WO2019188094A1 - Ferritic stainless steel sheet and method for producing same - Google Patents

Ferritic stainless steel sheet and method for producing same Download PDF

Info

Publication number
WO2019188094A1
WO2019188094A1 PCT/JP2019/009147 JP2019009147W WO2019188094A1 WO 2019188094 A1 WO2019188094 A1 WO 2019188094A1 JP 2019009147 W JP2019009147 W JP 2019009147W WO 2019188094 A1 WO2019188094 A1 WO 2019188094A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
temperature
stainless steel
rolled sheet
ferritic stainless
Prior art date
Application number
PCT/JP2019/009147
Other languages
French (fr)
Japanese (ja)
Inventor
篤史 田口
石丸 詠一朗
唯志 小森
木村 謙
眞市 田村
Original Assignee
日鉄ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ステンレス株式会社 filed Critical 日鉄ステンレス株式会社
Priority to KR1020207021338A priority Critical patent/KR102443897B1/en
Priority to CN201980010612.XA priority patent/CN111655890B/en
Priority to JP2020509785A priority patent/JP6906688B2/en
Priority to BR112020015001-0A priority patent/BR112020015001A2/en
Priority to EP19776987.0A priority patent/EP3805417A4/en
Publication of WO2019188094A1 publication Critical patent/WO2019188094A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a ferritic stainless steel sheet and a method for producing the same, and more particularly, to a ferritic stainless steel sheet having excellent formability during forming and resistance to roughened workability, and a method for producing the same.
  • SUS304 (18Cr-8Ni), which is a representative steel type of austenitic stainless steel, is widely used in home appliances, kitchen products, building materials and the like because of its excellent corrosion resistance, workability, and beauty.
  • SUS304 has a large amount of expensive Ni with high price fluctuation, it is said that the price of the steel sheet is high.
  • ferritic stainless steel does not contain Ni or has a very low content, and therefore demand is increasing as a material with excellent cost performance.
  • the problems are the molding limit and the deterioration of the rough surface due to the formation of surface irregularities after molding.
  • the austenitic stainless steel is excellent in the overhanging property, but the overhanging property of the ferritic stainless steel is low and the shape cannot be changed greatly.
  • deep drawability can be controlled by adjusting the crystal orientation (texture)
  • a forming method mainly using deep drawing is often used.
  • surface irregularities refers to fine irregularities (skin roughness) that occur on the surface of a steel sheet after processing or forming, and these fine irregularities correspond to crystal grains. Surface irregularities are also noticeable.
  • austenitic stainless steel a steel sheet having a crystal grain size number of about 10 is manufactured because it is excellent in work hardening characteristics and relatively easy to produce a fine grain structure. For this reason, the surface irregularities (skin roughness) after molding are small and hardly cause a problem.
  • the grain size of ferritic stainless steel is about 9 for SUS430 and about 7 for SUS430LX, which is smaller than that of austenitic stainless steel.
  • a small particle size number indicates that the crystal grain size is large.
  • ferritic stainless steel tends to have a large recrystallized grain size and, like SUS430LX, reduces C and N to improve workability and formability. This is because the high-purity ferritic stainless steel that has been improved easily grows. Further, in ferritic stainless steel, even when a product plate having a fine crystal grain size is manufactured by increasing the number of cold rolling, rough skin may be generated, and the cause is not necessarily clear.
  • ferritic stainless steel When relatively strict formability is required, such as a housing or container of home appliances, a high purity ferritic stainless steel such as SUS430LX is often used as the ferritic stainless steel.
  • the thickness of the stainless steel plate used is 0.6 mm or more in most cases.
  • ferritic stainless steel has a large crystal grain size, so The surface roughness of the surface is large, and surface irregularities are usually removed by polishing.
  • Patent Document 1 discloses a ferritic stainless steel excellent in formability with less roughened working surface by controlling the size and crystal grain size of precipitated particles using high purity ferritic stainless steel and a method for producing the same. Yes.
  • Patent Document 1 although a steel sheet having a small crystal grain size is obtained, the deep drawability at the time of molding is not sufficient, and the rough surface after molding tends to occur despite the small crystal grain size. There was a problem.
  • Patent Document 2 in ferritic stainless steel containing Ti and Nb, hot rolling is performed at a low temperature, and a fine grain is obtained by taking a high cold rolling rate, which is excellent in rough skin resistance at the time of molding.
  • a technique for producing stainless steel is disclosed. According to such a technique, the stainless steel of Patent Document 2 has a crystal grain size number of 9.5 and a fine-grained structure, but the skin roughness after cup drawing is not always sufficient.
  • Patent Document 3 discloses a ferritic stainless steel excellent in deep drawability, ridging properties and skin roughness resistance by controlling the crystal grain size before final cold rolling of steel having a component composition containing Nb and / or Ti. Is disclosed. However, in Patent Document 3, the crystal grain size of the final product is 15 ⁇ m (crystal grain size number: 9.1), and the rough skin property is insufficient.
  • the present invention has been made in view of the above problems, and provides a ferritic stainless steel sheet excellent in forming workability and resistance to roughening after forming, and a method for producing the same.
  • Crystal grain size and amount of strain are known as factors affecting the rough processing of ferritic stainless steel.
  • rough machining may occur even if the crystal grain size and strain are increased by controlling the cold rolling conditions and the like, and in recent years, steels that can more stably suppress the occurrence of rough machining have been desired. It was. Therefore, the present inventors investigated the relationship between the roughened working surface and the metal structure in ferritic stainless steel. For the first time, it has been found that not only the crystal grain size and the strain amount that have been conventionally known, but also the precipitation amount of precipitates in steel affects the roughening of the work surface. In addition, in order to control the amount of precipitation within an appropriate range, it was necessary to control the heat treatment temperature before and after cold rolling, and it was also clarified that rapid heating was necessary in the heat treatment after cold rolling.
  • B 0.0001% to 0.0025%
  • Sn 0.005% or more and 0.50% or less
  • Ni 0.05% or more and 1.00% or less
  • Cu 0.05% or more and 1.00% or less
  • Mo 0.05% or more and 2.00% or less
  • W 0.05% or more and 1.00% or less
  • Al 0.05% or more and 1.00% or less
  • Co 0.05% or more and 0.50% or less
  • V 0.05% or more and 0.50% or less
  • Zr 0.05% or more and 0.50% or less
  • Ca 0.0001% to 0.0050%
  • Mg 0.0001% or more and 0.0050% or less
  • Y 0.001% or more and 0.10% or less
  • Hf 0.001% or more and 0.10% or less
  • REM 0.001% or more and 0.10% or less
  • Sb 0.005% or more and 0.50% or less of 1 type or 2 types or more are contained
  • a hot rolling process in which the steel having the component described in [1] or [2] is hot-rolled, and heat that is heat-treated at a temperature of 850 ° C. or higher and 900 ° C. or lower after the hot rolling process.
  • a rolled sheet annealing process a cold rolling process for rolling at a rolling rate of 75% to 90% after the hot rolled sheet annealing process, and a cold rolled sheet annealing process performed subsequent to the cold rolling process.
  • the average rate of temperature increase in the temperature range of 400 ° C. to 800 ° C. in the temperature increasing process is 80 ° C./s or more, and the maximum temperature reached is 880 ° C.
  • a hot-rolled sheet annealing step in which the amount of P existing as a phosphide is 0.003% by mass or more, and a cold rolling step in which the rolling rate is rolled at 75% to 90% after the hot-rolled sheet annealing step;
  • the maximum temperature of the plate temperature is not less than 880 ° C. and not more than 980 ° C., cooling is started within 5 seconds after reaching the maximum temperature, and the average cooling rate in the temperature range from the maximum temperature to 700 ° C. is 50 Cooling at more than °C / s
  • a ferritic stainless steel sheet that is excellent in forming processability and resistance to roughening of the processed skin after forming process.
  • Cr is an element that improves the corrosion resistance, which is a basic characteristic of stainless steel. If it is less than 11.0%, sufficient corrosion resistance cannot be obtained, so the lower limit is made 11.0% or more. On the other hand, if an excessive amount of Cr is contained, the formation of an intermetallic compound corresponding to the ⁇ phase (Fe—Cr intermetallic compound) is promoted to promote cracking during production, so the upper limit is 30.0% or less. To do. From 14.0% or more and 25.0% or less are desirable from the viewpoint of stable manufacturability (yield, rolling mill, etc.). More preferably, it is 16.0% or more and 20.0% or less.
  • C is an element that lowers the formability that is important in the present embodiment, so it is preferable that C be less, and the upper limit is 0.030% or less.
  • the lower limit is made 0.001% or more. In consideration of both the refining cost and the moldability, 0.002% or more and 0.020% or less are preferable.
  • Si is an element that improves the oxidation resistance. However, if an excessive amount of Si is contained, the moldability is lowered, so the upper limit is made 2.00% or less. From the viewpoint of formability, the Si content is preferably low, but excessive reduction leads to an increase in raw material cost, so the lower limit is made 0.01% or more. From the viewpoint of manufacturability, the desirable range is 0.05% or more and 1.00% or less, and more desirably 0.05% or more and 0.30% or less.
  • the upper limit is made 2.00% or less.
  • the amount of Mn is low from the viewpoint of moldability, excessive reduction causes an increase in raw material cost, so the lower limit is made 0.01% or more.
  • the desirable range is 0.05% or more and 1.00% or less, and more desirably 0.05% or more and 0.30% or less.
  • P is an important element that contributes to the improvement of the rough surface resistance to processing by precipitating as a phosphide in the steel sheet of the present embodiment.
  • the P amount is set to 0.003% or more.
  • the upper limit is made 0.100% or less.
  • a preferable range is 0.010% or more and 0.050% or less, and further desirably. Is 0.020% or more and 0.040% or less.
  • S is an impurity element and is preferably lower because it promotes cracking during production.
  • the upper limit is 0.0100% or less.
  • the lower the amount of S, the better, and 0.0030% or less is desirable.
  • the lower limit is preferably 0.0003% or more. From the viewpoint of manufacturability and cost, the preferred range is 0.0004% or more and 0.0020% or less.
  • N is an element that lowers the formability like C, and the upper limit is 0.030% or less. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably made 0.002% or more. From the viewpoint of moldability and manufacturability, the preferred range is 0.005% or more and 0.015% or less.
  • Ti and Nb are contained as follows. Ti combines with C and N, fixes C and N as precipitates such as TiC and TiN, and improves r value and product elongation through high purity.
  • the lower limit is preferably set to 0.03% or more.
  • the alloy cost is increased and the manufacturability is lowered with the increase of the recrystallization temperature, so the upper limit is made 0.40% or less.
  • the preferred range is 0.05% or more and 0.30% or less.
  • the suitable range which utilizes the said effect of Ti actively is 0.10% or more and 0.20% or less.
  • Nb is also a stabilizing element that fixes C and N in the same manner as Ti, and improves r value and product elongation through high purity of steel by this action.
  • the lower limit is preferably set to 0.03% or more.
  • the upper limit is made 0.50% or less.
  • the preferred range is 0.03% or more and 0.30% or less.
  • the suitable range which utilizes the said effect of Nb actively is 0.04% or more and 0.15% or less. More preferably, it is 0.06 to 0.10%.
  • the ferritic stainless steel sheet of the present embodiment is composed of Fe and impurities other than the elements described above (remainder).
  • one or more of the following element groups or Two or more kinds may be selectively contained. That is, the lower limit of the content of B, Sn, Ni, Cu, Mo, W, Al, Co, V, Zr, Ca, Mg, Y, Hf, REM, and Sb is 0% or more.
  • the “impurities” in the present embodiment are components that are mixed due to various factors in the manufacturing process including raw materials such as ores and scraps when industrially manufacturing steel, and are inevitably mixed. Including ingredients.
  • B is an element that improves secondary workability. Since 0.0001% or more is necessary to exert the effect, this is the lower limit. On the other hand, if excessively contained, the productivity, particularly castability, is deteriorated, so the upper limit is made 0.0025% or less. A preferable range is 0.0003% or more and 0.0012% or less.
  • Sn is an element having an effect of improving the corrosion resistance, it may be contained according to the corrosive environment at room temperature. Since the effect is exhibited at 0.005% or more, this is the lower limit. On the other hand, if contained in a large amount, the productivity is deteriorated, so the upper limit is made 0.50% or less. Considering manufacturability, the preferred range is 0.02% or less and 0.10% or less.
  • Ni, Cu, Mo, Al, W, Co, V, and Zr are effective elements for enhancing the corrosion resistance or oxidation resistance, and may be contained as necessary.
  • the effect is manifested by setting each content of Ni, Cu, Mo, Al, W, Co, V, and Zr to 0.05% or more.
  • the upper limit of Ni, Cu, Al, and W is made 1.00% or less.
  • the upper limit of Ni, Cu, Al, and W is preferably 0.50% or less. Since Mo causes a decrease in manufacturability, the upper limit is made 2.00% or less.
  • the upper limit of Mo is preferably 1.00% or less.
  • the upper limit of Co, V, and Zr is set to 0.50% or less in consideration of the manifestation of the effect of improving the corrosion resistance or oxidation resistance.
  • the lower limit of the more preferable content of any element of Ni, Cu, Mo, Al, W, Co, V, and Zr is 0.10% or more.
  • Ca and Mg are elements that improve hot workability and secondary workability, and may be contained as necessary. However, if it is excessively contained, it will lead to inhibition of manufacturability, so the upper limit of Ca and Mg is made 0.0050% or less. Preferred lower limits are both 0.0001% or more. In consideration of manufacturability and hot workability, a preferable range for both Ca and Mg is 0.0002% or more and 0.0010% or less.
  • Y, Hf, and REM are effective elements for improving hot workability, cleanliness of steel, and improving oxidation resistance, and may be contained as necessary.
  • an upper limit shall be 0.10% or less, respectively.
  • the preferable lower limit is 0.001% or more for Y, Hf, and REM.
  • “REM” in the present embodiment is composed of one or more elements selected from an element group (lanthanoid) belonging to atomic numbers 57 to 71, such as La, Ce, Pr, and Nd. It is.
  • the “REM” content in the present embodiment is the total amount of lanthanoids.
  • Sb is an element having an effect of improving the corrosion resistance like Sn, and may be contained if necessary. However, if contained in a large amount, the productivity is deteriorated, so the upper limit is made 0.50% or less. On the other hand, since the effect of improving the corrosion resistance is exhibited at 0.005% or more, this is the lower limit.
  • the ferritic stainless steel sheet of the present embodiment is composed of Fe and impurities (including inevitable impurities) other than the elements described above, but the effects of the present embodiment are not impaired in addition to the elements described above. It can be contained in a range. In the present embodiment, for example, Bi, Pb, Se, H, Ta and the like may be contained, but in that case, it is preferable to reduce as much as possible. On the other hand, the content ratio of these elements is controlled to the extent that solves the problem of the present embodiment, and if necessary, Bi ⁇ 100 ppm, Pb ⁇ 100 ppm, Se ⁇ 100 ppm, H ⁇ 100 ppm, Ta ⁇ 500 ppm. You may contain 1 or more types.
  • the ferritic stainless steel plate of the present embodiment is composed of a ferrite single phase structure having a crystal grain size number of 9.0 or more.
  • the grain size number is 9.0 or more.
  • the roughening of the processed skin after molding is less likely to occur as the grain size number is larger, that is, as the grain size of the ferrite crystal grains is smaller.
  • it is preferably over 9.5, more preferably over 10.0.
  • the crystal grain size number is preferably 12 or less.
  • the crystal grain size number can be obtained by the line segment method of JIS G 0551 (2013). “Granularity number: 9” corresponds to an average line segment length of 14.1 ⁇ m per crystal grain traversing the crystal grain, and “grain size number: 10” is one crystal traversing the crystal grain. This corresponds to an average line segment length per grain of 10.0 ⁇ m.
  • the etchant is preferably aqua regia or reverse aqua regia, but other solutions may be used as long as the crystal grain boundaries can be determined. Further, depending on the orientation relationship between adjacent crystal grains, the grain boundary may not be seen clearly, so that it is preferable to etch deeply. In measuring grain boundaries, twin grain boundaries are not measured.
  • the metal structure of the ferritic stainless steel plate of the present embodiment is composed of a ferrite single phase structure, and P precipitates (phosphides) described later are generated.
  • P precipitates phosphides
  • an austenite phase and a martensite structure are not included. This is because when an austenite phase or a martensite structure is included, it is relatively easy to reduce the crystal grain size. Furthermore, the austenite phase exhibits high formability due to the TRIP effect.
  • a yield reduction such as an ear crack is likely to occur at the time of manufacture, so the metal structure is a ferrite single phase structure.
  • precipitates such as carbonitrides may exist in the steel other than phosphides, but these do not take into account the effect of this embodiment, so these are not considered, the above is the main phase Describes the organization.
  • the amount of P existing as a phosphide is set to 0.003% by mass or more. Desirably, it is 0.004 mass% or more, More preferably, it is 0.005 mass% or more.
  • the upper limit of the P precipitation amount Pp is not particularly limited, but since the upper limit of the P content of the steel sheet is 0.100% or less, the upper limit of the P precipitation amount Pp may be 0.100% or less.
  • the phosphide referred to in the present embodiment includes, for example, Fe phosphide, Mn phosphide, Ti phosphide, Nb phosphide, Al phosphide, etc., but the type and composition are not particularly limited. That is, in this embodiment, it is important that the amount of P existing as a phosphide (P precipitation amount Pp) is within the above range regardless of the specific composition and form of the phosphide.
  • the processing temperature of the heat treatment (hot rolled sheet annealing and finish annealing) performed before and after the cold rolling process is controlled, and cold rolling is performed. It can be controlled by rapidly performing the heating process in the subsequent heat treatment.
  • the cause of the precipitated phosphide contributing to the roughening of the processed skin is under intensive investigation, but at the present time, it is considered as follows.
  • precipitates are likely to precipitate on the grain boundaries, it is considered that many of the phosphides precipitated by hot-rolled sheet annealing are also precipitated on the grain boundaries. Thereafter, it is considered that the phosphide precipitated on the grain boundaries is aligned in parallel with the rolling direction as the metal structure is crushed by cold rolling and extends in the rolling direction.
  • a recrystallized structure of the metal structure can be obtained with almost no change in the precipitation state of the phosphide. That is, by performing rapid annealing, holding for a short time, and rapid cooling for the finish annealing, a recrystallized structure is obtained in which phosphides are maintained in a state parallel to the rolling direction.
  • the present inventors found that the phosphide in the crystal grains of the recrystallized structure is parallel to the rolling direction in the thin film TEM observation of the product plate manufactured by such a manufacturing method (within the manufacturing method range of the present embodiment described later). You can see how they are lined up.
  • FIG. 1 shows a TEM observation result of a recrystallized structure in a steel sheet manufactured under conditions that satisfy the present embodiment described later.
  • the P compound is precipitated along the rolling direction in the crystal grains of the recrystallized structure.
  • the precipitates precipitated in the crystal grains are P compounds was identified by EDS analysis and electron diffraction pattern analysis.
  • a stainless steel plate having such a precipitated phosphide is processed and strained, dislocation movement is hindered by the phosphides arranged in parallel to each other. As a result, it is considered that this phosphide exhibited the same effect as the crystal grain boundary and contributed to the suppression of rough processing.
  • the precipitation amount Pp of P is measured by the following electrolytic extraction residue method.
  • a test piece having a size of about 30 mm square is cut out from the center in the width direction of the stainless steel plate, and the entire surface of the test piece corresponding to the surface of the steel plate is wet-polished with water-resistant abrasive paper of number # 600.
  • the test piece base material (stainless steel base material) is dissolved by electrolysis at a constant potential of ⁇ 100 mV in a methanol solution containing 10% maleic anhydride and 2% tetramethylammonium chloride. After the electrolysis, the residue (precipitate) remaining in the solution without being dissolved is captured using a 200 nm mesh filter.
  • the trapped precipitate is washed with pure water and dried.
  • the precipitate is dissolved with aqua regia and perchloric acid, and elemental analysis is performed using ICP emission spectroscopy in accordance with JIS G 1258 to determine the mass of P in the precipitate.
  • the amount of P obtained is divided by the amount of mass change of the test piece due to electrolysis (“the weight of the test piece before electrolysis” ⁇ “the weight of the test piece after electrolysis”) and expressed as a percentage.
  • the amount of precipitation Pp (mass%).
  • the manufacturing method of the ferritic stainless steel sheet according to the present embodiment is a combination of hot rolling, hot-rolled sheet annealing, cold-rolling and cold-rolled sheet annealing (finish annealing). I will do it. That is, as an example of the manufacturing method, for example, a manufacturing method including steps of steelmaking, hot rolling, hot rolled sheet annealing, cold rolling, and cold rolled sheet annealing (finish annealing) can be employed.
  • the conditions to be controlled in order to satisfy both the important crystal grain size and the precipitation state of the phosphide as described above are the conditions of heat treatment after hot rolling (hot-rolled sheet annealing), cold rolling. Rate, conditions for heat treatment after cold rolling (cold rolled sheet annealing), and other processes and conditions are not particularly limited.
  • heat treatment is performed at a temperature of 850 ° C. or more and 900 ° C. or less to ensure the precipitation amount Pp of the phosphide after the heat treatment.
  • the heat treatment temperature is less than 850 ° C., recrystallization failure occurs in the center portion of the plate thickness, and there is a possibility of causing deterioration in formability due to a decrease in r value and deterioration in polishing characteristics after processing due to ridging.
  • the minimum of the heat processing temperature of hot-rolled sheet annealing shall be 850 degreeC or more. Desirably, it is 860 degreeC or more.
  • the upper limit of the heat treatment temperature for hot-rolled sheet annealing is set to 900 ° C. or less. Desirably, it is 880 degreeC or less, More preferably, it is less than 870 degreeC.
  • the amount of P existing as a phosphide is 0.003% by mass or more by hot-rolled sheet annealing at a stage after the hot-rolled sheet annealing.
  • the rolling rate in the subsequent cold rolling is 75% or more and 90% or less.
  • a rolling rate shall be 75% or more. Moreover, since r value improves, so that a rolling rate is high, it is desirable that a rolling rate is 80% or more. On the other hand, if the rolling rate exceeds 90%, the r value decreases, and the formability may decrease. Therefore, a rolling rate shall be 90% or less of range.
  • heat treatment cold rolled sheet annealing
  • this embodiment is characterized in that this heat treatment is performed rapidly.
  • the average rate of temperature increase in the temperature range of 400 ° C. to 800 ° C. is set to 80 ° C./s or more in the temperature increasing process.
  • the maximum temperature reached is 880 ° C. or higher and 980 ° C. or lower.
  • Cooling is started within 5 seconds after reaching the maximum temperature, and the average cooling rate in the temperature range from the maximum temperature to 700 ° C. is set to 50 ° C./s or more.
  • to 800 ° C.” refers to the time required for temperature increase in the temperature range of the steel plate temperature increase range (400 ° C.) in the temperature range.
  • the value divided by. “Average cooling rate in the temperature range from the highest temperature to 700 ° C.” means the temperature drop width of the steel plate from the highest temperature to 700 ° C. from the time when the highest temperature was reached to 700 ° C. The value divided by the required time.
  • all the temperature (degreeC) in the following description points out steel plate temperature.
  • the phosphide precipitated by hot-rolled sheet annealing is crushed by cold rolling to form a precipitated state parallel to the cold rolling direction, and recrystallization is performed while maintaining this precipitated state. Go and get the product board. And even if the product plate provided with the phosphide in the above-described precipitation state is molded and subjected to distortion, the movement of dislocations can be hindered by the phosphide, and therefore it is possible to suppress rough processing. For this reason, it is important to carry out the cold-rolled sheet annealing under conditions that allow recrystallization while maintaining the precipitation state after cold rolling.
  • the average heating rate in the temperature range of 400 ° C to 800 ° C in the temperature rising process is set to 80 ° C / s or more and the maximum temperature is reached.
  • the cooling is started within 5 seconds.
  • the temperature when the temperature is held at the maximum temperature, the temperature may be kept constant, but within the range of the maximum temperature ⁇ 10 ° C.
  • the average rate of temperature increase in the temperature range of 400 ° C. to 800 ° C. is less than 80 ° C./s or the holding time is longer than 5 seconds, the phosphide may be dissolved and the amount of precipitation as a product may not be ensured.
  • rapid temperature increase in the temperature range of 400 ° C. to 800 ° C. has the effect of reducing the recrystallized grain size and is effective in suppressing rough processing.
  • the temperature is rapidly raised in the presence of precipitates, the grain growth is suppressed by the pinning effect of the precipitates, so that there is an effect of further miniaturizing the product particle size and further suppressing roughness of the processed skin.
  • the average rate of temperature increase in the temperature range of 400 ° C. to 800 ° C. is preferably 150 ° C./s or more.
  • the holding time at the highest temperature is desirably 2 seconds or less.
  • the holding time may be 0 seconds, that is, the cooling may be started as soon as the maximum temperature is reached.
  • the maximum temperature reached is 880 ° C. or higher. If the maximum temperature reached is less than 880 ° C., recrystallization becomes insufficient, and the workability may deteriorate due to a decrease in elongation. Therefore, in this embodiment, the maximum temperature reached is 880 ° C. or higher, preferably 900 ° C. or higher.
  • the upper limit Desirably, it is 950 degrees C or less.
  • the lower limit of the average cooling rate in the temperature range from the highest temperature to 700 ° C. is set to 50 ° C./s or more. Desirably, it is 100 ° C./s or more.
  • the upper limit of the average cooling rate in the temperature range from the highest attained temperature to 700 ° C. is preferably 500 ° C./s or less.
  • the ferritic stainless steel sheet according to the present embodiment can be manufactured by the manufacturing method described above.
  • the hot-rolled sheet annealing and the cold-rolled sheet annealing may be batch-type annealing or continuous-type annealing.
  • Each annealing may be bright annealing performed in a non-oxidizing atmosphere such as hydrogen gas or nitrogen gas if necessary, or may be performed in the air.
  • the thickness applied to the ferritic stainless steel plate of the present embodiment is not particularly limited, but is desirably 0.5 mm or more, preferably 0.6 mm or more from the viewpoint of ensuring strength. This is because when the plate thickness is thin, the strength of the molded part may be insufficient. It is necessary to design in consideration of the size and shape of parts to be manufactured, load resistance, and the like.
  • the ferritic stainless steel sheet of the present embodiment is excellent in formability and resistance to roughening after forming. Moreover, since the ferritic stainless steel sheet of the present embodiment is excellent in resistance to rough processing, it is particularly suitable for applications that require polishing to remove surface irregularities (skin roughness) after forming.
  • the conditions in this example are one example of conditions used to confirm the feasibility and effects of the present invention, and the present invention is not limited to the conditions used in the following examples.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the requirements of the present invention.
  • surface shown below shows what has remove
  • Stainless steel having the composition shown in Table 1 was melted and cast into a slab, and the slab was rolled to a predetermined plate thickness by hot rolling. Thereafter, hot-rolled sheet annealing, cold rolling, and cold-rolled sheet annealing were performed to obtain a 0.6 mm thick stainless steel plate (product plate) No. 1-44 were produced.
  • Heat treatment temperature (annealing temperature) of hot-rolled sheet annealing, cold rolling rate, average heating rate between 400 and 800 ° C in cold-rolled sheet annealing, maximum temperature reached, required time to start cooling (holding time), and maximum temperature reached The average cooling rate in the temperature range from temperature to 700 ° C. was changed as shown in Tables 2 to 4.
  • the annealing time (holding time) in the hot-rolled sheet annealing was set in the range of 40 to 60 seconds.
  • the obtained stainless steel plate No. 1-No. A test piece was cut out from the vicinity of the width center of 44, and the crystal grain size number (GSN) was measured by a line segment method in accordance with JIS G 0551 (2013).
  • the number of crystal grains crossing per sample was set to 500 or more from an optical microscopic microstructure photograph of the cross section of the test piece.
  • a rust preventive oil “Dafney Oil Coat Z3 (registered trademark)” manufactured by Idemitsu Kosan Co., Ltd. was applied. Thereafter, in order to protect the surface of the steel sheet after forming, a lubricating sheet “Naflon Tape TOMBO9001 manufactured by NICHIAS Corporation” was attached.
  • molding was measured and the roughened processing skin was evaluated.
  • the survey results will be described in detail.
  • the present inventors investigated the surface roughness of each part of the sample after cup molding.
  • the roughness of the processed skin after cup molding is not simply proportional to the crystal grain size and strain, as is generally known, and the formation of irregularities on the surface of the molded product is suppressed by contact with the mold during molding. Therefore, it has been found that the surface roughness is reduced.
  • the outer wall of the vertical wall of the molded product has a strong force to be pressed against the mold during molding, and there is a competition between the generation of irregularities during molding and the suppression of irregularities due to contact with the mold. It was found that the roughness of the scatter increases greatly at each measurement position. Therefore, it was considered inappropriate to evaluate the roughness of the processed skin after cup molding on the outer wall of the vertical wall. Therefore, the surface roughness of the inner wall of the vertical wall portion with a relatively small force pressed against the mold was measured. As a result, it was found that the surface roughness after cup molding can be measured with high accuracy.
  • the inner wall has a larger surface roughness than the outer wall, the inner wall having the larger roughness takes the most polishing time in the polishing step after molding. For this reason, it is considered appropriate to measure the roughness of the surface (evaluation of roughness of the processed skin) assuming polishing after molding on the inner wall of the vertical wall portion of the molded product. If the rough evaluation of the processed skin is good for the inner wall of the vertical wall portion of the molded product, it can be determined that the outer wall is also good.
  • the precipitation amount Pp of P on the product plate was measured by the electrolytic extraction residue method.
  • a test piece having a size of about 30 mm square was cut out from the center in the width direction of the stainless steel plate, and the entire test piece corresponding to the surface of the steel plate was wet-polished with water-resistant abrasive paper of number # 600.
  • the test piece base material (stainless base material) was dissolved by electrolysis at a constant potential of ⁇ 100 mV in a methanol solution containing 10% maleic anhydride and 2% tetramethylammonium chloride.
  • the residue (precipitate) remaining in the solution without being dissolved was captured using a 200 nm mesh filter.
  • the trapped precipitate was washed with pure water and dried.
  • the precipitate was dissolved with aqua regia and perchloric acid, and elemental analysis was performed using ICP emission spectroscopy in accordance with JIS G 1258 to determine the mass of P in the precipitate.
  • the amount of P obtained is divided by the amount of mass change of the test piece due to electrolysis (“the weight of the test piece before electrolysis” ⁇ “the weight of the test piece after electrolysis”) and expressed as a percentage.
  • Precipitation amount Pp "(mass%).
  • it measured by the same method also about the precipitation amount Pp of P in the hot rolled annealing board before performing cold rolling. The measurement results and evaluation results are shown in Tables 5 to 7.
  • Nos. 25 and 26 are examples in which the component composition was out of the range, but in both cases, the precipitation amount Pp and the crystal grain size number of P were within the range of the embodiment, but the formability deteriorated and could not be narrowed down. It was. No. 27 and 28 are examples using steel L without addition of Ti and Nb, but the immobilization of P is insufficient and the precipitation amount Pp of P becomes less than 0.001%, and the formability deteriorates. I could't squeeze it. No. In Nos. 3 and 22, the average heating rate during cold-rolled sheet annealing was too low, so that the solid solution of the phosphide progressed and the precipitation amount Pp of P was insufficient.
  • the roughening of the processed skin can be expected to be somewhat reduced due to the relatively fine particles, but there is no effect of suppressing the roughened processing skin due to the P compound. For this reason, it is inferior in the rough surface resistance to processing compared with the present invention example having a similar particle size number and a large amount of precipitated P.
  • the ferritic stainless steel plate of this embodiment is applied suitably for a forming use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

