WO2022145066A1 - Steel material - Google Patents

Steel material Download PDF

Info

Publication number
WO2022145066A1
WO2022145066A1 PCT/JP2021/014772 JP2021014772W WO2022145066A1 WO 2022145066 A1 WO2022145066 A1 WO 2022145066A1 JP 2021014772 W JP2021014772 W JP 2021014772W WO 2022145066 A1 WO2022145066 A1 WO 2022145066A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
less
steel
amount
solid solution
Prior art date
Application number
PCT/JP2021/014772
Other languages
French (fr)
Japanese (ja)
Inventor
恭平 石川
耕平 中田
謙 木村
美百合 梅原
真吾 山▲崎▼
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2022145066A1 publication Critical patent/WO2022145066A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to steel materials.
  • Phosphorus (P) dissolved in the steel (hereinafter, also referred to as “solid solution P”) is concentrated in a specific part in the steel, for example, between dendrite trees and grain boundaries, and the toughness and ductility of the steel material are increased. It is known that properties such as corrosion resistance and weldability may be deteriorated. In order to improve these characteristics of the steel material, it is important to reduce the amount of solid solution P in the steel, but in order to drastically reduce the P content, an increase in manufacturing cost is unavoidable. Therefore, a method for detoxifying P in steel has been proposed in the prior art (see, for example, Patent Documents 1 to 4).
  • Patent Document 1 describes a high-strength pearlite rail containing Zr, Nb, Ti, and Mo. Further, in Patent Document 1, P, which is an element that lowers toughness, is fixed as a phosphide of Zr, Nb, Ti, and Mo, and the solid solution P concentration is 0.018% or less to improve toughness. Is taught.
  • Patent Document 2 describes a tempered high-strength steel for large heat input welding containing a rare earth element (REM). Further, in Patent Document 2, by setting the B content to 0.0010% by weight and the REM content to 0.002% by weight or more, stress relief annealing is performed without drastically reducing P. It is taught that the deterioration of the toughness of the base metal can be made to the extent that there is no problem in practical use, and that the large heat input welding characteristics are also excellent.
  • REM rare earth element
  • Patent Document 3 describes a steel in which microsegregation of P is dispersed by containing Nd according to the P content. Patent Document 3 describes that P concentrated in dendrite trees and added Nd are combined to finely disperse P in steel to make it harmless.
  • Patent Document 4 describes high-strength bolts containing Ce according to the P content. Further, Patent Document 4 teaches that P and Ce are combined to form a phosphide to suppress grain boundary embrittlement, the amount of solid solution P is reduced, and the hydrogen embrittlement resistance of the bolt is improved. Has been done.
  • Japanese Unexamined Patent Publication No. 2001-40453 Japanese Unexamined Patent Publication No. 59-159966 Japanese Unexamined Patent Publication No. 2010-100923 Japanese Unexamined Patent Publication No. 2017-160525
  • Patent Document 1 teaches that the content of Zr, Nb, Ti and Mo is specified within a predetermined range to generate a phosphide thereof, thereby reducing the amount of solid-dissolved P. Other factors that may affect production have not always been thoroughly investigated.
  • Patent Document 2 no specific element that can be used as REM is taught or suggested, and sufficient studies have not been made from the viewpoint of reducing the amount of solid solution P in steel.
  • Patent Document 3 describes that among REMs, those that can be added to practical steel are limited to La, Ce and Nd, and Nd is selected as the most effective REM for detoxifying P.
  • Patent Document 3 elements other than La, Ce and Nd have not always been sufficiently studied, and therefore, in the invention described in Patent Document 3, the reduction of the amount of solid melt P in steel still remains. There was room for improvement. This point is the same as the invention described in Patent Document 4, in which elements other than Ce have not been sufficiently studied.
  • the present invention has been made in view of such circumstances, and an object thereof is that the amount of solid solution P in steel can be reduced or the amount of solid solution P in steel can be reduced by a novel configuration.
  • the purpose is to provide the steel products that have been made.
  • the present inventors have studied elements that can reduce the amount of solid solution P in steel in order to achieve the above object. As a result, the present inventors secure the amount of the specific element to a certain amount or more, and set the relationship between the amount of the specific element and the P content in the steel within a predetermined range to solidify the steel. We have found that the amount of dissolved P can be reduced, and completed the present invention.
  • the steel materials that have achieved the above objectives are as follows. (1) By mass%, C: 0.001 to 1.000%, Si: 0.01-3.00%, Mn: 0.10 to 4.50%, P: 0.300% or less, S: 0.0300% or less, Al: 0.001-5.000%, N: 0.2000% or less, O: 0.0100% or less, At least one Z element selected from the group consisting of Zr: 0 to 0.8000% and Hf: 0 to 0.8000%.
  • Nb 0-3.000%, Ti: 0 to 0.500%, Ta: 0 to 0.500%, V: 0 to 1.00%, Cu: 0 to 3.00%, Ni: 0-60.00%, Cr: 0 to 30.00%, Mo: 0 to 5.00%, W: 0 to 2.00%, B: 0-0.0200%, Co: 0 to 3.00%, Be: 0 to 0.050%, Ag: 0 to 0.500%, Ca: 0-0.0500%, Mg: 0-0.0500%, At least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc: 0 to 0.5000% in total.
  • Equation 2 [Zr], [Hf], [O], [N], [S], and [P] are the content [mass%] of each element, and are 0 when the element is not contained. .. (2)
  • the chemical composition is mass%.
  • Nb 0.003 to 3.000%
  • the steel material according to the embodiment of the present invention is based on mass%.
  • Nb 0-3.000%, Ti: 0 to 0.500%, Ta: 0 to 0.500%, V: 0 to 1.00%, Cu: 0 to 3.00%, Ni: 0-60.00%, Cr: 0 to 30.00%, Mo: 0 to 5.00%, W: 0 to 2.00%, B: 0-0.0200%, Co: 0 to 3.00%, Be: 0 to 0.050%, Ag: 0 to 0.500%, Ca: 0-0.0500%, Mg: 0-0.0500%, At least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc: 0 to 0.5000% in total.
  • tempering treatment is typically performed at a predetermined temperature after quenching in order to secure low temperature toughness. If the solid solution P in the steel is relatively large, the solid solution P segregates at the former austenite grain boundaries during such tempering treatment, causing so-called tempering embrittlement, and as a result, the toughness of the steel material is reduced. May reduce.
  • the present inventors have investigated an element that can react with the solid solution P in steel to reduce the amount thereof.
  • the present inventors have determined the amounts of the elements Zr and Hf (hereinafter, also referred to as “Z element”) as inclusions formed in the steel by those elements, more specifically, oxides of these elements.
  • Z element the elements Zr and Hf
  • the present inventors Secure a certain amount or more while considering the relationship with nitrides and sulfides (that is, the effective amount of the Z element corresponding to the left side of the formula 1 is 0.0003% or more), and further, the effective amount of the specific element.
  • the above-mentioned Z element has a property of easily forming inclusions composed of oxides, nitrides and sulfides in combination with O (oxygen), N (nitrogen) and S (sulfur) existing in steel.
  • O oxygen
  • N nitrogen
  • S sulfur
  • the amount of the Z element that can contribute to the reaction with the solid solution P decreases, and the amount of the solid solution P can be sufficiently reduced. It disappears.
  • the amount of the Z element in consideration of such inclusions is calculated as the effective amount of the Z element by the above formula 1 which will be described in detail later, and the effective amount is set to a certain amount or more, that is, 0.
  • the Z element can be reacted with the solid solution P to form a phosphide.
  • the phosphide By forming the phosphide, at least a part of the solid solution P can be fixed, and the segregation of the solid solution P to the grain boundaries and the like can be remarkably suppressed.
  • the above-mentioned equation 2 has a higher effect of reducing solid solution P. Was found to be achievable.
  • the present invention it is possible to obtain a steel material in which the solid solution P amount in the steel can be sufficiently reduced or the solid solution P amount in the steel is sufficiently reduced without excessively reducing the P content. Therefore, it is possible to remarkably improve the characteristics of the steel material related to the solid solution P, for example, the characteristics such as toughness, ductility, corrosion resistance, and weldability. More specifically, by reducing the amount of the solid solution P in the steel, it is possible to prevent the solid solution P from segregating at a specific place such as the old austenite grain boundary during, for example, tempering treatment. .. As a result, according to the present invention, it is possible to suppress the occurrence of tempering embrittlement and the like, and therefore it is possible to significantly improve the toughness and other properties of the steel material.
  • the Z element in the present invention easily combines with O, N and S to form inclusions as described above, and therefore it is generally difficult to secure a predetermined effective amount in steel. Due to such circumstances, the effect of reducing the solid solution P by the Z element has not been known so far. However, recent advances in refining technology have made it possible to reduce the content of elements such as O, N, and S, which are generally present in steel as impurities, to extremely low levels. It was possible to realize an effective amount of the Z element within a predetermined range. Therefore, the effect of reducing the solid solution P on the Z element has been clarified for the first time by the present inventors, and is extremely surprising and surprising.
  • Carbon (C) is an element necessary for stabilizing hardness and / or ensuring strength. In order to sufficiently obtain these effects, the C content is 0.001% or more. The C content may be 0.005% or more, 0.010% or more, or 0.020% or more. On the other hand, if C is excessively contained, toughness, bendability and / or weldability may decrease. Therefore, the C content is 1.000% or less. The C content may be 0.800% or less, 0.600% or less, or 0.500% or less.
  • Si is a deoxidizing element and is an element that also contributes to the improvement of strength. In order to sufficiently obtain these effects, the Si content is 0.01% or more. The Si content may be 0.05% or more, 0.10% or more, or 0.30% or more. On the other hand, if Si is excessively contained, the toughness may be lowered or surface quality defects called scale defects may occur. Therefore, the Si content is 3.00% or less. The Si content may be 2.00% or less, 1.00% or less, or 0.60% or less.
  • Manganese (Mn) is an element effective for improving hardenability and / or strength, and is also an effective austenite stabilizing element. In order to sufficiently obtain these effects, the Mn content is 0.10% or more. The Mn content may be 0.50% or more, 0.70% or more, or 1.00% or more. On the other hand, if Mn is excessively contained, MnS harmful to toughness may be generated or the oxidation resistance may be lowered. Therefore, the Mn content is 4.50% or less. The Mn content may be 4.00% or less, 3.50% or less, or 3.00% or less.
  • Phosphorus (P) is an element mixed in the manufacturing process. From the viewpoint of reducing the amount of solid solution P in the steel, the smaller the amount of P, the more preferable, and the P content may be 0%. However, in order to reduce the P content to less than 0.0001%, it takes time for refining, which leads to a decrease in productivity. Therefore, the P content may be 0.0001% or more, 0.0005% or more, 0.001% or more, 0.003% or more, or 0.005% or more. The P content may be 0.007% or more from the viewpoint of manufacturing cost.
  • the P content is 0.300% or less.
  • the P content may be 0.100% or less, 0.030% or less, or 0.010% or less.
  • S 0.0300% or less
  • Sulfur (S) is an element mixed in the manufacturing process, and is preferable from the viewpoint of reducing inclusions formed with the Z element according to the embodiment of the present invention, so that the S content is 0%. There may be. However, in order to reduce the S content to less than 0.0001%, it takes time for refining, which leads to a decrease in productivity. Therefore, the S content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more. On the other hand, if S is excessively contained, the effective amount of the Z element may decrease and the toughness may decrease. Therefore, the S content is 0.0300% or less.
  • the S content is preferably 0.0100% or less, more preferably 0.0050% or less, and most preferably 0.0030% or less.
  • Aluminum (Al) is a deoxidizing element and is also an effective element for improving corrosion resistance and / or heat resistance.
  • the Al content is 0.001% or more.
  • the Al content may be 0.010% or more, 0.100% or more, or 0.200% or more.
  • the Al content may be 1.000% or more, 2.000% or more, or 3.000% or more.
  • the Al content is 5.000% or less.
  • the Al content may be 4.500% or less, 4000% or less, or 3.500% or less.
  • the Al content may be 1.500% or less, 1.000% or less, or 0.300% or less.
  • N Nitrogen (N) is an element mixed in the manufacturing process, and is preferable from the viewpoint of reducing inclusions formed with the Z element according to the embodiment of the present invention, so that the N content is 0%. There may be. However, in order to reduce the N content to less than 0.0001%, it takes time for refining, which leads to a decrease in productivity. Therefore, the N content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more. On the other hand, N is also an element effective for stabilizing austenite, and may be intentionally contained if necessary. In this case, the N content is preferably 0.0100% or more, and may be 0.0200% or more and 0.0500% or more. However, if N is excessively contained, the effective amount of the Z element may decrease and the toughness may decrease. Therefore, the N content is 0.2000% or less. The N content may be 0.1500% or less, 0.1000% or less, or 0.0800% or less.
  • Oxygen (O) is an element mixed in the manufacturing process, and is preferable from the viewpoint of reducing inclusions formed with the Z element according to the embodiment of the present invention, so that the O content is 0%. There may be. However, in order to reduce the O content to less than 0.0001%, it takes time for refining, which leads to a decrease in productivity. Therefore, the O content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more. On the other hand, if O is excessively contained, coarse inclusions may be formed, the effective amount of the Z element may be lowered, and the formability and / or toughness of the steel material may be lowered. Therefore, the O content is 0.0100% or less. The O content may be 0.0080% or less, 0.0060% or less, or 0.0040% or less.
  • the Z element according to the embodiment of the present invention is Zr: 0 to 0.8000% and Hf: 0 to 0.8000%, and zirconium (Zr) and hafnium (Hf) are solid-dissolved based on the formation of a phosphide.
  • the effect of reducing P can be exhibited.
  • By exhibiting the effect of reducing the solid solution P it is possible to remarkably improve the characteristics of the steel material related to the solid solution P, such as toughness, ductility, corrosion resistance, and weldability.
  • any one element may be used alone, or both may be used. Further, the Z element may be present in an amount satisfying the formulas 1 and 2 described in detail later, and the lower limit thereof is not particularly limited. However, for example, the content of each Z element or the total content may be 0.0010% or more, preferably 0.0050% or more, more preferably 0.0150% or more, and even more. It is preferably 0.0300% or more, and most preferably 0.0500% or more. On the other hand, even if the Z element is excessively contained, the effect is saturated, and therefore, if the Z element is contained in the steel material more than necessary, the manufacturing cost may increase.
  • the content of each Z element is 0.8000% or less, for example, 0.7000% or less, 0.6000% or less, 0.5000% or less, 0.4000% or less, or 0.3000% or less. May be good.
  • the total content of the Z element is 1.6000% or less, for example, 1.2000% or less, 1.000% or less, 0.8000% or less, 0.6000% or less, or 0.5000% or less. You may.
  • the steel material may contain one or more of the following optional elements, if necessary.
  • the steel material has Nb: 0 to 3.000%, Ti: 0 to 0.500%, Ta: 0 to 0.500%, V: 0 to 1.00%, Cu: 0 to 3.00%, Ni: 0 to 60.00%, Cr: 0 to 30.00%, Mo: 0 to 5.00%, W: 0 to 2.00%, B: 0 to 0.0200%, Co: 0 to 3 It may contain one or more of .00%, Be: 0 to 0.050%, and Ag: 0 to 0.500%.
  • the steel materials include Ca: 0 to 0.0500%, Mg: 0 to 0.0500%, and La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er. At least one of Tm, Yb, Lu, and Sc: one or more of 0 to 0.5000% in total may be contained. Further, the steel material may contain one or two of Sn: 0 to 0.300% and Sb: 0 to 0.300%. The steel materials are Te: 0 to 0.100%, Se: 0 to 0.100%, As: 0 to 0.050%, Bi: 0 to 0.500%, and Pb: 0 to 0.500%. One or more of them may be contained. Hereinafter, these optional elements will be described in detail.
  • Niobium (Nb) is an element that contributes to strengthening precipitation and suppressing recrystallization.
  • the Nb content may be 0%, but in order to obtain these effects, the Nb content is preferably 0.003% or more.
  • the Nb content may be 0.005% or more or 0.010% or more.
  • the Nb content may be 1.000% or more or 1.500% or more from the viewpoint of sufficiently strengthening precipitation.
  • the Nb content is 3.000% or less.
  • the Nb content may be 2.800% or less, 2.500% or less, or 2.000% or less.
  • the Nb content is preferably 0.100% or less, 0.080% or less, 0.050% or less, or 0.030. It may be less than or equal to%.
  • Titanium (Ti) is an element that contributes to improving the strength of steel materials by strengthening precipitation.
  • the Ti content may be 0%, but in order to obtain such an effect, the Ti content is preferably 0.005% or more.
  • the Ti content may be 0.010% or more, 0.050% or more, or 0.080% or more.
  • the Ti content is 0.500% or less.
  • the Ti content may be 0.300% or less, 0.200% or less, or 0.100% or less.
  • Tantalum (Ta) is an element effective in controlling the morphology of carbides and increasing their strength.
  • the Ta content may be 0%, but in order to obtain these effects, the Ta content is preferably 0.001% or more.
  • the Ta content may be 0.005% or more, 0.010% or more, or 0.050% or more.
  • the Ta content is 0.500% or less.
  • the Ta content may be 0.300% or less, 0.100% or less, or 0.080% or less.
  • Vanadium (V) is an element that contributes to improving the strength of steel materials by strengthening precipitation.
  • the V content may be 0%, but in order to obtain such an effect, the V content is preferably 0.001% or more.
  • the V content may be 0.01% or more, 0.02% or more, 0.05% or more, or 0.10% or more.
  • the V content is 1.00% or less.
  • the V content may be 0.80% or less, 0.60% or less, or 0.50% or less.
  • Copper (Cu) is an element that contributes to the improvement of strength and / or corrosion resistance.
  • the Cu content may be 0%, but in order to obtain these effects, the Cu content is preferably 0.001% or more.
  • the Cu content may be 0.01% or more, 0.10% or more, 0.15% or more, 0.20% or more, or 0.30% or more.
  • the Cu content is 3.00% or less.
  • the Cu content may be 2.00% or less, 1.50% or less, 1.00% or less, or 0.50% or less.
  • Nickel (Ni) is an element that contributes to the improvement of strength and / or heat resistance, and is also an effective austenite stabilizing element.
  • the Ni content may be 0%, but in order to obtain these effects, the Ni content is preferably 0.001% or more.
  • the Ni content may be 0.01% or more, 0.10% or more, 0.50% or more, 0.70% or more, 1.00% or more, or 3.00% or more.
  • the Ni content may be 30.00% or more, 35.00% or more, or 40.00% or more.
  • the deformation resistance during hot working increases in addition to the increase in alloy cost, which may increase the equipment load.
  • the Ni content is 60.00% or less.
  • the Ni content may be 55.00% or less or 50.00% or less.
  • the Ni content is 15.00% or less, 10.00% or less, 6.00% or less, or 4.00% or less. You may.
  • Chromium (Cr) is an element that contributes to the improvement of strength and / or corrosion resistance.
  • the Cr content may be 0%, but in order to obtain these effects, the Cr content is preferably 0.001% or more.
  • the Cr content may be 0.01% or more, 0.05% or more, 0.10% or more, or 0.50% or more.
