JP2017048417A - High purity ferritic stainless steel sheet for deep draw forming excellent in secondary working brittleness resistance and production method therefor - Google Patents

High purity ferritic stainless steel sheet for deep draw forming excellent in secondary working brittleness resistance and production method therefor Download PDF

Info

Publication number
JP2017048417A
JP2017048417A JP2015171474A JP2015171474A JP2017048417A JP 2017048417 A JP2017048417 A JP 2017048417A JP 2015171474 A JP2015171474 A JP 2015171474A JP 2015171474 A JP2015171474 A JP 2015171474A JP 2017048417 A JP2017048417 A JP 2017048417A
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
steel sheet
purity ferritic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015171474A
Other languages
Japanese (ja)
Other versions
JP6602112B2 (en
Inventor
秦野 正治
Masaharu Hatano
正治 秦野
智彦 盛田
Tomohiko Morita
智彦 盛田
春樹 有吉
Haruki Ariyoshi
春樹 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2015171474A priority Critical patent/JP6602112B2/en
Publication of JP2017048417A publication Critical patent/JP2017048417A/en
Application granted granted Critical
Publication of JP6602112B2 publication Critical patent/JP6602112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a high purity ferritic stainless steel sheet for deep draw forming having remedied secondary working brittleness, excellent in resource saving and economic efficiency and suitable for electric pot use application, and a production method therefor.SOLUTION: The high purity ferritic stainless steel sheet for deep draw forming excellent in secondary working brittleness resistance is provided that contains, by mass%, C:0.03% or less, Si:1% or less, Mn:1% or less, P:0.035% or less, S:0.003% or less, Cr:13 to 23%, N:0.03% or less, Nb:0.5% or less, Ti:0.5% or less, Al:0.1% or less and further Ni:1% or less and/or Cu:1% or less and the balance Fe with inevitable impurities, the contents of Ni and Cu satisfying the following Formula (1).0.3<Ni+Cu≤1 Formula... (1).SELECTED DRAWING: None

Description

本発明は、深絞り加工後の耐二次加工脆性に優れた高純度フェライト系ステンレス鋼板に関し、深絞り加工後に熱処理が施される用途、例えばろう付けなどがその熱処理に該当し、特に電気ポット用途に好適である。   The present invention relates to a high-purity ferritic stainless steel sheet having excellent secondary work brittleness resistance after deep drawing, and the use in which heat treatment is performed after deep drawing, such as brazing, corresponds to the heat treatment. Suitable for use.

フェライト系ステンレス鋼は、厨房機器、家電製品、電子機器など幅広い分野で使用されている。近年、精錬技術の向上により極低炭素・窒素化,PやSなど不純物元素の低減が可能となり、NbやTi等の安定化元素を添加して耐銹性と加工性を高めたフェライト系ステンレス鋼(以下、高純度フェライト系ステンレス鋼)は広範囲の用途へ適用されつつある。これは、高純度フェライト系ステンレス鋼が、原料価格変動の著しいNiを多量に含有するオ−ステナイト系ステンレス鋼よりも経済性に優れているためである。   Ferritic stainless steel is used in a wide range of fields such as kitchen equipment, home appliances, and electronic equipment. Recent improvements in refining technology have enabled extremely low carbon, nitrogenization, reduction of impurity elements such as P and S, and addition of stabilizing elements such as Nb and Ti to improve ferritic stainless steel with improved weather resistance and workability Steel (hereinafter referred to as high-purity ferritic stainless steel) is being applied to a wide range of applications. This is because high-purity ferritic stainless steel is more economical than austenitic stainless steel containing a large amount of Ni whose raw material price fluctuates significantly.

高純度フェライト系ステンレス鋼板の二次加工脆性改善については、これまで種々の検討がなされている。例えば、特許文献1には、C:0.0030%以下、Cr:9〜25%、Ti:0.07超〜0.15%、N:0.0010〜0.0070%、5×(C+N)≦Ti≦0.12+{4×C+(24/7)×N}、必要に応じてB:0.0003〜0.0050%を添加することが開示されている。特許文献2では、C:0.01%以下、Cr:11〜23%、N:0.04%以下、B:0.0005〜0.01%、18≦Nb/(C+N)+2×(Ti/(C+N))≦60を含有する深絞り性と耐二次加工脆性に優れるフェライト系ステンレス鋼板が開示されている。また、特許文献3は、C:0.010%以下、Cr:9〜25%、Ti+Nb:0.6%以下かつ(Ti+Nb)/(C+N)≧7、Mg:0.0050%以下かつMg≧0.05×Pを満たすことを特徴とする深絞り成形後の耐二次加工脆性に優れた高純度フェライト系ステンレス鋼板である。   Various studies have been made to improve secondary work brittleness of high purity ferritic stainless steel sheets. For example, in Patent Document 1, C: 0.0030% or less, Cr: 9 to 25%, Ti: more than 0.07 to 0.15%, N: 0.0010 to 0.0070%, 5 × (C + N ) ≦ Ti ≦ 0.12 + {4 × C + (24/7) × N}, and B: 0.0003 to 0.0050% is added as necessary. In Patent Document 2, C: 0.01% or less, Cr: 11-23%, N: 0.04% or less, B: 0.0005-0.01%, 18 ≦ Nb / (C + N) + 2 × (Ti A ferritic stainless steel sheet excellent in deep drawability and secondary work brittleness resistance containing / (C + N)) ≦ 60 is disclosed. Patent Document 3 discloses that C: 0.010% or less, Cr: 9 to 25%, Ti + Nb: 0.6% or less and (Ti + Nb) / (C + N) ≧ 7, Mg: 0.0050% or less, and Mg ≧ It is a high-purity ferritic stainless steel sheet excellent in secondary work brittleness resistance after deep drawing, characterized by satisfying 0.05 × P.

上述した鋼は、C及びNの過度な低減やTi及びNbと微量元素としてB、Mgの制御を特徴としている。0.0050%以下へのCの低減は、工業生産において製鋼能力を著しく阻害する。また、BはCやNと同様に浸入型固溶元素として作用し、耐二次加工脆性を向上させる一方で、加工性を低下させる弊害がある。Mgは、脱酸元素として有効に作用するものの、鋼への歩留まりは極めて小さく、耐二次加工脆性を確保するための添加により製鋼工程に係る製造性を著しく損なう問題もある。   The steel described above is characterized by excessive reduction of C and N and control of B and Mg as Ti and Nb and trace elements. Reduction of C to 0.0050% or less significantly impairs steelmaking capacity in industrial production. B, like C and N, acts as an intrusion-type solid solution element, and has the detrimental effect of reducing workability while improving secondary work embrittlement resistance. Although Mg acts effectively as a deoxidizing element, the yield to steel is extremely small, and there is also a problem that the productivity related to the steel making process is remarkably impaired by addition for ensuring secondary work brittleness resistance.

Ti及びNbとBやMgの制御に依らず、二次加工性を改善する方法として、特許文献4には、1%超のSi含有鋼においてNi:0.2〜3%、Cu:1%以下、Mo:3%以下を添加する耐摩耗性と二次加工性に優れたフェライト系ステンレス鋼が開示されている。また、特許文献5には、1%以上のMo含有鋼においてCo:0.01〜0.3%、V:0.01〜0.3%、B:0.0002〜0.005%を添加してカップ成形後の縦割れ発生を抑制した耐二次加工性および高温疲労特性に優れたフェライト系ステンレス鋼が開示されている。これら鋼は、1%を超えるSiやMoを高合金化した高強度鋼であり、軟質かつ加工性に優れた高純度フェライト系ステンレス鋼の成分ならびに特性が全く異なるものである。   As a method for improving secondary workability without depending on the control of Ti, Nb, B and Mg, Patent Document 4 discloses that Ni: 0.2 to 3% and Cu: 1% in a Si-containing steel exceeding 1%. Hereinafter, ferritic stainless steel excellent in wear resistance and secondary workability to which Mo: 3% or less is added is disclosed. Patent Document 5 adds Co: 0.01 to 0.3%, V: 0.01 to 0.3%, and B: 0.0002 to 0.005% in a Mo-containing steel of 1% or more. Thus, a ferritic stainless steel excellent in secondary work resistance and high temperature fatigue properties that suppresses the occurrence of vertical cracks after cup molding is disclosed. These steels are high-strength steels in which Si and Mo exceeding 1% are highly alloyed, and are completely different in composition and characteristics of high-purity ferritic stainless steels that are soft and excellent in workability.

これまで発明者らは、省資源・経済性の観点から,CrやMoなどの高合金化によらず、Snの微量添加により耐食性や加工性を改善した高純度フェライト系ステンレス鋼について開示している。特許文献6および7は、Cr:13〜22%,Sn:0.001〜1%でC,N,Si,Mn,Pを低減し、必要に応じてTiやNbの安定化元素を添加した高純度フェライト系ステンレス鋼である。これら公報には、本発明の目的とする深絞り加工後の耐二次加工脆性に対する合金元素の作用効果については何ら検討されていない。   Until now, the inventors have disclosed a high-purity ferritic stainless steel that has improved corrosion resistance and workability by adding a small amount of Sn, regardless of the use of a high alloy such as Cr or Mo, from the viewpoint of resource saving and economy. Yes. In Patent Documents 6 and 7, C, N, Si, Mn, and P are reduced with Cr: 13 to 22%, Sn: 0.001 to 1%, and Ti and Nb stabilizing elements are added as necessary. High purity ferritic stainless steel. None of these publications discusses the effect of the alloying elements on the secondary work brittleness resistance after deep drawing, which is the object of the present invention.

特開平8−296000号公報JP-A-8-296000 特開2003−201547号公報JP 2003-201547 A 特許第3477113号公報Japanese Patent No. 3477113 特公昭63−149358号公報Japanese Examined Patent Publication No. 63-149358 特開2002−80943号公報JP 2002-80943 A 特許第4651682号公報Japanese Patent No. 4651682 特許第4624473号公報Japanese Patent No. 4624473

上述した通り、高純度フェライト系ステンレス鋼板の二次加工脆性改善についてTi及びNbと微量元素としてB、Mgの制御は有効であるものの、加工性や製造性に課題が残る。また、このような元素の制御ならびに高強度鋼で開示されたSiやMo等の合金化が本発明の目的とする深絞り加工後にろう付け等の熱処理が施される場合に顕在化する二次加工脆性に対して有効に作用するか否かも不明である。
そこで本発明の目的は、微量元素やSiやMo等の合金化によらず、深絞り加工後に熱処理が施されて顕在化する二次加工脆性を改善した省資源・経済性に優れた深絞り成形用高純度フェライト系ステンレス鋼板を提供することにある。
As described above, control of Ti and Nb and B and Mg as trace elements is effective for improving secondary work embrittlement of high purity ferritic stainless steel sheets, but problems remain in workability and manufacturability. In addition, the control of such elements and the alloying of Si, Mo, etc. disclosed in high-strength steels are manifested when heat treatment such as brazing is performed after the deep drawing process intended by the present invention. It is also unclear whether it will work effectively against work brittleness.
Therefore, the object of the present invention is to provide deep drawing with excellent resource saving and economical efficiency that has improved secondary work brittleness that is manifested by heat treatment after deep drawing, regardless of alloying of trace elements, Si, Mo, etc. The object is to provide a high purity ferritic stainless steel sheet for forming.

本発明者らは、前記した課題を解決するために、高純度フェライト系ステンレス鋼板において、深絞り加工後の二次加工脆性に及ぼす熱処理の影響と二次加工脆性を改善する合金元素の作用効果について鋭意検討を行い,下記の新しい知見を得て本発明をなすに至った。   In order to solve the above-mentioned problems, the present inventors, in a high-purity ferritic stainless steel sheet, the effect of heat treatment on the secondary work brittleness after deep drawing and the effect of alloying elements to improve the secondary work brittleness As a result, the present inventors have made the present invention with the following new findings.

(a)深絞り加工後の二次加工脆性は、600〜650℃への加熱と炉冷相当(3℃/分以下)の緩冷却により顕在化し、従来、深絞り加工後に二次加工脆性を生じなかった高純度フェライト系ステンレス鋼板においても脆性的な割れを誘発する場合がある。これら脆性的な割れは、深絞り加工品をハンマーで叩くあるいは落下させるなどの衝撃を与えると発生し、結晶粒界を起点として粒内へも伝播することによりマクロ的な縦割れに伸展する。電子顕微鏡の超高真空中で割れの起点となる結晶粒界を現出させて分析した結果、Pの粒界偏析が顕在化することを突き止め、Pの粒界偏析は結晶粒界の結合力を低下させて割れの起点を与えたものと考えられる。 (A) Secondary work brittleness after deep drawing is manifested by heating to 600 to 650 ° C. and slow cooling equivalent to furnace cooling (3 ° C./min or less). Even in a high purity ferritic stainless steel sheet that has not occurred, brittle cracking may be induced. These brittle cracks are generated when a deep-drawn product is hit with a hammer or dropped, and propagates into the grains starting from the crystal grain boundaries to extend into macro vertical cracks. As a result of revealing and analyzing the grain boundary that is the starting point of cracking in an ultrahigh vacuum of an electron microscope, it was found that the grain boundary segregation of P became apparent. P grain boundary segregation is the bonding force of grain boundaries. It is thought that the starting point of cracking was given by lowering.

(b)上述した二次加工脆性の抑止には、0.01%以下の過度なPの低下に依らず、1%以下のNiやCuの単独及び複合添加が効果的である。これら元素は、600〜650℃加熱後の冷却過程で生じるPの粒界偏析を遅延させる作用を有するものと考えられる。同様な作用効果は、MoやSnの添加においても見出され、ここでSnは、Ni、CuあるいはMoとの複合した第2もしくは第3元素として添加することが好適である。 (B) In order to suppress the secondary work brittleness described above, it is effective to add 1% or less of Ni or Cu alone or in combination without depending on an excessive decrease of P of 0.01% or less. These elements are considered to have the effect of delaying the grain boundary segregation of P generated in the cooling process after heating at 600 to 650 ° C. Similar effects are also found in the addition of Mo or Sn, where Sn is preferably added as a second or third element combined with Ni, Cu or Mo.

(c)二次加工脆性の主因であるPの粒界偏析は、微細なリン化合物を予め析出させることにより、上述した合金元素の作用効果と重畳して顕著に抑制できることを見出した。このようなリン化合物の制御は、仕上げ焼鈍後の金属組織を、650〜750℃にて5分超、3h以下の範囲で温度保持することが効果的であることを新たに見出した。 (C) It has been found that the grain boundary segregation of P, which is the main cause of secondary work brittleness, can be remarkably suppressed by precipitating a fine phosphorus compound in advance, overlapping with the effects of the alloy elements described above. It has been newly found that such control of the phosphorus compound is effective to hold the metal structure after the finish annealing at a temperature of 650 to 750 ° C. for more than 5 minutes and for 3 hours or less.

(d)上述した耐二次加工脆性と深絞り性の向上には、P、S、Nの低減と、Nb、Tiの安定化元素に加えて、V、W、Zr、Coの微量元素を添加することも有効である。 (D) In order to improve the secondary work brittleness resistance and deep drawability described above, in addition to the reduction of P, S, and N, and the stabilization elements of Nb and Ti, trace elements of V, W, Zr, and Co are used. It is also effective to add.

上記(a)〜(d)の知見に基づいて成された本発明の要旨は、以下の通りである。   The gist of the present invention based on the above findings (a) to (d) is as follows.

(1)質量%にて、C:0.03%以下、Si:1%以下、Mn:1%以下、P:0.035%以下、S:0.003%以下、Cr:13〜23%、N:0.03%以下、Nb:0.5%以下、Ti:0.5%以下、Al:0.1%以下、更に、Ni:1%以下及び/又はCu:1%以下を含み、残部がFeおよび不可避的不純物からなり、且つNi及びCuの含有量が下記の式(1)を満たすことを特徴とする耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板。
0.3<Ni+Cu≦1・・・式(1)
(1) In mass%, C: 0.03% or less, Si: 1% or less, Mn: 1% or less, P: 0.035% or less, S: 0.003% or less, Cr: 13-23% N: 0.03% or less, Nb: 0.5% or less, Ti: 0.5% or less, Al: 0.1% or less, Ni: 1% or less and / or Cu: 1% or less A high-purity ferritic stainless steel sheet for deep drawing excellent in secondary work brittleness resistance, characterized in that the balance consists of Fe and inevitable impurities and the contents of Ni and Cu satisfy the following formula (1) .
0.3 <Ni + Cu ≦ 1 Formula (1)

(2)さらに質量%にて、Mo:1%以下、Sn:0.5%以下を含み、且つNi、Cu、Mo及びSnの含有量が下記の式(2)を満たすことを特徴とする(1)に記載の耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板。
0.3<Ni+Cu+Mo+Sn≦2・・・式(2)
(2) Further, in mass%, Mo: 1% or less, Sn: 0.5% or less, and the contents of Ni, Cu, Mo and Sn satisfy the following formula (2) The high-purity ferritic stainless steel sheet for deep drawing excellent in secondary work brittleness resistance as described in (1).
0.3 <Ni + Cu + Mo + Sn ≦ 2 (2)

(3)さらに質量%にて、Sb:0.2%以下、V:0.5%以下、W:0.5%以下、Zr:0.5%以下、Co:0.5%以下、Mg:0.005%以下、B:0.005%以下、Ca:0.005%以下、Ga:0.005%以下、La:0.1%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下、1種または2種以上含有していることを特徴とする(1)または(2)に記載の耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板。 (3) Further, by mass%, Sb: 0.2% or less, V: 0.5% or less, W: 0.5% or less, Zr: 0.5% or less, Co: 0.5% or less, Mg : 0.005% or less, B: 0.005% or less, Ca: 0.005% or less, Ga: 0.005% or less, La: 0.1% or less, Y: 0.1% or less, Hf: 0 .1% or less, REM: 0.1% or less, 1 type or 2 types or more, (1) or (2) for deep drawing excellent in secondary work brittleness resistance High purity ferritic stainless steel sheet.

(4)Pの抽出残さ量が0.01質量%以上であり、析出しているリン化合物の長手方向の大きさが1μm以下であることを特徴とする(1)〜(3)のいずれかに記載の耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板。 (4) The amount of extraction residue of P is 0.01% by mass or more, and the size of the precipitated phosphorus compound in the longitudinal direction is 1 μm or less, any one of (1) to (3) A high-purity ferritic stainless steel sheet for deep drawing excellent in secondary work brittleness resistance described in 1.

(5)鋼板を破断した際に露出した結晶粒界表面において、全元素100質量%換算に対してP濃度が3質量%以下であることを特徴とする(1)〜(4)のうちいずれかに記載の耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板。 (5) The crystal grain boundary surface exposed when the steel sheet is broken has a P concentration of 3% by mass or less with respect to 100% by mass of all elements, and any one of (1) to (4) A high-purity ferritic stainless steel sheet for deep drawing with excellent secondary work brittleness resistance.

(6)総絞り比3.5〜4.0の円筒深絞り加工を行い、次いで600〜650℃に加熱後、400℃まで3℃/分以下の平均冷却速度で冷却した際の、結晶粒界のP濃度が3質量%以下であることを特徴とする(1)〜(4)のうちいずれかに記載の耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板。 (6) Crystal grains when cylindrical deep drawing with a total drawing ratio of 3.5 to 4.0 is performed, then heated to 600 to 650 ° C., and then cooled to 400 ° C. at an average cooling rate of 3 ° C./min or less. The high-concentration ferritic stainless steel sheet for deep drawing excellent in secondary work brittleness resistance according to any one of (1) to (4), wherein the P concentration of the boundary is 3% by mass or less.

(7)深絞り成形後に熱処理が加えられる構造体に用いられることを特徴とする(1)〜(6)のうちいずれかに記載の高純度フェライト系ステンレス鋼板。 (7) The high purity ferritic stainless steel sheet according to any one of (1) to (6), wherein the high purity ferritic stainless steel sheet is used for a structure to which heat treatment is applied after deep drawing.

(8)(1)〜(3)のいずれか1項に記載の成分組成を有する高純度フェライト系ステンレス鋼を熱間鍛造あるいは熱間圧延により熱延鋼板とし、冷間圧延と焼鈍を繰り返す鋼板の製造方法において、800℃より高温で仕上げ焼鈍し、その後、650〜750℃にて5分超、3時間以下の温度保持を行うことを特徴とする耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板の製造方法。 (8) A steel sheet having high purity ferritic stainless steel having the component composition described in any one of (1) to (3) as a hot-rolled steel sheet by hot forging or hot rolling, and repeating cold rolling and annealing. In the manufacturing method, deep drawing forming excellent in secondary work brittleness resistance is characterized in that finish annealing is performed at a temperature higher than 800 ° C., and then the temperature is maintained at 650 to 750 ° C. for more than 5 minutes and not more than 3 hours. For producing high-purity ferritic stainless steel sheet for use in a vehicle.

本発明によれば、過度なPの低下ならびに微量元素やSi及びMo等の合金化によらず、深絞り加工後に熱処理が施されて顕在化する二次加工脆性を改善した省資源・経済性に優れた深絞り成形用高純度フェライト系ステンレス鋼板を得ることができるという顕著な効果を奏するものである。   According to the present invention, resource saving and economic efficiency improved by secondary processing embrittlement that is manifested by heat treatment after deep drawing, regardless of excessive P reduction and alloying of trace elements, Si and Mo, etc. It is possible to obtain a remarkable effect that a high-purity ferritic stainless steel sheet for deep drawing can be obtained.

以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".

(I)成分の限定理由を以下に説明する。
Cは、加工性と耐食性を低下させるため、その含有量は少ないほど良いため、上限を0.03%とする。一方、Cは浸入型固溶元素であり、結晶粒界への偏析傾向も大きい元素であり結晶粒界の強化にも寄与する。従って、Cは本発明の目標とするPの粒界偏析抑制に対しても効果的である。これらCの作用効果を得るには下限を0.001%とすることが好ましい。精錬コストも考慮した好ましい範囲は0.003〜0.015%である。
The reason for limiting the component (I) will be described below.
Since C reduces workability and corrosion resistance, the lower the content, the better. Therefore, the upper limit is made 0.03%. On the other hand, C is an intrusion-type solid solution element, an element having a large segregation tendency to the grain boundary, and contributes to strengthening of the grain boundary. Therefore, C is effective for suppressing grain boundary segregation of P, which is the target of the present invention. In order to obtain the effects of C, the lower limit is preferably 0.001%. A preferable range in consideration of the refining cost is 0.003 to 0.015%.

Siは、脱酸元素として有効であり、耐酸化性を向上させる。一方、固溶強化元素として作用し、加工性の低下や本発明の目標とする耐二次加工脆性の低下を招くため、上限を1%とする。脱酸や耐酸化性を確保するために下限を0.01%とすることが好ましい。好ましい範囲は、効果と製造性を考慮して0.05〜0.5%である。   Si is effective as a deoxidizing element and improves oxidation resistance. On the other hand, it acts as a solid solution strengthening element and causes a decrease in workability and a reduction in secondary work brittleness resistance, which is a target of the present invention, so the upper limit is made 1%. In order to ensure deoxidation and oxidation resistance, the lower limit is preferably set to 0.01%. A preferable range is 0.05 to 0.5% in consideration of effects and manufacturability.

Mnは、脱酸元素およびSの固定で有効な元素である。一方、耐食性や耐酸化性の低下を招くため、上限を1%とする。脱酸やS固定の作用を確保するために下限を0.01%とすることが好ましい。好ましい範囲は、効果と製造コストを考慮して0.05〜0.5%である。   Mn is a deoxidizing element and an element effective in fixing S. On the other hand, the upper limit is set to 1% in order to reduce the corrosion resistance and oxidation resistance. In order to ensure the action of deoxidation and S fixation, the lower limit is preferably set to 0.01%. A preferable range is 0.05 to 0.5% in consideration of the effect and the manufacturing cost.

Pは、製造性や溶接性を阻害する元素であり、本発明の目標とする耐二次加工脆性の低下を招く主因であるため、その含有量は少ないほど良いため、上限を0.035%とする。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.005%とする。好ましい範囲は、製造コストを考慮して0.01〜0.03%である。   P is an element that hinders manufacturability and weldability, and is a main cause of lowering the secondary work embrittlement resistance targeted by the present invention. Therefore, the lower the content, the better. And However, excessive reduction leads to an increase in refining costs, so the lower limit is made 0.005%. A preferable range is 0.01 to 0.03% in consideration of manufacturing cost.

Sは、結晶粒界に偏析し、熱間加工性や本発明の目標とする耐二次加工脆性の低下にも繋がるため、その含有量は少ないほど良いため、上限を0.003%とする。但し、過度の低減は原料及び精錬コストの増加に繋がるため、下限を0.0001とする。好ましい範囲は、脆化の抑制や製造コストを考慮して0.0002〜0.0015%である。   S segregates at the grain boundaries and leads to a decrease in hot workability and secondary work embrittlement resistance as a target of the present invention. Therefore, the lower the content, the better. Therefore, the upper limit is made 0.003%. . However, excessive reduction leads to an increase in raw materials and refining costs, so the lower limit is set to 0.0001. A preferable range is 0.0002 to 0.0015% in consideration of suppression of embrittlement and manufacturing cost.

Crは、本発明の高純度フェライト系ステンレス鋼の基本元素であり、耐食性や耐熱性を確保するために必須の元素である。本発明の電気ポット用途を想定した耐食性や耐熱性を確保するために下限を13%とする。上限は、加工性と製造性の観点から23%とする。但し、SUS430J1L、SUS436J1Lと比較した経済性から、好ましい範囲は15〜19%とする。性能と合金コストを考慮して、より好ましい範囲は、16〜18%である。   Cr is a basic element of the high purity ferritic stainless steel of the present invention, and is an essential element for ensuring corrosion resistance and heat resistance. In order to ensure corrosion resistance and heat resistance assuming the use of the electric pot of the present invention, the lower limit is made 13%. The upper limit is made 23% from the viewpoint of workability and manufacturability. However, the preferred range is 15 to 19% in view of economic efficiency compared with SUS430J1L and SUS436J1L. In view of performance and alloy cost, a more preferable range is 16 to 18%.

Nは、Cと同様に加工性と耐食性を低下させるため、その含有量は少ないほど良いため、上限を0.03%とする。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.001%とすることが好ましい。また、NはCと同様に浸入型固溶元素であるものの、結晶粒界への偏析傾向は小さく、結晶粒界の強化に殆ど寄与せず、本発明の目標とする耐二次加工性の低下を招く。従って、好ましい範囲は、性能と製造コストを考慮して0.005〜0.015%である。   N, like C, reduces workability and corrosion resistance, so the lower the content, the better. Therefore, the upper limit is made 0.03%. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably made 0.001%. N, like C, is an intrusion-type solid solution element, but its segregation tendency to the crystal grain boundary is small and contributes little to strengthening of the crystal grain boundary. Incurs a decline. Therefore, a preferable range is 0.005 to 0.015% in consideration of performance and manufacturing cost.

Nb、Tiは、C,Nを固定する安定化元素の作用により、加工性及び耐食性に加えて、本発明の目標とする耐二次加工脆化特性の改善にも有効な元素である。添加する場合は、それぞれその効果が発現する0.01%以上とする。但し、過度な添加は合金コストの上昇や再結晶温度上昇に伴う製造性の低下に繋がるため、上限をそれぞれ0.5%とする。好ましい範囲は、効果と合金コストおよび製造性を考慮して、Nb、Tiの1種または2種で0.05〜0.5%とする。より好ましい範囲は0.1〜0.3%である。   Nb and Ti are effective elements for improving the secondary work embrittlement resistance, which is a target of the present invention, in addition to workability and corrosion resistance by the action of a stabilizing element for fixing C and N. When added, the content is set to 0.01% or more where the effect is exhibited. However, excessive addition leads to a decrease in manufacturability accompanying an increase in alloy costs and a recrystallization temperature, so the upper limit is made 0.5%. A preferable range is 0.05 to 0.5% for one or two of Nb and Ti in consideration of effects, alloy costs, and manufacturability. A more preferable range is 0.1 to 0.3%.

Alは、脱酸元素として極めて有効な元素である。一方、鋼の靭性や溶接性の低下を招くため、上限を0.1%とする。下限は、脱酸効果を考慮して0.005%とすることが好ましい。好ましい範囲は、製造性と性能を考慮して0.01〜0.07%である。   Al is an extremely effective element as a deoxidizing element. On the other hand, the upper limit is made 0.1% in order to reduce the toughness and weldability of the steel. The lower limit is preferably 0.005% in consideration of the deoxidation effect. A preferable range is 0.01 to 0.07% in consideration of manufacturability and performance.

Ni、Cuは、耐食性に有効な元素であり、本発明の目標とする耐二次加工脆性を得るために不可欠な元素である。本発明の対象とする熱処理後のP偏析を遅延させて、耐二次加工脆性を得るには、後述するMo及びSnを含有しない場合、以下の式(1)で示されるように、Ni、Cuの単独あるいは複合添加で0.3%超とする。一方、過度の添加は、合金コストの上昇や材料強度の上昇による加工性の低下を招くため、それぞれ上限は単独あるいは複合添加で1%とする。単独あるいは複合添加で好ましい範囲は、性能と合金コストを考慮して、Ni+Cu:0.4〜1.0%、より好ましくはNi+Cu:0.5〜1.0%である。
0.3<Ni+Cu≦1・・・式(1)
Ni and Cu are effective elements for corrosion resistance, and are indispensable elements for obtaining secondary processing embrittlement resistance which is a target of the present invention. In order to delay the P segregation after the heat treatment that is the subject of the present invention and obtain secondary work brittleness resistance, when not containing Mo and Sn described later, as shown by the following formula (1), Ni, Cu alone or combined addition exceeds 0.3%. On the other hand, excessive addition causes an increase in alloy costs and a decrease in workability due to an increase in material strength. Therefore, the upper limit is set to 1% individually or in combination. In consideration of performance and alloy cost, a preferable range for single or combined addition is Ni + Cu: 0.4 to 1.0%, and more preferably Ni + Cu: 0.5 to 1.0%.
0.3 <Ni + Cu ≦ 1 Formula (1)

Mo、Snは、NiやCuと同様に耐食性に加えて、本発明の目標とする耐二次加工脆性を得るために有効な元素であり、必要に応じて添加する。添加する場合は、それぞれの効果が発現するために、Moは0.1%以上、Snは0.01%以上とする。但し、過度な添加は、合金コストの上昇と熱間加工及び冷間加工の製造性を阻害するため、それぞれ上限は、Moを1%、Snを0.5%することが好ましく、Ni+Cu+Mo+Snの上限は2%である。本発明において、Ni及び/或いはCuに加えて、Mo及びSnを更に添加する場合、Ni、Cu、Mo及びSnの含有量が以下の式(2)を満たす範囲で添加する。
0.3<Ni+Cu+Mo+Sn≦2・・・式(2)
Mo and Sn are effective elements for obtaining secondary processing embrittlement resistance, which is a target of the present invention, in addition to corrosion resistance, similarly to Ni and Cu, and are added as necessary. When adding, in order to express each effect, Mo is 0.1% or more, and Sn is 0.01% or more. However, excessive addition hinders increase in alloy costs and manufacturability of hot working and cold working, so the upper limit is preferably 1% for Mo and 0.5% for Sn, respectively, and the upper limit for Ni + Cu + Mo + Sn. Is 2%. In the present invention, when Mo and Sn are further added in addition to Ni and / or Cu, the Ni, Cu, Mo, and Sn are added in a range that satisfies the following formula (2).
0.3 <Ni + Cu + Mo + Sn ≦ 2 (2)

尚、添加する場合の好ましい範囲は、性能及び製造性と合金コストを考慮して、Moは0.2〜0.8%、Snは0.05〜0.25%であり、Ni+Cu+Mo+Sn:0.4〜2.0%、より好ましくはNi+Cu+Mo+Sn:0.5〜1.5%である。   In addition, considering the performance and manufacturability and the alloy cost, preferable ranges in the case of addition are 0.2 to 0.8% for Mo, 0.05 to 0.25%, and Ni + Cu + Mo + Sn: 0.0. 4 to 2.0%, more preferably Ni + Cu + Mo + Sn: 0.5 to 1.5%.

Sb、V、W、Zr、Coは、耐食性と本発明の目標とする耐二次加工脆化特性の改善にも有効な元素であり、必要に応じて添加する。添加する場合は、それぞれその効果が発現する0.01%以上とする。過度な添加は合金コストの上昇や製造性の低下に繋がるため、上限を0.5%とする。尚、添加する場合の好ましい範囲は、性能及び製造性と合金コストを考慮して、Sbは0.01〜0.1%、V、W、Zr、Coは0.02〜0.3%である。   Sb, V, W, Zr, and Co are effective elements for improving the corrosion resistance and the secondary work embrittlement resistance targeted by the present invention, and are added as necessary. When added, the content is set to 0.01% or more where the effect is exhibited. Excessive addition leads to an increase in alloy costs and a decrease in manufacturability, so the upper limit is made 0.5%. In addition, the preferable range in the case of adding is 0.01 to 0.1% for Sb and 0.02 to 0.3% for V, W, Zr, and Co in consideration of performance, manufacturability and alloy cost. is there.

Mgは、溶鋼中でAlとともにMg酸化物を形成し脱酸剤として作用する他、TiNの晶出核として作用する。TiNは凝固過程においてフェライト相の凝固核となり、TiNの晶出を促進させることで、凝固時にフェライト相を微細生成させることができる。凝固組織を微細化させることにより、製品のリジングやロ−ピングなどの粗大凝固組織に起因した表面欠陥を防止できる他、加工性の向上をもたらすため必要に応じて添加する。添加する場合は、これら効果を発現する0.0001%とする。但し、0.005%を超えると製造性が劣化するため、上限を0.005%とする。好ましくは、製造性を考慮して0.0003〜0.002%とする。   Mg forms Mg oxide with Al in molten steel and acts as a deoxidizer, and also acts as a crystallization nucleus of TiN. TiN becomes a solidification nucleus of the ferrite phase in the solidification process, and by facilitating crystallization of TiN, the ferrite phase can be finely formed during solidification. By making the solidified structure finer, it is possible to prevent surface defects caused by coarse solidified structures such as ridging and roping of the product, and to improve workability, it is added as necessary. When added, the content is 0.0001%. However, if it exceeds 0.005%, manufacturability deteriorates, so the upper limit is made 0.005%. Preferably, considering the manufacturability, the content is made 0.0003 to 0.002%.

Bは、熱間加工性や2次加工脆化特性を向上させる元素であり、高純度フェライト系ステンレス鋼への添加は有効である。添加する場合は、これら効果を発現する0.0003%以上とする。しかし、過度の添加は、伸びの低下をもたらすため、上限を0.005%とする。好ましくは、材料コストや加工性を考慮して0.0005〜0.002%とする。   B is an element that improves hot workability and secondary work embrittlement characteristics, and addition to high purity ferritic stainless steel is effective. When adding, it is made 0.0003% or more to express these effects. However, excessive addition causes a decrease in elongation, so the upper limit is made 0.005%. Preferably, considering the material cost and workability, the content is made 0.0005 to 0.002%.

Ca、Gaは、熱間加工性や鋼の清浄度を向上させる元素であり、必要に応じて添加する。添加する場合は、これら効果を発現する0.0003%以上とする。しかし、過度の添加は、製造性の低下やCaSなどの水溶性介在物による耐食性の低下に繋がるため、上限を0.005%とする。好ましくは、製造性や耐酸化性を考慮して0.0003〜0.0015%とする。   Ca and Ga are elements that improve hot workability and steel cleanliness, and are added as necessary. When adding, it is made 0.0003% or more to express these effects. However, excessive addition leads to a decrease in manufacturability and a decrease in corrosion resistance due to water-soluble inclusions such as CaS, so the upper limit is made 0.005%. Preferably, considering the manufacturability and oxidation resistance, the content is made 0.0003 to 0.0015%.

La、Y、Hf、REMは、熱間加工性や鋼の清浄度を向上させ、耐酸化性や熱間加工性を著しく向上させる効果を持つため、必要に応じて添加しても良い。添加する場合は、それぞれその効果が発現する0.001%以上とする。しかし、過度の添加は、合金コストの上昇と製造性の低下に繋がるため、上限をそれぞれ0.1%とする。好ましくは、効果と経済性および製造性を考慮して、1種または2種以上で0.001〜0.05%とする。   La, Y, Hf, and REM have the effects of improving hot workability and steel cleanliness and remarkably improving oxidation resistance and hot workability, and may be added as necessary. When added, the content is set to 0.001% or more where the effect is exhibited. However, excessive addition leads to an increase in alloy cost and a decrease in manufacturability, so the upper limit is made 0.1%. Preferably, considering the effect, economic efficiency, and manufacturability, one or two or more is 0.001 to 0.05%.

(II)金属組織に関する限定理由を以下に説明する。
前記(I)項に記載の成分を有し、本発明の目標とする耐二次加工脆化特性を得るために、好適な金属組織の要件を規定したものである。
(II) The reason for limitation regarding the metal structure will be described below.
In order to obtain the secondary work embrittlement resistance target of the present invention having the component described in the above item (I), the requirements for a suitable metal structure are defined.

本発明の目標とする深絞り加工後に熱処理が施されて顕在化する二次加工脆性を改善するには、Pを予め化合物として析出させて鋼中の固溶Pを低減しておくことがPの粒界偏析を遅延させるために有効である。そのために、FeTiP等のリン化合物となって抽出されるPの残さ量は0.01質量%以上であることが好ましい。より好ましくは、0.015%以上であり、上限は規定するものでないが、添加量もしくはリン化合物の析出に要する熱処理条件を考慮して0.03%であることが好ましい。   In order to improve the secondary work brittleness that is manifested by heat treatment after the deep drawing as the target of the present invention, it is necessary to reduce the solid solution P in the steel by precipitating P as a compound. This is effective for delaying the grain boundary segregation. Therefore, the residual amount of P extracted as a phosphorus compound such as FeTiP is preferably 0.01% by mass or more. More preferably, it is 0.015% or more, and the upper limit is not specified, but it is preferably 0.03% in consideration of the addition amount or heat treatment conditions required for precipitation of the phosphorus compound.

Pの残さ量は、定電流電解法により測定することができる。例えば、電解液は20%サリチル酸カルシウム−0.5%サリイル酸−1%塩化リチウム−メタノール溶液とし、電流密度20mA/cmで電解を行い、フィルターでろ過した後、抽出されたPの残さ量は、高周波誘導結合プラズマ(ICP)を光源とする発光分光分析法により、定量的に求めることができる。 The residual amount of P can be measured by a constant current electrolysis method. For example, the electrolytic solution is 20% calcium salicylate-0.5% salicylic acid-1% lithium chloride-methanol solution, electrolyzed at a current density of 20 mA / cm 2 , filtered through a filter, and then the remaining amount of extracted P Can be quantitatively determined by emission spectroscopy using high frequency inductively coupled plasma (ICP) as a light source.

上述したPの残さ量とともに、リン化合物のサイズは、長手方向の大きさ(以下、「長辺」という。)が1μm以下であることが好ましい。長辺1μm超となるリン化合物は、結晶粒界へ析出した場合、割れの起点として作用する。従って、リン化合物のサイズは小さいほど良いため、好ましくは0.5μm以下、より好ましいサイズは0.1μm以下である。このような微細なリン化合物は、鋼中の固溶Pを低減し、結晶粒界へ析出した場合でも割れの起点としての作用よりも、結晶粒界へのP偏析を遅延する作用効果が大きく、結晶粒界を起点とする割れの回避に有効である。   Along with the above-described residual amount of P, the size of the phosphorus compound is preferably 1 μm or less in the longitudinal direction (hereinafter referred to as “long side”). The phosphorus compound having a long side exceeding 1 μm acts as a starting point of cracking when precipitated at the grain boundary. Accordingly, the smaller the size of the phosphorus compound, the better. Therefore, it is preferably 0.5 μm or less, and more preferably 0.1 μm or less. Such a fine phosphorus compound reduces the solid solution P in the steel and has a larger effect of delaying the P segregation to the grain boundary than to act as a starting point of cracking even when it precipitates at the grain boundary. It is effective in avoiding cracks starting from the grain boundaries.

結晶粒界を起点とする割れを回避するために、鋼板を破断した際に露出した結晶粒界表面における全元素を100質量%としたときの、前記露出した結晶粒界表面におけるP元素濃度を質量%に換算した濃度は3質量%以下とする。このようなPの粒界偏析は、深絞り加工後に600〜650℃へ加熱後、400℃までの平均冷却速度が3℃/分以下とすることで顕在化しやすい。Pの粒界偏析は、深絞り加工度が大きいほど促進し、実用的な深絞り限界に近い総絞り比3.5〜4で飽和する傾向にある。絞り比とは、深絞り加工に供する円板の直径÷深絞り加工を行うパンチの直径であり、総絞り比とは多工程の深絞り加工において、円板の直径÷最終工程のパンチの直径を意味する。深絞り加工度は、総絞り比の上昇により大きくなる。従って、本発明の目標とする耐二次加工脆性は、前記した総絞り比3.5〜4の深絞り加工を行い、次いで600〜650℃に加熱後、3℃/分以下で冷却して得た加工品を破断した際、破断面に露出した結晶粒界におけるPの粒界偏析を3%以下に抑制するものとする。好ましくは2.5%以下、より好ましくは2%以下である。   In order to avoid cracks originating from the grain boundaries, the P element concentration on the exposed grain boundary surface when the total elements on the grain boundary surface exposed when the steel sheet is broken is 100% by mass The concentration in terms of mass% is 3 mass% or less. Such grain boundary segregation of P is easily manifested when the average cooling rate up to 400 ° C. is 3 ° C./min or less after heating to 600-650 ° C. after deep drawing. The grain boundary segregation of P is promoted as the deep drawing degree is increased, and tends to be saturated at a total drawing ratio of 3.5 to 4 close to a practical deep drawing limit. The drawing ratio is the diameter of the disk used for deep drawing ÷ the diameter of the punch for deep drawing. The total drawing ratio is the diameter of the disk ÷ diameter of the punch in the final process in multi-step deep drawing. Means. The degree of deep drawing increases as the total drawing ratio increases. Therefore, the target secondary work brittleness resistance of the present invention is the deep drawing with the total drawing ratio of 3.5 to 4, followed by heating to 600 to 650 ° C. and cooling at 3 ° C./min or less. When the obtained processed product is broken, grain boundary segregation of P at the grain boundaries exposed at the fracture surface is suppressed to 3% or less. Preferably it is 2.5% or less, More preferably, it is 2% or less.

(III)製造方法に関する限定理由を以下に説明する。
前記(I)項に記載の成分を有し、前記(II)項に記載した好適な金属組織を得るために好ましい製造方法を規定したものである。
(III) The reason for limitation regarding the manufacturing method will be described below.
It has the component described in the item (I) and defines a preferable production method in order to obtain a suitable metal structure described in the item (II).

本発明では、前記(I)項に記載の成分を満足すれば通常のプロセス条件で製造しても本発明の目標とする耐二次加工脆性を確保することも可能であるが、好適な金属組織の要件を満たすために、800℃より高温で仕上げ焼鈍した後、650℃未満まで降温すること無く650〜750℃にて5分超温度保持する、あるいは、一旦650℃未満まで温度を下げる場合には650〜750℃における温度保持が合計で5分超、3h以下になるように前記温度保持を行うことが好ましい。   In the present invention, if the component described in the above item (I) is satisfied, it is possible to ensure the secondary work embrittlement resistance which is the target of the present invention even if manufactured under normal process conditions. In order to satisfy the requirements of the structure, after finishing annealing at a temperature higher than 800 ° C., hold the temperature for more than 5 minutes at 650-750 ° C. without lowering the temperature to less than 650 ° C. It is preferable to perform the temperature holding so that the temperature holding at 650 to 750 ° C. is more than 5 minutes and 3 hours or less in total.

仕上げ焼鈍を800℃より高温とするのは、冷間加工後の鋼を再結晶させて加工性を確保するためである。焼鈍温度の過度な上昇は、結晶粒径が粗大化し、加工による肌荒れなど表面品位の低下に繋がる。好ましくは、焼鈍温度の上限を1000℃とする。   The reason why the final annealing is set to a temperature higher than 800 ° C. is to ensure workability by recrystallizing the steel after cold working. An excessive increase in the annealing temperature leads to a decrease in surface quality, such as roughening of the crystal grain size and rough skin due to processing. Preferably, the upper limit of the annealing temperature is 1000 ° C.

仕上げ焼鈍をした後、650〜750℃の温度域で温度保持時間を5分超とするために冷却速度を調整する、あるいは650〜750℃へ再加熱して5分超、3h以下保持しても構わない。750℃を超えると、長辺1μmを超える粗大なリン化合物が析出しやすい、あるいは固溶Pの増加により耐二次加工脆性の低下を招く場合があるため、上限は750℃とする。650℃未満では、低温化に伴い固溶Pが増加するとともに、Pの粒界偏析が進行する。そのため、製造した鋼板を深絞り成形後に熱処理する際に、Pの粒界偏析を助長して耐二次加工脆性の低下に繋がるため、下限は650℃とする。   After finishing annealing, adjust the cooling rate to make the temperature holding time longer than 5 minutes in the temperature range of 650 to 750 ° C, or reheat to 650 to 750 ° C and hold for more than 5 minutes and 3 hours or less. It doesn't matter. If the temperature exceeds 750 ° C., a coarse phosphorus compound having a long side exceeding 1 μm is likely to precipitate, or an increase in solid solution P may cause a decrease in secondary work brittleness resistance, so the upper limit is set to 750 ° C. When the temperature is lower than 650 ° C., the solid solution P increases as the temperature decreases, and the grain boundary segregation of P proceeds. Therefore, when the manufactured steel sheet is heat-treated after deep drawing, the grain boundary segregation of P is promoted and the secondary work brittleness resistance is lowered, so the lower limit is set to 650 ° C.

650〜750℃での温度保持時間は、好適な金属組織の要件を得るためには、5分超とする。温度保持時間の上限は、Pの粒界偏析とリン化合物の粗大化を抑制するために、高温仕上げ焼鈍後に650℃未満まで一旦冷却すること無く温度保持する場合は1h以下、高温仕上げ焼鈍後に650℃未満まで一旦冷却した後、再加熱で温度保持する場合は、高温仕上げ焼鈍後に行う全ての温度保持の合計時間は3h以下とする。
本発明の目標とする深絞り成形した鋼板のPの粒界偏析を抑制するためは、深絞り成形前の鋼板において微細なリン化物析出させることが重要であり、焼鈍後に温度保持する場合には650℃以上、700℃以下で5分超から1h以下の範囲で前記温度保持を行う。また、一旦650℃未満に降温した後再加熱する場合には、650℃以上、700℃以下での温度保持が合計で5分超から3h以下の範囲、とすることが好適である。650〜750℃の温度範囲において、低温側の650〜700℃において5分超保持することで、深絞り成形した鋼板のPの粒界偏析を最も低減可能な微細なリン化物の析出形態とすることができる。
The temperature holding time at 650 to 750 ° C. is more than 5 minutes in order to obtain a suitable metal structure requirement. The upper limit of the temperature holding time is 1 h or less when the temperature is held without cooling to less than 650 ° C. after high-temperature finish annealing in order to suppress P grain boundary segregation and phosphorus compound coarsening, and 650 after high-temperature finish annealing. When the temperature is maintained by reheating after being once cooled to less than 0 ° C., the total time for maintaining all temperatures after the high-temperature finish annealing is 3 h or less.
In order to suppress the grain boundary segregation of P of the deep drawn steel sheet, which is the target of the present invention, it is important to precipitate fine phosphides in the steel sheet before deep drawing, and in the case of holding the temperature after annealing The temperature is maintained at 650 ° C. or more and 700 ° C. or less for more than 5 minutes to 1 hour or less. Further, when the temperature is once lowered to less than 650 ° C. and then re-heated, it is preferable that the temperature holding at 650 ° C. or more and 700 ° C. or less is in the range of more than 5 minutes to 3 hours or less in total. In a temperature range of 650 to 750 ° C., holding for more than 5 minutes at 650 to 700 ° C. on the low temperature side makes it possible to form a fine phosphide precipitation form that can most reduce the grain boundary segregation of P in the deep drawn steel sheet. be able to.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

表1の成分組成を有するフェライト系ステンレス鋼を溶製し、加熱温度1150〜1250℃の熱間圧延を行い、板厚4mmの熱延鋼板A〜R*を製造した。熱延鋼板A〜R*を表2に示す条件にて焼鈍し、酸洗後に板厚0.6mmまで冷間圧延し、900〜980℃の仕上げ焼鈍と酸洗を行い、耐二次加工脆性の評価に供した。鋼の成分は、本発明で規定する範囲とそれ以外でも実施した。仕上げ焼鈍後の650〜750℃での温度保持は、本発明で規定する条件とそれ以外でも実施した。   Ferritic stainless steel having the composition shown in Table 1 was melted and hot rolled at a heating temperature of 1150 to 1250 ° C. to produce hot rolled steel sheets A to R * having a thickness of 4 mm. Hot-rolled steel sheets A to R * are annealed under the conditions shown in Table 2, cold-rolled to a thickness of 0.6 mm after pickling, subjected to finish annealing and pickling at 900 to 980 ° C., and resistance to secondary work brittleness We used for evaluation. The components of the steel were also carried out in the range specified in the present invention and other cases. The temperature holding at 650 to 750 ° C. after the finish annealing was performed under the conditions specified in the present invention and other conditions.

耐二次加工脆性の評価は、以下の手順で実施した。先ず、上記の鋼板A〜R*からそれぞれ直径80mmの円板(ブランク)を作製し、パンチ径:40mm→35mm→30mm→25mm→22mmの4段円筒深絞り試験(総絞り比:80÷22=3.64)を行って、内径22mmのカップ状の4段円筒深絞り品を作製した。前記4段円筒深絞り品は各鋼板A〜R*からそれぞれ8個ずつ作製された。次いで、各鋼板A〜R*につき作製された前記4段円筒深絞り品のうち4個を600℃にて30分加熱後炉冷し、残りの4個を650℃にて30分加熱後炉冷とし、いずれも400℃まで0.5〜1℃/分の平均冷却速度にて冷却した。その後、耐二次加工脆性は落重試験により評価した。落重試験は、重さ100gの荷重を1mの高さから4段円筒深絞り品の開口側の上縁へ落下することにより行った。鋼板A〜R*毎に作製され、600℃或いは650℃にて加熱されたN個(N=4)の深絞り品において、深絞り方向と平行な縦割れが1個でも発生した場合を「不合格」、縦割れが全く発生しなかったものを「合格」と判定した。評価は、600℃と650℃の両者とも全く割れなかった場合を「◎」、前記加熱温度のうちいずれかの加熱温度の場合に全く割れなかった場合を「○」、両者の加熱温度の場合において1個でも割れた場合を「×」とした。本発明例は、「◎」及び「○」とし、比較例は「×」とする。   The secondary work brittleness resistance was evaluated according to the following procedure. First, a disc (blank) having a diameter of 80 mm is prepared from each of the above steel plates A to R *, and a punch diameter: 40 mm → 35 mm → 30 mm → 25 mm → 22 mm four-stage cylindrical deep drawing test (total drawing ratio: 80 ÷ 22) = 3.64) to produce a cup-shaped four-stage cylindrical deep drawn product having an inner diameter of 22 mm. Each of the four-stage cylindrical deep drawn products was produced from each of the steel plates A to R *. Next, four of the four-stage cylindrical deep drawn products prepared for each of the steel plates A to R * were heated at 600 ° C. for 30 minutes and then cooled in the furnace, and the remaining four were heated at 650 ° C. for 30 minutes and then the furnace. All were cooled to 400 ° C. at an average cooling rate of 0.5 to 1 ° C./min. Thereafter, the secondary work brittleness resistance was evaluated by a drop weight test. The drop weight test was performed by dropping a load having a weight of 100 g from a height of 1 m onto the upper edge of the opening side of the four-stage cylindrical deep drawn product. When N pieces (N = 4) of deep drawn products manufactured for each of the steel plates A to R * and heated at 600 ° C. or 650 ° C., even one vertical crack parallel to the deep drawing direction occurs. The case where no vertical cracks occurred was judged as “pass”. Evaluation is “◎” when both 600 ° C. and 650 ° C. were not cracked at all, “◯” when there was no crack at any of the heating temperatures, and both heating temperatures were The case where even one piece was broken was marked with “x”. Examples of the present invention are “◎” and “◯”, and comparative examples are “x”.

Pの残さ量は、当該Pの残さ量測定用の供試材を円筒深絞り品と同条件の熱処理を施して作製した後、0042項に記載した条件で20%サリチル酸カルシウム−0.5%サリイル酸−1%塩化リチウム−メタノール溶液を用いて、電流密度20mA/cmにて定電流電解法を行い、ICP分析により求めた。リン化合物のサイズは、定電流電解法により得られた抽出残さをSEM(走査型電子顕微鏡)観察に供し、EDS(エネルギー分散型X線分光装置)でPが検出されることを確認して測定した。結晶粒界のP濃度は、カップ状の円筒深絞り品の開口側の前記カップから4mm×20mmのVノッチ付き分析試料を採取し、AES(オージェ電子分光装置)内で液体窒素冷却下にて破壊して破面を露出し、破面に露出した結晶粒界の濃化元素を測定した。ここで、AES装置内の破面出しは、10−4Pa以下の真空度を確保した上で、分析試料は液体窒素(77K)で冷却した上で行い、次いで濃化元素を定量分析した。 The residual amount of P is 20% calcium salicylate-0.5% under the conditions described in item 0042 after the test material for measuring the residual amount of P is prepared by subjecting it to a heat treatment under the same conditions as a cylindrical deep drawn product. Using a salicylic acid-1% lithium chloride-methanol solution, a constant current electrolysis method was carried out at a current density of 20 mA / cm 2 and obtained by ICP analysis. The size of the phosphorus compound is measured by subjecting the extraction residue obtained by the constant current electrolysis method to SEM (scanning electron microscope) observation and confirming that P is detected by an EDS (energy dispersive X-ray spectrometer). did. For the P concentration at the grain boundary, an analytical sample with a V notch of 4 mm × 20 mm was taken from the cup on the opening side of a cup-shaped cylindrical deep-drawn product, and was cooled in liquid nitrogen in an AES (Auger Electron Spectrometer). The fracture surface was exposed by fracture, and the concentration elements at the grain boundaries exposed on the fracture surface were measured. Here, the surface breakage in the AES apparatus was performed after securing the degree of vacuum of 10 −4 Pa or less and the analysis sample was cooled with liquid nitrogen (77 K), and then the concentrated element was quantitatively analyzed.

表2に各試験結果をまとめて示す。
表2から、試験番号1,4,5,7,14は、本発明で規定する好ましい成分(Ni+Cu量もしくはNi+Cu+Mo+Sn量)と製造方法を全て満足する高純度フェライト系ステンレス鋼板である。これら鋼板は、本発明で規定する好適な金属組織の要件を全て満たし、深絞り品の評価で一切割れを発生せず、評価「◎」の優れた耐二次加工脆性が得られたものである。
Table 2 summarizes the test results.
From Table 2, test numbers 1, 4, 5, 7, and 14 are high-purity ferritic stainless steel sheets that satisfy all of the preferable components (Ni + Cu amount or Ni + Cu + Mo + Sn amount) and the production method defined in the present invention. These steel sheets satisfy all the requirements of the preferred metal structure prescribed in the present invention, do not generate any cracks in the evaluation of deep drawn products, and obtained excellent secondary work brittleness resistance of evaluation `` ◎ ''. is there.

試験番号8,9は、本発明で規定する成分と製造方法を満たし、微量元素であるV、W、Zr、Co添加により、耐二次加工脆性の向上が認められたものである。これら鋼板は、本発明で規定する好適な金属組織の要件を全て満たし、深絞り品の評価で一切割れを発生せず、評価「◎」の優れた耐二次加工脆性が得られたものである。   Test Nos. 8 and 9 satisfy the components and the production method defined in the present invention, and the improvement of secondary work brittleness resistance is recognized by addition of trace elements V, W, Zr, and Co. These steel sheets satisfy all the requirements of the preferred metal structure prescribed in the present invention, do not generate any cracks in the evaluation of deep drawn products, and obtained excellent secondary work brittleness resistance of evaluation `` ◎ ''. is there.

Figure 2017048417
Figure 2017048417

試験番号2,11,12,15,16は、本発明で規定する成分と製造方法を満足する高純度フェライト径ステンレス鋼板である。これら鋼板は、600℃あるいは650℃加熱後の炉冷において、片方の加熱・炉冷条件においては深絞り品に一切割れを発生せず、評価「○」の良好な耐二次加工脆性が得られたものである。   Test numbers 2, 11, 12, 15, and 16 are high-purity ferritic diameter stainless steel sheets that satisfy the components and manufacturing method defined in the present invention. These steel plates do not crack at all in deep drawn products under furnace heating after heating at 600 ° C. or 650 ° C. under one of the heating / furnace cooling conditions, resulting in good secondary work brittleness resistance with an evaluation of “◯”. It is what was done.

試験番号6,10は、本発明で規定する好ましい成分(Ni+Cu+Mo+Sn量)や耐二次加工脆性に効果のある微量元素(Zr、Co)を添加した高純度フェライト系ステンレス鋼板であって、仕上げ焼鈍後の650〜750℃の温度域における温度保持処理を省略して製造されたものである。これら鋼板は、本発明で規定する好ましい製造方法を必ずしも満たさないまでも、好適な金属組織を得ることも可能であり、耐二次加工脆性の評価「○」が得られたものである。   Test Nos. 6 and 10 are high-purity ferritic stainless steel sheets to which preferable components (Ni + Cu + Mo + Sn amount) specified in the present invention and trace elements (Zr, Co) effective for secondary work brittleness resistance are added, and finish annealing. It was manufactured by omitting the subsequent temperature holding treatment in the temperature range of 650 to 750 ° C. Even if these steel sheets do not necessarily satisfy the preferred production method defined in the present invention, it is possible to obtain a suitable metal structure, and an evaluation “◯” of secondary work brittleness resistance is obtained.

試験番号17〜22は、本発明で規定する成分から外れるものである。これら鋼板は、本発明で規定する好ましい製造方法を実施しても、本発明の目標とした耐二次加工性は得られず評価「×」となった。試験番号3及び13は、本発明で規定する成分を満たすものの、好ましい成分から外れるものであり、本発明で規定する好ましい製造方法を実施しない場合に目標の特性に到達しなかったものである。これら鋼板は、本発明の目標とした耐二次加工性は得られず評価「×」となった。   Test numbers 17 to 22 are not included in the components defined in the present invention. Even if the preferable manufacturing method prescribed | regulated by this invention was implemented for these steel plates, the secondary workability which was the target of this invention was not obtained, but it was evaluated as "x". Test Nos. 3 and 13 satisfy the components defined in the present invention, but deviate from the preferred components, and did not reach the target characteristics when the preferred production method defined in the present invention was not carried out. These steel sheets were evaluated as “x” because the secondary workability targeted by the present invention was not obtained.

本結果から、本発明の目標とした耐二次加工性を得るためには、本発明で規定する好ましい成分である「Ni+Cu」もしくは「Ni+Cu+Mo+Sn」量の調整が重要である。更に、微量元素であるV、W、Zr、Coの添加や本発明で規定する好ましい製造方法は、本発明で規定する成分において耐二次加工脆性の向上に有効である。   From this result, in order to obtain the secondary work resistance which is the target of the present invention, it is important to adjust the amount of “Ni + Cu” or “Ni + Cu + Mo + Sn”, which is a preferable component defined in the present invention. Furthermore, the addition of trace elements V, W, Zr and Co and the preferred production method defined in the present invention are effective for improving the secondary work brittleness resistance in the components defined in the present invention.

本発明によれば、過度なPの低下ならびに微量元素としてB、Mgの添加や1%超となるSi及びMo等の高合金化によらず、深絞り加工後に熱処理が施されて顕在化する二次加工脆性を改善した省資源・経済性に優れた深絞り成形用高純度フェライト系ステンレス鋼板を得ることができる。本鋼板は、深絞り成形後に熱処理が施される構造体、例えばろう付けなどがその熱処理に該当する構造体、特に電気ポット等の筺体に好適に用いることができるである。   According to the present invention, heat treatment is performed after deep drawing and becomes apparent, regardless of excessive P reduction and addition of B and Mg as trace elements and high alloying such as Si and Mo exceeding 1%. A high-purity ferritic stainless steel sheet for deep drawing excellent in resource-saving and economical efficiency with improved secondary work brittleness can be obtained. The steel sheet can be suitably used for a structure to which heat treatment is performed after deep drawing, for example, a structure in which brazing or the like corresponds to the heat treatment, particularly an electric pot or the like.

Figure 2017048417
Figure 2017048417

Claims (8)

質量%にて、C:0.03%以下、Si:1%以下、Mn:1%以下、P:0.035%以下、S:0.003%以下、Cr:13〜23%、N:0.03%以下、Nb:0.5%以下、Ti:0.5%以下、Al:0.1%以下を含み、更に、Ni:1%以下及び/又はCu:1%以下を含み、残部がFeおよび不可避的不純物からなり、且つNi及びCuの含有量が下記の式(1)を満たすことを特徴とする耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板。
0.3<Ni+Cu≦1・・・式(1)
In mass%, C: 0.03% or less, Si: 1% or less, Mn: 1% or less, P: 0.035% or less, S: 0.003% or less, Cr: 13-23%, N: 0.03% or less, Nb: 0.5% or less, Ti: 0.5% or less, Al: 0.1% or less, further including Ni: 1% or less and / or Cu: 1% or less, A high-purity ferritic stainless steel sheet for deep drawing excellent in secondary work brittleness resistance, wherein the balance is Fe and inevitable impurities, and the contents of Ni and Cu satisfy the following formula (1).
0.3 <Ni + Cu ≦ 1 Formula (1)
さらに質量%にて、Mo:1%以下、Sn:0.5%以下を含み、残部がFeおよび不可避的不純物からなり、且つNi、Cu、Mo及びSnの含有量が下記の式(2)を満たすことを特徴とする請求項1に記載の耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板。
0.3<Ni+Cu+Mo+Sn≦2・・・式(2)
Further, in terms of mass%, Mo: 1% or less, Sn: 0.5% or less, the balance consists of Fe and inevitable impurities, and the contents of Ni, Cu, Mo and Sn are the following formula (2) The high-purity ferritic stainless steel sheet for deep drawing excellent in secondary work brittleness resistance according to claim 1, characterized in that:
0.3 <Ni + Cu + Mo + Sn ≦ 2 (2)
さらに質量%にて、Sb:0.2%以下、V:0.5%以下、W:0.5%以下、Zr:0.5%以下、Co:0.5%以下、Mg:0.005%以下、B:0.005%以下、Ca:0.005%以下、Ga:0.005%以下、La:0.1%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下、1種または2種以上含有していることを特徴とする請求項1または2に記載の耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板。
Further, in terms of mass%, Sb: 0.2% or less, V: 0.5% or less, W: 0.5% or less, Zr: 0.5% or less, Co: 0.5% or less, Mg: 0. 005% or less, B: 0.005% or less, Ca: 0.005% or less, Ga: 0.005% or less, La: 0.1% or less, Y: 0.1% or less, Hf: 0.1% 3. High purity ferritic stainless steel for deep drawing excellent in secondary work brittleness resistance according to claim 1 or 2, wherein REM: 0.1% or less, 1 type or 2 types or more are contained steel sheet.
Pの抽出残さ量が0.01質量%以上であり、析出しているリン化合物の長手方向の大きさが1μm以下であることを特徴とする請求項1〜3のうちいずれか1項に記載の耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板。
The amount of extraction residue of P is 0.01% by mass or more, and the size of the precipitated phosphorus compound in the longitudinal direction is 1 μm or less. High-purity ferritic stainless steel sheet for deep drawing with excellent secondary work brittleness resistance.
鋼板を破断した際に露出した結晶粒界表面において、全元素100質量%換算に対してP濃度が3質量%以下であることを特徴とする請求項1〜4のうちいずれか1項に記載の耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板。
5. The P concentration is 3% by mass or less based on 100% by mass of all elements in the grain boundary surface exposed when the steel plate is broken. 5. High-purity ferritic stainless steel sheet for deep drawing with excellent secondary work brittleness resistance.
総絞り比3.5〜4.0の円筒深絞り加工を行い、次いで600〜650℃に加熱後、400℃まで3℃/分以下の平均冷却速度で冷却した際の、結晶粒界のP濃度が3質量%以下であることを特徴とする請求項1〜4のうちいずれか1項に記載の耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板。
After performing cylindrical deep drawing with a total drawing ratio of 3.5 to 4.0, and then heating to 600 to 650 ° C., cooling to 400 ° C. at an average cooling rate of 3 ° C./min or less is performed at the grain boundary P. The high purity ferritic stainless steel sheet for deep drawing excellent in secondary work brittleness resistance according to any one of claims 1 to 4, wherein the concentration is 3% by mass or less.
深絞り成形後に熱処理が加えられる構造体用途に用いられることを特徴とする請求項1〜6のうちいずれか1項に記載の高純度フェライト系ステンレス鋼板。
The high-purity ferritic stainless steel sheet according to any one of claims 1 to 6, wherein the high-purity ferritic stainless steel sheet is used for structural applications in which heat treatment is applied after deep drawing.
請求項1〜3のいずれか1項に記載の成分組成を有する高純度フェライト系ステンレス鋼を熱間鍛造あるいは熱間圧延により熱延鋼板とし、冷間圧延と焼鈍を繰り返す鋼板の製造方法において、800℃より高温で仕上げ焼鈍し、その後、650〜750℃で5分超、3時間以下の温度保持を行うことを特徴とする請求項4に記載する耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板の製造方法。   In the manufacturing method of the steel plate which repeats cold rolling and annealing, making the high purity ferritic stainless steel which has the ingredient composition according to any one of claims 1 to 3 by hot forging or hot rolling, 5. Deep-drawing with excellent secondary work brittleness resistance according to claim 4, characterized in that finish annealing is performed at a temperature higher than 800 ° C., and thereafter, holding at 650 to 750 ° C. for more than 5 minutes and not more than 3 hours. For producing high-purity ferritic stainless steel sheet for use in a vehicle.
JP2015171474A 2015-08-31 2015-08-31 High purity ferritic stainless steel sheet for deep drawing with excellent secondary work brittleness resistance and method for producing the same Active JP6602112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015171474A JP6602112B2 (en) 2015-08-31 2015-08-31 High purity ferritic stainless steel sheet for deep drawing with excellent secondary work brittleness resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015171474A JP6602112B2 (en) 2015-08-31 2015-08-31 High purity ferritic stainless steel sheet for deep drawing with excellent secondary work brittleness resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017048417A true JP2017048417A (en) 2017-03-09
JP6602112B2 JP6602112B2 (en) 2019-11-06

Family

ID=58280961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015171474A Active JP6602112B2 (en) 2015-08-31 2015-08-31 High purity ferritic stainless steel sheet for deep drawing with excellent secondary work brittleness resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP6602112B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181060A1 (en) * 2017-03-27 2018-10-04 新日鐵住金ステンレス株式会社 Ferrite stainless steel sheet and production method therefor, and exhaust components
WO2019188094A1 (en) * 2018-03-30 2019-10-03 日鉄ステンレス株式会社 Ferritic stainless steel sheet and method for producing same
WO2020122320A1 (en) * 2018-12-10 2020-06-18 주식회사 포스코 Low-cr ferritic stainless steel with excellent formability and high temperature properties, and manufacturing method therefor
JP2020164956A (en) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 Ferritic stainless steel sheet and manufacturing method therefor
WO2023075287A1 (en) * 2021-10-26 2023-05-04 주식회사 포스코 Ferritic stainless steel and manufacturing method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264652A (en) * 1990-02-13 1991-11-25 Sumitomo Metal Ind Ltd Ferritic stainless steel sheet and production thereof
JPH07126812A (en) * 1993-11-02 1995-05-16 Kawasaki Steel Corp Ferritic stainless steel sheet excellent in secondary working brittleness and its production
JPH10298720A (en) * 1997-04-24 1998-11-10 Nippon Steel Corp High purity chromium steel sheet excellent in secondary working brittleness resistance after deep drawing
JPH1192877A (en) * 1997-09-19 1999-04-06 Nippon Steel Corp High purity chromium steel sheet excellent in formability and secondary working embrittlement-resistance after deep drawing
JP2001003144A (en) * 1999-06-23 2001-01-09 Nippon Steel Corp High purity ferritic stainless steel sheet excellent in secondary working brittleness after deep drawing
JP2014177659A (en) * 2013-03-13 2014-09-25 Nippon Steel & Sumikin Stainless Steel Corp Method for manufacturing heat resistant ferritic stainless steel sheet having excellent low temperature toughness and its manufacturing method
WO2015105045A1 (en) * 2014-01-08 2015-07-16 Jfeスチール株式会社 Ferritic stainless steel and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264652A (en) * 1990-02-13 1991-11-25 Sumitomo Metal Ind Ltd Ferritic stainless steel sheet and production thereof
JPH07126812A (en) * 1993-11-02 1995-05-16 Kawasaki Steel Corp Ferritic stainless steel sheet excellent in secondary working brittleness and its production
JPH10298720A (en) * 1997-04-24 1998-11-10 Nippon Steel Corp High purity chromium steel sheet excellent in secondary working brittleness resistance after deep drawing
JPH1192877A (en) * 1997-09-19 1999-04-06 Nippon Steel Corp High purity chromium steel sheet excellent in formability and secondary working embrittlement-resistance after deep drawing
JP2001003144A (en) * 1999-06-23 2001-01-09 Nippon Steel Corp High purity ferritic stainless steel sheet excellent in secondary working brittleness after deep drawing
JP2014177659A (en) * 2013-03-13 2014-09-25 Nippon Steel & Sumikin Stainless Steel Corp Method for manufacturing heat resistant ferritic stainless steel sheet having excellent low temperature toughness and its manufacturing method
WO2015105045A1 (en) * 2014-01-08 2015-07-16 Jfeスチール株式会社 Ferritic stainless steel and method for producing same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181060A1 (en) * 2017-03-27 2018-10-04 新日鐵住金ステンレス株式会社 Ferrite stainless steel sheet and production method therefor, and exhaust components
CN110462088A (en) * 2017-03-27 2019-11-15 日铁不锈钢株式会社 Ferrite-group stainless steel steel plate and its manufacturing method and exhaust component
KR20190132455A (en) * 2017-03-27 2019-11-27 닛테츠 스테인레스 가부시키가이샤 Ferritic stainless steel sheet and its manufacturing method, and exhaust parts
JPWO2018181060A1 (en) * 2017-03-27 2020-03-26 日鉄ステンレス株式会社 Ferritic stainless steel sheet, method for producing the same, and exhaust component
KR102306578B1 (en) * 2017-03-27 2021-09-29 닛테츠 스테인레스 가부시키가이샤 Ferritic stainless steel sheet, manufacturing method thereof, and exhaust parts
WO2019188094A1 (en) * 2018-03-30 2019-10-03 日鉄ステンレス株式会社 Ferritic stainless steel sheet and method for producing same
CN111655890A (en) * 2018-03-30 2020-09-11 日铁不锈钢株式会社 Ferritic stainless steel sheet and method for producing same
JPWO2019188094A1 (en) * 2018-03-30 2020-12-17 日鉄ステンレス株式会社 Ferritic stainless steel sheet and its manufacturing method
WO2020122320A1 (en) * 2018-12-10 2020-06-18 주식회사 포스코 Low-cr ferritic stainless steel with excellent formability and high temperature properties, and manufacturing method therefor
JP2020164956A (en) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 Ferritic stainless steel sheet and manufacturing method therefor
WO2023075287A1 (en) * 2021-10-26 2023-05-04 주식회사 포스코 Ferritic stainless steel and manufacturing method therefor

Also Published As

Publication number Publication date
JP6602112B2 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
KR101100360B1 (en) High-purity ferritic stainless steel excellent in corrosion resistance and workability and process for production of the same
JP5056985B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
TWI404808B (en) Boron steel sheet with high quenching property and manufacturing method thereof
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
JP6602112B2 (en) High purity ferritic stainless steel sheet for deep drawing with excellent secondary work brittleness resistance and method for producing the same
JP6115691B1 (en) Steel plate and enamel products
JP2017531093A (en) High strength austenitic stainless steel and method for producing the same
JPWO2014141697A1 (en) Thick and high toughness high strength steel sheet and method for producing the same
TW201333223A (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
JP6093210B2 (en) Heat-resistant ferritic stainless steel sheet with excellent low-temperature toughness and method for producing the same
WO2016010144A1 (en) Steel material and method for producing same
KR102405388B1 (en) High Mn steel and its manufacturing method
CN111094612B (en) Hot-rolled steel sheet and method for producing same
JP6842257B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
JP5920531B2 (en) steel sheet
AU2013308922B2 (en) Ferritic stainless steel with excellent oxidation resistance, good high temperature strength, and good formability
EP3186406A1 (en) Cold rolled high strength low alloy steel
JP2013087352A (en) Duplex stainless steel, duplex stainless steel cast slab, and duplex stainless steel material
JP6738928B1 (en) Ferritic stainless steel sheet and method of manufacturing the same
JP2023085560A (en) Two-phase stainless steel and manufacturing method therefor
TWI768941B (en) Precipitation hardening type Matian iron-based stainless steel sheet with excellent fatigue resistance
JP2016156072A (en) Ferritic stainless steel sheet excellent in hole expansibility, and method for producing the same
JP5884781B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP2022064692A (en) Austenitic stainless steel and method for producing austenitic stainless steel
JP6823221B1 (en) Highly corrosion resistant austenitic stainless steel and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191008

R150 Certificate of patent or registration of utility model

Ref document number: 6602112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250