This ferritic stainless steel sheet contains 11.0-30.0% of Cr, 0.001-0.030% of C, 0.01-2.00% of Si, 0.01-2.00% of Mn, 0.003-0.100% of P, 0.0100% or less of S, 0.030% or less of N, 0-0.0025% of B, 0-0.50% of Sn, 0-1.00% of Ni, 0-1.00% of Cu, 0-2.00% of Mo, 0-1.00% of W, 0-1.00% of Al, 0-0.50% of Co, 0-0.50% of V, 0-0.50% of Zr, 0-0.0050% of Ca, 0-0.0050% of Mg, 0-0.10% of Y, 0-0.10% of Hf, 0-0.10% of REM, 0-0.50% of Sb, and 0.40% or less of Ti and/or 0.50% or less of Nb, with the balance being made up of Fe and impurities. With respect to this ferritic stainless steel sheet, the amount of P that is present in the form of phosphides is 0.003% by mass or more; and the crystal grain size number thereof as determined in accordance with JIS G 0551 is 9.0 or greater.

Description

フェライト系ステンレス鋼板およびその製造方法Ferritic stainless steel sheet and manufacturing method thereof
 本発明は、フェライト系ステンレス鋼板およびその製造方法に関し、特に、成形加工する際の成形性並びに耐加工肌荒れ性に優れるフェライト系ステンレス鋼板とその製造方法に関する。
 本願は、2018年3月30日に、日本に出願された特願2018-069775号に基づき優先権を主張し、その内容をここに援用する。 
The present invention relates to a ferritic stainless steel sheet and a method for producing the same, and more particularly, to a ferritic stainless steel sheet having excellent formability during forming and resistance to roughened workability, and a method for producing the same.
This application claims priority based on Japanese Patent Application No. 2018-069775 filed in Japan on March 30, 2018, the contents of which are incorporated herein by reference.
 オーステナイト系ステンレス鋼の代表鋼種であるSUS304(18Cr-8Ni)は、耐食性、加工性、美麗性等に優れることから家電、厨房品、建材等に広く用いられている。但し、SUS304は高価かつ価格変動の激しいNiを多量に添加しているため、鋼板の価格が高いとされている。一方、フェライト系ステンレス鋼は、Niを含有しない、もしくは含有量が極めて少ないため、コストパフォーマンスに優れる材料として需要が増加している。しかし、フェライト系ステンレス鋼を成形用途として使用する場合、問題となるのが成形限界と成形後に表面凹凸が形成されることによる耐加工肌荒れ性の劣化である。 SUS304 (18Cr-8Ni), which is a representative steel type of austenitic stainless steel, is widely used in home appliances, kitchen products, building materials and the like because of its excellent corrosion resistance, workability, and beauty. However, since SUS304 has a large amount of expensive Ni with high price fluctuation, it is said that the price of the steel sheet is high. On the other hand, ferritic stainless steel does not contain Ni or has a very low content, and therefore demand is increasing as a material with excellent cost performance. However, when ferritic stainless steel is used as a molding application, the problems are the molding limit and the deterioration of the rough surface due to the formation of surface irregularities after molding.
 まず成形限界について比較すると、オーステナイト系ステンレス鋼の場合は張り出し性に優れるが、フェライト系ステンレス鋼の張り出し性は低く、形状を大きく変化させることが出来ない。しかし結晶方位(集合組織)を調整して深絞り性を制御することが出来るため、フェライト系ステンレス鋼を成形用途として用いる場合では、深絞りを主体とした成形手法を用いる場合が多い。 First, when comparing the forming limits, the austenitic stainless steel is excellent in the overhanging property, but the overhanging property of the ferritic stainless steel is low and the shape cannot be changed greatly. However, since deep drawability can be controlled by adjusting the crystal orientation (texture), when a ferritic stainless steel is used as a forming application, a forming method mainly using deep drawing is often used.
 次に、成形加工後の表面特性、特に加工肌荒れ(成形後の表面凹凸)について述べる。ここで「表面凹凸」とは、加工や成形を行った後に鋼板表面に生じる微細な凹凸(肌荒れ)を指し、この微細な凹凸は結晶粒に対応していることから、結晶粒径が大きいほど表面凹凸も顕著になる。
 オーステナイト系ステンレス鋼の場合、加工硬化特性に優れており細粒組織が比較的作りやすいため、結晶粒度番号が約10の鋼板が製造されている。このため、成形加工後の表面凹凸(肌荒れ)は小さく、ほとんど問題とならない。一方、フェライト系ステンレス鋼の結晶粒度はSUS430で9程度、SUS430LXで7程度とオーステナイト系ステンレス鋼に比べて小さい。ここで粒度番号が小さいことは、結晶粒径が大きいことを示している。
 フェライト系ステンレス鋼が粗粒になりやすい要因としては、フェライト系ステンレス鋼では、再結晶粒径が大きくなりやすいことに加え、SUS430LXのような、C、Nを低減させて加工性、成形性の向上を図った高純度フェライト系ステンレス鋼では、粒成長しやすいためである。またフェライト系ステンレス鋼において、冷延回数を増やして結晶粒径が細かい製品板を製造しても肌荒れが生成する場合があり、その原因は必ずしも明確ではない。
Next, surface characteristics after the molding process, particularly rough surface (surface irregularities after molding) will be described. Here, “surface irregularities” refers to fine irregularities (skin roughness) that occur on the surface of a steel sheet after processing or forming, and these fine irregularities correspond to crystal grains. Surface irregularities are also noticeable.
In the case of austenitic stainless steel, a steel sheet having a crystal grain size number of about 10 is manufactured because it is excellent in work hardening characteristics and relatively easy to produce a fine grain structure. For this reason, the surface irregularities (skin roughness) after molding are small and hardly cause a problem. On the other hand, the grain size of ferritic stainless steel is about 9 for SUS430 and about 7 for SUS430LX, which is smaller than that of austenitic stainless steel. Here, a small particle size number indicates that the crystal grain size is large.
The reason why ferritic stainless steel is likely to become coarse grains is that ferritic stainless steel tends to have a large recrystallized grain size and, like SUS430LX, reduces C and N to improve workability and formability. This is because the high-purity ferritic stainless steel that has been improved easily grows. Further, in ferritic stainless steel, even when a product plate having a fine crystal grain size is manufactured by increasing the number of cold rolling, rough skin may be generated, and the cause is not necessarily clear.
 家電製品の筺体あるいは器物のように比較的厳しい成形性が要求される場合、フェライト系ステンレス鋼では、SUS430LXのような高純度フェライト系ステンレス鋼が用いられることが多い。また、成形後の強度を担保するために、用いられるステンレス鋼板の板厚は大半の場合は0.6mm以上であるが、前述のようにフェライト系ステンレス鋼は結晶粒径が大きいために成形後の肌荒れが大きく、研磨による表面凹凸の除去が通常行われている。 When relatively strict formability is required, such as a housing or container of home appliances, a high purity ferritic stainless steel such as SUS430LX is often used as the ferritic stainless steel. In addition, in order to ensure the strength after forming, the thickness of the stainless steel plate used is 0.6 mm or more in most cases. However, as described above, ferritic stainless steel has a large crystal grain size, so The surface roughness of the surface is large, and surface irregularities are usually removed by polishing.
 上述した背景から、高純度フェライト系ステンレス鋼の肌荒れを軽減する手法が開示されている。
 特許文献1には、高純度のフェライト系ステンレス鋼を用いて析出粒子のサイズ及び結晶粒径を制御して、加工肌荒れの少ない成形性に優れたフェライト系ステンレス鋼及びその製造方法が開示されている。しかし特許文献1では、結晶粒径が小さい鋼板が得られているものの、成形した際の深絞り性は十分ではなく、また結晶粒径が小さいにもかかわらず、成形後の肌荒れが発生しやすい問題があった。
From the background described above, a technique for reducing the rough skin of high purity ferritic stainless steel has been disclosed.
Patent Document 1 discloses a ferritic stainless steel excellent in formability with less roughened working surface by controlling the size and crystal grain size of precipitated particles using high purity ferritic stainless steel and a method for producing the same. Yes. However, in Patent Document 1, although a steel sheet having a small crystal grain size is obtained, the deep drawability at the time of molding is not sufficient, and the rough surface after molding tends to occur despite the small crystal grain size. There was a problem.
 特許文献2には、TiとNbを含有したフェライト系ステンレス鋼において、低温で熱間圧延を実施し、かつ高い冷間圧延率を取ることで細粒とし、成形時の耐肌荒れ性に優れたステンレス鋼を製造する技術を開示している。このような技術によって特許文献2のステンレス鋼は、結晶粒度番号は9.5と細粒組織が得られているものの、カップ絞り成形をした後の肌荒れ性は必ずしも十分ではない。 In Patent Document 2, in ferritic stainless steel containing Ti and Nb, hot rolling is performed at a low temperature, and a fine grain is obtained by taking a high cold rolling rate, which is excellent in rough skin resistance at the time of molding. A technique for producing stainless steel is disclosed. According to such a technique, the stainless steel of Patent Document 2 has a crystal grain size number of 9.5 and a fine-grained structure, but the skin roughness after cup drawing is not always sufficient.
 特許文献3には、Nb及び/またはTiを含有する成分組成を有する鋼の最終冷延前の結晶粒径を制御することで深絞り性、リジング性および耐肌荒れ性に優れたフェライト系ステンレス鋼が開示されている。しかし、特許文献3では、最終製品の結晶粒径は15μm(結晶粒度番号で9.1)であり、肌荒れ性が不十分である。 Patent Document 3 discloses a ferritic stainless steel excellent in deep drawability, ridging properties and skin roughness resistance by controlling the crystal grain size before final cold rolling of steel having a component composition containing Nb and / or Ti. Is disclosed. However, in Patent Document 3, the crystal grain size of the final product is 15 μm (crystal grain size number: 9.1), and the rough skin property is insufficient.
 以上のように、フェライト系ステンレス鋼の成形加工を考えた場合、所定の形状に成形が出来、かつ成形後の表面特性を満足させることは非常に困難であるのが現状である。このためフェライト系ステンレス鋼を成形用途として使用する場合は、成形後に生じた表面凹凸を除去するために研磨工程を行う必要がある。しかしこの研磨工程において研磨時間がかかり製造コストがかさむ。さらに、研磨にて生じた粉じんが多く発生するなどの問題がある。 As described above, when considering the forming process of ferritic stainless steel, it is very difficult to form into a predetermined shape and to satisfy the surface characteristics after forming. For this reason, when using ferritic stainless steel as a forming application, it is necessary to perform a polishing step in order to remove surface irregularities generated after forming. However, this polishing process takes time for polishing and increases the manufacturing cost. Further, there is a problem that a lot of dust generated by polishing is generated.
特許第4749888号公報Japanese Patent No. 4749888 特開平7-292417号公報JP 7-292417 A 特許第3788311号公報Japanese Patent No. 3788311
 本発明は、上記問題に鑑みなされたものであり、成形加工性及び成形加工後の耐加工肌荒れ性に優れたフェライト系ステンレス鋼板とその製造方法を提供する。 The present invention has been made in view of the above problems, and provides a ferritic stainless steel sheet excellent in forming workability and resistance to roughening after forming, and a method for producing the same.
 フェライト系ステンレス鋼の加工肌荒れに影響を及ぼす因子として、結晶粒度と歪量が知られている。しかし、上述したように、冷延条件等の制御によって結晶粒度や歪量を高めても加工肌荒れが発生する場合があり、近年、加工肌荒れの発生をより安定して抑制できる鋼が望まれていた。
 そこで本発明者らは、フェライト系ステンレス鋼における加工肌荒れと金属組織の関係を調査した。従来から知られている結晶粒度と歪量だけでなく、鋼中の析出物の析出量が加工肌荒れに影響することを初めて知見した。また、析出量を適正範囲に制御するためには、冷間圧延前後の熱処理温度を制御する必要があり、さらに冷間圧延後の熱処理において急速加熱が必要であることを明らかにした。
Crystal grain size and amount of strain are known as factors affecting the rough processing of ferritic stainless steel. However, as described above, rough machining may occur even if the crystal grain size and strain are increased by controlling the cold rolling conditions and the like, and in recent years, steels that can more stably suppress the occurrence of rough machining have been desired. It was.
Therefore, the present inventors investigated the relationship between the roughened working surface and the metal structure in ferritic stainless steel. For the first time, it has been found that not only the crystal grain size and the strain amount that have been conventionally known, but also the precipitation amount of precipitates in steel affects the roughening of the work surface. In addition, in order to control the amount of precipitation within an appropriate range, it was necessary to control the heat treatment temperature before and after cold rolling, and it was also clarified that rapid heating was necessary in the heat treatment after cold rolling.
 本発明の一態様の要旨は、以下のとおりである。
[1]質量%にて、
Cr:11.0%以上30.0%以下、
C:0.001%以上0.030%以下、
Si:0.01%以上2.00%以下、
Mn:0.01%以上2.00%以下、
P:0.003%以上0.100%以下、
S:0.0100%以下、
N:0.030%以下、
B:0%以上0.0025%以下、
Sn:0%以上0.50%以下、
Ni:0%以上1.00%以下、
Cu:0%以上1.00%以下、
Mo:0%以上2.00%以下、
W:0%以上1.00%以下、
Al:0%以上1.00%以下、
Co:0%以上0.50%以下、
V:0%以上0.50%以下、
Zr:0%以上0.50%以下、
Ca:0%以上0.0050%以下、
Mg:0%以上0.0050%以下、
Y:0%以上0.10%以下、
Hf:0%以上0.10%以下、
REM:0%以上0.10%以下、
Sb:0%以上0.50%以下を含み、さらに、
Ti:0.40%以下、Nb:0.50%以下のうち、いずれか一方又は両方を含み、残部がFe及び不純物からなり、
 リン化物として存在しているP量が0.003質量%以上であり、
 JIS G 0551にて測定される結晶粒度番号が9.0以上であることを特徴とするフェライト系ステンレス鋼板。
[2]質量%にて、更に、
B:0.0001%以上0.0025%以下、
Sn:0.005%以上0.50%以下、
Ni:0.05%以上1.00%以下、
Cu:0.05%以上1.00%以下、
Mo:0.05%以上2.00%以下、
W:0.05%以上1.00%以下、
Al:0.05%以上1.00%以下、
Co:0.05%以上0.50%以下、
V:0.05%以上0.50%以下、
Zr:0.05%以上0.50%以下、
Ca:0.0001%以上0.0050%以下、
Mg:0.0001%以上0.0050%以下、
Y:0.001%以上0.10%以下、
Hf:0.001%以上0.10%以下、
REM:0.001%以上0.10%以下、
Sb:0.005%以上0.50%以下の1種または2種以上を含有していることを特徴とする上記[1]に記載のフェライト系ステンレス鋼板。
The summary of one embodiment of the present invention is as follows.
[1] By mass%
Cr: 11.0% or more and 30.0% or less,
C: 0.001% to 0.030%,
Si: 0.01% or more and 2.00% or less,
Mn: 0.01% or more and 2.00% or less,
P: 0.003% to 0.100%,
S: 0.0100% or less,
N: 0.030% or less,
B: 0% or more and 0.0025% or less,
Sn: 0% to 0.50%,
Ni: 0% or more and 1.00% or less,
Cu: 0% or more and 1.00% or less,
Mo: 0% or more and 2.00% or less,
W: 0% to 1.00%,
Al: 0% or more and 1.00% or less,
Co: 0% to 0.50%,
V: 0% or more and 0.50% or less,
Zr: 0% or more and 0.50% or less,
Ca: 0% or more and 0.0050% or less,
Mg: 0% or more and 0.0050% or less,
Y: 0% or more and 0.10% or less,
Hf: 0% or more and 0.10% or less,
REM: 0% or more and 0.10% or less,
Sb: 0% or more and 0.50% or less,
Ti: 0.40% or less, Nb: 0.50% or less, including either one or both, the balance consists of Fe and impurities,
The amount of P present as a phosphide is 0.003% by mass or more,
A ferritic stainless steel sheet having a grain size number measured by JIS G 0551 of 9.0 or more.
[2] In mass%,
B: 0.0001% to 0.0025%,
Sn: 0.005% or more and 0.50% or less,
Ni: 0.05% or more and 1.00% or less,
Cu: 0.05% or more and 1.00% or less,
Mo: 0.05% or more and 2.00% or less,
W: 0.05% or more and 1.00% or less,
Al: 0.05% or more and 1.00% or less,
Co: 0.05% or more and 0.50% or less,
V: 0.05% or more and 0.50% or less,
Zr: 0.05% or more and 0.50% or less,
Ca: 0.0001% to 0.0050%,
Mg: 0.0001% or more and 0.0050% or less,
Y: 0.001% or more and 0.10% or less,
Hf: 0.001% or more and 0.10% or less,
REM: 0.001% or more and 0.10% or less,
Sb: 0.005% or more and 0.50% or less of 1 type or 2 types or more are contained, The ferritic stainless steel plate as described in said [1] characterized by the above-mentioned.
[3]上記[1]又は[2]に記載の成分を有する鋼を、熱間圧延する熱間圧延工程と、前記熱間圧延工程後、850℃以上900℃以下の温度で熱処理を施す熱延板焼鈍工程と、前記熱延板焼鈍工程後、圧延率を75%以上90%以下として圧延する冷間圧延工程と、前記冷間圧延工程に引き続いて行う冷延板焼鈍工程と、を備え、前記冷延板焼鈍工程において、昇温過程のうち400℃~800℃の温度範囲における平均昇温速度が80℃/s以上であり、板温の最高到達温度が880℃以上980℃以下であり、最高到達温度に到達後5sec以内に冷却を開始し、最高到達温度から700℃までの温度範囲における平均冷却速度を50℃/s以上として冷却することを特徴とする、上記[1]又は[2]に記載のフェライト系ステンレス鋼板の製造方法。
[4]上記[1]又は[2]に記載の成分を有する鋼を、熱間圧延する熱間圧延工程と、前記熱間圧延工程後、850℃以上900℃以下の温度で熱処理を施して、リン化物として存在するP量を0.003質量%以上とする熱延板焼鈍工程と、前記熱延板焼鈍工程後、圧延率を75%以上90%以下として圧延する冷間圧延工程と、前記冷間圧延工程に引き続いて行う冷延板焼鈍工程と、を備え、前記冷延板焼鈍工程において、昇温過程のうち400℃~800℃の温度範囲における平均昇温速度が80℃/s以上であり、板温の最高到達温度が880℃以上980℃以下であり、最高到達温度に到達後5sec以内に冷却を開始し、最高到達温度から700℃までの温度範囲における平均冷却速度を50℃/s以上として冷却することを特徴とする、上記[1]又は[2]に記載のフェライト系ステンレス鋼板の製造方法。
[3] A hot rolling process in which the steel having the component described in [1] or [2] is hot-rolled, and heat that is heat-treated at a temperature of 850 ° C. or higher and 900 ° C. or lower after the hot rolling process. A rolled sheet annealing process, a cold rolling process for rolling at a rolling rate of 75% to 90% after the hot rolled sheet annealing process, and a cold rolled sheet annealing process performed subsequent to the cold rolling process. In the cold rolled sheet annealing step, the average rate of temperature increase in the temperature range of 400 ° C. to 800 ° C. in the temperature increasing process is 80 ° C./s or more, and the maximum temperature reached is 880 ° C. or more and 980 ° C. or less. The above [1] or characterized in that the cooling is started within 5 seconds after reaching the maximum temperature and the average cooling rate in the temperature range from the maximum temperature to 700 ° C. is 50 ° C./s or more. [2] Ferritic stainless steel according to Manufacturing method of the scan steel plate.