  • the Cr content may be 10.00% or more, 12.00% or more, or 15.00% or more.
  • the Cr content is 30.00% or less.
  • the Cr content may be 28.00% or less, 25.00% or less, or 20.00% or less.
  • the Cr content may be 10.00% or less, 9.00% or less, or 7.50% or less.
  • Molybdenum is an element that enhances the hardenability of steel and contributes to the improvement of strength, and is also an element that contributes to the improvement of corrosion resistance.
  • the Mo content may be 0%, but in order to obtain these effects, the Mo content is preferably 0.001% or more.
  • the Mo content may be 0.01% or more, 0.02% or more, 0.50% or more, or 1.00% or more.
  • Mo content is 5.00% or less.
  • the Mo content may be 4.50% or less, 4.00% or less, 3.00 or less, or 1.50% or less.
  • Tungsten is an element that enhances the hardenability of steel and contributes to the improvement of strength.
  • the W content may be 0%, but in order to obtain such an effect, the W content is preferably 0.001% or more.
  • the W content may be 0.01% or more, 0.02% or more, 0.05% or more, 0.10% or more, or 0.50% or more.
  • the W content is 2.00% or less.
  • the W content may be 1.80% or less, 1.50% or less, or 1.00% or less.
  • B is an element that contributes to the improvement of strength.
  • the B content may be 0%, but in order to obtain such an effect, the B content is preferably 0.0001% or more.
  • the B content may be 0.0003% or more, 0.0005% or more, or 0.0007% or more.
  • the B content is 0.0200% or less.
  • the B content may be 0.0100% or less, 0.0050% or less, 0.0030% or less, or 0.0020% or less.
  • Co is an element that contributes to the improvement of hardenability and / or heat resistance.
  • the Co content may be 0%, but in order to obtain these effects, the Co content is preferably 0.001% or more.
  • the Co content may be 0.01% or more, 0.02% or more, 0.05% or more, 0.10% or more, or 0.50% or more.
  • the Co content is 3.00% or less.
  • the Co content may be 2.50% or less, 2.00% or less, 1.50% or less, or 0.80% or less.
  • Beryllium (Be) is an element effective for increasing the strength of the base metal and refining the structure.
  • the Be content may be 0%, but in order to obtain such an effect, the Be content is preferably 0.0003% or more.
  • the Be content may be 0.0005% or more, 0.001% or more, or 0.010% or more.
  • the Be content is 0.050% or less.
  • the Be content may be 0.040% or less, 0.030% or less, or 0.020% or less.
  • Silver (Ag) is an element effective for increasing the strength of the base material and refining the structure.
  • the Ag content may be 0%, but in order to obtain such an effect, the Ag content is preferably 0.001% or more.
  • the Ag content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more.
  • the Ag content is 0.500% or less.
  • the Ag content may be 0.400% or less, 0.300% or less, or 0.200% or less.
  • Ca 0-0.0500%
  • Ca is an element that can control the morphology of sulfides.
  • the Ca content may be 0%, but in order to obtain such an effect, the Ca content is preferably 0.0001% or more.
  • the Ca content is 0.0500% or less.
  • Magnesium (Mg) is an element that can control the morphology of sulfides.
  • the Mg content may be 0%, but in order to obtain such an effect, the Mg content is preferably 0.0001% or more.
  • the Mg content may be greater than 0.0015%, greater than 0.0016%, greater than or equal to 0.0018% or greater than or equal to 0.0020%.
  • the Mg content is 0.0500% or less.
  • the Mg content may be 0.0400% or less, 0.0300% or less, or 0.0200% or less.
  • the total content of at least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc is 0%. However, in order to obtain such an effect, it is preferably 0.0001% or more.
  • the total content of at least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc is 0.0002% or more. It may be 0.0003% or more or 0.0004% or more.
  • the total content of at least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc is 0.5000%. It may be less than or equal to 0.4000%, 0.3000% or less, or 0.2000% or less.
  • Tin (Sn) is an element effective for improving corrosion resistance.
  • the Sn content may be 0%, but in order to obtain such an effect, the Sn content is preferably 0.001% or more.
  • the Sn content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more.
  • the Sn content is 0.300% or less.
  • the Sn content may be 0.250% or less, 0.200% or less, or 0.150% or less.
  • Antimony (Sb) is an element effective for improving corrosion resistance like Sn, and the effect can be increased by including it in combination with Sn.
  • the Sb content may be 0%, but in order to obtain the effect of improving the corrosion resistance, the Sb content is preferably 0.001% or more.
  • the Sb content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more.
  • excessive content of Sb may lead to a decrease in toughness, particularly low temperature toughness. Therefore, the Sb content is 0.300% or less.
  • the Sb content may be 0.250% or less, 0.200% or less, or 0.150% or less.
  • Tellurium is an element effective for improving the machinability of steel because it forms a low melting point compound with Mn, S and the like to enhance the lubricating effect.
  • the Te content may be 0%, but in order to obtain such an effect, the Te content is preferably 0.001% or more.
  • the Te content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.040% or more.
  • the Te content is 0.100% or less.
  • the Te content may be 0.090% or less, 0.080% or less, or 0.070% or less.
  • Selenium (Se) is an effective element for improving the machinability of steel because the selenium produced in the steel changes the shear-plastic deformation of the work material and the chips are easily crushed. ..
  • the Se content may be 0%, but in order to obtain such an effect, the Se content is preferably 0.001% or more.
  • the Se content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.040% or more.
  • the Se content is 0.100% or less.
  • the Se content may be 0.090% or less, 0.080% or less, or 0.070% or less.
  • Arsenic (As) is an element effective in improving the machinability of steel.
  • the As content may be 0%, but in order to obtain such an effect, the As content is preferably 0.001% or more.
  • the As content may be 0.005% or more or 0.010% or more.
  • the As content is 0.050% or less.
  • the As content may be 0.040% or less, 0.030% or less, or 0.020% or less.
  • Bismuth (Bi) is an element effective in improving the machinability of steel.
  • the Bi content may be 0%, but in order to obtain such an effect, the Bi content is preferably 0.001% or more.
  • the Bi content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more.
  • the Bi content is 0.500% or less.
  • the Bi content may be 0.400% or less, 0.300% or less, or 0.200% or less.
  • Pb 0 to 0.500%
  • Lead (Pb) is an element effective for improving the machinability of steel because it melts when the temperature rises due to cutting and promotes the growth of cracks.
  • the Pb content may be 0%, but in order to obtain such an effect, the Pb content is preferably 0.001% or more.
  • the Pb content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more.
  • the Pb content is 0.500% or less.
  • the Pb content may be 0.400% or less, 0.300% or less, or 0.200% or less.
  • the balance other than the above elements consists of Fe and impurities.
  • Impurities are components that are mixed in by various factors in the manufacturing process, including raw materials such as ore and scrap, when steel materials are industrially manufactured.
  • the effective amount of the Z element consisting of Zr and Hf is determined by the left side of the following formula 1, and the value thereof satisfies the following formula 1. 0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1.74 [S] ⁇ 0.0003 ⁇ ⁇ ⁇ Equation 1
  • [Zr], [Hf], [O], [N], and [S] are the content [mass%] of each element, and are 0 when the element is not contained.
  • the effective amount of the Z element By making the effective amount of the Z element satisfy the above formula 1, it is possible to react the Z element existing in the steel with the solid solution P in the steel to form a phosphide. With the formation of the phosphide, it becomes possible to reduce the amount of solid melt P in the steel. More specifically, these Z elements (hereinafter, also simply referred to as “Z”) are combined with O (oxygen), N (nitrogen) and S (sulfur) present in steel to form an oxide (ZO 2 ). , Tends to form inclusions consisting of nitrides (ZN) and sulfides (ZS). Once the inclusions are formed, at least the Z element in these inclusions cannot contribute to the reaction with the solid solution P. Therefore, in order to promote the reaction with the solid solution P and reduce the amount of the solid solution P in the steel, it is necessary to increase the amount of the Z element that can form a phosphide in the steel without forming inclusions. There is.
  • the amount of Z element that can form a phosphide is the amount of Z element contained in the steel minus the maximum amount that can be consumed to form inclusions (oxides, nitrides and sulfides). It is possible to estimate by. Therefore, in the embodiment of the present invention, the amount of Z element effective for reducing the amount of solid solution P in the steel estimated in this way (that is, "effective amount of Z element") is specifically determined. Is defined by the following formula A.
  • Effective amount of Z [atomic%] ⁇ (M [Fe] / M [Z] ) x [Z]-(M [Fe] / M [O] ) x [O] x 1 / 2- (M [Fe ] ] / M [N] ) x [N]-(M [Fe] / M [S] ) x [S] ... Equation A
  • Z represents each Z element of Zr and Hf
  • M [Z] is the atomic weight of the Z element
  • M [Fe] is the atomic weight of Fe
  • M [O] is the atomic weight of O
  • M [N] is N.
  • M [S] represents the atomic weight of S
  • [Z], [O], [N] and [S] are the corresponding element content [mass%], respectively, and when no element is contained. It is 0.
  • the steel material according to the embodiment of the present invention contains various alloying elements, the steel material as a whole is almost composed of Fe or is an optional element.
  • the steel material when a certain Ni and / or Cr is contained in a relatively large amount (the maximum contents are 60.00% and 30.00%, respectively), it is clear that it is almost composed of Ni and / or Cr in addition to Fe. Is.
  • the atomic weights of Ni and Cr are equivalent to the atomic weights of Fe. Therefore, even when the steel material contains a relatively large amount of Ni and / or Cr, the atomic% of each Z element of Zr and Hf is approximately Fe in the content [mass%] of each Z element.
  • the maximum amount (atomic%) that can be consumed to form oxides (ZO 2 ), nitrides (ZN) and sulfides (ZS) is solidified. It is possible to calculate the amount of Z element in steel that can effectively act to reduce the amount of molten P.
  • the maximum amount (atomic%) of Z element that can be consumed to form oxides (ZO 2 ), nitrides (ZN) and sulfides (ZS) is for the same reasons as described above.
  • Effective amount of Z [atomic%] ⁇ (M [Fe] / M [Z] ) x [Z]-(M [Fe] / M [O] ) x [O] x 1 / 2- (M [Fe ] ] / M [N] ) x [N]-(M [Fe] / M [S] ) x [S] ... Equation A
  • [Zr], [Hf], [O], [N], and [S] are the content [mass%] of each element, and are 0 when the element is not contained.
  • the effective amount of the Z element determined by the above formula B is 0.0003% or more, that is, at least satisfy the following formula 1. 0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1.74 [S] ⁇ 0.0003 ⁇ ⁇ ⁇ Equation 1
  • the effective amount of the Z element may be, for example, 0.0005% or more or 0.0007% or more, preferably 0.0010% or more, more preferably 0.0015% or more, still more preferably 0.0030%. The above is most preferably 0.0050% or more or 0.0100% or more.
  • the effective amount of the Z element is preferably 2.000% or less, for example, 1.8000% or less, 1.5000% or less, 1.2000% or less, 1.000% or less, or 0.8000% or less. You may.
  • the effective amount of the Z element and the P content in the steel satisfy the following formula 2. 1.80 x [P]-(0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1.74 [S]) ⁇ 0.010 ... Equation 2
  • [Zr], [Hf], [O], [N], [S], and [P] are the content [mass%] of each element, and are 0 when the element is not contained. ..
  • the effective amount of the Z element (atomic%) is subtracted from the P content (atomic%) in the steel.
  • the theoretical amount of solid solution P obtained from the chemical composition of the steel material can be calculated.
  • the value of the P content by atomic% is approximately the atomic weight of Fe and P in the steel and the P content by mass% for the same reason as described above in relation to the effective amount of the Z element. It can be calculated as (M [Fe] / M [P] ) ⁇ [P] using the amount (where M [Fe] represents the atomic weight of Fe and M [P] represents the atomic weight of P.
  • the atomic weights of Fe and P are Fe: 55.845 and P: 30.738, respectively. Therefore, by substituting the atomic weights of Fe and P and the formula B into the above formula C, the theoretical solid solution P amount in terms of atomic% can be approximately expressed by the following formula D.
  • Theoretical solid solution P amount [atomic%] 1.80 ⁇ [P]-(0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1. 74 [S]) ⁇ ⁇ ⁇ Expression D
  • [Zr], [Hf], [O], [N], [S], and [P] are the content [mass%] of each element, and are 0 when the element is not contained. ..
  • the amount of solid solution P actually measured is reduced, thereby improving the characteristics of the steel material related to the solid solution P, such as toughness, ductility, corrosion resistance, and weldability.
  • the theoretical solid solution P amount obtained by the above formula D is less than 0.010%, that is, the following formula 2 is satisfied. 1.80 ⁇ [P]-(0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1.74 [S) ⁇ 0.010 ...
  • the theoretical solid solution P amount (that is, the left side of the formula 2) is preferably 0.008% or less, more preferably 0.005% or less, still more preferably 0.003% or less, and most preferably 0% or less. be. Further, in order to reduce the theoretical solid solution P content and surely satisfy the above formula 2, it is naturally preferable to reduce the P content in the steel as much as possible.
  • the lower limit of the theoretical solid solution P amount is not particularly limited, but even if the theoretical solid solution P amount is excessively reduced, the effect is saturated and the manufacturing cost increases (the increase in the refining cost related to P and the increase in the refining cost related to P). / Or an increase in alloy cost due to an increase in the content of Z element), which is not always preferable. Therefore, the theoretical solid solution P amount is preferably -2.90% or more, for example, -1.80% or more, -1.50% or more, -1.30% or more, -1,000% or more or. It may be ⁇ 0.800% or more.
  • the steel material according to the embodiment of the present invention may be any steel material and is not particularly limited.
  • the steel material according to the embodiment of the present invention includes, for example, slabs, billets, blooms, and steel materials after hot rolling, which are steel materials before hot rolling.
  • the steel material after hot rolling is not particularly limited, but includes, for example, thick steel plates, thin steel plates, steel bars, wire rods, shaped steels, steel pipes, and the like.
  • the steel material according to the embodiment of the present invention can be manufactured by any suitable method known to those skilled in the art, depending on the form of the final product and the like.
  • the manufacturing method includes a step generally applied when manufacturing the thick steel plate, for example, a step of casting a slab having the chemical composition described above, and casting. It includes a step of hot rolling the slab and a step of cooling the obtained rolled material, and may further include heat treatment such as a quenching step and a tempering step, if necessary.
  • the steel material manufacturing process according to the embodiment of the present invention may be a thermal processing control process (TMCP) that combines controlled rolling and accelerated cooling.
  • TMCP thermal processing control process
  • the manufacturing method includes a step generally applied when manufacturing the thin steel plate, for example, a step of casting a slab having the chemical composition described above, and casting. It may further include a step of hot rolling the slab, a step of cooling and winding the obtained rolled material, a cold rolling step, a baking step and the like, if necessary.
  • a step generally applied when manufacturing steel bars and other steel materials is included, and for example, a steelmaking process for forming molten steel having the chemical composition described above is formed. It includes a step of casting slabs, billets, blooms, etc.
  • the amount of solid melt P in steel can be reduced by forming a phosphide (P fixing treatment) by holding it at a predetermined temperature in the range of 900 to 1100 ° C., preferably 950 to 1100 ° C. for 6000 seconds or longer.
  • the P fixing process may be a heat history in the hot rolling process or a heat treatment after the hot rolling process.
  • the holding temperature of the P fixing process may be a constant temperature within the range of 900 to 1100 ° C., or may vary within the range.
  • the holding time in the range of 900 to 1100 ° C. from the heating of steel materials such as slabs, billets and blooms to the completion of hot rolling. May be 6000 seconds or more.
  • the term “retention” includes a case where the temperature gradually decreases due to cooling, air cooling, or the like within the above temperature range.
  • the upper limit of the holding time is not particularly limited, but may be, for example, 15,000 seconds or less or 12,000 seconds or less.
  • the production of the steel material according to the embodiment of the present invention it is important to secure an effective amount of the Z element for fixing the solid solution P, and for that purpose, inclusions are formed in the Z element and the steel. It is extremely important that the contents of O, N and S obtained are sufficiently reduced in the refining step.
  • Example A In this example, first, slabs having various chemical compositions were cast, and then hot rolling was carried out at a rolling reduction of 50% or more and cooled. Next, the obtained rolled material is heated to a predetermined temperature in the range of 950 to 1100 ° C. and held for 6000 to 12000 seconds to form a phosphide (P fixing treatment), that is, at least P in steel. A steel material partially fixed as a phosphide was obtained. The chemical composition obtained by analyzing the samples collected from each of the obtained steel materials is as shown in Table 1 below. The amount of solid solution P in each of the obtained steel materials was measured by the following method.
  • the amount of solid solution P in the steel material was measured by the extraction residue method. More specifically, first, a sample containing a depth position of 0.5 mm from the surface of the steel material taken from the steel material is subjected to a constant current of 500 mmA in a 10% acetylacetone-1% tetramethylammonium chloride-methanol solution under the condition of 2 hours. 1 g or more of the steel material was electrolyzed by electrolysis, and then filtered using a membrane filter having a pore size of 0.2 ⁇ m to separate precipitates (phosphorus products).
  • the separated precipitate was decomposed with a solution in which nitric acid (HNO 3 ) and perchloric acid (HClO 4 ) were mixed at a ratio of 2: 1 and the obtained residue was then subjected to ICP-MS (inductively coupled plasma mass spectrometer). ) was used to determine the amount of P (% by mass) precipitated as a phosphate in the steel material.
  • the solid solution P amount (mass%) in each steel material was determined by subtracting this precipitated P amount (mass%) from the P content (mass%) in each steel material shown in Table 1. The results are shown in Table 1.
  • the effective amount of the Z element is 0.0003% or more, and further satisfies the formula 2 (that is, the left side of the formula 2 is less than 0.010%).
  • the amount of solid solution P in the steel material actually measured could be sufficiently reduced.
  • the P content in the steel material is relatively low, by satisfying the configuration of the present invention, a part thereof is precipitated as a phosphide in the steel material. It can be seen that the amount of solid solution P in the above can be reduced to an extremely low value.
  • Example B In order to ensure low temperature toughness, tempering may be performed at a predetermined temperature after quenching. If the solid solution P in the steel is relatively large, the solid solution P may segregate at the old austenite grain boundaries or the like during such tempering treatment, causing so-called tempering embrittlement. In such a case, the grain boundary fracture is likely to occur, and the toughness of the steel material is lowered. Therefore, in this example, the effect caused by the reduction of the solid solution P was verified for some of the steel materials of Example A.
  • Example 1 the steel materials of Examples 49, 63, 75 and 84 and Comparative Examples 90 and 93 after the P fixing treatment of Example A (details are shown in Table 2 below) are quenched, and then at 550 ° C. and 1200 ° C.
  • a quenching treatment was carried out under the condition of seconds, and a JIS No. 4 test piece (V notch test piece: 10 mm ⁇ 10 mm ⁇ 55 mm) was collected from a 1 / 4t portion of the obtained steel material.
