten metal for liquid nature gas storage tank | |
JP2002371314A (en) | METHOD FOR MANUFACTURING SLAB OF Ni-CONTAINING STEEL | |
RU2223342C1 (en) | Steel | |
JPS61179811A (en) | Production of clean steel having excellent sulfide corrosion cracking resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20101217 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20140327 Year of fee payment: 15 |
|
EXPY | Expiration of term |