[4] A hot rolling step in which the steel having the component according to [1] or [2] is hot-rolled, and a heat treatment is performed at a temperature of 850 ° C. or higher and 900 ° C. or lower after the hot rolling step. A hot-rolled sheet annealing step in which the amount of P existing as a phosphide is 0.003% by mass or more, and a cold rolling step in which the rolling rate is rolled at 75% to 90% after the hot-rolled sheet annealing step; A cold-rolled sheet annealing step performed subsequent to the cold-rolling step, and in the cold-rolled sheet annealing step, an average temperature increase rate in a temperature range of 400 ° C. to 800 ° C. is 80 ° C./s. The maximum temperature of the plate temperature is not less than 880 ° C. and not more than 980 ° C., cooling is started within 5 seconds after reaching the maximum temperature, and the average cooling rate in the temperature range from the maximum temperature to 700 ° C. is 50 Cooling at more than ℃ / s The symptom, method for manufacturing the ferritic stainless steel sheet according to [1] or [2].
 本発明の一態様によれば、成形加工性及び成形加工後の耐加工肌荒れ性に優れたフェライト系ステンレス鋼板を提供することができる。 According to one aspect of the present invention, it is possible to provide a ferritic stainless steel sheet that is excellent in forming processability and resistance to roughening of the processed skin after forming process.
本実施形態に係るフェライト系ステンレス鋼板の再結晶組織のTEM観察結果(TEM写真)である。It is a TEM observation result (TEM photograph) of the recrystallized structure of the ferritic stainless steel plate which concerns on this embodiment. 本実施例に係る結晶粒度番号とPの析出量(Pp)の関係を示す図である。It is a figure which shows the relationship between the crystal grain size number which concerns on a present Example, and the precipitation amount (Pp) of P.
 以下、本発明の一実施形態に係るフェライト系ステンレス鋼板の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。 Hereinafter, each requirement of the ferritic stainless steel sheet according to an embodiment of the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".
(I)成分の限定理由を以下に説明する。 The reason for limiting the component (I) will be described below.
 Crは、ステンレス鋼の基本特性である耐食性を向上する元素である。11.0%未満では、十分な耐食性は得られないため、下限は11.0%以上とする。一方、過度量のCrを含有させると、σ相(Fe-Crの金属間化合物)相当の金属間化合物の生成を促進して製造時の割れを助長するため、上限は30.0%以下とする。安定製造性(歩留まり、圧延疵等)点から14.0%以上、25.0%以下が望ましい。更に望ましくは16.0%以上、20.0%以下がよい。 Cr is an element that improves the corrosion resistance, which is a basic characteristic of stainless steel. If it is less than 11.0%, sufficient corrosion resistance cannot be obtained, so the lower limit is made 11.0% or more. On the other hand, if an excessive amount of Cr is contained, the formation of an intermetallic compound corresponding to the σ phase (Fe—Cr intermetallic compound) is promoted to promote cracking during production, so the upper limit is 30.0% or less. To do. From 14.0% or more and 25.0% or less are desirable from the viewpoint of stable manufacturability (yield, rolling mill, etc.). More preferably, it is 16.0% or more and 20.0% or less.
 Cは、本実施形態において重要な成形性を低下させる元素であるため、少ない方が好ましく、上限を0.030%以下とする。但し、過度な低減は精錬コストの上昇を招くため、下限は0.001%以上とする。精錬コスト及び成形性の両者を考慮した場合、0.002%以上、0.020%以下が好ましい。 C is an element that lowers the formability that is important in the present embodiment, so it is preferable that C be less, and the upper limit is 0.030% or less. However, excessive reduction leads to an increase in refining costs, so the lower limit is made 0.001% or more. In consideration of both the refining cost and the moldability, 0.002% or more and 0.020% or less are preferable.
 Siは、耐酸化性を向上させる元素であるが、過剰量のSiを含有させると成形性の低下を招くため、上限を2.00%以下とする。成形性の点からSi量は低い方が好ましいが、過度の低下は原料コストの増加を招くため、下限を0.01%以上とする。製造性の観点から、望ましい範囲は0.05%以上、1.00%以下であり、さらに望ましくは0.05%以上、0.30%以下である。 Si is an element that improves the oxidation resistance. However, if an excessive amount of Si is contained, the moldability is lowered, so the upper limit is made 2.00% or less. From the viewpoint of formability, the Si content is preferably low, but excessive reduction leads to an increase in raw material cost, so the lower limit is made 0.01% or more. From the viewpoint of manufacturability, the desirable range is 0.05% or more and 1.00% or less, and more desirably 0.05% or more and 0.30% or less.
 MnはSiと同様に、多量のMnを含有させると成形性の低下を招くため、上限を2.00%以下とする。成形性の点からMn量は低い方が好ましいが、過度の低下は原料コストの増加を招くため、下限を0.01%以上とする。製造性の観点から、望ましい範囲は0.05%以上、1.00%以下であり、さらに望ましくは0.05%以上、0.30%以下である。 Since Mn, like Si, contains a large amount of Mn, the formability is lowered, so the upper limit is made 2.00% or less. Although it is preferable that the amount of Mn is low from the viewpoint of moldability, excessive reduction causes an increase in raw material cost, so the lower limit is made 0.01% or more. From the viewpoint of manufacturability, the desirable range is 0.05% or more and 1.00% or less, and more desirably 0.05% or more and 0.30% or less.
 Pは、本実施形態の鋼板中において、リン化物として析出することで耐加工肌荒れ性の向上に寄与する重要な元素である。リン化物の析出量を確保し、耐加工肌荒れ性を向上させるために、P量は0.003%以上とする。しかし、Pは成形性を低下させる元素であるため、上限を0.100%以下とする。なお、P量の過度な低減は原料コストの上昇をもたらすことに加え、成形性と耐加工肌荒れ性の両者を考慮した場合、好ましい範囲は0.010%以上、0.050%以下、更に望ましくは0.020%以上、0.040%以下である。 P is an important element that contributes to the improvement of the rough surface resistance to processing by precipitating as a phosphide in the steel sheet of the present embodiment. In order to secure the amount of precipitation of phosphide and improve the resistance to rough processing, the P amount is set to 0.003% or more. However, since P is an element that lowers moldability, the upper limit is made 0.100% or less. In addition, excessive reduction of the amount of P brings about an increase in the raw material cost, and when considering both formability and rough processing resistance, a preferable range is 0.010% or more and 0.050% or less, and further desirably. Is 0.020% or more and 0.040% or less.
 Sは不純物元素であり、製造時の割れを助長するため、低い方が好ましく、上限を0.0100%以下とする。S量は低いほど好ましく、0.0030%以下が望ましい。一方、過度の低下は精錬コストの上昇を招くため下限は0.0003%以上とすることが望ましい。製造性とコストの点から、好ましい範囲は0.0004%以上、0.0020%以下である。 S is an impurity element and is preferably lower because it promotes cracking during production. The upper limit is 0.0100% or less. The lower the amount of S, the better, and 0.0030% or less is desirable. On the other hand, an excessive decrease leads to an increase in refining costs, so the lower limit is preferably 0.0003% or more. From the viewpoint of manufacturability and cost, the preferred range is 0.0004% or more and 0.0020% or less.
 Nは、Cと同様に成形性を低下させる元素であり、上限を0.030%以下とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.002%以上とすることが好ましい。成形性と製造性の点から、好ましい範囲は0.005%以上、0.015%以下である。 N is an element that lowers the formability like C, and the upper limit is 0.030% or less. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably made 0.002% or more. From the viewpoint of moldability and manufacturability, the preferred range is 0.005% or more and 0.015% or less.
 TiおよびNbのうち、いずれか一方又は両方を下記のように含有する。
 Tiは、C,Nと結合し、TiC、TiN等の析出物としてC,Nを固定し、高純度化を通じてr値及び製品伸びの向上をもたらす。これらの効果を得るため、Tiを含有させる場合は、下限を0.03%以上とすることが好ましい。一方、過度に含有させると、合金コストの上昇や再結晶温度上昇に伴う製造性の低下を招くため、上限は0.40%以下とする。成形性及び製造性の点から、好ましい範囲は0.05%以上、0.30%以下である。更に、Tiの上記効果を積極的に活用する好適な範囲は0.10%以上、0.20%以下である。
One or both of Ti and Nb are contained as follows.
Ti combines with C and N, fixes C and N as precipitates such as TiC and TiN, and improves r value and product elongation through high purity. In order to obtain these effects, when Ti is contained, the lower limit is preferably set to 0.03% or more. On the other hand, if it is excessively contained, the alloy cost is increased and the manufacturability is lowered with the increase of the recrystallization temperature, so the upper limit is made 0.40% or less. From the viewpoint of moldability and manufacturability, the preferred range is 0.05% or more and 0.30% or less. Furthermore, the suitable range which utilizes the said effect of Ti actively is 0.10% or more and 0.20% or less.
 Nbも、Tiと同様にC,Nを固定する安定化元素であって、この作用による鋼の高純度化を通じて、r値及び製品伸びの向上をもたらす。これら効果を得るため、Nbを含有させる場合は下限を0.03%以上とすることが好ましい。一方、過度に含有させると、合金コストの上昇や再結晶温度の上昇に伴う製造性の低下に繋がるため、上限は0.50%以下とする。合金コストや製造性の点から、好ましい範囲は0.03%以上、0.30%以下である。更に、Nbの上記効果を積極的に活用する好適な範囲は0.04%以上、0.15%以下である。更に望ましくは0.06~0.10%である。 Nb is also a stabilizing element that fixes C and N in the same manner as Ti, and improves r value and product elongation through high purity of steel by this action. In order to obtain these effects, when Nb is contained, the lower limit is preferably set to 0.03% or more. On the other hand, if it is excessively contained, it leads to a decrease in manufacturability accompanying an increase in alloy costs and a recrystallization temperature, so the upper limit is made 0.50% or less. From the viewpoint of alloy cost and manufacturability, the preferred range is 0.03% or more and 0.30% or less. Furthermore, the suitable range which utilizes the said effect of Nb actively is 0.04% or more and 0.15% or less. More preferably, it is 0.06 to 0.10%.
 本実施形態のフェライト系ステンレス鋼板は、上述してきた元素以外(残部)は、Fe及び不純物からなるが、本実施形態では、更に上記の基本組成に加えて、下記の元素群のうち1種または2種以上を選択的に含有させてもよい。すなわち、B、Sn、Ni、Cu、Mo、W、Al、Co、V、Zr、Ca、Mg、Y、Hf、REM、Sbの含有量の下限は0%以上である。
 なお、本実施形態における「不純物」とは、鋼を工業的に製造する際に鉱石やスクラップ等のような原料をはじめとして製造工程の種々の要因によって混入する成分であり、不可避的に混入する成分も含む。
The ferritic stainless steel sheet of the present embodiment is composed of Fe and impurities other than the elements described above (remainder). In the present embodiment, in addition to the basic composition described above, one or more of the following element groups or Two or more kinds may be selectively contained. That is, the lower limit of the content of B, Sn, Ni, Cu, Mo, W, Al, Co, V, Zr, Ca, Mg, Y, Hf, REM, and Sb is 0% or more.
The “impurities” in the present embodiment are components that are mixed due to various factors in the manufacturing process including raw materials such as ores and scraps when industrially manufacturing steel, and are inevitably mixed. Including ingredients.
 Bは二次加工性を向上させる元素である。その効果を発揮するには0.0001%以上が必要であるため、これを下限とする。一方、過度に含有させると製造性、特に鋳造性の劣化を招くため、0.0025%以下を上限とする。好ましい範囲は0.0003%以上、0.0012%以下である。 B is an element that improves secondary workability. Since 0.0001% or more is necessary to exert the effect, this is the lower limit. On the other hand, if excessively contained, the productivity, particularly castability, is deteriorated, so the upper limit is made 0.0025% or less. A preferable range is 0.0003% or more and 0.0012% or less.
 Snは耐食性を向上させる効果を有する元素であるため、室温での腐食環境に応じて含有させてもよい。その効果は0.005%以上で発揮されるため、これを下限とする。一方、多量に含有させると、製造性の劣化を招くため、0.50%以下を上限とする。製造性を考慮して、好ましい範囲は0.02%以、0.10%以下である。 Since Sn is an element having an effect of improving the corrosion resistance, it may be contained according to the corrosive environment at room temperature. Since the effect is exhibited at 0.005% or more, this is the lower limit. On the other hand, if contained in a large amount, the productivity is deteriorated, so the upper limit is made 0.50% or less. Considering manufacturability, the preferred range is 0.02% or less and 0.10% or less.
 Ni、Cu、Mo、Al、W、Co、V、Zrは、耐食性あるいは耐酸化性を高めるのに有効な元素であり、必要に応じて含有してよい。Ni、Cu、Mo、Al、W、Co、V、Zrのそれぞれの含有量を0.05%以上とすることで、効果が発現する。但し、過度に含有させると、成形性の低下を招くばかりでなく、合金コストの上昇や製造性を阻害することに繋がる。そのため、Ni、Cu、Al、Wの上限は1.00%以下とする。Ni、Cu、Al、Wの上限は、好ましくは0.50%以下である。Moは製造性の低下をもたらすため、上限は2.00%以下とする。Moの上限は、好ましくは1.00%以下である。Co、V、Zrの上限は、耐食性あるいは耐酸化性が向上する効果の発現を考慮して、0.50%以下とする。Ni、Cu、Mo、Al、W、Co、V、Zrのいずれの元素もより好ましい含有量の下限は0.10%以上とする。 Ni, Cu, Mo, Al, W, Co, V, and Zr are effective elements for enhancing the corrosion resistance or oxidation resistance, and may be contained as necessary. The effect is manifested by setting each content of Ni, Cu, Mo, Al, W, Co, V, and Zr to 0.05% or more. However, when it contains excessively, not only the moldability will fall, but it will lead to an increase in alloy cost and to obstruct manufacturability. Therefore, the upper limit of Ni, Cu, Al, and W is made 1.00% or less. The upper limit of Ni, Cu, Al, and W is preferably 0.50% or less. Since Mo causes a decrease in manufacturability, the upper limit is made 2.00% or less. The upper limit of Mo is preferably 1.00% or less. The upper limit of Co, V, and Zr is set to 0.50% or less in consideration of the manifestation of the effect of improving the corrosion resistance or oxidation resistance. The lower limit of the more preferable content of any element of Ni, Cu, Mo, Al, W, Co, V, and Zr is 0.10% or more.
 Ca、Mgは、熱間加工性や2次加工性を向上させる元素であり、必要に応じて含有させてもよい。但し、過度に含有させると、製造性を阻害することに繋がるため、Ca、Mgの上限は0.0050%以下とする。好ましい下限は、ともに0.0001%以上とする。製造性と熱間加工性を考慮した場合、好ましい範囲は、Ca、Mgともに0.0002%以上、0.0010%以下である。 Ca and Mg are elements that improve hot workability and secondary workability, and may be contained as necessary. However, if it is excessively contained, it will lead to inhibition of manufacturability, so the upper limit of Ca and Mg is made 0.0050% or less. Preferred lower limits are both 0.0001% or more. In consideration of manufacturability and hot workability, a preferable range for both Ca and Mg is 0.0002% or more and 0.0010% or less.
 Y、Hf、REMは、熱間加工性や鋼の清浄度の向上、ならびに耐酸化性改善に対して有効な元素であり、必要に応じて含有してもよい。含有させる場合、上限はそれぞれ0.10%以下とする。好ましい下限は、Y、Hf、REMともに0.001%以上とする。ここで、本実施形態における「REM」とは、原子番号57~71に帰属する元素群(ランタノイド)から選択される1種以上で構成されるものあり、例えば、La、Ce、Pr、Nd等である。また、本実施形態でいう「REM」の含有量とはランタノイドの合計量である。 Y, Hf, and REM are effective elements for improving hot workability, cleanliness of steel, and improving oxidation resistance, and may be contained as necessary. When it contains, an upper limit shall be 0.10% or less, respectively. The preferable lower limit is 0.001% or more for Y, Hf, and REM. Here, “REM” in the present embodiment is composed of one or more elements selected from an element group (lanthanoid) belonging to atomic numbers 57 to 71, such as La, Ce, Pr, and Nd. It is. The “REM” content in the present embodiment is the total amount of lanthanoids.
 SbはSnと同様に耐食性を向上させる効果を持つ元素であり、必要に応じて含有させてもよい。ただし多量に含有させると、製造性の劣化を招くため、0.50%以下を上限とする。一方、耐食性を向上させる効果は0.005%以上で発揮されるため、これを下限とする。 Sb is an element having an effect of improving the corrosion resistance like Sn, and may be contained if necessary. However, if contained in a large amount, the productivity is deteriorated, so the upper limit is made 0.50% or less. On the other hand, since the effect of improving the corrosion resistance is exhibited at 0.005% or more, this is the lower limit.