  • the longitudinal direction of the test piece was the plate width direction, and the notch was provided so that the fracture propagated in the rolling direction. Based on this JIS No. 4 test piece, a Charpy impact test was performed at ⁇ 100 ° C.
  • the steel material according to the embodiment of the present invention is, for example, a steel material before hot rolling, such as slab, billet, bloom, or a steel material after hot rolling.
  • Steel materials after hot rolling include, for example, thick steel plates used for bridges, construction, shipbuilding, pressure vessels, etc., thin steel plates used for automobiles, home appliances, etc., as well as steel bars, wire rods, and shaped steel. , And steel pipes and the like.
  • the steel material according to the embodiment of the present invention is applied to these materials, the amount of solid solution P in the steel is sufficiently reduced, so that the characteristics of the steel material related to the solid solution P, for example, toughness. It is possible to significantly improve properties such as ductility, corrosion resistance, and weldability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided is a steel material having a prescribed chemical composition which satisfies Z≥0.0003 and 1.80×[P]-Z<0.010 (In the formulas, Z=0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S], and [Zr], [Hf], [O], [N], [S] and [P] represent the content (mass%) of each element).

Description

鋼材Steel material
 本発明は、鋼材に関する。 The present invention relates to steel materials.
 鋼中に固溶したリン(P)(以下、「固溶P」ともいう)は、鋼中の特定の箇所、例えば、デンドライト樹間、結晶粒界に濃化して、鋼材の靭性、延性、耐食性及び溶接性などの特性を低下させる場合があることが知られている。鋼材のこれらの特性を向上させるためには、鋼中の固溶P量を低減することが重要であるが、P含有量を極端に低減させるには製造コストの上昇が避けられない。そのため、従来技術において鋼中のPを無害化する方法が提案されている(例えば、特許文献1~特許文献4参照)。 Phosphorus (P) dissolved in the steel (hereinafter, also referred to as “solid solution P”) is concentrated in a specific part in the steel, for example, between dendrite trees and grain boundaries, and the toughness and ductility of the steel material are increased. It is known that properties such as corrosion resistance and weldability may be deteriorated. In order to improve these characteristics of the steel material, it is important to reduce the amount of solid solution P in the steel, but in order to drastically reduce the P content, an increase in manufacturing cost is unavoidable. Therefore, a method for detoxifying P in steel has been proposed in the prior art (see, for example, Patent Documents 1 to 4).
 特許文献1では、Zr、Nb、Ti、Moを含有する高強度パーライト系レールが記載されている。また、特許文献1では、靭性を低下させる元素であるPを、Zr、Nb、Ti、Moのリン化物として固定し、固溶P濃度を0.018%以下とすることにより、靭性が向上することが教示されている。 Patent Document 1 describes a high-strength pearlite rail containing Zr, Nb, Ti, and Mo. Further, in Patent Document 1, P, which is an element that lowers toughness, is fixed as a phosphide of Zr, Nb, Ti, and Mo, and the solid solution P concentration is 0.018% or less to improve toughness. Is taught.
 特許文献2では、希土類元素(REM)を含有する大入熱溶接用調質高張力鋼が記載されている。また、特許文献2では、B含有量を0.0010重量%までにして、REM含有量を0.002重量%以上とすることにより、Pを極端に低下させなくても応力除去焼なましによる母材靭性の劣化を実用上問題のない程度にすることが可能であり、かつ大入熱溶接特性も優れることが教示されている。 Patent Document 2 describes a tempered high-strength steel for large heat input welding containing a rare earth element (REM). Further, in Patent Document 2, by setting the B content to 0.0010% by weight and the REM content to 0.002% by weight or more, stress relief annealing is performed without drastically reducing P. It is taught that the deterioration of the toughness of the base metal can be made to the extent that there is no problem in practical use, and that the large heat input welding characteristics are also excellent.
 特許文献3では、P含有量に応じてNdを含有することによって、Pのミクロ偏析が分散された鋼が記載されている。特許文献3では、デンドライト樹間において濃化するPと添加したNdとを化合させ、Pを鋼中に微細に分散させて無害化することが記載されている。 Patent Document 3 describes a steel in which microsegregation of P is dispersed by containing Nd according to the P content. Patent Document 3 describes that P concentrated in dendrite trees and added Nd are combined to finely disperse P in steel to make it harmless.
 特許文献4では、P含有量に応じてCeを含有する高強度ボルトが記載されている。また、特許文献4では、PとCeを結合させてリン化物を生成させて粒界脆化を抑制し、固溶P量を低減させて、ボルトの耐水素脆化特性を向上させることが教示されている。 Patent Document 4 describes high-strength bolts containing Ce according to the P content. Further, Patent Document 4 teaches that P and Ce are combined to form a phosphide to suppress grain boundary embrittlement, the amount of solid solution P is reduced, and the hydrogen embrittlement resistance of the bolt is improved. Has been done.
特開2001-40453号公報Japanese Unexamined Patent Publication No. 2001-40453 特開昭59-159966号公報Japanese Unexamined Patent Publication No. 59-159966 特開2010-100923号公報Japanese Unexamined Patent Publication No. 2010-100923 特開2017-160525号公報Japanese Unexamined Patent Publication No. 2017-160525
 特許文献1では、Zr、Nb、Ti及びMoの含有量を所定範囲内に規定してそれらのリン化物を生成することで固溶P量を低減することが教示されているが、リン化物の生成に影響を及ぼし得る他の因子については必ずしも十分な検討はなされていない。特許文献2では、REMとして使用し得る具体的な元素については何ら教示も示唆もされておらず、また鋼中の固溶P量を低減するという観点からも十分な検討はなされていない。特許文献3では、REMのうち実用鋼に添加可能なものはLa、Ce及びNdに限られ、Pを無害化するために最も有効なREMとしてNdを選択した旨が記載されている。したがって、特許文献3では、La、Ce及びNd以外の元素については必ずしも十分な検討はなされておらず、それゆえ特許文献3に記載の発明においては、鋼中における固溶P量の低減に関して依然として改善の余地があった。この点はCe以外の元素について十分な検討がされていない特許文献4に記載の発明も同様である。 Patent Document 1 teaches that the content of Zr, Nb, Ti and Mo is specified within a predetermined range to generate a phosphide thereof, thereby reducing the amount of solid-dissolved P. Other factors that may affect production have not always been thoroughly investigated. In Patent Document 2, no specific element that can be used as REM is taught or suggested, and sufficient studies have not been made from the viewpoint of reducing the amount of solid solution P in steel. Patent Document 3 describes that among REMs, those that can be added to practical steel are limited to La, Ce and Nd, and Nd is selected as the most effective REM for detoxifying P. Therefore, in Patent Document 3, elements other than La, Ce and Nd have not always been sufficiently studied, and therefore, in the invention described in Patent Document 3, the reduction of the amount of solid melt P in steel still remains. There was room for improvement. This point is the same as the invention described in Patent Document 4, in which elements other than Ce have not been sufficiently studied.
 本発明は、このような実情に鑑みてなされたものであり、その目的とするところは、新規な構成により、鋼中の固溶P量を低減可能な又は鋼中の固溶P量が低減された鋼材を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is that the amount of solid solution P in steel can be reduced or the amount of solid solution P in steel can be reduced by a novel configuration. The purpose is to provide the steel products that have been made.
 本発明者らは、上記目的を達成するために、鋼中の固溶P量を低減させることのできる元素について検討を行った。その結果、本発明者らは、特定元素の量を一定量以上確保するとともに、当該特定元素の量と鋼中のP含有量との関係を所定の範囲内とすることにより、鋼中の固溶P量を低減させることができることを見出し、本発明を完成させた。 The present inventors have studied elements that can reduce the amount of solid solution P in steel in order to achieve the above object. As a result, the present inventors secure the amount of the specific element to a certain amount or more, and set the relationship between the amount of the specific element and the P content in the steel within a predetermined range to solidify the steel. We have found that the amount of dissolved P can be reduced, and completed the present invention.
 上記目的を達成し得た鋼材は、以下のとおりである。
 (1)質量%で、
 C:0.001~1.000%、
 Si:0.01~3.00%、
 Mn:0.10~4.50%、
 P:0.300%以下、
 S:0.0300%以下、
 Al:0.001~5.000%、
 N:0.2000%以下、
 O:0.0100%以下、
 Zr:0~0.8000%、及びHf:0~0.8000%からなる群より選択される少なくとも1種のZ元素、
 Nb:0~3.000%、
 Ti:0~0.500%、
 Ta:0~0.500%、
 V:0~1.00%、
 Cu:0~3.00%、
 Ni:0~60.00%、
 Cr:0~30.00%、
 Mo:0~5.00%、
 W:0~2.00%、
 B:0~0.0200%、
 Co:0~3.00%、
 Be:0~0.050%、
 Ag:0~0.500%、
 Ca:0~0.0500%、
 Mg:0~0.0500%、
 La、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種:合計で0~0.5000%、
 Sn:0~0.300%、
 Sb:0~0.300%、
 Te:0~0.100%、
 Se:0~0.100%、
 As:0~0.050%、
 Bi:0~0.500%、
 Pb:0~0.500%、並びに
 残部:Fe及び不純物からなり、
 下記式1及び式2を満たす化学組成を有する、鋼材。
 0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S] ≧ 0.0003   ・・・式1
 1.80×[P]-(0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S]) < 0.010   ・・・式2
 ここで、[Zr]、[Hf]、[O]、[N]、[S]、及び[P]は、各元素の含有量[質量%]であり、元素を含有しない場合は0である。
 (2)前記化学組成が、質量%で、
 Nb:0.003~3.000%、
 Ti:0.005~0.500%、
 Ta:0.001~0.500%、
 V:0.001~1.00%、
 Cu:0.001~3.00%、
 Ni:0.001~60.00%、
 Cr:0.001~30.00%、
 Mo:0.001~5.00%、
 W:0.001~2.00%、
 B:0.0001~0.0200%、
 Co:0.001~3.00%、
 Be:0.0003~0.050%、
 Ag:0.001~0.500%、
 Ca:0.0001~0.0500%、
 Mg:0.0001~0.0500%、
 La、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種:合計で0.0001~0.5000%、
 Sn:0.001~0.300%、
 Sb:0.001~0.300%、
 Te:0.001~0.100%、
 Se:0.001~0.100%、
 As:0.001~0.050%、
 Bi:0.001~0.500%、並びに
 Pb:0.001~0.500%
のうち1種又は2種以上を含む、上記(1)に記載の鋼材。
The steel materials that have achieved the above objectives are as follows.
(1) By mass%,
C: 0.001 to 1.000%,
Si: 0.01-3.00%,
Mn: 0.10 to 4.50%,
P: 0.300% or less,
S: 0.0300% or less,
Al: 0.001-5.000%,
N: 0.2000% or less,
O: 0.0100% or less,
At least one Z element selected from the group consisting of Zr: 0 to 0.8000% and Hf: 0 to 0.8000%.
Nb: 0-3.000%,
Ti: 0 to 0.500%,
Ta: 0 to 0.500%,
V: 0 to 1.00%,
Cu: 0 to 3.00%,
Ni: 0-60.00%,
Cr: 0 to 30.00%,
Mo: 0 to 5.00%,
W: 0 to 2.00%,
B: 0-0.0200%,
Co: 0 to 3.00%,
Be: 0 to 0.050%,
Ag: 0 to 0.500%,
Ca: 0-0.0500%,
Mg: 0-0.0500%,
At least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc: 0 to 0.5000% in total.
Sn: 0 to 0.300%,
Sb: 0 to 0.300%,
Te: 0 to 0.100%,
Se: 0 to 0.100%,
As: 0 to 0.050%,
Bi: 0 to 0.500%,
Pb: 0 to 0.500%, and the balance: Fe and impurities.
A steel material having a chemical composition satisfying the following formulas 1 and 2.
0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1.74 [S] ≧ 0.0003 ・ ・ ・ Equation 1
1.80 x [P]-(0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1.74 [S]) <0.010 ... Equation 2
Here, [Zr], [Hf], [O], [N], [S], and [P] are the content [mass%] of each element, and are 0 when the element is not contained. ..
(2) The chemical composition is mass%.
Nb: 0.003 to 3.000%,
Ti: 0.005 to 0.500%,
Ta: 0.001 to 0.500%,
V: 0.001 to 1.00%,
Cu: 0.001 to 3.00%,
Ni: 0.001 to 60.00%,
Cr: 0.001 to 30.00%,
Mo: 0.001 to 5.00%,
W: 0.001 to 2.00%,
B: 0.0001-0.0200%,
Co: 0.001 to 3.00%,
Be: 0.0003 to 0.050%,
Ag: 0.001 to 0.500%,
Ca: 0.0001-0.0500%,
Mg: 0.0001-0.0500%,
At least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc: 0.0001 to 0.5000% in total.
Sn: 0.001 to 0.300%,
Sb: 0.001 to 0.300%,
Te: 0.001 to 0.100%,
Se: 0.001 to 0.100%,
As: 0.001 to 0.050%,
Bi: 0.001 to 0.500%, and Pb: 0.001 to 0.500%
The steel material according to (1) above, which comprises one or more of the above.
 本発明によれば、鋼中の固溶P量を低減可能な又は鋼中の固溶P量が低減された鋼材を提供することができる。 According to the present invention, it is possible to provide a steel material capable of reducing the amount of solid solution P in steel or having a reduced amount of solid solution P in steel.
<鋼材>
 本発明の実施形態に係る鋼材は、質量%で、
 C:0.001~1.000%、
 Si:0.01~3.00%、
 Mn:0.10~4.50%、
 P:0.300%以下、
 S:0.0300%以下、
 Al:0.001~5.000%、
 N:0.2000%以下、
 O:0.0100%以下、
 Zr:0~0.8000%、及びHf:0~0.8000%からなる群より選択される少なくとも1種のZ元素、
 Nb:0~3.000%、
 Ti:0~0.500%、
 Ta:0~0.500%、
 V:0~1.00%、
 Cu:0~3.00%、
 Ni:0~60.00%、
 Cr:0~30.00%、
 Mo:0~5.00%、
 W:0~2.00%、
 B:0~0.0200%、
 Co:0~3.00%、
 Be:0~0.050%、
 Ag:0~0.500%、
 Ca:0~0.0500%、
 Mg:0~0.0500%、
 La、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種:合計で0~0.5000%、
 Sn:0~0.300%、
 Sb:0~0.300%、
 Te:0~0.100%、
 Se:0~0.100%、
 As:0~0.050%、
 Bi:0~0.500%、
 Pb:0~0.500%、並びに
 残部:Fe及び不純物からなり、
 下記式1及び式2を満たす化学組成を有することを特徴としている。
 0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S] ≧ 0.0003   ・・・式1
 1.80×[P]-(0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S]) < 0.010   ・・・式2
 ここで、[Zr]、[Hf]、[O]、[N]、[S]、及び[P]は、各元素の含有量[質量%]であり、元素を含有しない場合は0である。
<Steel material>
The steel material according to the embodiment of the present invention is based on mass%.
C: 0.001 to 1.000%,
Si: 0.01-3.00%,
Mn: 0.10 to 4.50%,
P: 0.300% or less,
S: 0.0300% or less,
Al: 0.001-5.000%,
N: 0.2000% or less,
O: 0.0100% or less,
At least one Z element selected from the group consisting of Zr: 0 to 0.8000% and Hf: 0 to 0.8000%.
Nb: 0-3.000%,
Ti: 0 to 0.500%,
Ta: 0 to 0.500%,
V: 0 to 1.00%,
Cu: 0 to 3.00%,
Ni: 0-60.00%,
Cr: 0 to 30.00%,
Mo: 0 to 5.00%,
W: 0 to 2.00%,
B: 0-0.0200%,
Co: 0 to 3.00%,
Be: 0 to 0.050%,
Ag: 0 to 0.500%,
Ca: 0-0.0500%,
Mg: 0-0.0500%,
At least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc: 0 to 0.5000% in total.
Sn: 0 to 0.300%,
Sb: 0 to 0.300%,
Te: 0 to 0.100%,
Se: 0 to 0.100%,
As: 0 to 0.050%,
Bi: 0 to 0.500%,
Pb: 0 to 0.500%, and the balance: Fe and impurities.
It is characterized by having a chemical composition satisfying the following formulas 1 and 2.
0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1.74 [S] ≧ 0.0003 ・ ・ ・ Equation 1
1.80 x [P]-(0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1.74 [S]) <0.010 ... Equation 2
Here, [Zr], [Hf], [O], [N], [S], and [P] are the content [mass%] of each element, and are 0 when the element is not contained. ..
 鋼材の靭性、延性、耐食性及び溶接性などの特性を向上させるためには、先に述べたとおり、鋼中の固溶P量を低減することが一般に重要である。例えば、高強度化のためにマルテンサイト及びベイナイトなどの組織を利用した鋼材においては、低温靭性を確保するため、焼入れ後に所定の温度で焼き戻し処理が典型的に行われる。鋼中の固溶Pが比較的多いと、このような焼き戻し処理の際に当該固溶Pが旧オーステナイト粒界に偏析して、いわゆる焼き戻し脆化を引き起こし、その結果として鋼材の靭性を低下させることがある。これに関連して、鋼中のP自体の含有量を低減すれば、それに応じて固溶P量を低減することができるため、当該固溶Pに起因する焼き戻し脆化等の発生を抑制することが可能である。しかしながら、P含有量を過度に低減することは、精錬に時間を要し、生産性の低下や製造コストの大幅な上昇を招くという問題がある。 As mentioned above, it is generally important to reduce the amount of solid solution P in steel in order to improve the toughness, ductility, corrosion resistance and weldability of steel materials. For example, in a steel material using a structure such as martensite and bainite for high strength, tempering treatment is typically performed at a predetermined temperature after quenching in order to secure low temperature toughness. If the solid solution P in the steel is relatively large, the solid solution P segregates at the former austenite grain boundaries during such tempering treatment, causing so-called tempering embrittlement, and as a result, the toughness of the steel material is reduced. May reduce. In relation to this, if the content of P itself in the steel is reduced, the amount of solid solution P can be reduced accordingly, so that the occurrence of temper embrittlement and the like caused by the solid solution P is suppressed. It is possible to do. However, excessively reducing the P content has a problem that it takes time for refining, which leads to a decrease in productivity and a significant increase in production cost.
 そこで、本発明者らは、鋼中の固溶Pと反応してその量を低減させることのできる元素について検討を行った。その結果、本発明者らは、Zr及びHfの元素(以下、「Z元素」ともいう)の量をそれらの元素が鋼中で形成する介在物、より具体的にはこれらの元素の酸化物、窒化物及び硫化物との関係を考慮しつつ一定量以上確保し(すなわち、式1の左辺に対応する当該Z元素の有効量を0.0003%以上とし)、さらに当該特定元素の有効量と鋼中のP含有量との関係を所定の範囲内とすることにより(すなわち、式2の左辺に対応する量を0.010%未満とすることにより)、Pの少なくとも一部をリン化物として固定することができ、このようなリン化物の生成に起因して鋼中の固溶P量を低減することができることを見出した。 Therefore, the present inventors have investigated an element that can react with the solid solution P in steel to reduce the amount thereof. As a result, the present inventors have determined the amounts of the elements Zr and Hf (hereinafter, also referred to as “Z element”) as inclusions formed in the steel by those elements, more specifically, oxides of these elements. , Secure a certain amount or more while considering the relationship with nitrides and sulfides (that is, the effective amount of the Z element corresponding to the left side of the formula 1 is 0.0003% or more), and further, the effective amount of the specific element. By keeping the relationship between and the P content in the steel within a predetermined range (that is, by setting the amount corresponding to the left side of Equation 2 to less than 0.010%), at least a part of P is phospholated. It was found that the amount of solid melt P in the steel can be reduced due to the formation of such a phosphonic acid.