 本実施形態のフェライト系ステンレス鋼鈑は、上述してきた元素以外は、Fe及び不純物(不可避的不純物を含む)からなるが、以上説明した各元素の他にも、本実施形態の効果を損なわない範囲で含有させることが出来る。本実施形態では、例えばBi、Pb、Se、H、Ta等が含有されていてもよいが、その場合は可能な限り低減することが好ましい。一方、これらの元素は、本実施形態の課題を解決する限度において、その含有割合が制御され、必要に応じて、Bi≦100ppm、Pb≦100ppm、Se≦100ppm、H≦100ppm、Ta≦500ppmの1種以上を含有してもよい。 The ferritic stainless steel sheet of the present embodiment is composed of Fe and impurities (including inevitable impurities) other than the elements described above, but the effects of the present embodiment are not impaired in addition to the elements described above. It can be contained in a range. In the present embodiment, for example, Bi, Pb, Se, H, Ta and the like may be contained, but in that case, it is preferable to reduce as much as possible. On the other hand, the content ratio of these elements is controlled to the extent that solves the problem of the present embodiment, and if necessary, Bi ≦ 100 ppm, Pb ≦ 100 ppm, Se ≦ 100 ppm, H ≦ 100 ppm, Ta ≦ 500 ppm. You may contain 1 or more types.
(II)次に、金属組織について説明する。
 本実施形態のフェライト系ステンレス鋼鈑は、結晶粒度番号が9.0以上のフェライト単相組織からなる。
 結晶粒度番号は9.0以上とする。成形後の加工肌荒れは結晶粒度番号が大きいほど、すなわちフェライト結晶粒の粒径が小さいほど生じにくいためこれを下限とする。肌荒れをさらに抑制するためには9.5超が好ましく、更に望ましくは10.0超である。但し、結晶粒の粒径が過度に小さくなると、強度が上昇しプレス成型性が低下する恐れがある。このため、結晶粒度番号は12以下であることが好ましい。
(II) Next, the metal structure will be described.
The ferritic stainless steel plate of the present embodiment is composed of a ferrite single phase structure having a crystal grain size number of 9.0 or more.
The grain size number is 9.0 or more. The roughening of the processed skin after molding is less likely to occur as the grain size number is larger, that is, as the grain size of the ferrite crystal grains is smaller. In order to further suppress rough skin, it is preferably over 9.5, more preferably over 10.0. However, if the grain size of the crystal grains becomes excessively small, the strength may increase and the press moldability may decrease. For this reason, the crystal grain size number is preferably 12 or less.
 結晶粒度番号は、JIS G 0551(2013)の線分法で求めることができる。なお、「粒度番号:9」は、結晶粒内を横切る1結晶粒あたりの平均線分長が14.1μmであることに相当し、「粒度番号:10」は、結晶粒内を横切る1結晶粒あたりの平均線分長が10.0μmであることに相当する。結晶粒度の測定では、試験片断面の光学顕微鏡組織写真より、1試料につき横切る結晶粒数を500以上とする。エッチング液は王水または逆王水がよいが、結晶粒界が判断できるのであれば他の溶液でも構わない。また隣接する結晶粒の方位関係によっては、粒界が鮮明に見えない場合があるため、濃くエッチングするのが好ましい。また結晶粒界の測定に当たって、双晶粒界は測定しないこととする。 The crystal grain size number can be obtained by the line segment method of JIS G 0551 (2013). “Granularity number: 9” corresponds to an average line segment length of 14.1 μm per crystal grain traversing the crystal grain, and “grain size number: 10” is one crystal traversing the crystal grain. This corresponds to an average line segment length per grain of 10.0 μm. In the measurement of the crystal grain size, the number of crystal grains crossing per sample is set to 500 or more from an optical micrograph of the cross section of the test piece. The etchant is preferably aqua regia or reverse aqua regia, but other solutions may be used as long as the crystal grain boundaries can be determined. Further, depending on the orientation relationship between adjacent crystal grains, the grain boundary may not be seen clearly, so that it is preferable to etch deeply. In measuring grain boundaries, twin grain boundaries are not measured.
 また本実施形態のフェライト系ステンレス鋼板の金属組織は、フェライト単相組織よりなり、かつ後述するPの析出物(リン化物)が生成されている。これはオーステナイト相やマルテンサイト組織を含まないことを意味している。オーステナイト相やマルテンサイト組織を含む場合は、結晶粒径を細かくすることが比較的容易であるためである。さらにオーステナイト相は、TRIP効果により高い成形性を示す。しかし、原料コストが高くなることに加えて、製造時に耳割れ等の歩留まり低下が起こりやすくなるため、金属組織はフェライト単相組織とする。なお、鋼中にリン化物以外にも炭窒化物等の析出物が存在する場合もあるが、本実施形態の効果を大きく左右するものではないため、これらは考慮せず、上記は主相の組織について述べている。 Further, the metal structure of the ferritic stainless steel plate of the present embodiment is composed of a ferrite single phase structure, and P precipitates (phosphides) described later are generated. This means that an austenite phase and a martensite structure are not included. This is because when an austenite phase or a martensite structure is included, it is relatively easy to reduce the crystal grain size. Furthermore, the austenite phase exhibits high formability due to the TRIP effect. However, in addition to an increase in raw material cost, a yield reduction such as an ear crack is likely to occur at the time of manufacture, so the metal structure is a ferrite single phase structure. In addition, precipitates such as carbonitrides may exist in the steel other than phosphides, but these do not take into account the effect of this embodiment, so these are not considered, the above is the main phase Describes the organization.
(III)次に、Pの析出量について説明する。
 通常、フェライト系ステンレス鋼板におけるPは、成形性(r値および製品伸び)を低下させることから、その含有量を低減させるべきと考えられている。しかし、本発明者らの検討の結果、鋼中のリン化物の析出量が加工肌荒れに影響することを初めて知見した。このことから、本実施形態においては、結晶粒度の制御に加え、リン化物として存在しているP量、すなわちPの析出量Ppを制御することにより、安定的に加工肌荒れをさらに抑制できることを明らかにし、Pの析出量Ppを規定した点に特徴がある。
(III) Next, the precipitation amount of P will be described.
Usually, P in a ferritic stainless steel sheet reduces the formability (r value and product elongation), so it is considered that its content should be reduced. However, as a result of the study by the present inventors, it has been found for the first time that the amount of precipitation of phosphide in steel affects the roughened working surface. From this, in this embodiment, it is clear that, in addition to controlling the crystal grain size, by controlling the amount of P present as a phosphide, that is, the precipitation amount Pp of P, it is possible to stably suppress rough processing skin. And the amount of precipitation P of P is defined.
 このように、鋼中のリン化物は加工肌荒れ抑制に大きく貢献するため、Pの析出量を確保する必要がある。このことから、本実施形態ではリン化物として存在するP量(Pの析出量Pp)を0.003質量%以上とする。望ましくは0.004質量%以上とし、更に好ましくは0.005質量%以上とする。Pの析出量Ppの上限は特に限定しないが、鋼板のP含有量の上限が0.100%以下であることから、同じようにPの析出量Ppも上限を0.100%以下としてよい。なお、本実施形態でいうリン化物は、例えばFeリン化物、Mnリン化物、Tiリン化物、Nbリン化物、Alリン化物等が挙げられるが、種類や組成は特に限定しない。すなわち本実施形態では、リン化物の具体的な組成、存在形態が問わず、リン化物として存在しているP量(Pの析出量Pp)が上記範囲内であることが重要である。 Thus, since the phosphide in steel greatly contributes to the suppression of roughening of the processed skin, it is necessary to ensure the amount of precipitation of P. Therefore, in this embodiment, the amount of P existing as a phosphide (P precipitation amount Pp) is set to 0.003% by mass or more. Desirably, it is 0.004 mass% or more, More preferably, it is 0.005 mass% or more. The upper limit of the P precipitation amount Pp is not particularly limited, but since the upper limit of the P content of the steel sheet is 0.100% or less, the upper limit of the P precipitation amount Pp may be 0.100% or less. The phosphide referred to in the present embodiment includes, for example, Fe phosphide, Mn phosphide, Ti phosphide, Nb phosphide, Al phosphide, etc., but the type and composition are not particularly limited. That is, in this embodiment, it is important that the amount of P existing as a phosphide (P precipitation amount Pp) is within the above range regardless of the specific composition and form of the phosphide.
 Pの析出量Ppを上記範囲内に制御する方法の詳細は後述するが、冷間圧延工程の前後に実施する熱処理(熱延板焼鈍および仕上げ焼鈍)の処理温度を制御し、かつ冷間圧延後の熱処理における加熱過程を急速にて行うことで制御することができる。 Although the details of the method for controlling the precipitation amount Pp of P within the above range will be described later, the processing temperature of the heat treatment (hot rolled sheet annealing and finish annealing) performed before and after the cold rolling process is controlled, and cold rolling is performed. It can be controlled by rapidly performing the heating process in the subsequent heat treatment.
 析出したリン化物が加工肌荒れ抑制に寄与する原因は鋭意調査中であるが、現時点では次のように考えている。
 一般的に、析出物は粒界上に析出しやすいため、熱延板焼鈍により析出するリン化物もその多くが粒界上に析出していると考えられる。その後、冷間圧延により金属組織が潰れて圧延方向に伸びることに伴い、粒界上に析出していたリン化物が圧延方向に概ね平行に並んだ状態になっていると考えられる。その状態から、急速加熱、短時間保持、急速冷却とする仕上げ焼鈍を施して再結晶化を図ると、リン化物の上記析出状態をほとんど変えずに金属組織の再結晶組織を得ることとなる。すなわち、仕上げ焼鈍を急速加熱、短時間保持、急速冷却とすることで、リン化物が圧延方向に平行に並んだ状態を維持した再結晶組織となる。
 実際に本発明者らは、このような製法(後述する本実施形態の製造方法範囲内)で製造した製品板の薄膜TEM観察において、再結晶組織の結晶粒内のリン化物が圧延方向に平行に並んでいる様子を確認できている。図1は、後述する本実施形態を満たす条件で製造した鋼板における再結晶組織のTEM観察結果を示す。図1からも明らかなように、再結晶組織の結晶粒内において、圧延方向に沿うようにP化物が析出しているのが確認できる。なお、結晶粒内に析出している析出物がP化物であるか否かは、EDS分析および電子回折パターン解析によって同定した。
 このような析出状態のリン化物を備えたステンレス鋼板を加工し歪を加えると、互いに平行に並んだリン化物によって転位の移動が妨げられる。結果的にこのリン化物が結晶粒界と同様の作用効果を示し、加工肌荒れの抑制に寄与したと考えられる。
The cause of the precipitated phosphide contributing to the roughening of the processed skin is under intensive investigation, but at the present time, it is considered as follows.
In general, since precipitates are likely to precipitate on the grain boundaries, it is considered that many of the phosphides precipitated by hot-rolled sheet annealing are also precipitated on the grain boundaries. Thereafter, it is considered that the phosphide precipitated on the grain boundaries is aligned in parallel with the rolling direction as the metal structure is crushed by cold rolling and extends in the rolling direction. From this state, if recrystallization is performed by applying rapid annealing, holding for a short time, and rapid cooling, a recrystallized structure of the metal structure can be obtained with almost no change in the precipitation state of the phosphide. That is, by performing rapid annealing, holding for a short time, and rapid cooling for the finish annealing, a recrystallized structure is obtained in which phosphides are maintained in a state parallel to the rolling direction.
In fact, the present inventors found that the phosphide in the crystal grains of the recrystallized structure is parallel to the rolling direction in the thin film TEM observation of the product plate manufactured by such a manufacturing method (within the manufacturing method range of the present embodiment described later). You can see how they are lined up. FIG. 1 shows a TEM observation result of a recrystallized structure in a steel sheet manufactured under conditions that satisfy the present embodiment described later. As is clear from FIG. 1, it can be confirmed that the P compound is precipitated along the rolling direction in the crystal grains of the recrystallized structure. Note that whether or not the precipitates precipitated in the crystal grains are P compounds was identified by EDS analysis and electron diffraction pattern analysis.
When a stainless steel plate having such a precipitated phosphide is processed and strained, dislocation movement is hindered by the phosphides arranged in parallel to each other. As a result, it is considered that this phosphide exhibited the same effect as the crystal grain boundary and contributed to the suppression of rough processing.
 Pの析出量Ppは次のような電解抽出残渣法により測定する。
 ステンレス鋼板の幅方向中心から、30mm角程度の大きさの試験片を切り出し、鋼板表面に相当する試験片の全面を番数♯600の耐水研磨紙で湿式研磨する。研磨した後、10%無水マレイン酸および2%テトラメチルアンモニウムクロライドを含むメタノール溶液中で-100mVの定電位で電解することにより試験片母材(ステンレス母材)を溶解する。電気分解後、溶解せずに溶液中に残存した残渣(析出物)を200nmメッシュのフィルタを用いて捕捉する。捕捉した析出物を、純水で洗浄および乾燥する。次いで王水と過塩素酸により析出物を溶解させ、JIS G 1258に準拠してICP発光分光分析法を用いて元素分析を行い析出物中のPの質量を求める。得られたP量を、電解による試験片の質量変化量(「電気分解前の試験片の質量」-「電気分解後の試験片の質量」)で除して百分率で表示したものを「Pの析出量Pp」(質量%)とする。
The precipitation amount Pp of P is measured by the following electrolytic extraction residue method.
A test piece having a size of about 30 mm square is cut out from the center in the width direction of the stainless steel plate, and the entire surface of the test piece corresponding to the surface of the steel plate is wet-polished with water-resistant abrasive paper of number # 600. After polishing, the test piece base material (stainless steel base material) is dissolved by electrolysis at a constant potential of −100 mV in a methanol solution containing 10% maleic anhydride and 2% tetramethylammonium chloride. After the electrolysis, the residue (precipitate) remaining in the solution without being dissolved is captured using a 200 nm mesh filter. The trapped precipitate is washed with pure water and dried. Next, the precipitate is dissolved with aqua regia and perchloric acid, and elemental analysis is performed using ICP emission spectroscopy in accordance with JIS G 1258 to determine the mass of P in the precipitate. The amount of P obtained is divided by the amount of mass change of the test piece due to electrolysis (“the weight of the test piece before electrolysis” − “the weight of the test piece after electrolysis”) and expressed as a percentage. The amount of precipitation Pp ”(mass%).
(IV)次に、本実施形態のフェライト系ステンレス鋼板の製造方法を説明する。
 本実施形態に係るフェライト系ステンレス鋼板の製造方法は、熱間圧延、熱延板焼鈍、冷間圧延及び冷延板焼鈍(仕上げ焼鈍)を組み合わせることとし、必要に応じて、適宜、酸洗を行うこととする。すなわち、製造方法の一例として、例えば、製鋼-熱間圧延-熱延板焼鈍-冷間圧延-冷延板焼鈍(仕上げ焼鈍)の各工程からなる製法を採用できる。
 本実施形態において重要な結晶粒径とリン化物の析出状態の両者を上記のとおりに満足するために制御すべき条件は、熱間圧延後の熱処理(熱延板焼鈍)の条件、冷間圧延率、冷延後の熱処理(冷延板焼鈍)の条件であり、それ以外の工程、条件については特に制限はない。
(IV) Next, the manufacturing method of the ferritic stainless steel sheet of this embodiment is demonstrated.
The manufacturing method of the ferritic stainless steel sheet according to the present embodiment is a combination of hot rolling, hot-rolled sheet annealing, cold-rolling and cold-rolled sheet annealing (finish annealing). I will do it. That is, as an example of the manufacturing method, for example, a manufacturing method including steps of steelmaking, hot rolling, hot rolled sheet annealing, cold rolling, and cold rolled sheet annealing (finish annealing) can be employed.
In this embodiment, the conditions to be controlled in order to satisfy both the important crystal grain size and the precipitation state of the phosphide as described above are the conditions of heat treatment after hot rolling (hot-rolled sheet annealing), cold rolling. Rate, conditions for heat treatment after cold rolling (cold rolled sheet annealing), and other processes and conditions are not particularly limited.
 熱間圧延後、850℃以上900℃以下の温度で熱処理(熱延板焼鈍)を施し、熱処理後のリン化物の析出量Ppを確保する。熱処理温度が850℃未満であると、板厚中心部に再結晶不良が生じ、r値の低下による成形性低下やリジング発生による加工後の研磨特性の悪化を引き起こすおそれがある。このため、熱延板焼鈍の熱処理温度の下限は850℃以上とする。望ましくは860℃以上である。また熱処理温度が900℃超であると、リン化物の析出量が不足し、上述した析出量Ppを確保できない。そのため、熱延板焼鈍の熱処理温度の上限を900℃以下とする。望ましくは880℃以下であり、より好ましくは870℃未満である。なお、冷延後の焼鈍(仕上げ焼鈍)では析出状態をほとんど変化させないため、この段階でのPの析出量Ppを制御することが重要である。熱延板焼鈍により、熱延板焼鈍後の段階で、リン化物として存在するP量(Pの析出量Pp)を0.003質量%以上とすることが好ましい。 After the hot rolling, heat treatment (hot-rolled sheet annealing) is performed at a temperature of 850 ° C. or more and 900 ° C. or less to ensure the precipitation amount Pp of the phosphide after the heat treatment. When the heat treatment temperature is less than 850 ° C., recrystallization failure occurs in the center portion of the plate thickness, and there is a possibility of causing deterioration in formability due to a decrease in r value and deterioration in polishing characteristics after processing due to ridging. For this reason, the minimum of the heat processing temperature of hot-rolled sheet annealing shall be 850 degreeC or more. Desirably, it is 860 degreeC or more. On the other hand, if the heat treatment temperature exceeds 900 ° C., the amount of phosphide precipitated is insufficient, and the above-described precipitation amount Pp cannot be ensured. Therefore, the upper limit of the heat treatment temperature for hot-rolled sheet annealing is set to 900 ° C. or less. Desirably, it is 880 degreeC or less, More preferably, it is less than 870 degreeC. In addition, since the precipitation state is hardly changed in the annealing after the cold rolling (finish annealing), it is important to control the precipitation amount Pp of P at this stage. It is preferable that the amount of P existing as a phosphide (P precipitation amount Pp) is 0.003% by mass or more by hot-rolled sheet annealing at a stage after the hot-rolled sheet annealing.
 その後の冷間圧延における圧延率は75%以上90%以下とする。
 冷間圧延後に行う熱処理によって再結晶粒径を細かくするためには、導入ひずみ量を多くする必要がある。再結晶はひずみが多く導入されている部分から始まる。すなわち、加工量が多い(圧延率が大きい)材料ほど、再結晶の起点となる部分(核)が多いため、再結晶粒径が小さくなる。これらのことから、結晶粒度番号を大きくする(結晶粒径を小さくする)ためには、圧延率は高いほうがよい。圧延率が75%未満だと、これら効果を得られず、かつr値が低下して成形性が低下するおそれもある。このため、本実施形態では圧延率は75%以上とする。また圧延率が高いほど、r値は向上するため、圧延率は80%以上であることが望ましい。一方、圧延率が90%超では、逆にr値が低下し、成形性の低下が起こるおそれがある。そのため圧延率は90%以下の範囲とする。
The rolling rate in the subsequent cold rolling is 75% or more and 90% or less.
In order to make the recrystallized grain size fine by the heat treatment performed after cold rolling, it is necessary to increase the amount of strain introduced. Recrystallization starts from the part where a lot of strain is introduced. In other words, the larger the amount of processing (the higher the rolling rate), the smaller the recrystallized grain size because there are more parts (nuclei) that are the starting points of recrystallization. For these reasons, in order to increase the crystal grain size number (decrease the crystal grain size), a higher rolling ratio is better. If the rolling rate is less than 75%, these effects cannot be obtained, and the r value may be lowered to deteriorate the formability. For this reason, in this embodiment, a rolling rate shall be 75% or more. Moreover, since r value improves, so that a rolling rate is high, it is desirable that a rolling rate is 80% or more. On the other hand, if the rolling rate exceeds 90%, the r value decreases, and the formability may decrease. Therefore, a rolling rate shall be 90% or less of range.
 冷間圧延後、引き続いて熱処理(冷延板焼鈍)を行うが、本実施形態ではこの熱処理を急速で行うことに特徴がある。具体的には、冷延板焼鈍において、昇温過程のうち400℃~800℃の温度範囲における平均昇温速度を80℃/s以上とする。最高到達温度が880℃以上980℃以下である。最高到達温度に到達後5sec以内に冷却を開始し、最高到達温度から700℃までの温度範囲における平均冷却速度を50℃/s以上として冷却する。
 なお、本実施形態でいう「400℃~800℃の温度範囲における平均昇温速度」とは、当該温度範囲の鋼板温度の上昇幅(400℃)を、当該温度範囲の昇温に要した時間で除した値とする。「最高到達温度から700℃までの温度範囲における平均冷却速度」とは、最高到達温度から700℃までの鋼板の温度降下幅を、最高到達温度に到達した時点から700℃となった時点までの所要時間で除した値とする。また、以下の説明における温度(℃)はすべて鋼板温度を指す。
After the cold rolling, heat treatment (cold rolled sheet annealing) is subsequently performed, and this embodiment is characterized in that this heat treatment is performed rapidly. Specifically, in cold-rolled sheet annealing, the average rate of temperature increase in the temperature range of 400 ° C. to 800 ° C. is set to 80 ° C./s or more in the temperature increasing process. The maximum temperature reached is 880 ° C. or higher and 980 ° C. or lower. Cooling is started within 5 seconds after reaching the maximum temperature, and the average cooling rate in the temperature range from the maximum temperature to 700 ° C. is set to 50 ° C./s or more.
The “average rate of temperature increase in the temperature range of 400 ° C. to 800 ° C.” as used in the present embodiment refers to the time required for temperature increase in the temperature range of the steel plate temperature increase range (400 ° C.) in the temperature range. The value divided by. “Average cooling rate in the temperature range from the highest temperature to 700 ° C.” means the temperature drop width of the steel plate from the highest temperature to 700 ° C. from the time when the highest temperature was reached to 700 ° C. The value divided by the required time. Moreover, all the temperature (degreeC) in the following description points out steel plate temperature.
 上述したように、本実施形態では、熱延板焼鈍によって析出させたリン化物を冷間圧延によって圧潰して冷延方向に平行に並んだ析出状態とし、この析出状態を維持したまま再結晶を行い、製品板を得る。そして、前述の析出状態とされたリン化物を備える製品板は成形加工して歪を加えても、リン化物によって転位の移動が妨げることができるため、加工肌荒れを抑制することが可能となる。
 このことから、冷延板焼鈍は、冷間圧延後の析出状態を維持したまま再結晶できる条件で実施することが重要となる。
As described above, in the present embodiment, the phosphide precipitated by hot-rolled sheet annealing is crushed by cold rolling to form a precipitated state parallel to the cold rolling direction, and recrystallization is performed while maintaining this precipitated state. Go and get the product board. And even if the product plate provided with the phosphide in the above-described precipitation state is molded and subjected to distortion, the movement of dislocations can be hindered by the phosphide, and therefore it is possible to suppress rough processing.
For this reason, it is important to carry out the cold-rolled sheet annealing under conditions that allow recrystallization while maintaining the precipitation state after cold rolling.
 冷間圧延後の析出状態を維持し、耐加工肌荒れ効果を得るために昇温過程の400℃~800℃の温度範囲における平均昇温速度を80℃/s以上とし、かつ最高温度に到達後5秒以内に冷却を開始する。すなわち、400℃~800℃の温度範囲を平均昇温速度が80℃/s以上で急速昇温し、最高到達温度(880℃以上980℃以下)まで加熱して当該最高到達温度での保持時間を5秒以内として冷却を開始する。なお本実施形態においては、最高到達温度にて保持する際、温度を一定に保ってもよいが、最高到達温度±10℃(最高到達温度-10℃~最高到達温度+10℃)の範囲内であれば保持温度が変動しても許容される。ただし、保持温度が前記範囲内で変動する場合は、最高到達温度の適正範囲(880℃以上980℃以下)から外れないように制御する必要がある。 In order to maintain the precipitation state after cold rolling and to obtain a rough working-resistant effect, the average heating rate in the temperature range of 400 ° C to 800 ° C in the temperature rising process is set to 80 ° C / s or more and the maximum temperature is reached. Start cooling within 5 seconds. That is, the temperature is rapidly increased in the temperature range of 400 ° C. to 800 ° C. at an average temperature increase rate of 80 ° C./s or more, and heated to the highest temperature reached (880 ° C. or higher and 980 ° C. or lower), and the holding time at the highest temperature reached. The cooling is started within 5 seconds. In this embodiment, when the temperature is held at the maximum temperature, the temperature may be kept constant, but within the range of the maximum temperature ± 10 ° C. (maximum temperature −10 ° C. to maximum temperature + 10 ° C.). If it is present, it is permissible even if the holding temperature varies. However, when the holding temperature fluctuates within the above range, it is necessary to control the temperature so as not to deviate from the appropriate range (880 ° C. or higher and 980 ° C. or lower) of the highest temperature reached.
 400℃~800℃の温度範囲における平均昇温速度が80℃/s未満または保持時間が5秒超では、リン化物が固溶して製品としての析出量を確保できない場合がある。また、400℃~800℃の温度範囲での急速昇温は、再結晶粒径を微細化する効果もあり、加工肌荒れの抑制に有効である。さらに析出物が存在する状態で急速昇温すると、析出物のピン止め効果により粒成長を抑制するため、製品粒径を更に微細化し、加工肌荒れをさらに抑制する効果がある。このような観点から、望ましくは400℃~800℃の温度範囲の平均昇温速度は150℃/s以上である。
 また、リン化物の析出状態を維持する観点から、最高到達温度での保持時間は2秒以下とすることが望ましい。保持時間0秒、すなわち最高到達温度に達してすぐに冷却を開始しても構わない。
When the average rate of temperature increase in the temperature range of 400 ° C. to 800 ° C. is less than 80 ° C./s or the holding time is longer than 5 seconds, the phosphide may be dissolved and the amount of precipitation as a product may not be ensured. In addition, rapid temperature increase in the temperature range of 400 ° C. to 800 ° C. has the effect of reducing the recrystallized grain size and is effective in suppressing rough processing. Further, when the temperature is rapidly raised in the presence of precipitates, the grain growth is suppressed by the pinning effect of the precipitates, so that there is an effect of further miniaturizing the product particle size and further suppressing roughness of the processed skin. From such a viewpoint, the average rate of temperature increase in the temperature range of 400 ° C. to 800 ° C. is preferably 150 ° C./s or more.
Further, from the viewpoint of maintaining the precipitation state of the phosphide, the holding time at the highest temperature is desirably 2 seconds or less. The holding time may be 0 seconds, that is, the cooling may be started as soon as the maximum temperature is reached.
 本実施形態では昇温過程を急速加熱によって行うため、昇温に要する時間が短時間となる。この短時間に再結晶を完了させるために、最高到達温度を880℃以上とする。最高到達温度が880℃未満であると、再結晶が不十分となり、伸び低下により加工性が劣化するおそれがある。そのため、本実施形態では、最高到達温度は880℃以上とし、好ましくは、900℃以上とする。一方、再結晶完了後の結晶粒成長が進行すると、結晶粒の粗大化やリン化物固溶による析出量の不足によって、耐加工肌荒れ性が悪化するおそれがあるため、最高到達温度は980℃以下を上限とする。望ましくは950℃以下である。 In this embodiment, since the temperature raising process is performed by rapid heating, the time required for temperature raising is short. In order to complete recrystallization in this short time, the maximum temperature reached is 880 ° C. or higher. If the maximum temperature reached is less than 880 ° C., recrystallization becomes insufficient, and the workability may deteriorate due to a decrease in elongation. Therefore, in this embodiment, the maximum temperature reached is 880 ° C. or higher, preferably 900 ° C. or higher. On the other hand, when the crystal grain growth after the completion of recrystallization progresses, there is a risk that the roughening resistance to processing skin may be deteriorated due to the coarsening of crystal grains or insufficient precipitation due to phosphide solid solution. Is the upper limit. Desirably, it is 950 degrees C or less.
 冷却過程において結晶粒成長やリン化物の固溶が進行すると、耐加工肌荒れ性が劣化するため、最高到達温度から700℃までの温度範囲における平均冷却速度の下限を50℃/s以上とする。望ましくは100℃/s以上である。最高到達温度から700℃までの温度範囲における平均冷却速度の上限は、好ましくは500℃/s以下である。 When crystal grain growth or phosphide solid solution progresses during the cooling process, the rough surface resistance to processing deteriorates, so the lower limit of the average cooling rate in the temperature range from the highest temperature to 700 ° C. is set to 50 ° C./s or more. Desirably, it is 100 ° C./s or more. The upper limit of the average cooling rate in the temperature range from the highest attained temperature to 700 ° C. is preferably 500 ° C./s or less.
 なお、冷延板焼鈍において、上記の条件よりも低温域で長時間熱処理することによって、リン化物を担保し再結晶組織を得ることも可能であるが、結晶粒径が大きくなり、耐肌荒れ特性が劣化する。さらに、粒内のリン化物の析出状態が圧延方向に平行に並んだ状態となってはじめて耐加工肌荒れを抑制する効果を発揮する。このため、冷延板焼鈍の過程でリン化物を析出させたとしても、それは当該効果を発揮しない。つまり、冷間圧延によってリン化物の析出状態を制御し、かつこの析出状態を維持させうる上記の条件で冷延板焼鈍を行うことが重要である。 In cold-rolled sheet annealing, it is possible to secure a phosphide and obtain a recrystallized structure by heat treatment for a long time in a lower temperature range than the above conditions, but the crystal grain size becomes large and the rough skin resistance characteristics Deteriorates. Furthermore, the effect of suppressing the roughening of the work-resistant skin is exhibited only when the precipitation state of the phosphide in the grains is in a state aligned in parallel with the rolling direction. For this reason, even if a phosphide is precipitated in the process of cold-rolled sheet annealing, it does not exhibit the effect. That is, it is important to perform cold-rolled sheet annealing under the above-described conditions that can control the precipitation state of the phosphide by cold rolling and maintain this precipitation state.
 以上説明した製造方法によって、本実施形態に係るフェライト系ステンレス鋼板を製造することができる。
 なお、本実施形態においては、熱延板焼鈍および冷延板焼鈍は、バッチ式焼鈍でも連続式焼鈍でも構わない。また、各焼鈍は、必要であれば水素ガスあるいは窒素ガスなどの無酸化雰囲気で焼鈍する光輝焼鈍でもよいし、大気中で焼鈍しても構わない。
The ferritic stainless steel sheet according to the present embodiment can be manufactured by the manufacturing method described above.
In the present embodiment, the hot-rolled sheet annealing and the cold-rolled sheet annealing may be batch-type annealing or continuous-type annealing. Each annealing may be bright annealing performed in a non-oxidizing atmosphere such as hydrogen gas or nitrogen gas if necessary, or may be performed in the air.
 また本実施形態のフェライト系ステンレス鋼板に適用される板厚は、特に限定しないが、強度確保の観点から0.5mm以上、好ましくは0.6mm以上であることが望ましい。板厚が薄い場合は、成形後の部品において強度が不十分となる場合があるためである。製造対象となる部品のサイズや形状、耐荷重等を考慮して設計する必要がある。 Further, the thickness applied to the ferritic stainless steel plate of the present embodiment is not particularly limited, but is desirably 0.5 mm or more, preferably 0.6 mm or more from the viewpoint of ensuring strength. This is because when the plate thickness is thin, the strength of the molded part may be insufficient. It is necessary to design in consideration of the size and shape of parts to be manufactured, load resistance, and the like.
 以上、本実施形態によれば、成形加工性及び成形後の耐加工肌荒れ性に優れたフェライト系ステンレス鋼板を提供することができる。また、本実施形態のフェライト系ステンレス鋼板は、耐加工肌荒れ性に優れるため、特に、成形加工後に表面凹凸(肌荒れ)を除去するための研磨を要する用途に好適である。 As described above, according to the present embodiment, it is possible to provide a ferritic stainless steel sheet that is excellent in formability and resistance to roughening after forming. Moreover, since the ferritic stainless steel sheet of the present embodiment is excellent in resistance to rough processing, it is particularly suitable for applications that require polishing to remove surface irregularities (skin roughness) after forming.
 次に本発明の実施例を示す。本実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、以下の実施例で用いた条件に限定されるものではない。本発明は、本発明の要件を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 なお、下記にて示す表中の下線は、本実施形態の範囲から外れているものを示す。
Next, examples of the present invention will be described. The conditions in this example are one example of conditions used to confirm the feasibility and effects of the present invention, and the present invention is not limited to the conditions used in the following examples. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the requirements of the present invention.
In addition, the underline in the table | surface shown below shows what has remove | deviated from the range of this embodiment.
 表1に示す成分組成を有するステンレス鋼を溶製してスラブに鋳造し、スラブを熱間圧延にて所定の板厚まで圧延した。その後、熱延板焼鈍、冷間圧延、冷延板焼鈍を施して0.6mm厚のステンレス鋼板(製品板)No.1~44を製造した。熱延板焼鈍の熱処理温度(焼鈍温度)、冷延率、冷延板焼鈍における400~800℃間の平均昇温速度、最高到達温度、冷却開始までの所要時間(保持時間)、ならびに最高到達温度から700℃までの温度範囲における平均冷却速度は表2~表4のように変化させた。なお、熱延板焼鈍における焼鈍時間(保持時間)は、40~60秒の範囲内とした。 Stainless steel having the composition shown in Table 1 was melted and cast into a slab, and the slab was rolled to a predetermined plate thickness by hot rolling. Thereafter, hot-rolled sheet annealing, cold rolling, and cold-rolled sheet annealing were performed to obtain a 0.6 mm thick stainless steel plate (product plate) No. 1-44 were produced. Heat treatment temperature (annealing temperature) of hot-rolled sheet annealing, cold rolling rate, average heating rate between 400 and 800 ° C in cold-rolled sheet annealing, maximum temperature reached, required time to start cooling (holding time), and maximum temperature reached The average cooling rate in the temperature range from temperature to 700 ° C. was changed as shown in Tables 2 to 4. The annealing time (holding time) in the hot-rolled sheet annealing was set in the range of 40 to 60 seconds.
 次に、得られたステンレス鋼板No.1~No.44の幅中央付近から試験片を切り出し、JIS G 0551(2013)に準拠して線分法によって結晶粒度番号(GSN)を測定した。なお、結晶粒度を測定する際は、試験片断面の光学顕微鏡組織写真より、1試料につき横切る結晶粒数を500以上とした。 Next, the obtained stainless steel plate No. 1-No. A test piece was cut out from the vicinity of the width center of 44, and the crystal grain size number (GSN) was measured by a line segment method in accordance with JIS G 0551 (2013). When measuring the crystal grain size, the number of crystal grains crossing per sample was set to 500 or more from an optical microscopic microstructure photograph of the cross section of the test piece.
 さらに、ステンレス鋼板No.1~No.44よりφ110mmの試料を切り出し、油圧成形試験機により、絞り比2.2のカップ成形試験を行った。カップ成形後の肌荒れには絞り比が大きく影響するが、その他の成形条件は、影響を及ぼさないことが分かっている。なお、今回実施したカップ成形試験条件は、ポンチ径が50mm、ポンチ肩Rが5mm、ダイス径が52mm、ダイス肩Rが5mm、しわ押さえ圧が1トン、クリアランスが片側1.67t(tは板厚)とした。さらに、試料とポンチ間の潤滑剤として、出光興産株式会社製の防錆油「ダフニーオイルコートZ3(登録商標)」を塗布した。その後に成形後の鋼板表面を保護するために潤滑シート「ニチアス株式会社製ナフロンテープTOMBO9001」を貼り付けた。 Furthermore, stainless steel plate No. 1-No. A sample having a diameter of 110 mm was cut out from No. 44, and a cup molding test with a drawing ratio of 2.2 was performed using a hydraulic molding tester. It has been found that the drawing ratio has a great influence on rough skin after cup molding, but other molding conditions have no effect. Note that the cup molding test conditions carried out this time are as follows: punch diameter is 50 mm, punch shoulder R is 5 mm, die diameter is 52 mm, die shoulder R is 5 mm, wrinkle holding pressure is 1 ton, clearance is 1.67 t on one side (t is plate Thickness). Further, as a lubricant between the sample and the punch, a rust preventive oil “Dafney Oil Coat Z3 (registered trademark)” manufactured by Idemitsu Kosan Co., Ltd. was applied. Thereafter, in order to protect the surface of the steel sheet after forming, a lubricating sheet “Naflon Tape TOMBO9001 manufactured by NICHIAS Corporation” was attached.
 絞り比2.2で成形が出来た試料については、カップ成形後の表面粗さを測定し加工肌荒れを評価した。
 ここで、カップ成形後の試料(成形品)の部位毎の表面粗さの程度、ばらつきについて調査したところ、縦壁部の内側と外側でばらつきがあること知見した。調査結果について詳述する。
 本発明者らは、カップ成形後の試料の各部位の表面粗さを調査した。カップ成形した後の加工肌荒れは、一般に知られているように単純に結晶粒度と歪量に比例するわけではなく、成形時の金型との接触により成形品の表面での凹凸の生成が抑制されるため、表面粗さが小さくなることを知見した。特に成形品の縦壁部のうち外壁においては、成形時に金型に押さえつけられる力が強く、成形時の凹凸の生成と金型との接触による凹凸の抑制とが競合しているため、成形品の粗さは測定位置ごとにばらつきが大きくなることが分かった。よって、カップ成形後の加工肌荒れの評価を縦壁部の外壁で行うことは不適切と考えた。
 そこで、金型に押さえつけられる力が比較的小さい縦壁部の内壁の表面粗さを測定した。その結果、カップ成形後の表面粗さを精度良く測定できることを知見した。また、外壁よりも内壁の方が表面粗さは大きいため、成形後の研磨工程において粗さが大きい内壁が最も研磨時間がかかってしまう。そのため、成形後の研磨を想定した表面粗さの測定(加工肌荒れの評価)は、成形品の縦壁部の内壁で実施するのが適切と考えられる。加工肌荒れの評価が、成形品の縦壁部の内壁で良好であれば、外壁でも良好であると判断することができる。
About the sample which could be shape | molded by the drawing ratio 2.2, the surface roughness after cup shaping | molding was measured and the roughened processing skin was evaluated.
Here, when the degree of surface roughness and variation of each part of the sample (molded product) after cup molding were investigated, it was found that there was variation between the inside and outside of the vertical wall portion. The survey results will be described in detail.
The present inventors investigated the surface roughness of each part of the sample after cup molding. The roughness of the processed skin after cup molding is not simply proportional to the crystal grain size and strain, as is generally known, and the formation of irregularities on the surface of the molded product is suppressed by contact with the mold during molding. Therefore, it has been found that the surface roughness is reduced. In particular, the outer wall of the vertical wall of the molded product has a strong force to be pressed against the mold during molding, and there is a competition between the generation of irregularities during molding and the suppression of irregularities due to contact with the mold. It was found that the roughness of the scatter increases greatly at each measurement position. Therefore, it was considered inappropriate to evaluate the roughness of the processed skin after cup molding on the outer wall of the vertical wall.
Therefore, the surface roughness of the inner wall of the vertical wall portion with a relatively small force pressed against the mold was measured. As a result, it was found that the surface roughness after cup molding can be measured with high accuracy. Further, since the inner wall has a larger surface roughness than the outer wall, the inner wall having the larger roughness takes the most polishing time in the polishing step after molding. For this reason, it is considered appropriate to measure the roughness of the surface (evaluation of roughness of the processed skin) assuming polishing after molding on the inner wall of the vertical wall portion of the molded product. If the rough evaluation of the processed skin is good for the inner wall of the vertical wall portion of the molded product, it can be determined that the outer wall is also good.
 カップ成形後の試料の縦壁部の内側の高さ中央部において、高さ方向に平行に5mm長さについて、二次元接触式の表面粗さ測定機を用いて、JIS B 0601に記載の表面粗さ測定を行い、算術平均粗さRaを算出した。算術平均粗さRa1.00μmを基準とし、Raが1.00μm未満の場合を加工肌荒れ評価が良好(「○」)と判断し、Raが1.00μm以上の場合を加工肌荒れ評価を不良(「×」)と判断した。 The surface described in JIS B 0601 using a two-dimensional contact-type surface roughness measuring instrument for a length of 5 mm parallel to the height direction at the inner height central portion of the vertical wall portion of the sample after cup molding. Roughness measurement was performed, and arithmetic average roughness Ra was calculated. Based on the arithmetic average roughness Ra of 1.00 μm, when the Ra is less than 1.00 μm, the rough skin evaluation is judged to be good (“◯”), and when the Ra is 1.00 μm or more, the rough skin evaluation is poor (“ X ").
 また、上記と同様に、電解抽出残渣法によって製品板におけるPの析出量Ppを測定した。
 まず、ステンレス鋼板の幅方向中心から、30mm角程度の大きさの試験片を切り出し、鋼板表面に相当する試験片全面を番数♯600の耐水研磨紙で湿式研磨した。研磨した後、10%無水マレイン酸および2%テトラメチルアンモニウムクロライドを含むメタノール溶液中で-100mVの定電位で電解することにより試験片母材(ステンレス母材)を溶解した。電気分解後、溶解せずに溶液中に残存した残渣(析出物)を200nmメッシュのフィルタを用いて捕捉した。捕捉した析出物を、純水で洗浄および乾燥した。次いで、王水と過塩素酸により析出物を溶解させ、JIS G 1258に準拠してICP発光分光分析法を用いて元素分析を行い析出物中のPの質量を求めた。得られたP量を、電解による試験片の質量変化量(「電気分解前の試験片の質量」-「電気分解後の試験片の質量」)で除して百分率で表示したものを「Pの析出量Pp」(質量%)とした。
 なお、冷間圧延を施す前の熱延焼鈍板におけるPの析出量Ppついても同じ方法によって測定した。
 以上、測定結果、評価結果を表5~表7に示す。
Further, in the same manner as described above, the precipitation amount Pp of P on the product plate was measured by the electrolytic extraction residue method.
First, a test piece having a size of about 30 mm square was cut out from the center in the width direction of the stainless steel plate, and the entire test piece corresponding to the surface of the steel plate was wet-polished with water-resistant abrasive paper of number # 600. After polishing, the test piece base material (stainless base material) was dissolved by electrolysis at a constant potential of −100 mV in a methanol solution containing 10% maleic anhydride and 2% tetramethylammonium chloride. After electrolysis, the residue (precipitate) remaining in the solution without being dissolved was captured using a 200 nm mesh filter. The trapped precipitate was washed with pure water and dried. Next, the precipitate was dissolved with aqua regia and perchloric acid, and elemental analysis was performed using ICP emission spectroscopy in accordance with JIS G 1258 to determine the mass of P in the precipitate. The amount of P obtained is divided by the amount of mass change of the test piece due to electrolysis (“the weight of the test piece before electrolysis” − “the weight of the test piece after electrolysis”) and expressed as a percentage. Precipitation amount Pp "(mass%).
In addition, it measured by the same method also about the precipitation amount Pp of P in the hot rolled annealing board before performing cold rolling.
The measurement results and evaluation results are shown in Tables 5 to 7.
 表2~表7に示すように、本実施形態によると、焼鈍条件、圧延条件の適正化によりリン化物の析出量を制御することで、加工後の肌荒れ性に優れ、かつ成形性に優れたフェライト系ステンレス鋼板を得ることが出来ることが分かった。
 本発明例では、Ra<1.00μmであり加工肌荒れは抑制された。
As shown in Tables 2 to 7, according to this embodiment, by controlling the precipitation amount of the phosphide by optimizing the annealing conditions and rolling conditions, the surface roughness after processing was excellent and the moldability was excellent. It was found that a ferritic stainless steel sheet can be obtained.
In the example of the present invention, Ra <1.00 μm, and rough processing was suppressed.
 一方、表2~表7のNo.25、26は成分組成が範囲外となった例であるが、いずれもPの析出量Ppおよび結晶粒度番号は実施形態の範囲内となったものの、成形性が劣化し絞りきることができなかった。またNo.27、28はともにTi、Nbが無添加の鋼Lを用いた例であるが、Pの固定化が不十分でPの析出量Ppが0.001%未満となるとともに、成形性が劣化し絞りきることができなかった。
 No.3、22は、冷延板焼鈍時の平均昇温速度が低すぎたため、リン化物の固溶が進行してPの析出量Ppが不足した。さらに、結晶粒度番号が小さくなり、加工肌荒れ性が劣化した。
 No.5、10、12、24は、保持時間が長すぎたため、リン化物の固溶が進行してPの析出量Ppが不足した。さらに、結晶粒度番号も小さくなり、加工肌荒れ性が劣化した。
 No.6、15は、熱延板焼鈍時の焼鈍温度が低く、かつ平均昇温速度が低すぎたため、結晶粒度番号が小さくなり、加工肌荒れ性が劣化した。
 No.7は、冷延率が小さく、さらに最高到達温度が高すぎたため、粒成長が進行して結晶粒度番号が小さくなり、加工肌荒れ性が劣化した。
 No.9は、熱延板焼鈍時の焼鈍温度が高すぎたため、Pの析出量Ppを確保できず加工肌荒れ性が劣化した。
 No.16は、最高到達温度が高すぎたため、結晶粒度番号が小さくなり、加工肌荒れ性が劣化した。
 No.19は、冷延板焼鈍時の平均昇温速度が低く、かつ保持時間が長すぎたため、リン化物の固溶が進行してPの析出量Ppが不足した。さらに、結晶粒度番号も小さくなり加工肌荒れ性が劣化した。
 No.20は、冷延率が小さすぎたため、結晶粒度番号が小さくなった。その結果、加工肌荒れ性が劣化した。
 No.21は、熱延板焼鈍時の焼鈍温度が高すぎたため、Pの析出量Ppを確保できず加工肌荒れ性が劣化した。
 No.14は、最高到達温度が高すぎたため、粒成長が進行して結晶粒度番号が小さくなり、加工肌荒れ性が劣化した。
 No.31は、冷延板焼鈍時の平均冷却速度が低いため、リン化物の固溶が進行してPの析出量Ppが不足し、かつ結晶粒度番号も小さくなり加工肌荒れ性が劣化した。
 No.32は、冷延板焼鈍時の平均冷却速度が低いため、リン化物の固溶が進行してPの析出量Ppが不足し、加工肌荒れ性が劣化した。
 No.36は、熱延板焼鈍時の焼鈍温度が高すぎたため、Pの析出量Ppを確保できず加工肌荒れ性が劣化した。
 No.38は、冷延板焼鈍時の平均昇温速度が低く、さらに最高到達温度が高すぎたため、粒成長が進行して結晶粒度番号が小さくなり加工肌荒れ性が劣化した。
On the other hand, Nos. 25 and 26 are examples in which the component composition was out of the range, but in both cases, the precipitation amount Pp and the crystal grain size number of P were within the range of the embodiment, but the formability deteriorated and could not be narrowed down. It was. No. 27 and 28 are examples using steel L without addition of Ti and Nb, but the immobilization of P is insufficient and the precipitation amount Pp of P becomes less than 0.001%, and the formability deteriorates. I couldn't squeeze it.
No. In Nos. 3 and 22, the average heating rate during cold-rolled sheet annealing was too low, so that the solid solution of the phosphide progressed and the precipitation amount Pp of P was insufficient. Furthermore, the crystal grain size number became smaller, and the roughened processing surface deteriorated.
No. In 5, 10, 12, and 24, since the holding time was too long, the solid solution of the phosphide progressed and the precipitation amount Pp of P was insufficient. Furthermore, the crystal grain size number was also reduced, and the roughened processing surface was deteriorated.
No. Nos. 6 and 15 had a low annealing temperature at the time of hot-rolled sheet annealing and an average temperature increase rate that was too low.
No. In No. 7, since the cold rolling rate was small and the maximum temperature reached was too high, the grain growth progressed, the crystal grain size number became small, and the roughness of the processed skin deteriorated.
No. In No. 9, since the annealing temperature at the time of hot-rolled sheet annealing was too high, the precipitation amount Pp of P could not be ensured, and the roughness of the processed skin deteriorated.
No. In No. 16, since the maximum temperature reached was too high, the crystal grain size number was reduced, and the roughened processing surface was deteriorated.
No. No. 19 had a low average heating rate during cold-rolled sheet annealing, and the holding time was too long, so that the solid solution of the phosphide progressed and the precipitation amount Pp of P was insufficient. Furthermore, the grain size number was also reduced, and the roughness of the processed skin was deteriorated.
No. No. 20 had a smaller crystal grain size number because the cold rolling rate was too small. As a result, the roughness of the processed skin deteriorated.
No. In No. 21, since the annealing temperature at the time of hot-rolled sheet annealing was too high, the precipitation amount Pp of P could not be ensured, and the roughened workability deteriorated.
No. In No. 14, since the maximum temperature reached was too high, grain growth progressed, the crystal grain size number became smaller, and the roughening of the processed skin deteriorated.
No. No. 31 had a low average cooling rate during cold-rolled sheet annealing, so that the solid solution of the phosphide progressed, the precipitation amount Pp of P became insufficient, the grain size number became smaller, and the roughened workability deteriorated.
No. No. 32 had a low average cooling rate during cold-rolled sheet annealing, so that the solid solution of the phosphide progressed and the precipitation amount Pp of P was insufficient, resulting in deterioration of the roughened work surface.
No. In No. 36, since the annealing temperature at the time of hot-rolled sheet annealing was too high, the precipitation amount Pp of P could not be ensured, and the processed skin roughness deteriorated.
No. No. 38 had a low average temperature increase rate during cold-rolled sheet annealing, and the maximum temperature reached was too high, so that the grain growth progressed and the grain size number became small, and the roughened workability deteriorated.
 また図2において粒度番号9.0以上かつ析出P量0.003%未満の領域では、比較的細粒のため加工肌荒れは多少の低下は望めるが、P化物による加工肌荒れを抑制する効果が無いため、同程度の粒度番号で析出P量の多い本発明例に比べて耐加工肌荒れ性で劣っている。 Further, in FIG. 2, in the region where the particle size number is 9.0 or more and the amount of precipitated P is less than 0.003%, the roughening of the processed skin can be expected to be somewhat reduced due to the relatively fine particles, but there is no effect of suppressing the roughened processing skin due to the P compound. For this reason, it is inferior in the rough surface resistance to processing compared with the present invention example having a similar particle size number and a large amount of precipitated P.
 なお、Pが0.003%未満の鋼成分については、表2~表7のNo.4と同様に製造したところ、析出P量が0.003%以下であり、成形試験後のRaは1.00μm以上であった。Pが0.1%超の鋼組成については、表2~表7のNo.4と同様に製造したところ、成形性が劣り、成形できなかった。 For steel components with P less than 0.003%, No. in Table 2 to Table 7. When manufactured in the same manner as in No. 4, the amount of precipitated P was 0.003% or less, and Ra after the molding test was 1.00 μm or more. For steel compositions with P over 0.1%, No. 2 in Tables 2-7. When manufactured in the same manner as in No. 4, the moldability was inferior and molding was impossible.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本実施形態によれば、成形加工性及び成形加工後の耐加工肌荒れ性に優れたフェライト系ステンレス鋼板とその製造方法を提供することが可能である。このため、本実施形態のフェライト系ステンレス鋼板は、成形用途に好適に適用される。 According to this embodiment, it is possible to provide a ferritic stainless steel sheet excellent in forming workability and resistance to rough processing after forming, and a method for manufacturing the same. For this reason, the ferritic stainless steel plate of this embodiment is applied suitably for a forming use.

Claims (4)

  1.  質量%にて、
    Cr:11.0%以上30.0%以下、
    C:0.001%以上0.030%以下、
    Si:0.01%以上2.00%以下、
    Mn:0.01%以上2.00%以下、
    P:0.003%以上0.100%以下、
    S:0.0100%以下、
    N:0.030%以下、
    B:0%以上0.0025%以下、
    Sn:0%以上0.50%以下、
    Ni:0%以上1.00%以下、
    Cu:0%以上1.00%以下、
    Mo:0%以上2.00%以下、
    W:0%以上1.00%以下、
    Al:0%以上1.00%以下、
    Co:0%以上0.50%以下、
    V:0%以上0.50%以下、
    Zr:0%以上0.50%以下、
    Ca:0%以上0.0050%以下、
    Mg:0%以上0.0050%以下、
    Y:0%以上0.10%以下、
    Hf:0%以上0.10%以下、
    REM:0%以上0.10%以下、
    Sb:0%以上0.50%以下を含み、さらに、
    Ti:0.40%以下、Nb:0.50%以下のうち、いずれか一方又は両方を含み、残部がFe及び不純物からなり、
     リン化物として存在しているP量が0.003質量%以上であり、
     JIS G 0551にて測定される結晶粒度番号が9.0以上であることを特徴とするフェライト系ステンレス鋼板。
    In mass%
    Cr: 11.0% or more and 30.0% or less,
    C: 0.001% to 0.030%,
    Si: 0.01% or more and 2.00% or less,
    Mn: 0.01% or more and 2.00% or less,
    P: 0.003% to 0.100%,
    S: 0.0100% or less,
    N: 0.030% or less,
    B: 0% or more and 0.0025% or less,
    Sn: 0% to 0.50%,
    Ni: 0% or more and 1.00% or less,
    Cu: 0% or more and 1.00% or less,
    Mo: 0% or more and 2.00% or less,
    W: 0% to 1.00%,
    Al: 0% or more and 1.00% or less,
    Co: 0% to 0.50%,
    V: 0% or more and 0.50% or less,
    Zr: 0% or more and 0.50% or less,
    Ca: 0% or more and 0.0050% or less,
    Mg: 0% or more and 0.0050% or less,
    Y: 0% or more and 0.10% or less,
    Hf: 0% or more and 0.10% or less,
    REM: 0% or more and 0.10% or less,
    Sb: 0% or more and 0.50% or less,
    Ti: 0.40% or less, Nb: 0.50% or less, including either one or both, the balance consists of Fe and impurities,
    The amount of P present as a phosphide is 0.003% by mass or more,
    A ferritic stainless steel sheet having a grain size number measured by JIS G 0551 of 9.0 or more.
  2.  質量%にて、更に、
    B:0.0001%以上0.0025%以下、
    Sn:0.005%以上0.50%以下、
    Ni:0.05%以上1.00%以下、
    Cu:0.05%以上1.00%以下、
    Mo:0.05%以上2.00%以下、
    W:0.05%以上1.00%以下、
    Al:0.05%以上1.00%以下、
    Co:0.05%以上0.50%以下、
    V:0.05%以上0.50%以下、
    Zr:0.05%以上0.50%以下、
    Ca:0.0001%以上0.0050%以下、
    Mg:0.0001%以上0.0050%以下、
    Y:0.001%以上0.10%以下、
    Hf:0.001%以上0.10%以下、
    REM:0.001%以上0.10%以下、
    Sb:0.005%以上0.50%以下の1種または2種以上を含有していることを特徴とする請求項1に記載のフェライト系ステンレス鋼板。
    In mass%,
    B: 0.0001% to 0.0025%,
    Sn: 0.005% or more and 0.50% or less,
    Ni: 0.05% or more and 1.00% or less,
    Cu: 0.05% or more and 1.00% or less,
    Mo: 0.05% or more and 2.00% or less,
    W: 0.05% or more and 1.00% or less,
    Al: 0.05% or more and 1.00% or less,
    Co: 0.05% or more and 0.50% or less,
    V: 0.05% or more and 0.50% or less,
    Zr: 0.05% or more and 0.50% or less,
    Ca: 0.0001% to 0.0050%,
    Mg: 0.0001% or more and 0.0050% or less,
    Y: 0.001% or more and 0.10% or less,
    Hf: 0.001% or more and 0.10% or less,
    REM: 0.001% or more and 0.10% or less,
    2. The ferritic stainless steel sheet according to claim 1, comprising one or more of Sb: 0.005% or more and 0.50% or less.
  3.  請求項1又は2に記載の成分を有する鋼を、熱間圧延する熱間圧延工程と、
     前記熱間圧延工程後、850℃以上900℃以下の温度で熱処理を施す熱延板焼鈍工程と、
     前記熱延板焼鈍工程後、圧延率を75%以上90%以下として圧延する冷間圧延工程と、
     前記冷間圧延工程に引き続いて行う冷延板焼鈍工程と、を備え、
     前記冷延板焼鈍工程において、昇温過程のうち400℃~800℃の温度範囲における平均昇温速度が80℃/s以上であり、板温の最高到達温度が880℃以上980℃以下であり、最高到達温度に到達後5sec以内に冷却を開始し、最高到達温度から700℃までの温度範囲における平均冷却速度を50℃/s以上として冷却することを特徴とする、請求項1または2に記載のフェライト系ステンレス鋼板の製造方法。
    A hot rolling step of hot rolling the steel having the component according to claim 1 or 2,
    After the hot rolling step, a hot-rolled sheet annealing step of performing heat treatment at a temperature of 850 ° C. or higher and 900 ° C. or lower,
    After the hot-rolled sheet annealing step, a cold rolling step for rolling at a rolling rate of 75% or more and 90% or less,
    A cold-rolled sheet annealing step that follows the cold rolling step,
    In the cold-rolled sheet annealing step, the average rate of temperature increase in the temperature range of 400 ° C. to 800 ° C. in the temperature increasing process is 80 ° C./s or more, and the maximum temperature reached is 880 ° C. or more and 980 ° C. or less. The cooling is started within 5 seconds after reaching the maximum temperature, and is cooled at an average cooling rate in the temperature range from the maximum temperature to 700 ° C at 50 ° C / s or more. The manufacturing method of the ferritic stainless steel plate of description.
  4.  請求項1又は2に記載の成分を有する鋼を、熱間圧延する熱間圧延工程と、
     前記熱間圧延工程後、850℃以上900℃以下の温度で熱処理を施して、リン化物として存在するP量を0.003質量%以上とする熱延板焼鈍工程と、
     前記熱延板焼鈍工程後、圧延率を75%以上90%以下として圧延する冷間圧延工程と、
     前記冷間圧延工程に引き続いて行う冷延板焼鈍工程と、を備え、
     前記冷延板焼鈍工程において、昇温過程のうち400℃~800℃の温度範囲における平均昇温速度が80℃/s以上であり、板温の最高到達温度が880℃以上980℃以下であり、最高到達温度に到達後5sec以内に冷却を開始し、最高到達温度から700℃までの温度範囲における平均冷却速度を50℃/s以上として冷却することを特徴とする、請求項1または2に記載のフェライト系ステンレス鋼板の製造方法。
    A hot rolling step of hot rolling the steel having the component according to claim 1 or 2,
    After the hot rolling step, heat treatment is performed at a temperature of 850 ° C. or higher and 900 ° C. or lower, and a hot rolled sheet annealing step in which the amount of P existing as a phosphide is 0.003% by mass or more,
    After the hot-rolled sheet annealing step, a cold rolling step for rolling at a rolling rate of 75% or more and 90% or less,
    A cold-rolled sheet annealing step that follows the cold rolling step,
    In the cold-rolled sheet annealing step, the average rate of temperature increase in the temperature range of 400 ° C. to 800 ° C. in the temperature increasing process is 80 ° C./s or more, and the maximum temperature reached is 880 ° C. or more and 980 ° C. or less. The cooling is started within 5 seconds after reaching the maximum temperature, and is cooled at an average cooling rate in the temperature range from the maximum temperature to 700 ° C at 50 ° C / s or more. The manufacturing method of the ferritic stainless steel plate of description.
PCT/JP2019/009147 2018-03-30 2019-03-07 Ferritic stainless steel sheet and method for producing same WO2019188094A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207021338A KR102443897B1 (en) 2018-03-30 2019-03-07 Ferritic stainless steel sheet and its manufacturing method
CN201980010612.XA CN111655890B (en) 2018-03-30 2019-03-07 Ferritic stainless steel sheet and method for producing same
JP2020509785A JP6906688B2 (en) 2018-03-30 2019-03-07 Ferritic stainless steel sheet and its manufacturing method
BR112020015001-0A BR112020015001A2 (en) 2018-03-30 2019-03-07 FERRITIC STAINLESS STEEL SHEET AND METHOD FOR THE PRODUCTION OF THE SAME
EP19776987.0A EP3805417A4 (en) 2018-03-30 2019-03-07 Ferritic stainless steel sheet and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018069775 2018-03-30
JP2018-069775 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019188094A1 true WO2019188094A1 (en) 2019-10-03

Family

ID=68059877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009147 WO2019188094A1 (en) 2018-03-30 2019-03-07 Ferritic stainless steel sheet and method for producing same

Country Status (6)

Country Link
EP (1) EP3805417A4 (en)
JP (1) JP6906688B2 (en)
KR (1) KR102443897B1 (en)
CN (1) CN111655890B (en)
BR (1) BR112020015001A2 (en)
WO (1) WO2019188094A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388780A (en) * 2021-05-25 2021-09-14 宁波宝新不锈钢有限公司 430 ferrite stainless steel for kitchenware panel and preparation method thereof
WO2022145063A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
WO2022145066A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796838B (en) * 2021-11-17 2023-03-21 日商日鐵不銹鋼股份有限公司 Fertilized iron series stainless steel plate
CN116024504A (en) * 2022-12-16 2023-04-28 坤石容器制造有限公司 Ferrite stainless steel for high-purity unstable electron special gas in semiconductor industry and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292417A (en) 1994-04-22 1995-11-07 Sumitomo Metal Ind Ltd Production of ferritic stainless steel sheet excellent in formed surface characteristic
WO2003106725A1 (en) * 2002-06-01 2003-12-24 Jfeスチール株式会社 FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF
JP3788311B2 (en) 2001-10-31 2006-06-21 Jfeスチール株式会社 Ferritic stainless steel sheet and manufacturing method thereof
JP2007314837A (en) * 2006-05-25 2007-12-06 Nisshin Steel Co Ltd Age hardening type ferritic stainless steel sheet and age-treated steel material using the same
JP4749888B2 (en) 2006-02-22 2011-08-17 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in formability with less rough processing and manufacturing method thereof
JP2017048417A (en) * 2015-08-31 2017-03-09 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel sheet for deep draw forming excellent in secondary working brittleness resistance and production method therefor
JP2018069775A (en) 2016-10-25 2018-05-10 いすゞ自動車株式会社 Inverter-cooling pump control apparatus and vehicle

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1012181B (en) * 1984-06-28 1991-03-27 日新制钢株式会社 P-added ferritic stainless steel having excellent formability and secondary workability
JP2818182B2 (en) * 1989-02-20 1998-10-30 新日本製鐵株式会社 Manufacturing method of ferritic stainless steel sheet with excellent workability without surface flaws
JP3142427B2 (en) * 1993-11-02 2001-03-07 川崎製鉄株式会社 Ferritic stainless steel sheet excellent in secondary work brittleness resistance and method for producing the same
KR0167168B1 (en) * 1994-10-28 1999-03-20 이희종 Voltage decision method for digital instrument
JP3477957B2 (en) * 1995-11-24 2003-12-10 Jfeスチール株式会社 Ferritic stainless steel with excellent corrosion resistance under high temperature oxidation environment of 200-400 ° C
JP3455047B2 (en) * 1997-01-23 2003-10-06 新日本製鐵株式会社 Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
US20070196160A1 (en) * 2004-03-18 2007-08-23 Sakura Color Products Corporation Tips for ball-point pens, roller ball pens or gel ink roller ball pens
JP5545301B2 (en) * 2009-10-28 2014-07-09 コニカミノルタ株式会社 Organic electroluminescent panel manufacturing method, organic electroluminescent panel
JP5670064B2 (en) * 2010-02-22 2015-02-18 日新製鋼株式会社 Ferrite single-phase stainless steel slab manufacturing method
JP2014183254A (en) * 2013-03-21 2014-09-29 Jfe Steel Corp Ferrite-based stainless foil for solar battery substrate use
CN104109809B (en) * 2014-06-20 2018-11-06 宝钢不锈钢有限公司 A kind of high formability low chrome ferritic stainless steel and manufacturing method
CN105839021B (en) * 2015-01-12 2017-07-28 宝钢特钢有限公司 The manufacture of steel pipe of ferritic stainless steel containing rare-earth and high chromium
JP6022097B1 (en) * 2016-03-30 2016-11-09 日新製鋼株式会社 Ti-containing ferritic stainless steel sheet and manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292417A (en) 1994-04-22 1995-11-07 Sumitomo Metal Ind Ltd Production of ferritic stainless steel sheet excellent in formed surface characteristic
JP3788311B2 (en) 2001-10-31 2006-06-21 Jfeスチール株式会社 Ferritic stainless steel sheet and manufacturing method thereof
WO2003106725A1 (en) * 2002-06-01 2003-12-24 Jfeスチール株式会社 FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF
JP4749888B2 (en) 2006-02-22 2011-08-17 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in formability with less rough processing and manufacturing method thereof
JP2007314837A (en) * 2006-05-25 2007-12-06 Nisshin Steel Co Ltd Age hardening type ferritic stainless steel sheet and age-treated steel material using the same
JP2017048417A (en) * 2015-08-31 2017-03-09 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel sheet for deep draw forming excellent in secondary working brittleness resistance and production method therefor
JP2018069775A (en) 2016-10-25 2018-05-10 いすゞ自動車株式会社 Inverter-cooling pump control apparatus and vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3805417A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145063A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
WO2022145066A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
JP7469714B2 (en) 2020-12-28 2024-04-17 日本製鉄株式会社 Steel
CN113388780A (en) * 2021-05-25 2021-09-14 宁波宝新不锈钢有限公司 430 ferrite stainless steel for kitchenware panel and preparation method thereof

Also Published As

Publication number Publication date
JP6906688B2 (en) 2021-07-21
CN111655890B (en) 2021-10-29
JPWO2019188094A1 (en) 2020-12-17
KR20200100159A (en) 2020-08-25
EP3805417A4 (en) 2022-01-05
KR102443897B1 (en) 2022-09-19
CN111655890A (en) 2020-09-11
EP3805417A1 (en) 2021-04-14
BR112020015001A2 (en) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2019188094A1 (en) Ferritic stainless steel sheet and method for producing same
JP5315811B2 (en) Ferritic stainless steel plate with excellent resistance to sulfuric acid corrosion
KR100977600B1 (en) The ferritic stainless steel plate having low orange peel and exhibiting excellent formability, and method for producing the same
JP4749888B2 (en) Ferritic stainless steel sheet excellent in formability with less rough processing and manufacturing method thereof
EP1846584A1 (en) Austenitic steel having high strenght and formability method of producing said steel and use thereof
US6413332B1 (en) Method of producing ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
EP4043597A1 (en) Ferritic stainless steel sheet, method for producing same and ferritic stainless steel member
JP6738928B1 (en) Ferritic stainless steel sheet and method of manufacturing the same
JP6617182B1 (en) Ferritic stainless steel sheet
JP7304715B2 (en) Ferritic stainless steel plate
JP6836969B2 (en) Ferritic stainless steel sheet
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
CN113166831B (en) Ferritic stainless steel sheet and method for producing same
JP6986135B2 (en) Ferritic stainless steel sheets, their manufacturing methods, and ferritic stainless steel members
JP7166878B2 (en) Ferritic stainless steel plate, manufacturing method thereof, and ferritic stainless steel member
KR102515016B1 (en) Ferritic stainless steel plate
JP3477098B2 (en) Ferritic stainless steel sheet excellent in surface properties and ridging properties and method for producing the same
WO2023153185A1 (en) Austenitic stainless steel and method for producing austenitic stainless steel
WO2023153184A1 (en) Austenitic stainless steel and method for producing austenitic stainless steel
JP2023147504A (en) Ferritic stainless steel sheet and method of manufacturing the same
JP2022079072A (en) Ferritic stainless steel sheet and method for manufacturing the same
JP2023060596A (en) Ferritic stainless steel plate and method for producing the same
JP2022150255A (en) Ferritic stainless steel hot-rolled plate and method for manufacturing the same and ferritic stainless cold-rolled plate
TW202006154A (en) Steel plate
JP2020152941A (en) Two-phase stainless steel, and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509785

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207021338

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020015001

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2019776987

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112020015001

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200723