 上記のZ元素は、鋼中に存在するO(酸素)、N(窒素)及びS(硫黄)と結びついて、酸化物、窒化物及び硫化物からなる介在物を形成しやすいという性質を有する。Z元素が鋼中でこのような介在物を形成してしまうと、固溶Pとの反応に寄与することができるZ元素の量が少なくなり、固溶P量を十分に低減することができなくなる。本発明においては、このような介在物を考慮したZ元素の量を、後で詳しく説明する上記式1によって当該Z元素の有効量として算出し、そして当該有効量を一定量以上、すなわち0.0003%以上確保することで、当該Z元素を固溶Pと反応させてリン化物を形成することができる。リン化物を形成することで、固溶Pの少なくとも一部を固定することができ、固溶Pの粒界などへの偏析を顕著に抑制することが可能となる。本発明者らの検討の結果、Z元素の有効量と鋼中のP含有量を同様に後で詳しく説明する上記式2の関係を満たすようにすることで、より高い固溶Pの低減効果を達成できることが見出された。したがって、本発明によれば、P含有量を過度に低減することなしに鋼中の固溶P量を十分に低減可能な又は鋼中の固溶P量が十分に低減された鋼材を得ることができるため、当該固溶Pに関連する鋼材の特性、例えば、靭性、延性、耐食性、溶接性などの特性を顕著に改善することが可能となる。より具体的には、鋼中の固溶P量を低減することで、例えば焼き戻し処理等の際に固溶Pが旧オーステナイト粒界などの特定の箇所に偏析することを抑制することができる。その結果として、本発明によれば、焼き戻し脆化等の発生を抑制することができ、それゆえ鋼材の靭性等の特性を顕著に向上させることが可能となる。 The above-mentioned Z element has a property of easily forming inclusions composed of oxides, nitrides and sulfides in combination with O (oxygen), N (nitrogen) and S (sulfur) existing in steel. When the Z element forms such inclusions in the steel, the amount of the Z element that can contribute to the reaction with the solid solution P decreases, and the amount of the solid solution P can be sufficiently reduced. It disappears. In the present invention, the amount of the Z element in consideration of such inclusions is calculated as the effective amount of the Z element by the above formula 1 which will be described in detail later, and the effective amount is set to a certain amount or more, that is, 0. By securing 0003% or more, the Z element can be reacted with the solid solution P to form a phosphide. By forming the phosphide, at least a part of the solid solution P can be fixed, and the segregation of the solid solution P to the grain boundaries and the like can be remarkably suppressed. As a result of the studies by the present inventors, by satisfying the relationship between the effective amount of the Z element and the P content in the steel, which will be described in detail later, the above-mentioned equation 2 has a higher effect of reducing solid solution P. Was found to be achievable. Therefore, according to the present invention, it is possible to obtain a steel material in which the solid solution P amount in the steel can be sufficiently reduced or the solid solution P amount in the steel is sufficiently reduced without excessively reducing the P content. Therefore, it is possible to remarkably improve the characteristics of the steel material related to the solid solution P, for example, the characteristics such as toughness, ductility, corrosion resistance, and weldability. More specifically, by reducing the amount of the solid solution P in the steel, it is possible to prevent the solid solution P from segregating at a specific place such as the old austenite grain boundary during, for example, tempering treatment. .. As a result, according to the present invention, it is possible to suppress the occurrence of tempering embrittlement and the like, and therefore it is possible to significantly improve the toughness and other properties of the steel material.
 本発明におけるZ元素は、上記のとおりO、N及びSと結びついて介在物を形成しやすく、それゆえ鋼中で所定の有効量を確保することは一般に困難である。このような事情から、上記Z元素による固溶Pの低減効果は従来知られていなかった。しかしながら、近年の精錬技術の進歩により、一般に不純物として鋼中に存在するO、N及びSなどの元素の含有量を非常に低いレベルにまで低減することが可能となったこともあり、今回、上記Z元素の所定範囲内における有効量を実現することができた。したがって、上記Z元素に関する固溶Pの低減効果は、今回、本発明者らによって初めて明らかにされたことであり、極めて意外であり、また驚くべきことである。 The Z element in the present invention easily combines with O, N and S to form inclusions as described above, and therefore it is generally difficult to secure a predetermined effective amount in steel. Due to such circumstances, the effect of reducing the solid solution P by the Z element has not been known so far. However, recent advances in refining technology have made it possible to reduce the content of elements such as O, N, and S, which are generally present in steel as impurities, to extremely low levels. It was possible to realize an effective amount of the Z element within a predetermined range. Therefore, the effect of reducing the solid solution P on the Z element has been clarified for the first time by the present inventors, and is extremely surprising and surprising.
 以下、本発明の実施形態に係る鋼材についてより詳しく説明する。以下の説明において、各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味するものである。また、本明細書において、数値範囲を示す「~」とは、特に断りがない場合、その前後に記載される数値を下限値及び上限値として含む意味で使用される。 Hereinafter, the steel material according to the embodiment of the present invention will be described in more detail. In the following description, "%", which is a unit of the content of each element, means "mass%" unless otherwise specified. Further, in the present specification, "-" indicating a numerical range is used to mean that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value unless otherwise specified.
[C:0.001~1.000%]
 炭素(C)は、硬さの安定化及び/又は強度の確保に必要な元素である。これらの効果を十分に得るために、C含有量は0.001%以上である。C含有量は0.005%以上、0.010%以上又は0.020%以上であってもよい。一方で、Cを過度に含有すると、靭性、曲げ性及び/又は溶接性が低下する場合がある。したがって、C含有量は1.000%以下である。C含有量は0.800%以下、0.600%以下又は0.500%以下であってもよい。
[C: 0.001 to 1.000%]
Carbon (C) is an element necessary for stabilizing hardness and / or ensuring strength. In order to sufficiently obtain these effects, the C content is 0.001% or more. The C content may be 0.005% or more, 0.010% or more, or 0.020% or more. On the other hand, if C is excessively contained, toughness, bendability and / or weldability may decrease. Therefore, the C content is 1.000% or less. The C content may be 0.800% or less, 0.600% or less, or 0.500% or less.
[Si:0.01~3.00%]
 ケイ素(Si)は脱酸元素であり、強度の向上にも寄与する元素である。これらの効果を十分に得るために、Si含有量は0.01%以上である。Si含有量は0.05%以上、0.10%以上又は0.30%以上であってもよい。一方で、Siを過度に含有すると、靭性が低下したり、スケール疵と呼ばれる表面品質不良を発生したりする場合がある。したがって、Si含有量は3.00%以下である。Si含有量は2.00%以下、1.00%以下又は0.60%以下であってもよい。
[Si: 0.01 to 3.00%]
Silicon (Si) is a deoxidizing element and is an element that also contributes to the improvement of strength. In order to sufficiently obtain these effects, the Si content is 0.01% or more. The Si content may be 0.05% or more, 0.10% or more, or 0.30% or more. On the other hand, if Si is excessively contained, the toughness may be lowered or surface quality defects called scale defects may occur. Therefore, the Si content is 3.00% or less. The Si content may be 2.00% or less, 1.00% or less, or 0.60% or less.
[Mn:0.10~4.50%]
 マンガン(Mn)は、焼入れ性及び/又は強度の向上に有効な元素であり、有効なオーステナイト安定化元素でもある。これらの効果を十分に得るために、Mn含有量は0.10%以上である。Mn含有量は0.50%以上、0.70%以上又は1.00%以上であってもよい。一方で、Mnを過度に含有すると、靭性に有害なMnSが生成したり、耐酸化性を低下させたりする場合がある。したがって、Mn含有量は4.50%以下である。Mn含有量は4.00%以下、3.50%以下又は3.00%以下であってもよい。
[Mn: 0.10 to 4.50%]
Manganese (Mn) is an element effective for improving hardenability and / or strength, and is also an effective austenite stabilizing element. In order to sufficiently obtain these effects, the Mn content is 0.10% or more. The Mn content may be 0.50% or more, 0.70% or more, or 1.00% or more. On the other hand, if Mn is excessively contained, MnS harmful to toughness may be generated or the oxidation resistance may be lowered. Therefore, the Mn content is 4.50% or less. The Mn content may be 4.00% or less, 3.50% or less, or 3.00% or less.
[P:0.300%以下]
 リン(P)は製造工程で混入する元素である。鋼中の固溶P量を低減するという観点からはPは少ないほど好ましく、よってP含有量は0%であってもよい。しかしながら、P含有量を0.0001%未満に低減するためには精錬に時間を要し、生産性の低下を招く。したがって、P含有量は0.0001%以上、0.0005%以上、0.001%以上、0.003%以上、又は、0.005%以上であってもよい。P含有量は、製造コストの観点から、0.007%以上であってもよい。一方で、Pを過度に含有すると、鋼中の固溶P量が増加し、鋼材の種々の特性、例えば靭性、延性、耐食性及び/又は溶接性などの特性が低下する場合がある。したがって、P含有量は0.300%以下である。P含有量は0.100%以下、0.030%以下又は0.010%以下であってもよい。
[P: 0.300% or less]
Phosphorus (P) is an element mixed in the manufacturing process. From the viewpoint of reducing the amount of solid solution P in the steel, the smaller the amount of P, the more preferable, and the P content may be 0%. However, in order to reduce the P content to less than 0.0001%, it takes time for refining, which leads to a decrease in productivity. Therefore, the P content may be 0.0001% or more, 0.0005% or more, 0.001% or more, 0.003% or more, or 0.005% or more. The P content may be 0.007% or more from the viewpoint of manufacturing cost. On the other hand, if P is excessively contained, the amount of solid solution P in the steel may increase, and various properties of the steel material such as toughness, ductility, corrosion resistance and / or weldability may decrease. Therefore, the P content is 0.300% or less. The P content may be 0.100% or less, 0.030% or less, or 0.010% or less.
[S:0.0300%以下]
 硫黄(S)は製造工程で混入する元素であり、本発明の実施形態に係るZ元素との間で形成される介在物を低減する観点からは少ないほど好ましく、よってS含有量は0%であってもよい。しかしながら、S含有量を0.0001%未満に低減するためには精錬に時間を要し、生産性の低下を招く。したがって、S含有量は0.0001%以上、0.0005%以上又は0.0010%以上であってもよい。一方で、Sを過度に含有すると、Z元素の有効量が低下するとともに、靭性が低下する場合がある。したがって、S含有量は0.0300%以下である。S含有量は好ましくは0.0100%以下、より好ましくは0.0050%以下、最も好ましくは0.0030%以下である。
[S: 0.0300% or less]
Sulfur (S) is an element mixed in the manufacturing process, and is preferable from the viewpoint of reducing inclusions formed with the Z element according to the embodiment of the present invention, so that the S content is 0%. There may be. However, in order to reduce the S content to less than 0.0001%, it takes time for refining, which leads to a decrease in productivity. Therefore, the S content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more. On the other hand, if S is excessively contained, the effective amount of the Z element may decrease and the toughness may decrease. Therefore, the S content is 0.0300% or less. The S content is preferably 0.0100% or less, more preferably 0.0050% or less, and most preferably 0.0030% or less.
[Al:0.001~5.000%]
 アルミニウム(Al)は、脱酸元素であり、耐食性及び/又は耐熱性を向上させるのに有効な元素でもある。これらの効果を得るために、Al含有量は0.001%以上である。Al含有量は0.010%以上、0.100%以上又は0.200%以上であってもよい。とりわけ、耐熱性を十分に向上させる観点からは、Al含有量は1.000%以上、2.000%以上又は3.000%以上であってもよい。一方で、Alを過度に含有すると、粗大な介在物が生成して靭性を低下させたり、製造過程で割れなどのトラブルが発生したり、及び/又は耐疲労特性を低下させたりする場合がある。したがって、Al含有量は5.000%以下である。Al含有量は4.500%以下、4.000%以下又は3.500%以下であってもよい。とりわけ、靭性の低下を抑制するという観点からは、Al含有量は1.500%以下、1.000%以下又は0.300%以下であってもよい。
[Al: 0.001-5.000%]
Aluminum (Al) is a deoxidizing element and is also an effective element for improving corrosion resistance and / or heat resistance. In order to obtain these effects, the Al content is 0.001% or more. The Al content may be 0.010% or more, 0.100% or more, or 0.200% or more. In particular, from the viewpoint of sufficiently improving the heat resistance, the Al content may be 1.000% or more, 2.000% or more, or 3.000% or more. On the other hand, if Al is excessively contained, coarse inclusions may be generated to reduce toughness, troubles such as cracking may occur in the manufacturing process, and / or fatigue resistance may be deteriorated. .. Therefore, the Al content is 5.000% or less. The Al content may be 4.500% or less, 4000% or less, or 3.500% or less. In particular, from the viewpoint of suppressing the decrease in toughness, the Al content may be 1.500% or less, 1.000% or less, or 0.300% or less.
[N:0.2000%以下]
 窒素(N)は製造工程で混入する元素であり、本発明の実施形態に係るZ元素との間で形成される介在物を低減する観点からは少ないほど好ましく、よってN含有量は0%であってもよい。しかしながら、N含有量を0.0001%未満に低減するためには精錬に時間を要し、生産性の低下を招く。したがって、N含有量は0.0001%以上、0.0005%以上又は0.0010%以上であってもよい。一方で、Nはオーステナイトの安定化に有効な元素でもあり、必要に応じて意図的に含有させてもよい。この場合には、N含有量は0.0100%以上であることが好ましく、0.0200%以上、0.0500%以上であってもよい。しかしながら、Nを過度に含有すると、Z元素の有効量が低下するとともに、靭性が低下する場合がある。したがって、N含有量は0.2000%以下である。N含有量は0.1500%以下、0.1000%以下又は0.0800%以下であってもよい。
[N: 0.2000% or less]
Nitrogen (N) is an element mixed in the manufacturing process, and is preferable from the viewpoint of reducing inclusions formed with the Z element according to the embodiment of the present invention, so that the N content is 0%. There may be. However, in order to reduce the N content to less than 0.0001%, it takes time for refining, which leads to a decrease in productivity. Therefore, the N content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more. On the other hand, N is also an element effective for stabilizing austenite, and may be intentionally contained if necessary. In this case, the N content is preferably 0.0100% or more, and may be 0.0200% or more and 0.0500% or more. However, if N is excessively contained, the effective amount of the Z element may decrease and the toughness may decrease. Therefore, the N content is 0.2000% or less. The N content may be 0.1500% or less, 0.1000% or less, or 0.0800% or less.
[O:0.0100%以下]
 酸素(O)は製造工程で混入する元素であり、本発明の実施形態に係るZ元素との間で形成される介在物を低減する観点からは少ないほど好ましく、よってO含有量は0%であってもよい。しかしながら、O含有量を0.0001%未満に低減するためには精錬に時間を要し、生産性の低下を招く。したがって、O含有量は0.0001%以上、0.0005%以上又は0.0010%以上であってもよい。一方で、Oを過度に含有すると、粗大な介在物が形成され、Z元素の有効量が低下するとともに、鋼材の成形性及び/又は靭性が低下する場合がある。したがって、O含有量は0.0100%以下である。O含有量は0.0080%以下、0.0060%以下又は0.0040%以下であってもよい。
[O: 0.0100% or less]
Oxygen (O) is an element mixed in the manufacturing process, and is preferable from the viewpoint of reducing inclusions formed with the Z element according to the embodiment of the present invention, so that the O content is 0%. There may be. However, in order to reduce the O content to less than 0.0001%, it takes time for refining, which leads to a decrease in productivity. Therefore, the O content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more. On the other hand, if O is excessively contained, coarse inclusions may be formed, the effective amount of the Z element may be lowered, and the formability and / or toughness of the steel material may be lowered. Therefore, the O content is 0.0100% or less. The O content may be 0.0080% or less, 0.0060% or less, or 0.0040% or less.
[Zr:0~0.8000%、及びHf:0~0.8000%からなる群より選択される少なくとも1種のZ元素]
 本発明の実施形態に係るZ元素は、Zr:0~0.8000%、及びHf:0~0.8000%であり、ジルコニウム(Zr)及びハフニウム(Hf)はリン化物の形成に基づく固溶Pの低減効果を発現することができる。当該固溶Pの低減効果を発現することで、当該固溶Pに関連する鋼材の特性、例えば、靭性、延性、耐食性、溶接性などの特性を顕著に改善することが可能となる。
[At least one Z element selected from the group consisting of Zr: 0 to 0.8000% and Hf: 0 to 0.8000%]
The Z element according to the embodiment of the present invention is Zr: 0 to 0.8000% and Hf: 0 to 0.8000%, and zirconium (Zr) and hafnium (Hf) are solid-dissolved based on the formation of a phosphide. The effect of reducing P can be exhibited. By exhibiting the effect of reducing the solid solution P, it is possible to remarkably improve the characteristics of the steel material related to the solid solution P, such as toughness, ductility, corrosion resistance, and weldability.
 上記Z元素は、いずれか1つの元素を単独で使用してもよいし、又は両方を使用してもよい。また、当該Z元素は、後で詳しく説明する式1及び2を満たす量において存在すればよく、その下限値は特に限定されない。しかしながら、例えば、各Z元素の含有量又は合計の含有量は0.0010%以上であってもよく、好ましくは0.0050%以上であり、より好ましくは0.0150%以上であり、さらにより好ましくは0.0300%以上であり、最も好ましくは0.0500%以上である。一方で、Z元素を過度に含有しても効果が飽和し、それゆえ当該Z元素を必要以上に鋼材中に含有させることは製造コストの上昇を招く虞がある。したがって、各Z元素の含有量は0.8000%以下であり、例えば0.7000%以下、0.6000%以下、0.5000%以下、0.4000%以下又は0.3000%以下であってもよい。また、Z元素の含有量の合計は1.6000%以下であり、例えば1.2000%以下、1.0000%以下、0.8000%以下、0.6000%以下又は0.5000%以下であってもよい。 As the Z element, any one element may be used alone, or both may be used. Further, the Z element may be present in an amount satisfying the formulas 1 and 2 described in detail later, and the lower limit thereof is not particularly limited. However, for example, the content of each Z element or the total content may be 0.0010% or more, preferably 0.0050% or more, more preferably 0.0150% or more, and even more. It is preferably 0.0300% or more, and most preferably 0.0500% or more. On the other hand, even if the Z element is excessively contained, the effect is saturated, and therefore, if the Z element is contained in the steel material more than necessary, the manufacturing cost may increase. Therefore, the content of each Z element is 0.8000% or less, for example, 0.7000% or less, 0.6000% or less, 0.5000% or less, 0.4000% or less, or 0.3000% or less. May be good. The total content of the Z element is 1.6000% or less, for example, 1.2000% or less, 1.000% or less, 0.8000% or less, 0.6000% or less, or 0.5000% or less. You may.
 本発明の実施形態に係る鋼材の基本化学組成は上記のとおりである。さらに、当該鋼材は、必要に応じて以下の任意選択元素のうち1種又は2種以上を含有してもよい。例えば、鋼材は、Nb:0~3.000%、Ti:0~0.500%、Ta:0~0.500%、V:0~1.00%、Cu:0~3.00%、Ni:0~60.00%、Cr:0~30.00%、Mo:0~5.00%、W:0~2.00%、B:0~0.0200%、Co:0~3.00%、Be:0~0.050%、及びAg:0~0.500%のうち1種又は2種以上を含有してもよい。また、鋼材は、Ca:0~0.0500%、Mg:0~0.0500%、並びにLa、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種:合計で0~0.5000%のうち1種又は2種以上を含有してもよい。また、鋼材は、Sn:0~0.300%、及びSb:0~0.300%のうち1種又は2種を含有してもよい。また、鋼材は、Te:0~0.100%、Se:0~0.100%、As:0~0.050%、Bi:0~0.500%、及びPb:0~0.500%のうち1種又は2種以上を含有してもよい。以下、これらの任意選択元素について詳しく説明する。 The basic chemical composition of the steel material according to the embodiment of the present invention is as described above. Further, the steel material may contain one or more of the following optional elements, if necessary. For example, the steel material has Nb: 0 to 3.000%, Ti: 0 to 0.500%, Ta: 0 to 0.500%, V: 0 to 1.00%, Cu: 0 to 3.00%, Ni: 0 to 60.00%, Cr: 0 to 30.00%, Mo: 0 to 5.00%, W: 0 to 2.00%, B: 0 to 0.0200%, Co: 0 to 3 It may contain one or more of .00%, Be: 0 to 0.050%, and Ag: 0 to 0.500%. The steel materials include Ca: 0 to 0.0500%, Mg: 0 to 0.0500%, and La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er. At least one of Tm, Yb, Lu, and Sc: one or more of 0 to 0.5000% in total may be contained. Further, the steel material may contain one or two of Sn: 0 to 0.300% and Sb: 0 to 0.300%. The steel materials are Te: 0 to 0.100%, Se: 0 to 0.100%, As: 0 to 0.050%, Bi: 0 to 0.500%, and Pb: 0 to 0.500%. One or more of them may be contained. Hereinafter, these optional elements will be described in detail.
[Nb:0~3.000%]
 ニオブ(Nb)は、析出強化及び再結晶の抑制等に寄与する元素である。Nb含有量は0%であってもよいが、これらの効果を得るためには、Nb含有量は0.003%以上であることが好ましい。例えば、Nb含有量は0.005%以上又は0.010%以上であってもよい。とりわけ、析出強化を十分に図る観点からは、Nb含有量は1.000%以上又は1.500%以上であってもよい。一方で、Nbを過度に含有すると、効果が飽和し、加工性及び/又は靭性を低下させる場合がある。したがって、Nb含有量は3.000%以下である。Nb含有量は2.800%以下、2.500%以下又は2.000%以下であってもよい。とりわけ、溶接熱影響部(HAZ)の靭性低下を抑制するという観点からは、Nb含有量は0.100%以下であることが好ましく、0.080%以下、0.050%以下又は0.030%以下であってもよい。
[Nb: 0-3.000%]
Niobium (Nb) is an element that contributes to strengthening precipitation and suppressing recrystallization. The Nb content may be 0%, but in order to obtain these effects, the Nb content is preferably 0.003% or more. For example, the Nb content may be 0.005% or more or 0.010% or more. In particular, the Nb content may be 1.000% or more or 1.500% or more from the viewpoint of sufficiently strengthening precipitation. On the other hand, if Nb is excessively contained, the effect may be saturated and the processability and / or toughness may be lowered. Therefore, the Nb content is 3.000% or less. The Nb content may be 2.800% or less, 2.500% or less, or 2.000% or less. In particular, from the viewpoint of suppressing the decrease in toughness of the weld heat affected zone (HAZ), the Nb content is preferably 0.100% or less, 0.080% or less, 0.050% or less, or 0.030. It may be less than or equal to%.
[Ti:0~0.500%]
 チタン(Ti)は、析出強化等により鋼材の強度向上に寄与する元素である。Ti含有量は0%であってもよいが、このような効果を得るためには、Ti含有量は0.005%以上であることが好ましい。Ti含有量は0.010%以上、0.050%以上又は0.080%以上であってもよい。一方で、Tiを過度に含有すると、多量の析出物が生成して靭性を低下させる場合がある。したがって、Ti含有量は0.500%以下である。Ti含有量は0.300%以下、0.200%以下又は0.100%以下であってもよい。
[Ti: 0 to 0.500%]
Titanium (Ti) is an element that contributes to improving the strength of steel materials by strengthening precipitation. The Ti content may be 0%, but in order to obtain such an effect, the Ti content is preferably 0.005% or more. The Ti content may be 0.010% or more, 0.050% or more, or 0.080% or more. On the other hand, if Ti is excessively contained, a large amount of precipitates may be formed and the toughness may be lowered. Therefore, the Ti content is 0.500% or less. The Ti content may be 0.300% or less, 0.200% or less, or 0.100% or less.
[Ta:0~0.500%]
 タンタル(Ta)は、炭化物の形態制御と強度の増加に有効な元素である。Ta含有量は0%であってもよいが、これらの効果を得るためには、Ta含有量は0.001%以上であることが好ましい。Ta含有量は0.005%以上、0.010%以上又は0.050%以上であってもよい。一方で、Taを過度に含有すると、微細なTa炭化物が多数析出し、鋼材の過度な強度上昇を招き、結果として延性の低下及び冷間加工性を低下させる場合がある。したがって、Ta含有量は0.500%以下である。Ta含有量は、0.300%以下、0.100%以下又は0.080%以下であってもよい。
[Ta: 0 to 0.500%]
Tantalum (Ta) is an element effective in controlling the morphology of carbides and increasing their strength. The Ta content may be 0%, but in order to obtain these effects, the Ta content is preferably 0.001% or more. The Ta content may be 0.005% or more, 0.010% or more, or 0.050% or more. On the other hand, if Ta is excessively contained, a large amount of fine Ta carbides may be deposited, which may lead to an excessive increase in strength of the steel material, resulting in a decrease in ductility and a decrease in cold workability. Therefore, the Ta content is 0.500% or less. The Ta content may be 0.300% or less, 0.100% or less, or 0.080% or less.
[V:0~1.00%]
 バナジウム(V)は、析出強化等により鋼材の強度向上に寄与する元素である。V含有量は0%であってもよいが、このような効果を得るためには、V含有量は0.001%以上であることが好ましい。V含有量は0.01%以上、0.02%以上、0.05%以上又は0.10%以上であってもよい。一方で、Vを過度に含有すると、多量の析出物が生成して靭性を低下させる場合がある。したがって、V含有量は1.00%以下である。V含有量は0.80%以下、0.60%以下又は0.50%以下であってもよい。
[V: 0 to 1.00%]
Vanadium (V) is an element that contributes to improving the strength of steel materials by strengthening precipitation. The V content may be 0%, but in order to obtain such an effect, the V content is preferably 0.001% or more. The V content may be 0.01% or more, 0.02% or more, 0.05% or more, or 0.10% or more. On the other hand, if V is excessively contained, a large amount of precipitates may be formed and the toughness may be lowered. Therefore, the V content is 1.00% or less. The V content may be 0.80% or less, 0.60% or less, or 0.50% or less.
[Cu:0~3.00%]
 銅(Cu)は強度及び/又は耐食性の向上に寄与する元素である。Cu含有量は0%であってもよいが、これらの効果を得るためには、Cu含有量は0.001%以上であることが好ましい。Cu含有量は0.01%以上、0.10%以上、0.15%以上、0.20%以上又は0.30%以上であってもよい。一方で、Cuを過度に含有すると、靭性や溶接性の劣化を招く場合がある。したがって、Cu含有量は3.00%以下である。Cu含有量は2.00%以下、1.50%以下、1.00%以下又は0.50%以下であってもよい。
[Cu: 0 to 3.00%]
Copper (Cu) is an element that contributes to the improvement of strength and / or corrosion resistance. The Cu content may be 0%, but in order to obtain these effects, the Cu content is preferably 0.001% or more. The Cu content may be 0.01% or more, 0.10% or more, 0.15% or more, 0.20% or more, or 0.30% or more. On the other hand, if Cu is excessively contained, the toughness and weldability may be deteriorated. Therefore, the Cu content is 3.00% or less. The Cu content may be 2.00% or less, 1.50% or less, 1.00% or less, or 0.50% or less.
[Ni:0~60.00%]
 ニッケル(Ni)は強度及び/又は耐熱性の向上に寄与する元素であり、有効なオーステナイト安定化元素でもある。Ni含有量は0%であってもよいが、これらの効果を得るためには、Ni含有量は0.001%以上であることが好ましい。Ni含有量は0.01%以上、0.10%以上、0.50%以上、0.70%以上、1.00%以上又は3.00%以上であってもよい。とりわけ、耐熱性を十分に向上させる観点からは、Ni含有量は30.00%以上、35.00%以上又は40.00%以上であってもよい。一方で、Niを過度に含有すると、合金コストの増加に加えて熱間加工時の変形抵抗が増大し、設備負荷が大きくなる場合がある。したがって、Ni含有量は60.00%以下である。Ni含有量は55.00%以下又は50.00%以下であってもよい。とりわけ、経済性の観点及び/又は溶接性の低下を抑制するという観点からは、Ni含有量は15.00%以下、10.00%以下、6.00%以下又は4.00%以下であってもよい。
[Ni: 0-60.00%]
Nickel (Ni) is an element that contributes to the improvement of strength and / or heat resistance, and is also an effective austenite stabilizing element. The Ni content may be 0%, but in order to obtain these effects, the Ni content is preferably 0.001% or more. The Ni content may be 0.01% or more, 0.10% or more, 0.50% or more, 0.70% or more, 1.00% or more, or 3.00% or more. In particular, from the viewpoint of sufficiently improving the heat resistance, the Ni content may be 30.00% or more, 35.00% or more, or 40.00% or more. On the other hand, if Ni is excessively contained, the deformation resistance during hot working increases in addition to the increase in alloy cost, which may increase the equipment load. Therefore, the Ni content is 60.00% or less. The Ni content may be 55.00% or less or 50.00% or less. In particular, from the viewpoint of economic efficiency and / or from the viewpoint of suppressing deterioration of weldability, the Ni content is 15.00% or less, 10.00% or less, 6.00% or less, or 4.00% or less. You may.
[Cr:0~30.00%]
 クロム(Cr)は強度及び/又は耐食性の向上に寄与する元素である。Cr含有量は0%であってもよいが、これらの効果を得るためには、Cr含有量は0.001%以上であることが好ましい。Cr含有量は0.01%以上、0.05%以上、0.10%以上又は0.50%以上であってもよい。とりわけ、耐食性を十分に向上させる観点からは、Cr含有量は10.00%以上、12.00%以上又は15.00%以上であってもよい。一方で、Crを過度に含有すると、合金コストの増加に加えて靭性が低下する場合がある。したがって、Cr含有量は30.00%以下である。Cr含有量は28.00%以下、25.00%以下又は20.00%以下であってもよい。とりわけ、溶接性及び/又は加工性の低下を抑制するという観点からは、Cr含有量は10.00%以下、9.00%以下又は7.50%以下であってもよい。
[Cr: 0 to 30.00%]
Chromium (Cr) is an element that contributes to the improvement of strength and / or corrosion resistance. The Cr content may be 0%, but in order to obtain these effects, the Cr content is preferably 0.001% or more. The Cr content may be 0.01% or more, 0.05% or more, 0.10% or more, or 0.50% or more. In particular, from the viewpoint of sufficiently improving the corrosion resistance, the Cr content may be 10.00% or more, 12.00% or more, or 15.00% or more. On the other hand, if Cr is excessively contained, the toughness may decrease in addition to the increase in alloy cost. Therefore, the Cr content is 30.00% or less. The Cr content may be 28.00% or less, 25.00% or less, or 20.00% or less. In particular, from the viewpoint of suppressing deterioration of weldability and / or processability, the Cr content may be 10.00% or less, 9.00% or less, or 7.50% or less.
[Mo:0~5.00%]
 モリブデン(Mo)は鋼の焼入れ性を高め、強度の向上に寄与する元素であり、耐食性の向上にも寄与する元素である。Mo含有量は0%であってもよいが、これらの効果を得るためには、Mo含有量は0.001%以上であることが好ましい。Mo含有量は0.01%以上、0.02%以上、0.50%以上又は1.00%以上であってもよい。一方で、Moを過度に含有すると、熱間加工時の変形抵抗が増大し、設備負荷が大きくなる場合がある。したがって、Mo含有量は5.00%以下である。Mo含有量は4.50%以下、4.00%以下、3.00以下又は1.50%以下であってもよい。
[Mo: 0 to 5.00%]
Molybdenum (Mo) is an element that enhances the hardenability of steel and contributes to the improvement of strength, and is also an element that contributes to the improvement of corrosion resistance. The Mo content may be 0%, but in order to obtain these effects, the Mo content is preferably 0.001% or more. The Mo content may be 0.01% or more, 0.02% or more, 0.50% or more, or 1.00% or more. On the other hand, if Mo is excessively contained, the deformation resistance during hot working increases, and the equipment load may increase. Therefore, the Mo content is 5.00% or less. The Mo content may be 4.50% or less, 4.00% or less, 3.00 or less, or 1.50% or less.
[W:0~2.00%]
 タングステン(W)は鋼の焼入れ性を高め、強度の向上に寄与する元素である。W含有量は0%であってもよいが、このような効果を得るためには、W含有量は0.001%以上であることが好ましい。W含有量は0.01%以上、0.02%以上、0.05%以上、0.10%以上又は0.50%以上であってもよい。一方で、Wを過度に含有すると、延性や溶接性が低下する場合がある。したがって、W含有量は2.00%以下である。W含有量は1.80%以下、1.50%以下又は1.00%以下であってもよい。
[W: 0 to 2.00%]
Tungsten (W) is an element that enhances the hardenability of steel and contributes to the improvement of strength. The W content may be 0%, but in order to obtain such an effect, the W content is preferably 0.001% or more. The W content may be 0.01% or more, 0.02% or more, 0.05% or more, 0.10% or more, or 0.50% or more. On the other hand, if W is excessively contained, ductility and weldability may decrease. Therefore, the W content is 2.00% or less. The W content may be 1.80% or less, 1.50% or less, or 1.00% or less.
[B:0~0.0200%]
 ホウ素(B)は強度の向上に寄与する元素である。B含有量は0%であってもよいが、このような効果を得るためには、B含有量は0.0001%以上であることが好ましい。B含有量は0.0003%以上、0.0005%以上又は0.0007%以上であってもよい。一方で、Bを過度に含有すると、靭性及び/又は溶接性が低下する場合がある。したがって、B含有量は0.0200%以下である。B含有量は0.0100%以下、0.0050%以下、0.0030%以下又は0.0020%以下であってもよい。
[B: 0 to 0.0200%]
Boron (B) is an element that contributes to the improvement of strength. The B content may be 0%, but in order to obtain such an effect, the B content is preferably 0.0001% or more. The B content may be 0.0003% or more, 0.0005% or more, or 0.0007% or more. On the other hand, if B is excessively contained, toughness and / or weldability may decrease. Therefore, the B content is 0.0200% or less. The B content may be 0.0100% or less, 0.0050% or less, 0.0030% or less, or 0.0020% or less.
[Co:0~3.00%]
 コバルト(Co)は焼入れ性及び/又は耐熱性の向上に寄与する元素である。Co含有量は0%であってもよいが、これらの効果を得るためには、Co含有量は0.001%以上であることが好ましい。Co含有量は0.01%以上、0.02%以上、0.05%以上、0.10%以上又は0.50%以上であってもよい。一方で、Coを過度に含有すると、熱間加工性が低下する場合があり、原料コストの増加にも繋がる。したがって、Co含有量は3.00%以下である。Co含有量は2.50%以下、2.00%以下、1.50%以下又は0.80%以下であってもよい。
[Co: 0 to 3.00%]
Cobalt (Co) is an element that contributes to the improvement of hardenability and / or heat resistance. The Co content may be 0%, but in order to obtain these effects, the Co content is preferably 0.001% or more. The Co content may be 0.01% or more, 0.02% or more, 0.05% or more, 0.10% or more, or 0.50% or more. On the other hand, if Co is excessively contained, the hot workability may be lowered, which leads to an increase in raw material cost. Therefore, the Co content is 3.00% or less. The Co content may be 2.50% or less, 2.00% or less, 1.50% or less, or 0.80% or less.
[Be:0~0.050%]
 ベリリウム(Be)は、母材の強度の上昇及び組織の微細化に有効な元素である。Be含有量は0%であってもよいが、このような効果を得るためには、Be含有量は0.0003%以上であることが好ましい。Be含有量は0.0005%以上、0.001%以上又は0.010%以上であってもよい。一方で、Beを過度に含有すると、成形性が低下する場合がある。したがって、Be含有量は0.050%以下である。Be含有量は0.040%以下、0.030%以下又は0.020%以下であってもよい。
[Be: 0 to 0.050%]
Beryllium (Be) is an element effective for increasing the strength of the base metal and refining the structure. The Be content may be 0%, but in order to obtain such an effect, the Be content is preferably 0.0003% or more. The Be content may be 0.0005% or more, 0.001% or more, or 0.010% or more. On the other hand, if Be is excessively contained, the moldability may be deteriorated. Therefore, the Be content is 0.050% or less. The Be content may be 0.040% or less, 0.030% or less, or 0.020% or less.
[Ag:0~0.500%]
 銀(Ag)は、母材の強度の上昇及び組織の微細化に有効な元素である。Ag含有量は0%であってもよいが、このような効果を得るためには、Ag含有量は0.001%以上であることが好ましい。Ag含有量は0.010%以上、0.020%以上、0.030%以上又は0.050%以上であってもよい。一方で、Agを過度に含有すると、成形性が低下する場合がある。したがって、Ag含有量は0.500%以下である。Ag含有量は0.400%以下、0.300%以下又は0.200%以下であってもよい。
[Ag: 0 to 0.500%]
Silver (Ag) is an element effective for increasing the strength of the base material and refining the structure. The Ag content may be 0%, but in order to obtain such an effect, the Ag content is preferably 0.001% or more. The Ag content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more. On the other hand, if Ag is excessively contained, the moldability may be deteriorated. Therefore, the Ag content is 0.500% or less. The Ag content may be 0.400% or less, 0.300% or less, or 0.200% or less.
[Ca:0~0.0500%]
 カルシウム(Ca)は、硫化物の形態を制御できる元素である。Ca含有量は0%であってもよいが、このような効果を得るためには、Ca含有量は0.0001%以上であることが好ましい。一方で、Caを過度に含有しても効果が飽和し、それゆえCaを必要以上に鋼材中に含有させることは製造コストの上昇を招く虞がある。したがって、Ca含有量は0.0500%以下である。
[Ca: 0-0.0500%]
Calcium (Ca) is an element that can control the morphology of sulfides. The Ca content may be 0%, but in order to obtain such an effect, the Ca content is preferably 0.0001% or more. On the other hand, even if Ca is excessively contained, the effect is saturated, and therefore, if Ca is contained in the steel material more than necessary, the manufacturing cost may increase. Therefore, the Ca content is 0.0500% or less.
[Mg:0~0.0500%]
 マグネシウム(Mg)は、硫化物の形態を制御できる元素である。Mg含有量は0%であってもよいが、このような効果を得るためには、Mg含有量は0.0001%以上であることが好ましい。Mg含有量は0.0015%超、0.0016%以上、0.0018%以上又は0.0020%以上であってもよい。一方で、Mgを過度に含有しても効果が飽和し、粗大な介在物の形成に起因して冷間成形性及び/又は靭性が低下する場合がある。したがって、Mg含有量は0.0500%以下である。Mg含有量は0.0400%以下、0.0300%以下又は0.0200%以下であってもよい。
[Mg: 0 to 0.0500%]
Magnesium (Mg) is an element that can control the morphology of sulfides. The Mg content may be 0%, but in order to obtain such an effect, the Mg content is preferably 0.0001% or more. The Mg content may be greater than 0.0015%, greater than 0.0016%, greater than or equal to 0.0018% or greater than or equal to 0.0020%. On the other hand, even if Mg is excessively contained, the effect is saturated, and cold formability and / or toughness may decrease due to the formation of coarse inclusions. Therefore, the Mg content is 0.0500% or less. The Mg content may be 0.0400% or less, 0.0300% or less, or 0.0200% or less.
[La、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種:合計で0~0.5000%]
 ランタン(La)、セリウム(Ce)、ネオジム(Nd)、イットリウム(Y)、プロメチウム(Pm)、プラセオジム(Pr)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、及びスカンジウム(Sc)は、Ca及びMgと同様に硫化物の形態を制御できる元素である。La、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種の含有量の合計は0%であってもよいが、このような効果を得るためには0.0001%以上であることが好ましい。La、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種の含有量の合計は0.0002%以上、0.0003%以上又は0.0004%以上であってもよい。一方で、これらの元素を過度に含有しても効果が飽和し、それゆえこれらの元素を必要以上に鋼材中に含有させることは製造コストの上昇を招く虞がある。したがって、La、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種の含有量の合計は0.5000%以下であり、0.4000%以下、0.3000%以下又は0.2000%以下であってもよい。
[At least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc: 0 to 0.5000% in total]
Lantern (La), Cerium (Ce), Neogym (Nd), Yttrium (Y), Promethium (Pm), Placeozim (Pr), Samarium (Sm), Europium (Eu), Gadrinium (Gd), Terbium (Tb), Dysprosium (Dy), formium (Ho), elbium (Er), yttrium (Tm), yttrium (Yb), lutetium (Lu), and scandium (Sc) can control the morphology of sulfides as well as Ca and Mg. It is an element. Even if the total content of at least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc is 0%. However, in order to obtain such an effect, it is preferably 0.0001% or more. The total content of at least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc is 0.0002% or more. It may be 0.0003% or more or 0.0004% or more. On the other hand, even if these elements are excessively contained, the effect is saturated, and therefore, including these elements in the steel material more than necessary may lead to an increase in manufacturing cost. Therefore, the total content of at least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc is 0.5000%. It may be less than or equal to 0.4000%, 0.3000% or less, or 0.2000% or less.
[Sn:0~0.300%]
 錫(Sn)は耐食性の向上に有効な元素である。Sn含有量は0%であってもよいが、このような効果を得るためには、Sn含有量は0.001%以上であることが好ましい。Sn含有量は0.010%以上、0.020%以上、0.030%以上又は0.050%以上であってもよい。一方で、Snを過度に含有すると、靭性、特には低温靭性の低下を招く場合がある。したがって、Sn含有量は0.300%以下である。Sn含有量は0.250%以下、0.200%以下又は0.150%以下であってもよい。
[Sn: 0 to 0.300%]
Tin (Sn) is an element effective for improving corrosion resistance. The Sn content may be 0%, but in order to obtain such an effect, the Sn content is preferably 0.001% or more. The Sn content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more. On the other hand, excessive inclusion of Sn may lead to a decrease in toughness, particularly low temperature toughness. Therefore, the Sn content is 0.300% or less. The Sn content may be 0.250% or less, 0.200% or less, or 0.150% or less.
[Sb:0~0.300%]
 アンチモン(Sb)は、Snと同様に耐食性の向上に有効な元素であり、特にSnと複合して含有させることにより効果を増大させることができる。Sb含有量は0%であってもよいが、耐食性向上の効果を得るためには、Sb含有量は0.001%以上であることが好ましい。Sb含有量は0.010%以上、0.020%以上、0.030%以上又は0.050%以上であってもよい。一方で、Sbを過度に含有すると、靭性、特には低温靭性の低下を招く場合がある。したがって、Sb含有量は0.300%以下である。Sb含有量は0.250%以下、0.200%以下又は0.150%以下であってもよい。
[Sb: 0 to 0.300%]
Antimony (Sb) is an element effective for improving corrosion resistance like Sn, and the effect can be increased by including it in combination with Sn. The Sb content may be 0%, but in order to obtain the effect of improving the corrosion resistance, the Sb content is preferably 0.001% or more. The Sb content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more. On the other hand, excessive content of Sb may lead to a decrease in toughness, particularly low temperature toughness. Therefore, the Sb content is 0.300% or less. The Sb content may be 0.250% or less, 0.200% or less, or 0.150% or less.
[Te:0~0.100%]
 テルル(Te)は、MnやSなどと低融点化合物を形成して潤滑効果を高めるため、鋼の被削性を改善するのに有効な元素である。Te含有量は0%であってもよいが、このような効果を得るためには、Te含有量は0.001%以上であることが好ましい。Te含有量は0.010%以上、0.020%以上、0.030%以上又は0.040%以上であってもよい。一方で、Teを過度に含有しても効果が飽和し、合金コストの増加を招く。したがって、Te含有量は0.100%以下である。Te含有量は0.090%以下、0.080%以下又は0.070%以下であってもよい。
[Te: 0 to 0.100%]
Tellurium (Te) is an element effective for improving the machinability of steel because it forms a low melting point compound with Mn, S and the like to enhance the lubricating effect. The Te content may be 0%, but in order to obtain such an effect, the Te content is preferably 0.001% or more. The Te content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.040% or more. On the other hand, even if Te is excessively contained, the effect is saturated and the alloy cost increases. Therefore, the Te content is 0.100% or less. The Te content may be 0.090% or less, 0.080% or less, or 0.070% or less.
[Se:0~0.100%]
 セレン(Se)は、鋼中に生成するセレン化物が被削材のせん断塑性変形に変化を与え、切りくずが破砕されやすくなるため、鋼の被削性を改善するのに有効な元素である。Se含有量は0%であってもよいが、このような効果を得るためには、Se含有量は0.001%以上であることが好ましい。Se含有量は0.010%以上、0.020%以上、0.030%以上又は0.040%以上であってもよい。一方で、Seを過度に含有しても効果が飽和し、合金コストの増加を招く。したがって、Se含有量は0.100%以下である。Se含有量は0.090%以下、0.080%以下又は0.070%以下であってもよい。
[Se: 0 to 0.100%]
Selenium (Se) is an effective element for improving the machinability of steel because the selenium produced in the steel changes the shear-plastic deformation of the work material and the chips are easily crushed. .. The Se content may be 0%, but in order to obtain such an effect, the Se content is preferably 0.001% or more. The Se content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.040% or more. On the other hand, even if Se is excessively contained, the effect is saturated and the alloy cost increases. Therefore, the Se content is 0.100% or less. The Se content may be 0.090% or less, 0.080% or less, or 0.070% or less.
[As:0~0.050%]
 ヒ素(As)は、鋼の被削性を改善するのに有効な元素である。As含有量は0%であってもよいが、このような効果を得るためには、As含有量は0.001%以上であることが好ましい。As含有量は0.005%以上又は0.010%以上であってもよい。一方で、Asを過度に含有すると、熱間加工性が低下する場合がある。したがって、As含有量は0.050%以下である。As含有量は0.040%以下、0.030%以下又は0.020%以下であってもよい。
[As: 0 to 0.050%]
Arsenic (As) is an element effective in improving the machinability of steel. The As content may be 0%, but in order to obtain such an effect, the As content is preferably 0.001% or more. The As content may be 0.005% or more or 0.010% or more. On the other hand, if As is excessively contained, the hot workability may be deteriorated. Therefore, the As content is 0.050% or less. The As content may be 0.040% or less, 0.030% or less, or 0.020% or less.
[Bi:0~0.500%]
 ビスマス(Bi)は、鋼の被削性を改善するのに有効な元素である。Bi含有量は0%であってもよいが、このような効果を得るためには、Bi含有量は0.001%以上であることが好ましい。Bi含有量は0.010%以上、0.020%以上、0.030%以上又は0.050%以上であってもよい。一方で、Biを過度に含有しても効果が飽和し、合金コストの増加を招く。したがって、Bi含有量は0.500%以下である。Bi含有量は0.400%以下、0.300%以下又は0.200%以下であってもよい。
[Bi: 0 to 0.500%]
Bismuth (Bi) is an element effective in improving the machinability of steel. The Bi content may be 0%, but in order to obtain such an effect, the Bi content is preferably 0.001% or more. The Bi content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more. On the other hand, even if Bi is excessively contained, the effect is saturated and the alloy cost increases. Therefore, the Bi content is 0.500% or less. The Bi content may be 0.400% or less, 0.300% or less, or 0.200% or less.
[Pb:0~0.500%]
 鉛(Pb)は、切削による温度上昇で溶融してクラックの進展を促進するため、鋼の被削性を改善するのに有効な元素である。Pb含有量は0%であってもよいが、このような効果を得るためには、Pb含有量は0.001%以上であることが好ましい。Pb含有量は0.010%以上、0.020%以上、0.030%以上又は0.050%以上であってもよい。一方で、Pbを過度に含有すると、熱間加工性が低下する場合がある。したがって、Pb含有量は0.500%以下である。Pb含有量は0.400%以下、0.300%以下又は0.200%以下であってもよい。
[Pb: 0 to 0.500%]
Lead (Pb) is an element effective for improving the machinability of steel because it melts when the temperature rises due to cutting and promotes the growth of cracks. The Pb content may be 0%, but in order to obtain such an effect, the Pb content is preferably 0.001% or more. The Pb content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more. On the other hand, if Pb is excessively contained, the hot workability may be deteriorated. Therefore, the Pb content is 0.500% or less. The Pb content may be 0.400% or less, 0.300% or less, or 0.200% or less.
 本発明の実施形態に係る鋼材において、上記の元素以外の残部は、Fe及び不純物からなる。不純物とは、鋼材を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分等である。 In the steel material according to the embodiment of the present invention, the balance other than the above elements consists of Fe and impurities. Impurities are components that are mixed in by various factors in the manufacturing process, including raw materials such as ore and scrap, when steel materials are industrially manufactured.
[Z元素の有効量]
 本発明の実施形態によれば、Zr及びHfからなるZ元素の有効量は、下記式1の左辺によって求められ、そしてその値は下記式1を満たすようにする。
 0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S] ≧ 0.0003   ・・・式1
 ここで、[Zr]、[Hf]、[O]、[N]、及び[S]は、各元素の含有量[質量%]であり、元素を含有しない場合は0である。
[Effective amount of Z element]
According to the embodiment of the present invention, the effective amount of the Z element consisting of Zr and Hf is determined by the left side of the following formula 1, and the value thereof satisfies the following formula 1.
0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1.74 [S] ≧ 0.0003 ・ ・ ・ Equation 1
Here, [Zr], [Hf], [O], [N], and [S] are the content [mass%] of each element, and are 0 when the element is not contained.
 上記Z元素の有効量を上記式1を満たすようにすることで、鋼中に存在しているZ元素と鋼中の固溶Pを反応させてリン化物を形成することができ、このようなリン化物の形成に伴い、鋼中の固溶P量を低減することが可能となる。より詳しく説明すると、これらのZ元素(以下、単に「Z」ともいう)は、鋼中に存在するO(酸素)、N(窒素)及びS(硫黄)と結びついて、酸化物(ZO2)、窒化物(ZN)及び硫化物(ZS)からなる介在物を形成する傾向がある。当該介在物を形成してしまうと、少なくともこれらの介在物中のZ元素は固溶Pとの反応に寄与することはできない。したがって、固溶Pとの反応を促進して鋼中の固溶P量を低減するためには、介在物を形成せずに鋼中でリン化物を形成し得るZ元素の量を増加させる必要がある。 By making the effective amount of the Z element satisfy the above formula 1, it is possible to react the Z element existing in the steel with the solid solution P in the steel to form a phosphide. With the formation of the phosphide, it becomes possible to reduce the amount of solid melt P in the steel. More specifically, these Z elements (hereinafter, also simply referred to as “Z”) are combined with O (oxygen), N (nitrogen) and S (sulfur) present in steel to form an oxide (ZO 2 ). , Tends to form inclusions consisting of nitrides (ZN) and sulfides (ZS). Once the inclusions are formed, at least the Z element in these inclusions cannot contribute to the reaction with the solid solution P. Therefore, in order to promote the reaction with the solid solution P and reduce the amount of the solid solution P in the steel, it is necessary to increase the amount of the Z element that can form a phosphide in the steel without forming inclusions. There is.
 ここで、リン化物を形成し得るZ元素の量は、鋼中に含まれるZ元素の量から介在物(酸化物、窒化物及び硫化物)を形成するのに消費され得る最大量を差し引くことによって概算することが可能である。そこで、本発明の実施形態においては、このようにして概算される鋼中の固溶P量を低減するのに有効なZ元素の量(すなわち「Z元素の有効量」)は、具体的には下記式Aによって定義される。
 Zの有効量[原子%]=Σ(M[Fe]/M[Z])×[Z]-(M[Fe]/M[O])×[O]×1/2-(M[Fe]/M[N])×[N]-(M[Fe]/M[S])×[S]   ・・・式A
 ここで、ZはZr及びHfの各Z元素を表し、M[Z]はZ元素の原子量、M[Fe]はFeの原子量、M[O]はOの原子量、M[N]はNの原子量、M[S]はSの原子量を表し、[Z]、[O]、[N]及び[S]は、それぞれ対応する元素の含有量[質量%]であり、元素を含有しない場合は0である。
Here, the amount of Z element that can form a phosphide is the amount of Z element contained in the steel minus the maximum amount that can be consumed to form inclusions (oxides, nitrides and sulfides). It is possible to estimate by. Therefore, in the embodiment of the present invention, the amount of Z element effective for reducing the amount of solid solution P in the steel estimated in this way (that is, "effective amount of Z element") is specifically determined. Is defined by the following formula A.
Effective amount of Z [atomic%] = Σ (M [Fe] / M [Z] ) x [Z]-(M [Fe] / M [O] ) x [O] x 1 / 2- (M [Fe ] ] / M [N] ) x [N]-(M [Fe] / M [S] ) x [S] ... Equation A
Here, Z represents each Z element of Zr and Hf, M [Z] is the atomic weight of the Z element, M [Fe] is the atomic weight of Fe, M [O] is the atomic weight of O, and M [N] is N. Atomic weight, M [S] represents the atomic weight of S, and [Z], [O], [N] and [S] are the corresponding element content [mass%], respectively, and when no element is contained. It is 0.
 上記式Aについて以下に詳しく説明すると、まず、本発明の実施形態に係る鋼材には種々の合金元素が含有されているものの、鋼材全体としてはほぼFeによって構成されているか、あるいは任意選択元素であるNi及び/又はCrを比較的多く含む場合(それぞれの最大含有量は60.00%及び30.00%)には、Feに加えてNi及び/又はCrによってほぼ構成されていることが明らかである。一方で、Ni及びCrの原子量はFeの原子量と同等であることが周知である。このため、たとえ鋼材がNi及び/又はCrを比較的多く含む場合であっても、Zr及びHfの各Z元素の原子%は、近似的には各Z元素の含有量[質量%]にFeの原子量と当該各Z元素の原子量の比を掛け算すること、すなわち(M[Fe]/M[Z])×[Z]によって算出することができる。したがって、(M[Fe]/M[Z])×[Z]によって算出される各Z元素の量を合計することで(すなわちΣ(M[Fe]/M[Z])×[Z]を計算することで)、Z元素全体の原子%を算出することができる。 The above formula A will be described in detail below. First, although the steel material according to the embodiment of the present invention contains various alloying elements, the steel material as a whole is almost composed of Fe or is an optional element. When a certain Ni and / or Cr is contained in a relatively large amount (the maximum contents are 60.00% and 30.00%, respectively), it is clear that it is almost composed of Ni and / or Cr in addition to Fe. Is. On the other hand, it is well known that the atomic weights of Ni and Cr are equivalent to the atomic weights of Fe. Therefore, even when the steel material contains a relatively large amount of Ni and / or Cr, the atomic% of each Z element of Zr and Hf is approximately Fe in the content [mass%] of each Z element. It can be calculated by multiplying the atomic weight of each Z element by the ratio of the atomic weight of each Z element, that is, (M [Fe] / M [Z] ) × [Z]. Therefore, by summing up the amounts of each Z element calculated by (M [ Fe ] / M [Z ] ) × [Z] (that is, Σ (M [Fe] / M [Z] ) × [Z]. By calculation), the atomic% of the entire Z element can be calculated.
 次に、Z元素全体の原子%のうち、酸化物(ZO2)、窒化物(ZN)及び硫化物(ZS)を形成するのに消費され得る最大量(原子%)を差し引くことで、固溶P量を低減するのに有効に作用し得る鋼中のZ元素の量を算出することができる。ここで、酸化物(ZO2)、窒化物(ZN)及び硫化物(ZS)を形成するのに消費され得るZ元素の最大量(原子%)は、上で説明したのと同様の理由から近似的には鋼中のFe、O、N及びSの原子量並びにO、N及びSの含有量を用いて、それぞれ(M[Fe]/M[O])×[O]×1/2、(M[Fe]/M[N])×[N]、及び(M[Fe]/M[S])×[S]として算出することが可能である。したがって、固溶P量を低減するためのZ元素の有効量は、下記式Aによって定義することができる。
 Zの有効量[原子%]=Σ(M[Fe]/M[Z])×[Z]-(M[Fe]/M[O])×[O]×1/2-(M[Fe]/M[N])×[N]-(M[Fe]/M[S])×[S]   ・・・式A
Next, by subtracting the maximum amount (atomic%) that can be consumed to form oxides (ZO 2 ), nitrides (ZN) and sulfides (ZS) from the atomic% of the total Z element, it is solidified. It is possible to calculate the amount of Z element in steel that can effectively act to reduce the amount of molten P. Here, the maximum amount (atomic%) of Z element that can be consumed to form oxides (ZO 2 ), nitrides (ZN) and sulfides (ZS) is for the same reasons as described above. Approximately, using the atomic weights of Fe, O, N and S and the contents of O, N and S in the steel, (M [Fe] / M [O] ) × [O] × 1/2, respectively. It can be calculated as (M [Fe] / M [N] ) × [N] and (M [Fe] / M [S] ) × [S]. Therefore, the effective amount of the Z element for reducing the amount of solid solution P can be defined by the following formula A.
Effective amount of Z [atomic%] = Σ (M [Fe] / M [Z] ) x [Z]-(M [Fe] / M [O] ) x [O] x 1 / 2- (M [Fe ] ] / M [N] ) x [N]-(M [Fe] / M [S] ) x [S] ... Equation A
 ここで、Fe、O、N及びS並びに各Z元素の原子量は、それぞれFe:55.845、O:15.9994、N:14.0069、S:32.068、Zr:91.224、Hf:178.49である。したがって、上記式Aに各元素の原子量を代入して整理すると、Z元素の原子%による有効量は近似的には下記式Bによって表すことが可能となる。
 有効量=0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S]   ・・・式B
 ここで、[Zr]、[Hf]、[O]、[N]、及び[S]は、各元素の含有量[質量%]であり、元素を含有しない場合は0である。
Here, the atomic weights of Fe, O, N and S and each Z element are Fe: 55.845, O: 15.9994, N: 14.0069, S: 32.068, Zr: 91.224, Hf, respectively. It is 178.49. Therefore, by substituting the atomic weight of each element into the above formula A and rearranging it, the effective amount of the Z element in terms of atomic% can be approximately expressed by the following formula B.
Effective amount = 0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1.74 [S] ... Expression B
Here, [Zr], [Hf], [O], [N], and [S] are the content [mass%] of each element, and are 0 when the element is not contained.
 本発明の実施形態においては、固溶P量を低減するためには、上記式Bによって求められるZ元素の有効量は0.0003%以上、すなわち下記式1を満たすことが少なくとも必要である。
 0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S] ≧ 0.0003   ・・・式1
 Z元素の有効量は、例えば0.0005%以上又は0.0007%以上であってもよく、好ましくは0.0010%以上、より好ましくは0.0015%以上、さらにより好ましくは0.0030%以上、最も好ましくは0.0050%以上又は0.0100%以上である。また、上記式1からも明らかなように、当該有効量を安定的に確保するためには、鋼中のO、N及びSの含有量を極力低減することが好ましい。ここで、Z元素の有効量の上限は特に限定されないが、当該Z元素の有効量を過度に増加させても効果が飽和するとともに、製造コストの上昇(Z元素の含有量増加に伴う合金コストの上昇及び/又はO、N及びSに関する精錬コストの上昇)を招くことになり必ずしも好ましくない。したがって、Z元素の有効量は好ましくは2.0000%以下であり、例えば1.8000%以下、1.5000%以下、1.2000%以下、1.0000%以下又は0.8000%以下であってもよい。
In the embodiment of the present invention, in order to reduce the amount of solid solution P, it is necessary that the effective amount of the Z element determined by the above formula B is 0.0003% or more, that is, at least satisfy the following formula 1.
0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1.74 [S] ≧ 0.0003 ・ ・ ・ Equation 1
The effective amount of the Z element may be, for example, 0.0005% or more or 0.0007% or more, preferably 0.0010% or more, more preferably 0.0015% or more, still more preferably 0.0030%. The above is most preferably 0.0050% or more or 0.0100% or more. Further, as is clear from the above formula 1, in order to stably secure the effective amount, it is preferable to reduce the contents of O, N and S in the steel as much as possible. Here, the upper limit of the effective amount of the Z element is not particularly limited, but even if the effective amount of the Z element is excessively increased, the effect is saturated and the manufacturing cost increases (alloy cost due to the increase in the content of the Z element). And / or an increase in refining cost for O, N and S), which is not always preferable. Therefore, the effective amount of the Z element is preferably 2.000% or less, for example, 1.8000% or less, 1.5000% or less, 1.2000% or less, 1.000% or less, or 0.8000% or less. You may.
[Z元素の有効量と鋼中のP含有量との関係]
 本発明の実施形態によれば、上記のZ元素の有効量と鋼中のP含有量は、下記式2を満たす。
 1.80×[P]-(0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S]) < 0.010   ・・・式2
 ここで、[Zr]、[Hf]、[O]、[N]、[S]、及び[P]は、各元素の含有量[質量%]であり、元素を含有しない場合は0である。
[Relationship between effective amount of Z element and P content in steel]
According to the embodiment of the present invention, the effective amount of the Z element and the P content in the steel satisfy the following formula 2.
1.80 x [P]-(0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1.74 [S]) <0.010 ... Equation 2
Here, [Zr], [Hf], [O], [N], [S], and [P] are the content [mass%] of each element, and are 0 when the element is not contained. ..
 Z元素とPは1:1の割合で結合してリン化物(ZP)を形成することから、鋼中のP含有量(原子%)からZ元素の有効量(原子%)を差し引くことで、鋼材の化学組成から求められる理論上の固溶P量を算出することができる。ここで、原子%によるP含有量の値は、Z元素の有効量に関連して上で説明したのと同様の理由から近似的には鋼中のFe及びPの原子量並びに質量%によるP含有量を用いて(M[Fe]/M[P])×[P]として算出することが可能である(ここで、M[Fe]はFeの原子量、M[P]はPの原子量を表し、[P]はP含有量[質量%]であり、Pを含有しない場合は0である)。したがって、理論上の固溶P量は近似的には下記式Cによって表すことが可能となる。
 理論上の固溶P量[原子%]
       =(M[Fe]/M[P])×[P]-Zの有効量[原子%]   ・・・式C
Since the Z element and P are combined at a ratio of 1: 1 to form a phosphite (ZP), the effective amount of the Z element (atomic%) is subtracted from the P content (atomic%) in the steel. The theoretical amount of solid solution P obtained from the chemical composition of the steel material can be calculated. Here, the value of the P content by atomic% is approximately the atomic weight of Fe and P in the steel and the P content by mass% for the same reason as described above in relation to the effective amount of the Z element. It can be calculated as (M [Fe] / M [P] ) × [P] using the amount (where M [Fe] represents the atomic weight of Fe and M [P] represents the atomic weight of P. , [P] is the P content [mass%], and is 0 when P is not contained). Therefore, the theoretical amount of solid solution P can be approximately expressed by the following formula C.
Theoretical solid solution P amount [atomic%]
= (M [Fe] / M [P] ) × [P] -Z effective amount [atomic%] ... Equation C
 ここで、Fe及びPの原子量は、それぞれFe:55.845及びP:30.9738である。したがって、上記式CにFe及びPの原子量並びに式Bを代入して整理すると、原子%による理論上の固溶P量は近似的には下記式Dによって表すことが可能となる。
 理論上の固溶P量[原子%]=1.80×[P]-(0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S])   ・・・式D
 ここで、[Zr]、[Hf]、[O]、[N]、[S]、及び[P]は、各元素の含有量[質量%]であり、元素を含有しない場合は0である。
Here, the atomic weights of Fe and P are Fe: 55.845 and P: 30.738, respectively. Therefore, by substituting the atomic weights of Fe and P and the formula B into the above formula C, the theoretical solid solution P amount in terms of atomic% can be approximately expressed by the following formula D.
Theoretical solid solution P amount [atomic%] = 1.80 × [P]-(0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1. 74 [S]) ・ ・ ・ Expression D
Here, [Zr], [Hf], [O], [N], [S], and [P] are the content [mass%] of each element, and are 0 when the element is not contained. ..
 本発明の実施形態においては、実際に測定される固溶P量を低減し、それによって当該固溶Pに関連する鋼材の特性、例えば、靭性、延性、耐食性、溶接性などの特性を改善するためには、上記式1を満たすことに加えて、上記式Dによって求められる理論上の固溶P量が0.010%未満であること、すなわち下記式2を満たすことが必要である。
 1.80×[P]-(0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S) < 0.010   ・・・式2
 理論上の固溶P量(すなわち式2の左辺)は、好ましくは0.008%以下、より好ましくは0.005%以下、さらにより好ましくは0.003%以下、最も好ましくは0%以下である。また、理論上の固溶P量を低減して上記式2を確実に満足させるためには、当然ながら鋼中のP含有量を極力低減することが好ましい。ここで、理論上の固溶P量の下限は特に限定されないが、理論上の固溶P量を過度に低減しても効果が飽和するとともに、製造コストの上昇(Pに関する精錬コストの上昇及び/又はZ元素の含有量増加に伴う合金コストの上昇)を招くことになり必ずしも好ましくない。したがって、理論上の固溶P量は好ましくは-2.000%以上であり、例えば-1.800%以上、-1.500%以上、-1.300%以上、-1.000%以上又は-0.800%以上であってもよい。
In the embodiment of the present invention, the amount of solid solution P actually measured is reduced, thereby improving the characteristics of the steel material related to the solid solution P, such as toughness, ductility, corrosion resistance, and weldability. For this purpose, in addition to satisfying the above formula 1, it is necessary that the theoretical solid solution P amount obtained by the above formula D is less than 0.010%, that is, the following formula 2 is satisfied.
1.80 × [P]-(0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1.74 [S) <0.010 ... 2
The theoretical solid solution P amount (that is, the left side of the formula 2) is preferably 0.008% or less, more preferably 0.005% or less, still more preferably 0.003% or less, and most preferably 0% or less. be. Further, in order to reduce the theoretical solid solution P content and surely satisfy the above formula 2, it is naturally preferable to reduce the P content in the steel as much as possible. Here, the lower limit of the theoretical solid solution P amount is not particularly limited, but even if the theoretical solid solution P amount is excessively reduced, the effect is saturated and the manufacturing cost increases (the increase in the refining cost related to P and the increase in the refining cost related to P). / Or an increase in alloy cost due to an increase in the content of Z element), which is not always preferable. Therefore, the theoretical solid solution P amount is preferably -2.90% or more, for example, -1.80% or more, -1.50% or more, -1.30% or more, -1,000% or more or. It may be −0.800% or more.
 本発明の実施形態に係る鋼材は、任意の鋼材であってよく、特に限定されない。本発明の実施形態に係る鋼材は、例えば、熱間圧延前の鋼材であるスラブ、ビレット、ブルームや熱間圧延後の鋼材を包含するものである。熱間圧延後の鋼材としては、特に限定されないが、例えば、厚鋼板、薄鋼板、さらには棒鋼、線材、形鋼、及び鋼管等をも包含するものである。 The steel material according to the embodiment of the present invention may be any steel material and is not particularly limited. The steel material according to the embodiment of the present invention includes, for example, slabs, billets, blooms, and steel materials after hot rolling, which are steel materials before hot rolling. The steel material after hot rolling is not particularly limited, but includes, for example, thick steel plates, thin steel plates, steel bars, wire rods, shaped steels, steel pipes, and the like.
 本発明の実施形態に係る鋼材は、最終的な製品の形態等に応じて、当業者に公知の任意の適切な方法によって製造することが可能である。例えば、鋼材が厚鋼板の場合には、その製造方法は、一般に厚鋼板を製造する際に適用される工程を含み、例えば、上で説明した化学組成を有するスラブを鋳造する工程、鋳造されたスラブを熱間圧延する工程、及び得られた圧延材を冷却する工程を含み、必要に応じて焼入れ工程及び焼戻し工程等の熱処理をさらに含んでいてもよい。本発明の実施形態に係る鋼材の製造工程は、制御圧延と加速冷却を組み合わせた熱加工制御プロセス(TMCP)であってもよい。 The steel material according to the embodiment of the present invention can be manufactured by any suitable method known to those skilled in the art, depending on the form of the final product and the like. For example, when the steel material is a thick steel plate, the manufacturing method includes a step generally applied when manufacturing the thick steel plate, for example, a step of casting a slab having the chemical composition described above, and casting. It includes a step of hot rolling the slab and a step of cooling the obtained rolled material, and may further include heat treatment such as a quenching step and a tempering step, if necessary. The steel material manufacturing process according to the embodiment of the present invention may be a thermal processing control process (TMCP) that combines controlled rolling and accelerated cooling.
 また、鋼材が薄鋼板の場合には、その製造方法は、一般に薄鋼板を製造する際に適用される工程を含み、例えば、上で説明した化学組成を有するスラブを鋳造する工程、鋳造されたスラブを熱間圧延する工程、及び得られた圧延材を冷却して巻き取る工程、必要に応じて冷間圧延工程、焼鈍工程等をさらに含んでいてもよい。棒鋼や他の鋼材の製造方法においても同様に、一般に棒鋼や他の鋼材を製造する際に適用される工程を含み、例えば、上で説明した化学組成を有する溶鋼を形成する製鋼工程、形成された溶鋼からスラブ、ビレット、ブルーム等を鋳造する工程、鋳造されたスラブ、ビレット、ブルーム等を熱間圧延する工程、及び得られた圧延材を冷却する工程を含み、他の工程は、それらの鋼材を製造するのに当業者に公知の適切な工程を適宜選択し、実施することができる。 Further, when the steel material is a thin steel plate, the manufacturing method includes a step generally applied when manufacturing the thin steel plate, for example, a step of casting a slab having the chemical composition described above, and casting. It may further include a step of hot rolling the slab, a step of cooling and winding the obtained rolled material, a cold rolling step, a baking step and the like, if necessary. Similarly, in the method for producing steel bars and other steel materials, a step generally applied when manufacturing steel bars and other steel materials is included, and for example, a steelmaking process for forming molten steel having the chemical composition described above is formed. It includes a step of casting slabs, billets, blooms, etc. from molten steel, a step of hot rolling the cast slabs, billets, blooms, etc., and a step of cooling the obtained rolled material, and other steps include those steps. Appropriate steps known to those skilled in the art for producing steel materials can be appropriately selected and carried out.
 鋼中の固溶P量は、900~1100℃、好ましくは950~1100℃の範囲内の所定の温度で6000秒以上保持することによりリン化物を形成し(P固定処理)、低減することができる。P固定処理は、熱間圧延工程での熱履歴であってもよく、熱間圧延工程後の熱処理であってもよい。P固定処理の保持温度は、900~1100℃の範囲内の一定の温度であってもよく、当該範囲内で変動してもよい。P固定処理が熱間圧延工程での熱履歴である場合は、スラブ、ビレット、ブルームなどの鋼素材の加熱から熱間圧延の完了までの間に、900~1100℃の範囲内での保持時間が6000秒以上であればよい。「保持」とは、上記の温度範囲内で放冷又は空冷等により徐々に温度が低下する場合を包含するものである。保持時間の上限は、特に限定されないが、例えば15000秒以下又は12000秒以下であってよい。熱間圧延工程の熱履歴又は熱間圧延工程後の熱処理にP固定処理を含めることで、鋼中の固溶Pをリン化物として十分に固定することができるため、その後の焼き戻し処理によってもPが粒界等へ偏析することを抑制することができる。その結果として、焼き戻し脆化等の発生を抑制することができ、それゆえ鋼材の靭性等の特性を顕著に向上させることが可能となる。また、本発明の実施形態に係る鋼材の製造では、固溶Pを固定するためのZ元素の有効量を確保することが重要であり、そのためにはZ元素と鋼中で介在物を形成し得るO、N及びSの含有量を精錬工程において十分に低減しておくことが極めて重要である。 The amount of solid melt P in steel can be reduced by forming a phosphide (P fixing treatment) by holding it at a predetermined temperature in the range of 900 to 1100 ° C., preferably 950 to 1100 ° C. for 6000 seconds or longer. can. The P fixing process may be a heat history in the hot rolling process or a heat treatment after the hot rolling process. The holding temperature of the P fixing process may be a constant temperature within the range of 900 to 1100 ° C., or may vary within the range. When the P fixing process is the heat history in the hot rolling process, the holding time in the range of 900 to 1100 ° C. from the heating of steel materials such as slabs, billets and blooms to the completion of hot rolling. May be 6000 seconds or more. The term "retention" includes a case where the temperature gradually decreases due to cooling, air cooling, or the like within the above temperature range. The upper limit of the holding time is not particularly limited, but may be, for example, 15,000 seconds or less or 12,000 seconds or less. By including the P fixing process in the heat history of the hot rolling process or the heat treatment after the hot rolling process, the solid-melt P in the steel can be sufficiently fixed as a phosphite, so that it can be sufficiently fixed by the subsequent tempering process. It is possible to suppress the segregation of P into the grain boundaries and the like. As a result, it is possible to suppress the occurrence of tempering embrittlement and the like, and therefore it is possible to significantly improve the toughness and other properties of the steel material. Further, in the production of the steel material according to the embodiment of the present invention, it is important to secure an effective amount of the Z element for fixing the solid solution P, and for that purpose, inclusions are formed in the Z element and the steel. It is extremely important that the contents of O, N and S obtained are sufficiently reduced in the refining step.
 以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
[例A]
 本例では、まず、種々の化学組成を有するスラブを鋳造し、次いで熱間圧延を圧下率50%以上で実施し、冷却した。次に、得られた圧延材を950~1100℃の範囲内の所定の温度に加熱し、6000~12000秒保持することによりリン化物を形成し(P固定処理)、すなわち鋼中のPの少なくとも一部がリン化物として固定された鋼材を得た。得られた各鋼材から採取した試料を分析した化学組成は、下表1に示すとおりである。また、得られた各鋼材中の固溶P量は以下の方法によって測定した。
[Example A]
In this example, first, slabs having various chemical compositions were cast, and then hot rolling was carried out at a rolling reduction of 50% or more and cooled. Next, the obtained rolled material is heated to a predetermined temperature in the range of 950 to 1100 ° C. and held for 6000 to 12000 seconds to form a phosphide (P fixing treatment), that is, at least P in steel. A steel material partially fixed as a phosphide was obtained. The chemical composition obtained by analyzing the samples collected from each of the obtained steel materials is as shown in Table 1 below. The amount of solid solution P in each of the obtained steel materials was measured by the following method.
[鋼材中の固溶P量の測定]
 鋼材中の固溶P量は抽出残渣法によって測定した。より具体的には、まず、鋼材から採取した鋼材表面から0.5mm深さ位置を含む試料を10%アセチルアセトン-1%テトラメチルアンモニウムクロライド-メタノール溶液中500mmA及び2時間の条件下での定電流電解によって鋼材1g以上を電解し、次いで孔径0.2μmのメンブレンフィルタを用いて濾過し、析出物(リン化物)を分離した。次に、分離した析出物を硝酸(HNO3)と過塩素酸(HClO4)を2:1で混合した溶液にて分解し、次いで得られた残渣をICP-MS(誘導結合プラズマ質量分析計)で測定することにより鋼材中でリン化物として析出したP量(質量%)を決定した。この析出P量(質量%)を、表1に示される各鋼材中のP含有量(質量%)から差し引くことにより各鋼材中の固溶P量(質量%)を決定した。その結果を表1に示す。
[Measurement of solid solution P amount in steel material]
The amount of solid solution P in the steel material was measured by the extraction residue method. More specifically, first, a sample containing a depth position of 0.5 mm from the surface of the steel material taken from the steel material is subjected to a constant current of 500 mmA in a 10% acetylacetone-1% tetramethylammonium chloride-methanol solution under the condition of 2 hours. 1 g or more of the steel material was electrolyzed by electrolysis, and then filtered using a membrane filter having a pore size of 0.2 μm to separate precipitates (phosphorus products). Next, the separated precipitate was decomposed with a solution in which nitric acid (HNO 3 ) and perchloric acid (HClO 4 ) were mixed at a ratio of 2: 1 and the obtained residue was then subjected to ICP-MS (inductively coupled plasma mass spectrometer). ) Was used to determine the amount of P (% by mass) precipitated as a phosphate in the steel material. The solid solution P amount (mass%) in each steel material was determined by subtracting this precipitated P amount (mass%) from the P content (mass%) in each steel material shown in Table 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本例では、リン化物が析出しかつ固溶P量が0.010原子%に相当する0.006質量%よりも低減されている場合を固溶P量が低減された鋼材として評価した。表1を参照すると、比較例85~92では、Zr及びHfからなるZ元素の有効量が低かったために、鋼材中の固溶Pをリン化物として析出させることができないか又は十分に析出させることができず、結果として鋼材中の固溶P量を低減することができなかった。一方、比較例93では、Z元素の有効量は0.0003%よりも高く、それゆえ式1を満足するものであったが、鋼材中のP含有量が比較的高かったために式2を満足せず、結果として固溶P量を十分に低減することができなかった。これとは対照的に、本発明に係る全ての実施例において、Z元素の有効量を0.0003%以上とし、さらには式2を満足する(すなわち式2の左辺を0.010%未満にする)ことで、実際に測定される鋼材中の固溶P量を十分に低減することができた。例えば、実施例9、25、49及び62では、鋼材中のP含有量が比較的低いにもかかわらず、本発明の構成を満足することで、その一部をリン化物として析出させて鋼材中の固溶P量を極めて低い値まで低減できていることがわかる。 In this example, the case where the phosphide was precipitated and the amount of solid-dissolved P was reduced from 0.006% by mass, which corresponds to 0.010 atomic%, was evaluated as a steel material having a reduced amount of solid-dissolved P. Referring to Table 1, in Comparative Examples 85 to 92, since the effective amount of the Z element composed of Zr and Hf was low, the solid-dissolved P in the steel material could not be precipitated as a phosphor or sufficiently precipitated. As a result, the amount of solid-dissolved P in the steel material could not be reduced. On the other hand, in Comparative Example 93, the effective amount of the Z element was higher than 0.0003%, and therefore satisfied the formula 1, but the P content in the steel material was relatively high, so that the formula 2 was satisfied. As a result, the amount of solid solution P could not be sufficiently reduced. In contrast, in all the embodiments according to the present invention, the effective amount of the Z element is 0.0003% or more, and further satisfies the formula 2 (that is, the left side of the formula 2 is less than 0.010%). By doing so, the amount of solid solution P in the steel material actually measured could be sufficiently reduced. For example, in Examples 9, 25, 49 and 62, although the P content in the steel material is relatively low, by satisfying the configuration of the present invention, a part thereof is precipitated as a phosphide in the steel material. It can be seen that the amount of solid solution P in the above can be reduced to an extremely low value.
[例B]
 低温靭性を確保するため、焼入れ後に所定の温度で焼き戻し処理が行われることがある。鋼中の固溶Pが比較的多いと、このような焼き戻し処理の際に当該固溶Pが旧オーステナイト粒界等に偏析して、いわゆる焼き戻し脆化を引き起こす場合がある。このような場合には、粒界破壊が起こりやすくなるため、鋼材の靭性が低下する。そこで、本例では、例Aの幾つかの鋼材について、固溶Pの低減に起因する効果を検証した。具体的には、まず、例AのP固定処理(詳細は下表2に示す)後の実施例49、63、75及び84並びに比較例90及び93の鋼材を焼入れし、次いで550℃及び1200秒の条件下で焼き戻し処理を実施し、得られた鋼材の板厚1/4t部分からJIS4号試験片(Vノッチ試験片:10mm×10mm×55mm)を採取した。試験片の長手方向は板幅方向であり、ノッチは圧延方向に破壊が伝播するように設けられた。このJIS4号試験片に基づいてJIS Z2242:2005の規定に準拠して-100℃でシャルピー衝撃試験を行った。次いで、シャルピー衝撃試験後の試験片の破面をSEM(走査型電子顕微鏡)で観察した。より具体的にはSEMにより、破面のノッチ底の中央部付近の300μm×300μmの範囲を試験片の長軸方向(圧延材の板幅方向)から撮影し、得られた画像から全破面の面積に対する粒界破面の面積の割合(粒界破面率)を算出した。その結果を表2に示す。
[Example B]
In order to ensure low temperature toughness, tempering may be performed at a predetermined temperature after quenching. If the solid solution P in the steel is relatively large, the solid solution P may segregate at the old austenite grain boundaries or the like during such tempering treatment, causing so-called tempering embrittlement. In such a case, the grain boundary fracture is likely to occur, and the toughness of the steel material is lowered. Therefore, in this example, the effect caused by the reduction of the solid solution P was verified for some of the steel materials of Example A. Specifically, first, the steel materials of Examples 49, 63, 75 and 84 and Comparative Examples 90 and 93 after the P fixing treatment of Example A (details are shown in Table 2 below) are quenched, and then at 550 ° C. and 1200 ° C. A quenching treatment was carried out under the condition of seconds, and a JIS No. 4 test piece (V notch test piece: 10 mm × 10 mm × 55 mm) was collected from a 1 / 4t portion of the obtained steel material. The longitudinal direction of the test piece was the plate width direction, and the notch was provided so that the fracture propagated in the rolling direction. Based on this JIS No. 4 test piece, a Charpy impact test was performed at −100 ° C. in accordance with the regulations of JIS Z2242: 2005. Next, the fracture surface of the test piece after the Charpy impact test was observed with an SEM (scanning electron microscope). More specifically, the area of 300 μm × 300 μm near the center of the notch bottom of the fracture surface was photographed by SEM from the long axis direction of the test piece (plate width direction of the rolled material), and the total fracture surface was taken from the obtained image. The ratio of the area of the grain boundary fracture surface to the area of the grain boundary fracture surface (grain boundary fracture surface ratio) was calculated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 固溶P量が小さいほど、当該固溶Pの粒界への偏析が抑制されるため、焼き戻し脆化による粒界破壊が起こりにくくなり、結果として粒界破面率が小さくなる。表2を参照すると、固溶P量が比較的高い比較例90及び93では、粒界破面率が100%であり、固溶Pに起因する焼き戻し脆化が認められた。これとは対照的に、実施例49、63、75及び84では、Z元素の有効量が高く、それゆえ固溶P量が十分に低減されているために、粒界破面率が10%以下であり、鋼材の靭性、特に低温靭性が顕著に向上していることを確認した。 The smaller the amount of solid solution P, the more the segregation of the solid solution P into the grain boundaries is suppressed, so that the grain boundary fracture due to temper embrittlement is less likely to occur, and as a result, the grain boundary fracture surface ratio becomes smaller. Referring to Table 2, in Comparative Examples 90 and 93 in which the amount of solid solution P was relatively high, the grain boundary fracture surface ratio was 100%, and temper embrittlement due to solid solution P was observed. In contrast, in Examples 49, 63, 75 and 84, the effective amount of element Z is high and therefore the amount of solid solution P is sufficiently reduced, so that the grain boundary fracture surface ratio is 10%. It was confirmed that the toughness of the steel material, especially the low temperature toughness, was remarkably improved.
 本発明の実施形態に係る鋼材は、例えば、熱間圧延前の鋼材であるスラブ、ビレット、ブルームや熱間圧延後の鋼材である。熱間圧延後の鋼材としては、例えば、橋梁、建築、造船及び圧力容器等の用途に使用される厚鋼板、自動車及び家電等の用途に使用される薄鋼板、さらには棒鋼、線材、形鋼、及び鋼管等をも包含するものである。これらの材料において本発明の実施形態に係る鋼材を適用した場合には、鋼中の固溶P量が十分に低減されているため、当該固溶Pに関連する鋼材の特性、例えば、靭性、延性、耐食性、溶接性などの特性を顕著に改善することが可能である。 The steel material according to the embodiment of the present invention is, for example, a steel material before hot rolling, such as slab, billet, bloom, or a steel material after hot rolling. Steel materials after hot rolling include, for example, thick steel plates used for bridges, construction, shipbuilding, pressure vessels, etc., thin steel plates used for automobiles, home appliances, etc., as well as steel bars, wire rods, and shaped steel. , And steel pipes and the like. When the steel material according to the embodiment of the present invention is applied to these materials, the amount of solid solution P in the steel is sufficiently reduced, so that the characteristics of the steel material related to the solid solution P, for example, toughness. It is possible to significantly improve properties such as ductility, corrosion resistance, and weldability.

Claims (5)

  1.  質量%で、
     C:0.001~1.000%、
     Si:0.01~3.00%、
     Mn:0.10~4.50%、
     P:0.300%以下、
     S:0.0300%以下、
     Al:0.001~5.000%、
     N:0.2000%以下、
     O:0.0100%以下、
     Zr:0~0.8000%、及びHf:0~0.8000%からなる群より選択される少なくとも1種のZ元素、
     Nb:0~3.000%、
     Ti:0~0.500%、
     Ta:0~0.500%、
     V:0~1.00%、
     Cu:0~3.00%、
     Ni:0~60.00%、
     Cr:0~30.00%、
     Mo:0~5.00%、
     W:0~2.00%、
     B:0~0.0200%、
     Co:0~3.00%、
     Be:0~0.050%、
     Ag:0~0.500%、
     Ca:0~0.0500%、
     Mg:0~0.0500%、
     La、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種:合計で0~0.5000%、
     Sn:0~0.300%、
     Sb:0~0.300%、
     Te:0~0.100%、
     Se:0~0.100%、
     As:0~0.050%、
     Bi:0~0.500%、
     Pb:0~0.500%、並びに
     残部:Fe及び不純物からなり、
     下記式1及び式2を満たす化学組成を有する、鋼材。
     0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S] ≧ 0.0003   ・・・式1
     1.80×[P]-(0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S]) < 0.010   ・・・式2
     ここで、[Zr]、[Hf]、[O]、[N]、[S]、及び[P]は、各元素の含有量[質量%]であり、元素を含有しない場合は0である。
    By mass%,
    C: 0.001 to 1.000%,
    Si: 0.01-3.00%,
    Mn: 0.10 to 4.50%,
    P: 0.300% or less,
    S: 0.0300% or less,
    Al: 0.001-5.000%,
    N: 0.2000% or less,
    O: 0.0100% or less,
    At least one Z element selected from the group consisting of Zr: 0 to 0.8000% and Hf: 0 to 0.8000%.
    Nb: 0-3.000%,
    Ti: 0 to 0.500%,
    Ta: 0 to 0.500%,
    V: 0 to 1.00%,
    Cu: 0 to 3.00%,
    Ni: 0-60.00%,
    Cr: 0 to 30.00%,
    Mo: 0 to 5.00%,
    W: 0 to 2.00%,
    B: 0-0.0200%,
    Co: 0 to 3.00%,
    Be: 0 to 0.050%,
    Ag: 0 to 0.500%,
    Ca: 0-0.0500%,
    Mg: 0-0.0500%,
    At least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc: 0 to 0.5000% in total.
    Sn: 0 to 0.300%,
    Sb: 0 to 0.300%,
    Te: 0 to 0.100%,
    Se: 0 to 0.100%,
    As: 0 to 0.050%,
    Bi: 0 to 0.500%,
    Pb: 0 to 0.500%, and the balance: Fe and impurities.
    A steel material having a chemical composition satisfying the following formulas 1 and 2.
    0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1.74 [S] ≧ 0.0003 ・ ・ ・ Equation 1
    1.80 x [P]-(0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1.74 [S]) <0.010 ... Equation 2
    Here, [Zr], [Hf], [O], [N], [S], and [P] are the content [mass%] of each element, and are 0 when the element is not contained. ..
  2.  前記化学組成が、質量%で、
     Nb:0.003~3.000%、
     Ti:0.005~0.500%、
     Ta:0.001~0.500%、
     V:0.001~1.00%、
     Cu:0.001~3.00%、
     Ni:0.001~60.00%、
     Cr:0.001~30.00%、
     Mo:0.001~5.00%、
     W:0.001~2.00%、
     B:0.0001~0.0200%、
     Co:0.001~3.00%、
     Be:0.0003~0.050%、及び
     Ag:0.001~0.500%
    のうち1種又は2種以上を含む、請求項1に記載の鋼材。
    The chemical composition is by mass%.
    Nb: 0.003 to 3.000%,
    Ti: 0.005 to 0.500%,
    Ta: 0.001 to 0.500%,
    V: 0.001 to 1.00%,
    Cu: 0.001 to 3.00%,
    Ni: 0.001 to 60.00%,
    Cr: 0.001 to 30.00%,
    Mo: 0.001 to 5.00%,
    W: 0.001 to 2.00%,
    B: 0.0001-0.0200%,
    Co: 0.001 to 3.00%,
    Be: 0.0003 to 0.050%, and Ag: 0.001 to 0.500%
    The steel material according to claim 1, which comprises one or more of the above.
  3.  前記化学組成が、質量%で、
     Ca:0.0001~0.0500%、
     Mg:0.0001~0.0500%、並びに
     La、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種:合計で0.0001~0.5000%
    のうち1種又は2種以上を含む、請求項1又は2に記載の鋼材。
    The chemical composition is by mass%.
    Ca: 0.0001-0.0500%,
    Mg: 0.0001 to 0.0500%, and at least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc. : 0.0001 to 0.5000% in total
    The steel material according to claim 1 or 2, which comprises one or more of the above.
  4.  前記化学組成が、質量%で、
     Sn:0.001~0.300%、及び
     Sb:0.001~0.300%
    のうち1種又は2種を含む、請求項1~3のいずれか1項に記載の鋼材。
    The chemical composition is by mass%.
    Sn: 0.001 to 0.300%, and Sb: 0.001 to 0.300%
    The steel material according to any one of claims 1 to 3, which comprises one or two of the above.
  5.  前記化学組成が、質量%で、
     Te:0.001~0.100%、
     Se:0.001~0.100%、
     As:0.001~0.050%、
     Bi:0.001~0.500%、及び
     Pb:0.001~0.500%
    のうち1種又は2種以上を含む、請求項1~4のいずれか1項に記載の鋼材。
    The chemical composition is by mass%.
    Te: 0.001 to 0.100%,
    Se: 0.001 to 0.100%,
    As: 0.001 to 0.050%,
    Bi: 0.001 to 0.500%, and Pb: 0.001 to 0.500%
    The steel material according to any one of claims 1 to 4, which comprises one or more of the two or more.
PCT/JP2021/014772 2020-12-28 2021-04-07 Steel material WO2022145066A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-218712 2020-12-28
JP2020218712 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022145066A1 true WO2022145066A1 (en) 2022-07-07

Family

ID=82259217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014772 WO2022145066A1 (en) 2020-12-28 2021-04-07 Steel material

Country Status (1)

Country Link
WO (1) WO2022145066A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053829A1 (en) * 2021-09-28 2023-04-06 日本製鉄株式会社 Steel plate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136662A (en) * 1984-12-06 1986-06-24 Kawasaki Steel Corp Austenitic stainless steel having superior resistance to stress corrosion cracking
JPH01149917A (en) * 1987-12-04 1989-06-13 Kawasaki Steel Corp Manufacture of steel ingot with very slight segregation of phosphorus
JP2007327122A (en) * 2006-06-09 2007-12-20 Sumitomo Metal Ind Ltd TREATMENT METHOD FOR MOLTEN IRON BY Nd AND Ca ADDITION
JP2010100923A (en) * 2008-10-27 2010-05-06 Sumitomo Metal Ind Ltd Steel sheet in which microsegregation of phosphorous is dispersed and continuously cast slab
JP2015190058A (en) * 2014-03-31 2015-11-02 新日鐵住金株式会社 Carbon steel casting piece and production method thereof
WO2019188094A1 (en) * 2018-03-30 2019-10-03 日鉄ステンレス株式会社 Ferritic stainless steel sheet and method for producing same
JP2019183208A (en) * 2018-04-05 2019-10-24 日鉄ステンレス株式会社 Complete austenitic stainless steel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136662A (en) * 1984-12-06 1986-06-24 Kawasaki Steel Corp Austenitic stainless steel having superior resistance to stress corrosion cracking
JPH01149917A (en) * 1987-12-04 1989-06-13 Kawasaki Steel Corp Manufacture of steel ingot with very slight segregation of phosphorus
JP2007327122A (en) * 2006-06-09 2007-12-20 Sumitomo Metal Ind Ltd TREATMENT METHOD FOR MOLTEN IRON BY Nd AND Ca ADDITION
JP2010100923A (en) * 2008-10-27 2010-05-06 Sumitomo Metal Ind Ltd Steel sheet in which microsegregation of phosphorous is dispersed and continuously cast slab
JP2015190058A (en) * 2014-03-31 2015-11-02 新日鐵住金株式会社 Carbon steel casting piece and production method thereof
WO2019188094A1 (en) * 2018-03-30 2019-10-03 日鉄ステンレス株式会社 Ferritic stainless steel sheet and method for producing same
JP2019183208A (en) * 2018-04-05 2019-10-24 日鉄ステンレス株式会社 Complete austenitic stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053829A1 (en) * 2021-09-28 2023-04-06 日本製鉄株式会社 Steel plate

Similar Documents

Publication Publication Date Title
JP6058439B2 (en) Hot-rolled steel sheet with excellent cold workability and surface hardness after processing
KR20110115608A (en) Boron-containing steel sheet with excellent hardenability and method of manufacturing same
EP3722448B1 (en) High-mn steel and method for manufacturing same
JP2008088547A (en) Fire-resistant steel having excellent high-temperature strength, toughness and reheat embrittlement resistance and process for production of the same
JPH08158006A (en) High strength steel excellent in toughness in weld heat-affected zone
WO2022145061A1 (en) Steel material
WO2022145066A1 (en) Steel material
JP7469714B2 (en) Steel
JP7271261B2 (en) High-purity ferritic stainless steel and high-purity ferritic stainless steel slab
CN111788325B (en) High Mn steel and method for producing same
WO2022145067A1 (en) Steel material
WO2022145065A1 (en) Steel material
JP2021066941A (en) Wear-resistant steel sheet and method for producing the same
KR101974326B1 (en) Abrasion resistance
TWI768941B (en) Precipitation hardening type Matian iron-based stainless steel sheet with excellent fatigue resistance
WO2022145068A1 (en) Steel material
WO2022145070A1 (en) Steel material
JP7088235B2 (en) Wear-resistant steel sheet and its manufacturing method
CN112513309B (en) Steel sheet and method for producing same
JP4012497B2 (en) High strength steel with excellent weld heat affected zone toughness and method for producing the same
WO2022138194A1 (en) Precipitation-hardened martensitic stainless steel having excellent fatigue-resistance characteristics
WO2023053829A1 (en) Steel plate
WO2023053827A1 (en) Steel plate
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
WO2022145069A1 (en) Steel material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP