JPWO2019188094A1 - Ferritic stainless steel sheet and its manufacturing method - Google Patents

Ferritic stainless steel sheet and its manufacturing method Download PDF

Info

Publication number
JPWO2019188094A1
JPWO2019188094A1 JP2020509785A JP2020509785A JPWO2019188094A1 JP WO2019188094 A1 JPWO2019188094 A1 JP WO2019188094A1 JP 2020509785 A JP2020509785 A JP 2020509785A JP 2020509785 A JP2020509785 A JP 2020509785A JP WO2019188094 A1 JPWO2019188094 A1 JP WO2019188094A1
Authority
JP
Japan
Prior art keywords
less
stainless steel
cold
temperature
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020509785A
Other languages
Japanese (ja)
Other versions
JP6906688B2 (en
Inventor
篤史 田口
篤史 田口
石丸 詠一朗
詠一朗 石丸
唯志 小森
唯志 小森
木村 謙
謙 木村
眞市 田村
眞市 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Publication of JPWO2019188094A1 publication Critical patent/JPWO2019188094A1/en
Application granted granted Critical
Publication of JP6906688B2 publication Critical patent/JP6906688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

このフェライト系ステンレス鋼板は、Cr:11.0〜30.0%、C:0.001〜0.030%、Si:0.01〜2.00%、Mn:0.01〜2.00%、P:0.003〜0.100%、S:0.0100%以下、N:0.030%以下、B:0〜0.0025%、Sn:0〜0.50%、Ni:0〜1.00%、Cu:0〜1.00%、Mo:0〜2.00%、W:0〜1.00%、Al:0〜1.00%、Co:0〜0.50%、V:0〜0.50%、Zr:0〜0.50%、Ca:0〜0.0050%、Mg:0〜0.0050%、Y:0〜0.10%、Hf:0〜0.10%、REM:0〜0.10%、Sb:0〜0.50%、及びTi:0.40%以下、Nb:0.50%以下のうちのいずれか一方又は両方を含み、残部がFe及び不純物からなり、リン化物として存在しているP量が0.003質量%以上であり、JIS G 0551にて測定される結晶粒度番号が9.0以上である。This ferrite-based stainless steel plate has Cr: 11.0 to 30.0%, C: 0.001 to 0.030%, Si: 0.01 to 2.00%, Mn: 0.01 to 2.00%. , P: 0.003 to 0.100%, S: 0.0100% or less, N: 0.030% or less, B: 0 to 0.0025%, Sn: 0 to 0.50%, Ni: 0 to 0 1.00%, Cu: 0 to 1.00%, Mo: 0 to 2.00%, W: 0 to 1.00%, Al: 0 to 1.00%, Co: 0 to 0.50%, V: 0 to 0.50%, Zr: 0 to 0.50%, Ca: 0 to 0.0050%, Mg: 0 to 0.0050%, Y: 0 to 0.10%, Hf: 0 to 0 .10%, REM: 0 to 0.10%, Sb: 0 to 0.50%, and Ti: 0.40% or less, Nb: 0.50% or less, or both, and the balance Is composed of Fe and impurities, the amount of P existing as a phosphor is 0.003% by mass or more, and the crystal grain size number measured by JIS G 0551 is 9.0 or more.

Description

本発明は、フェライト系ステンレス鋼板およびその製造方法に関し、特に、成形加工する際の成形性並びに耐加工肌荒れ性に優れるフェライト系ステンレス鋼板とその製造方法に関する。
本願は、2018年3月30日に、日本に出願された特願2018−069775号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a ferritic stainless steel sheet and a method for producing the same, and more particularly to a ferritic stainless steel sheet having excellent formability and rough skin resistance during molding and a method for producing the same.
The present application claims priority based on Japanese Patent Application No. 2018-0697775 filed in Japan on March 30, 2018, the contents of which are incorporated herein by reference.

オーステナイト系ステンレス鋼の代表鋼種であるSUS304(18Cr−8Ni)は、耐食性、加工性、美麗性等に優れることから家電、厨房品、建材等に広く用いられている。但し、SUS304は高価かつ価格変動の激しいNiを多量に添加しているため、鋼板の価格が高いとされている。一方、フェライト系ステンレス鋼は、Niを含有しない、もしくは含有量が極めて少ないため、コストパフォーマンスに優れる材料として需要が増加している。しかし、フェライト系ステンレス鋼を成形用途として使用する場合、問題となるのが成形限界と成形後に表面凹凸が形成されることによる耐加工肌荒れ性の劣化である。 SUS304 (18Cr-8Ni), which is a representative steel grade of austenitic stainless steel, is widely used in home appliances, kitchen products, building materials, etc. because of its excellent corrosion resistance, workability, and beauty. However, it is said that the price of the steel sheet is high because SUS304 contains a large amount of Ni, which is expensive and the price fluctuates sharply. On the other hand, ferritic stainless steel does not contain Ni or has an extremely low content, so that demand is increasing as a material having excellent cost performance. However, when ferrite-based stainless steel is used for molding, the problems are the molding limit and deterioration of the rough surface resistance due to the formation of surface irregularities after molding.

まず成形限界について比較すると、オーステナイト系ステンレス鋼の場合は張り出し性に優れるが、フェライト系ステンレス鋼の張り出し性は低く、形状を大きく変化させることが出来ない。しかし結晶方位(集合組織)を調整して深絞り性を制御することが出来るため、フェライト系ステンレス鋼を成形用途として用いる場合では、深絞りを主体とした成形手法を用いる場合が多い。 First, comparing the molding limits, the austenitic stainless steel has excellent overhangability, but the ferrite stainless steel has low overhangability, and the shape cannot be changed significantly. However, since the crystal orientation (organization) can be adjusted to control the deep drawing property, when ferritic stainless steel is used for molding purposes, a molding method mainly for deep drawing is often used.

次に、成形加工後の表面特性、特に加工肌荒れ(成形後の表面凹凸)について述べる。ここで「表面凹凸」とは、加工や成形を行った後に鋼板表面に生じる微細な凹凸(肌荒れ)を指し、この微細な凹凸は結晶粒に対応していることから、結晶粒径が大きいほど表面凹凸も顕著になる。
オーステナイト系ステンレス鋼の場合、加工硬化特性に優れており細粒組織が比較的作りやすいため、結晶粒度番号が約10の鋼板が製造されている。このため、成形加工後の表面凹凸(肌荒れ)は小さく、ほとんど問題とならない。一方、フェライト系ステンレス鋼の結晶粒度はSUS430で9程度、SUS430LXで7程度とオーステナイト系ステンレス鋼に比べて小さい。ここで粒度番号が小さいことは、結晶粒径が大きいことを示している。
フェライト系ステンレス鋼が粗粒になりやすい要因としては、フェライト系ステンレス鋼では、再結晶粒径が大きくなりやすいことに加え、SUS430LXのような、C、Nを低減させて加工性、成形性の向上を図った高純度フェライト系ステンレス鋼では、粒成長しやすいためである。またフェライト系ステンレス鋼において、冷延回数を増やして結晶粒径が細かい製品板を製造しても肌荒れが生成する場合があり、その原因は必ずしも明確ではない。
Next, the surface characteristics after molding, particularly rough processed skin (surface unevenness after molding) will be described. Here, "surface unevenness" refers to fine irregularities (rough skin) that occur on the surface of the steel sheet after processing or molding, and since these fine irregularities correspond to crystal grains, the larger the crystal grain size, the larger the crystal grain size. Surface irregularities also become noticeable.
In the case of austenitic stainless steel, since it is excellent in work hardening characteristics and a fine grain structure is relatively easy to form, a steel sheet having a crystal grain size number of about 10 is manufactured. Therefore, the surface unevenness (rough skin) after the molding process is small, and there is almost no problem. On the other hand, the crystal grain size of ferritic stainless steel is about 9 for SUS430 and about 7 for SUS430LX, which are smaller than those of austenitic stainless steel. Here, a small particle size number indicates a large crystal particle size.
The factors that make ferritic stainless steels more likely to be coarse-grained are that ferritic stainless steels tend to have a large recrystallized particle size and, like SUS430LX, reduce C and N to improve workability and formability. This is because the improved high-purity ferritic stainless steel tends to grow grains. Further, in ferrite stainless steel, even if a product plate having a fine crystal grain size is manufactured by increasing the number of cold spreadings, rough skin may occur, and the cause is not always clear.

家電製品の筺体あるいは器物のように比較的厳しい成形性が要求される場合、フェライト系ステンレス鋼では、SUS430LXのような高純度フェライト系ステンレス鋼が用いられることが多い。また、成形後の強度を担保するために、用いられるステンレス鋼板の板厚は大半の場合は0.6mm以上であるが、前述のようにフェライト系ステンレス鋼は結晶粒径が大きいために成形後の肌荒れが大きく、研磨による表面凹凸の除去が通常行われている。 When relatively strict formability is required for housings or fixtures of home appliances, high-purity ferritic stainless steel such as SUS430LX is often used as the ferrite stainless steel. Further, in order to ensure the strength after molding, the thickness of the stainless steel sheet used is 0.6 mm or more in most cases, but as described above, the ferritic stainless steel has a large crystal grain size, so after molding. The rough skin is large, and surface irregularities are usually removed by polishing.

上述した背景から、高純度フェライト系ステンレス鋼の肌荒れを軽減する手法が開示されている。
特許文献1には、高純度のフェライト系ステンレス鋼を用いて析出粒子のサイズ及び結晶粒径を制御して、加工肌荒れの少ない成形性に優れたフェライト系ステンレス鋼及びその製造方法が開示されている。しかし特許文献1では、結晶粒径が小さい鋼板が得られているものの、成形した際の深絞り性は十分ではなく、また結晶粒径が小さいにもかかわらず、成形後の肌荒れが発生しやすい問題があった。
From the above background, a method for reducing rough skin of high-purity ferritic stainless steel is disclosed.
Patent Document 1 discloses a ferritic stainless steel having excellent formability with less roughened surface by controlling the size and crystal grain size of precipitated particles using high-purity ferritic stainless steel and a method for producing the same. There is. However, in Patent Document 1, although a steel sheet having a small crystal grain size is obtained, the deep drawing property at the time of molding is not sufficient, and even though the crystal grain size is small, rough skin after molding is likely to occur. There was a problem.

特許文献2には、TiとNbを含有したフェライト系ステンレス鋼において、低温で熱間圧延を実施し、かつ高い冷間圧延率を取ることで細粒とし、成形時の耐肌荒れ性に優れたステンレス鋼を製造する技術を開示している。このような技術によって特許文献2のステンレス鋼は、結晶粒度番号は9.5と細粒組織が得られているものの、カップ絞り成形をした後の肌荒れ性は必ずしも十分ではない。 Patent Document 2 describes that ferritic stainless steel containing Ti and Nb is hot-rolled at a low temperature and has a high cold-rolling ratio to make fine particles, and has excellent skin roughness resistance during molding. It discloses the technology for manufacturing stainless steel. Although the stainless steel of Patent Document 2 has a fine grain structure with a crystal grain size number of 9.5 by such a technique, the rough skin after cup drawing molding is not always sufficient.

特許文献3には、Nb及び/またはTiを含有する成分組成を有する鋼の最終冷延前の結晶粒径を制御することで深絞り性、リジング性および耐肌荒れ性に優れたフェライト系ステンレス鋼が開示されている。しかし、特許文献3では、最終製品の結晶粒径は15μm(結晶粒度番号で9.1)であり、肌荒れ性が不十分である。 Patent Document 3 describes a ferritic stainless steel having excellent deep drawing property, rigging property and rough skin resistance by controlling the crystal grain size of a steel having a component composition containing Nb and / or Ti before final cold spreading. Is disclosed. However, in Patent Document 3, the crystal grain size of the final product is 15 μm (crystal grain size number is 9.1), and the rough skin property is insufficient.

以上のように、フェライト系ステンレス鋼の成形加工を考えた場合、所定の形状に成形が出来、かつ成形後の表面特性を満足させることは非常に困難であるのが現状である。このためフェライト系ステンレス鋼を成形用途として使用する場合は、成形後に生じた表面凹凸を除去するために研磨工程を行う必要がある。しかしこの研磨工程において研磨時間がかかり製造コストがかさむ。さらに、研磨にて生じた粉じんが多く発生するなどの問題がある。 As described above, when considering the molding process of ferritic stainless steel, it is currently very difficult to form a predetermined shape and satisfy the surface characteristics after molding. Therefore, when ferritic stainless steel is used for molding, it is necessary to perform a polishing step in order to remove surface irregularities generated after molding. However, in this polishing process, polishing time is required and the manufacturing cost is increased. Further, there is a problem that a large amount of dust generated by polishing is generated.

特許第4749888号公報Japanese Patent No. 4479888 特開平7−292417号公報Japanese Unexamined Patent Publication No. 7-292417 特許第3788311号公報Japanese Patent No. 3788311

本発明は、上記問題に鑑みなされたものであり、成形加工性及び成形加工後の耐加工肌荒れ性に優れたフェライト系ステンレス鋼板とその製造方法を提供する。 The present invention has been made in view of the above problems, and provides a ferritic stainless steel sheet having excellent molding processability and rough surface resistance after molding processing, and a method for producing the same.

フェライト系ステンレス鋼の加工肌荒れに影響を及ぼす因子として、結晶粒度と歪量が知られている。しかし、上述したように、冷延条件等の制御によって結晶粒度や歪量を高めても加工肌荒れが発生する場合があり、近年、加工肌荒れの発生をより安定して抑制できる鋼が望まれていた。
そこで本発明者らは、フェライト系ステンレス鋼における加工肌荒れと金属組織の関係を調査した。従来から知られている結晶粒度と歪量だけでなく、鋼中の析出物の析出量が加工肌荒れに影響することを初めて知見した。また、析出量を適正範囲に制御するためには、冷間圧延前後の熱処理温度を制御する必要があり、さらに冷間圧延後の熱処理において急速加熱が必要であることを明らかにした。
Crystal grain size and strain amount are known as factors that affect the roughened surface of ferrite stainless steel. However, as described above, roughened processed skin may occur even if the crystal grain size and the amount of strain are increased by controlling the cold spreading conditions and the like, and in recent years, steel capable of more stably suppressing the occurrence of roughened processed skin has been desired. It was.
Therefore, the present inventors investigated the relationship between the rough processed surface and the metallographic structure in ferritic stainless steel. For the first time, it was found that not only the conventionally known crystal grain size and strain amount but also the precipitation amount of precipitates in steel affect the roughened processed surface. Further, it was clarified that in order to control the precipitation amount within an appropriate range, it is necessary to control the heat treatment temperature before and after cold rolling, and further, rapid heating is required in the heat treatment after cold rolling.

本発明の一態様の要旨は、以下のとおりである。
[1]質量%にて、
Cr:11.0%以上30.0%以下、
C:0.001%以上0.030%以下、
Si:0.01%以上2.00%以下、
Mn:0.01%以上2.00%以下、
P:0.003%以上0.100%以下、
S:0.0100%以下、
N:0.030%以下、
B:0%以上0.0025%以下、
Sn:0%以上0.50%以下、
Ni:0%以上1.00%以下、
Cu:0%以上1.00%以下、
Mo:0%以上2.00%以下、
W:0%以上1.00%以下、
Al:0%以上1.00%以下、
Co:0%以上0.50%以下、
V:0%以上0.50%以下、
Zr:0%以上0.50%以下、
Ca:0%以上0.0050%以下、
Mg:0%以上0.0050%以下、
Y:0%以上0.10%以下、
Hf:0%以上0.10%以下、
REM:0%以上0.10%以下、
Sb:0%以上0.50%以下を含み、さらに、
Ti:0.40%以下、Nb:0.50%以下のうち、いずれか一方又は両方を含み、残部がFe及び不純物からなり、
リン化物として存在しているP量が0.003質量%以上であり、
JIS G 0551にて測定される結晶粒度番号が9.0以上であることを特徴とするフェライト系ステンレス鋼板。
[2]質量%にて、更に、
B:0.0001%以上0.0025%以下、
Sn:0.005%以上0.50%以下、
Ni:0.05%以上1.00%以下、
Cu:0.05%以上1.00%以下、
Mo:0.05%以上2.00%以下、
W:0.05%以上1.00%以下、
Al:0.05%以上1.00%以下、
Co:0.05%以上0.50%以下、
V:0.05%以上0.50%以下、
Zr:0.05%以上0.50%以下、
Ca:0.0001%以上0.0050%以下、
Mg:0.0001%以上0.0050%以下、
Y:0.001%以上0.10%以下、
Hf:0.001%以上0.10%以下、
REM:0.001%以上0.10%以下、
Sb:0.005%以上0.50%以下の1種または2種以上を含有していることを特徴とする上記[1]に記載のフェライト系ステンレス鋼板。
The gist of one aspect of the present invention is as follows.
[1] By mass%
Cr: 11.0% or more and 30.0% or less,
C: 0.001% or more and 0.030% or less,
Si: 0.01% or more and 2.00% or less,
Mn: 0.01% or more and 2.00% or less,
P: 0.003% or more and 0.100% or less,
S: 0.0100% or less,
N: 0.030% or less,
B: 0% or more and 0.0025% or less,
Sn: 0% or more and 0.50% or less,
Ni: 0% or more and 1.00% or less,
Cu: 0% or more and 1.00% or less,
Mo: 0% or more and 2.00% or less,
W: 0% or more and 1.00% or less,
Al: 0% or more and 1.00% or less,
Co: 0% or more and 0.50% or less,
V: 0% or more and 0.50% or less,
Zr: 0% or more and 0.50% or less,
Ca: 0% or more and 0.0050% or less,
Mg: 0% or more and 0.0050% or less,
Y: 0% or more and 0.10% or less,
Hf: 0% or more and 0.10% or less,
REM: 0% or more and 0.10% or less,
Sb: Contains 0% or more and 0.50% or less, and further
Ti: 0.40% or less, Nb: 0.50% or less, one or both of them are contained, and the balance is composed of Fe and impurities.
The amount of P present as a phosphide is 0.003% by mass or more,
A ferritic stainless steel sheet having a crystal grain size number of 9.0 or more as measured by JIS G 0551.
[2] By mass%, further
B: 0.0001% or more and 0.0025% or less,
Sn: 0.005% or more and 0.50% or less,
Ni: 0.05% or more and 1.00% or less,
Cu: 0.05% or more and 1.00% or less,
Mo: 0.05% or more and 2.00% or less,
W: 0.05% or more and 1.00% or less,
Al: 0.05% or more and 1.00% or less,
Co: 0.05% or more and 0.50% or less,
V: 0.05% or more and 0.50% or less,
Zr: 0.05% or more and 0.50% or less,
Ca: 0.0001% or more and 0.0050% or less,
Mg: 0.0001% or more and 0.0050% or less,
Y: 0.001% or more and 0.10% or less,
Hf: 0.001% or more and 0.10% or less,
REM: 0.001% or more and 0.10% or less,
Sb: The ferrite-based stainless steel sheet according to the above [1], which contains one or more of 0.005% or more and 0.50% or less.

[3]上記[1]又は[2]に記載の成分を有する鋼を、熱間圧延する熱間圧延工程と、前記熱間圧延工程後、850℃以上900℃以下の温度で熱処理を施す熱延板焼鈍工程と、前記熱延板焼鈍工程後、圧延率を75%以上90%以下として圧延する冷間圧延工程と、前記冷間圧延工程に引き続いて行う冷延板焼鈍工程と、を備え、前記冷延板焼鈍工程において、昇温過程のうち400℃〜800℃の温度範囲における平均昇温速度が80℃/s以上であり、板温の最高到達温度が880℃以上980℃以下であり、最高到達温度に到達後5sec以内に冷却を開始し、最高到達温度から700℃までの温度範囲における平均冷却速度を50℃/s以上として冷却することを特徴とする、上記[1]又は[2]に記載のフェライト系ステンレス鋼板の製造方法。
[4]上記[1]又は[2]に記載の成分を有する鋼を、熱間圧延する熱間圧延工程と、前記熱間圧延工程後、850℃以上900℃以下の温度で熱処理を施して、リン化物として存在するP量を0.003質量%以上とする熱延板焼鈍工程と、前記熱延板焼鈍工程後、圧延率を75%以上90%以下として圧延する冷間圧延工程と、前記冷間圧延工程に引き続いて行う冷延板焼鈍工程と、を備え、前記冷延板焼鈍工程において、昇温過程のうち400℃〜800℃の温度範囲における平均昇温速度が80℃/s以上であり、板温の最高到達温度が880℃以上980℃以下であり、最高到達温度に到達後5sec以内に冷却を開始し、最高到達温度から700℃までの温度範囲における平均冷却速度を50℃/s以上として冷却することを特徴とする、上記[1]又は[2]に記載のフェライト系ステンレス鋼板の製造方法。
[3] A hot rolling step of hot rolling a steel having the component according to the above [1] or [2], and heat of heat treatment at a temperature of 850 ° C. or higher and 900 ° C. or lower after the hot rolling step. A rolled plate annealing step, a cold rolling step of rolling with a rolling ratio of 75% or more and 90% or less after the hot rolled plate annealing step, and a cold rolled plate annealing step performed following the cold rolling step are provided. In the cold-rolled plate annealing step, the average heating rate in the temperature range of 400 ° C. to 800 ° C. in the temperature raising process is 80 ° C./s or more, and the maximum temperature reached of the plate temperature is 880 ° C. or more and 980 ° C. or less. The present invention is characterized in that cooling is started within 5 seconds after reaching the maximum reached temperature, and the average cooling rate in the temperature range from the maximum reached temperature to 700 ° C. is 50 ° C./s or more. The method for producing a ferrite-based stainless steel sheet according to [2].
[4] After the hot rolling step of hot rolling the steel having the component according to the above [1] or [2] and the hot rolling step, heat treatment is performed at a temperature of 850 ° C. or higher and 900 ° C. or lower. A hot-rolled plate annealing step in which the amount of P present as a phospholide is 0.003% by mass or more, and a cold rolling step in which the rolling ratio is 75% or more and 90% or less after the hot-rolled plate annealing step. A cold-rolled sheet annealing step performed following the cold-rolled step is provided, and in the cold-rolled sheet annealing step, the average heating rate in the temperature range of 400 ° C. to 800 ° C. is 80 ° C./s. As described above, the maximum reached temperature of the plate temperature is 880 ° C. or higher and 980 ° C. or lower, cooling is started within 5 seconds after reaching the maximum reached temperature, and the average cooling rate in the temperature range from the highest reached temperature to 700 ° C. is 50. The method for producing a ferrite-based stainless steel sheet according to the above [1] or [2], which comprises cooling at ° C./s or higher.

本発明の一態様によれば、成形加工性及び成形加工後の耐加工肌荒れ性に優れたフェライト系ステンレス鋼板を提供することができる。 According to one aspect of the present invention, it is possible to provide a ferritic stainless steel sheet having excellent moldability and rough surface resistance after molding.

本実施形態に係るフェライト系ステンレス鋼板の再結晶組織のTEM観察結果(TEM写真)である。It is a TEM observation result (TEM photograph) of the recrystallized structure of the ferritic stainless steel sheet which concerns on this embodiment. 本実施例に係る結晶粒度番号とPの析出量(Pp)の関係を示す図である。It is a figure which shows the relationship between the crystal particle size number and the precipitation amount (Pp) of P which concerns on this Example.

以下、本発明の一実施形態に係るフェライト系ステンレス鋼板の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。 Hereinafter, each requirement of the ferritic stainless steel sheet according to the embodiment of the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".

(I)成分の限定理由を以下に説明する。 The reason for limiting the component (I) will be described below.

Crは、ステンレス鋼の基本特性である耐食性を向上する元素である。11.0%未満では、十分な耐食性は得られないため、下限は11.0%以上とする。一方、過度量のCrを含有させると、σ相(Fe−Crの金属間化合物)相当の金属間化合物の生成を促進して製造時の割れを助長するため、上限は30.0%以下とする。安定製造性(歩留まり、圧延疵等)点から14.0%以上、25.0%以下が望ましい。更に望ましくは16.0%以上、20.0%以下がよい。 Cr is an element that improves corrosion resistance, which is a basic property of stainless steel. If it is less than 11.0%, sufficient corrosion resistance cannot be obtained, so the lower limit is set to 11.0% or more. On the other hand, if an excessive amount of Cr is contained, the formation of an intermetallic compound equivalent to the σ phase (Fe-Cr intermetallic compound) is promoted and cracking during production is promoted, so the upper limit is 30.0% or less. To do. From the viewpoint of stable manufacturability (yield, rolling defects, etc.), 14.0% or more and 25.0% or less are desirable. More preferably, it is 16.0% or more and 20.0% or less.

Cは、本実施形態において重要な成形性を低下させる元素であるため、少ない方が好ましく、上限を0.030%以下とする。但し、過度な低減は精錬コストの上昇を招くため、下限は0.001%以上とする。精錬コスト及び成形性の両者を考慮した場合、0.002%以上、0.020%以下が好ましい。 Since C is an element that reduces moldability, which is important in the present embodiment, it is preferably less, and the upper limit is 0.030% or less. However, since excessive reduction causes an increase in refining cost, the lower limit is set to 0.001% or more. Considering both refining cost and moldability, 0.002% or more and 0.020% or less are preferable.

Siは、耐酸化性を向上させる元素であるが、過剰量のSiを含有させると成形性の低下を招くため、上限を2.00%以下とする。成形性の点からSi量は低い方が好ましいが、過度の低下は原料コストの増加を招くため、下限を0.01%以上とする。製造性の観点から、望ましい範囲は0.05%以上、1.00%以下であり、さらに望ましくは0.05%以上、0.30%以下である。 Si is an element that improves oxidation resistance, but if an excessive amount of Si is contained, the moldability is lowered, so the upper limit is set to 2.00% or less. From the viewpoint of moldability, it is preferable that the amount of Si is low, but since an excessive decrease causes an increase in raw material cost, the lower limit is set to 0.01% or more. From the viewpoint of manufacturability, the desirable range is 0.05% or more and 1.00% or less, and more preferably 0.05% or more and 0.30% or less.

MnはSiと同様に、多量のMnを含有させると成形性の低下を招くため、上限を2.00%以下とする。成形性の点からMn量は低い方が好ましいが、過度の低下は原料コストの増加を招くため、下限を0.01%以上とする。製造性の観点から、望ましい範囲は0.05%以上、1.00%以下であり、さらに望ましくは0.05%以上、0.30%以下である。 Similar to Si, Mn causes a decrease in moldability when a large amount of Mn is contained, so the upper limit is set to 2.00% or less. From the viewpoint of moldability, it is preferable that the amount of Mn is low, but an excessive decrease causes an increase in raw material cost, so the lower limit is set to 0.01% or more. From the viewpoint of manufacturability, the desirable range is 0.05% or more and 1.00% or less, and more preferably 0.05% or more and 0.30% or less.

Pは、本実施形態の鋼板中において、リン化物として析出することで耐加工肌荒れ性の向上に寄与する重要な元素である。リン化物の析出量を確保し、耐加工肌荒れ性を向上させるために、P量は0.003%以上とする。しかし、Pは成形性を低下させる元素であるため、上限を0.100%以下とする。なお、P量の過度な低減は原料コストの上昇をもたらすことに加え、成形性と耐加工肌荒れ性の両者を考慮した場合、好ましい範囲は0.010%以上、0.050%以下、更に望ましくは0.020%以上、0.040%以下である。 P is an important element that contributes to the improvement of roughened skin resistance by precipitating as a phosphide in the steel sheet of the present embodiment. The amount of P is set to 0.003% or more in order to secure the amount of phosphide precipitated and improve the resistance to rough skin. However, since P is an element that lowers moldability, the upper limit is set to 0.100% or less. It should be noted that an excessive reduction in the amount of P brings about an increase in raw material cost, and when both moldability and rough skin resistance are taken into consideration, the preferable ranges are 0.010% or more, 0.050% or less, more preferably. Is 0.020% or more and 0.040% or less.

Sは不純物元素であり、製造時の割れを助長するため、低い方が好ましく、上限を0.0100%以下とする。S量は低いほど好ましく、0.0030%以下が望ましい。一方、過度の低下は精錬コストの上昇を招くため下限は0.0003%以上とすることが望ましい。製造性とコストの点から、好ましい範囲は0.0004%以上、0.0020%以下である。 Since S is an impurity element and promotes cracking during production, a lower value is preferable, and the upper limit is 0.0100% or less. The lower the amount of S, the more preferable, and 0.0030% or less is desirable. On the other hand, it is desirable that the lower limit is 0.0003% or more because an excessive decrease causes an increase in refining cost. From the viewpoint of manufacturability and cost, the preferable ranges are 0.0004% or more and 0.0020% or less.

Nは、Cと同様に成形性を低下させる元素であり、上限を0.030%以下とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.002%以上とすることが好ましい。成形性と製造性の点から、好ましい範囲は0.005%以上、0.015%以下である。 Like C, N is an element that lowers moldability, and the upper limit is 0.030% or less. However, since excessive reduction leads to an increase in refining cost, the lower limit is preferably 0.002% or more. From the viewpoint of moldability and manufacturability, the preferable range is 0.005% or more and 0.015% or less.

TiおよびNbのうち、いずれか一方又は両方を下記のように含有する。
Tiは、C,Nと結合し、TiC、TiN等の析出物としてC,Nを固定し、高純度化を通じてr値及び製品伸びの向上をもたらす。これらの効果を得るため、Tiを含有させる場合は、下限を0.03%以上とすることが好ましい。一方、過度に含有させると、合金コストの上昇や再結晶温度上昇に伴う製造性の低下を招くため、上限は0.40%以下とする。成形性及び製造性の点から、好ましい範囲は0.05%以上、0.30%以下である。更に、Tiの上記効果を積極的に活用する好適な範囲は0.10%以上、0.20%以下である。
One or both of Ti and Nb are contained as follows.
Ti binds to C and N, fixes C and N as precipitates of TiC, TiN and the like, and brings about improvement in r value and product elongation through high purification. In order to obtain these effects, when Ti is contained, the lower limit is preferably 0.03% or more. On the other hand, if it is contained excessively, the alloy cost increases and the recrystallization temperature increases, resulting in a decrease in manufacturability. Therefore, the upper limit is set to 0.40% or less. From the viewpoint of moldability and manufacturability, the preferable range is 0.05% or more and 0.30% or less. Further, the preferable range for positively utilizing the above-mentioned effect of Ti is 0.10% or more and 0.20% or less.

Nbも、Tiと同様にC,Nを固定する安定化元素であって、この作用による鋼の高純度化を通じて、r値及び製品伸びの向上をもたらす。これら効果を得るため、Nbを含有させる場合は下限を0.03%以上とすることが好ましい。一方、過度に含有させると、合金コストの上昇や再結晶温度の上昇に伴う製造性の低下に繋がるため、上限は0.50%以下とする。合金コストや製造性の点から、好ましい範囲は0.03%以上、0.30%以下である。更に、Nbの上記効果を積極的に活用する好適な範囲は0.04%以上、0.15%以下である。更に望ましくは0.06〜0.10%である。 Like Ti, Nb is also a stabilizing element that fixes C and N, and through this action, the purity of steel is improved, and the r value and product elongation are improved. In order to obtain these effects, when Nb is contained, the lower limit is preferably 0.03% or more. On the other hand, if it is contained excessively, it leads to an increase in alloy cost and a decrease in manufacturability due to an increase in recrystallization temperature, so the upper limit is set to 0.50% or less. From the viewpoint of alloy cost and manufacturability, the preferable ranges are 0.03% or more and 0.30% or less. Further, the preferable range for positively utilizing the above-mentioned effect of Nb is 0.04% or more and 0.15% or less. More preferably, it is 0.06 to 0.10%.

本実施形態のフェライト系ステンレス鋼板は、上述してきた元素以外(残部)は、Fe及び不純物からなるが、本実施形態では、更に上記の基本組成に加えて、下記の元素群のうち1種または2種以上を選択的に含有させてもよい。すなわち、B、Sn、Ni、Cu、Mo、W、Al、Co、V、Zr、Ca、Mg、Y、Hf、REM、Sbの含有量の下限は0%以上である。
なお、本実施形態における「不純物」とは、鋼を工業的に製造する際に鉱石やスクラップ等のような原料をはじめとして製造工程の種々の要因によって混入する成分であり、不可避的に混入する成分も含む。
The ferritic stainless steel sheet of the present embodiment is composed of Fe and impurities other than the elements described above (the balance), but in the present embodiment, in addition to the above basic composition, one of the following element groups or Two or more kinds may be selectively contained. That is, the lower limit of the content of B, Sn, Ni, Cu, Mo, W, Al, Co, V, Zr, Ca, Mg, Y, Hf, REM, and Sb is 0% or more.
The "impurities" in the present embodiment are components that are mixed due to various factors in the manufacturing process, including raw materials such as ores and scraps, when steel is industrially manufactured, and are inevitably mixed. Also includes ingredients.

Bは二次加工性を向上させる元素である。その効果を発揮するには0.0001%以上が必要であるため、これを下限とする。一方、過度に含有させると製造性、特に鋳造性の劣化を招くため、0.0025%以下を上限とする。好ましい範囲は0.0003%以上、0.0012%以下である。 B is an element that improves the secondary processability. Since 0.0001% or more is required to exert the effect, this is set as the lower limit. On the other hand, if it is contained excessively, the manufacturability, particularly the castability, is deteriorated, so the upper limit is 0.0025% or less. The preferred range is 0.0003% or more and 0.0012% or less.

Snは耐食性を向上させる効果を有する元素であるため、室温での腐食環境に応じて含有させてもよい。その効果は0.005%以上で発揮されるため、これを下限とする。一方、多量に含有させると、製造性の劣化を招くため、0.50%以下を上限とする。製造性を考慮して、好ましい範囲は0.02%以、0.10%以下である。 Since Sn is an element having an effect of improving corrosion resistance, it may be contained depending on the corrosive environment at room temperature. Since the effect is exhibited at 0.005% or more, this is set as the lower limit. On the other hand, if it is contained in a large amount, the manufacturability is deteriorated, so the upper limit is 0.50% or less. In consideration of manufacturability, the preferable range is 0.02% or more and 0.10% or less.

Ni、Cu、Mo、Al、W、Co、V、Zrは、耐食性あるいは耐酸化性を高めるのに有効な元素であり、必要に応じて含有してよい。Ni、Cu、Mo、Al、W、Co、V、Zrのそれぞれの含有量を0.05%以上とすることで、効果が発現する。但し、過度に含有させると、成形性の低下を招くばかりでなく、合金コストの上昇や製造性を阻害することに繋がる。そのため、Ni、Cu、Al、Wの上限は1.00%以下とする。Ni、Cu、Al、Wの上限は、好ましくは0.50%以下である。Moは製造性の低下をもたらすため、上限は2.00%以下とする。Moの上限は、好ましくは1.00%以下である。Co、V、Zrの上限は、耐食性あるいは耐酸化性が向上する効果の発現を考慮して、0.50%以下とする。Ni、Cu、Mo、Al、W、Co、V、Zrのいずれの元素もより好ましい含有量の下限は0.10%以上とする。 Ni, Cu, Mo, Al, W, Co, V, and Zr are elements effective for enhancing corrosion resistance or oxidation resistance, and may be contained as necessary. The effect is exhibited by setting the content of each of Ni, Cu, Mo, Al, W, Co, V, and Zr to 0.05% or more. However, if it is contained in an excessive amount, not only the moldability is lowered, but also the alloy cost is increased and the manufacturability is hindered. Therefore, the upper limit of Ni, Cu, Al, and W is set to 1.00% or less. The upper limit of Ni, Cu, Al, and W is preferably 0.50% or less. Since Mo causes a decrease in manufacturability, the upper limit is set to 2.00% or less. The upper limit of Mo is preferably 1.00% or less. The upper limit of Co, V, and Zr is 0.50% or less in consideration of the development of the effect of improving corrosion resistance or oxidation resistance. The lower limit of the more preferable content of any of the elements Ni, Cu, Mo, Al, W, Co, V and Zr is 0.10% or more.

Ca、Mgは、熱間加工性や2次加工性を向上させる元素であり、必要に応じて含有させてもよい。但し、過度に含有させると、製造性を阻害することに繋がるため、Ca、Mgの上限は0.0050%以下とする。好ましい下限は、ともに0.0001%以上とする。製造性と熱間加工性を考慮した場合、好ましい範囲は、Ca、Mgともに0.0002%以上、0.0010%以下である。 Ca and Mg are elements that improve hot workability and secondary workability, and may be contained as necessary. However, if it is contained in an excessive amount, it will hinder the manufacturability, so the upper limit of Ca and Mg is set to 0.0050% or less. The preferred lower limit is 0.0001% or more for both. Considering the manufacturability and hot workability, the preferable ranges are 0.0002% or more and 0.0010% or less for both Ca and Mg.

Y、Hf、REMは、熱間加工性や鋼の清浄度の向上、ならびに耐酸化性改善に対して有効な元素であり、必要に応じて含有してもよい。含有させる場合、上限はそれぞれ0.10%以下とする。好ましい下限は、Y、Hf、REMともに0.001%以上とする。ここで、本実施形態における「REM」とは、原子番号57〜71に帰属する元素群(ランタノイド)から選択される1種以上で構成されるものあり、例えば、La、Ce、Pr、Nd等である。また、本実施形態でいう「REM」の含有量とはランタノイドの合計量である。 Y, Hf, and REM are elements effective for improving hot workability, steel cleanliness, and oxidation resistance, and may be contained as necessary. When it is contained, the upper limit is 0.10% or less. The preferable lower limit is 0.001% or more for all of Y, Hf, and REM. Here, the "REM" in the present embodiment is composed of one or more selected from the element group (lanthanoid) belonging to atomic numbers 57 to 71, and is, for example, La, Ce, Pr, Nd, etc. Is. The content of "REM" in the present embodiment is the total amount of lanthanoids.

SbはSnと同様に耐食性を向上させる効果を持つ元素であり、必要に応じて含有させてもよい。ただし多量に含有させると、製造性の劣化を招くため、0.50%以下を上限とする。一方、耐食性を向上させる効果は0.005%以上で発揮されるため、これを下限とする。 Sb is an element having an effect of improving corrosion resistance like Sn, and may be contained if necessary. However, if it is contained in a large amount, the manufacturability is deteriorated, so the upper limit is 0.50% or less. On the other hand, since the effect of improving corrosion resistance is exhibited at 0.005% or more, this is set as the lower limit.

本実施形態のフェライト系ステンレス鋼鈑は、上述してきた元素以外は、Fe及び不純物(不可避的不純物を含む)からなるが、以上説明した各元素の他にも、本実施形態の効果を損なわない範囲で含有させることが出来る。本実施形態では、例えばBi、Pb、Se、H、Ta等が含有されていてもよいが、その場合は可能な限り低減することが好ましい。一方、これらの元素は、本実施形態の課題を解決する限度において、その含有割合が制御され、必要に応じて、Bi≦100ppm、Pb≦100ppm、Se≦100ppm、H≦100ppm、Ta≦500ppmの1種以上を含有してもよい。 The ferrite-based stainless steel plate of the present embodiment is composed of Fe and impurities (including unavoidable impurities) other than the elements described above, but the effects of the present embodiment are not impaired in addition to the elements described above. It can be contained in a range. In the present embodiment, for example, Bi, Pb, Se, H, Ta and the like may be contained, but in that case, it is preferable to reduce as much as possible. On the other hand, the content ratio of these elements is controlled to the extent that the problem of the present embodiment is solved, and Bi ≦ 100 ppm, Pb ≦ 100 ppm, Se ≦ 100 ppm, H ≦ 100 ppm, Ta ≦ 500 ppm, if necessary. It may contain one or more kinds.

(II)次に、金属組織について説明する。
本実施形態のフェライト系ステンレス鋼鈑は、結晶粒度番号が9.0以上のフェライト単相組織からなる。
結晶粒度番号は9.0以上とする。成形後の加工肌荒れは結晶粒度番号が大きいほど、すなわちフェライト結晶粒の粒径が小さいほど生じにくいためこれを下限とする。肌荒れをさらに抑制するためには9.5超が好ましく、更に望ましくは10.0超である。但し、結晶粒の粒径が過度に小さくなると、強度が上昇しプレス成型性が低下する恐れがある。このため、結晶粒度番号は12以下であることが好ましい。
(II) Next, the metal structure will be described.
The ferritic stainless steel plate of the present embodiment has a ferrite single-phase structure having a crystal grain size number of 9.0 or more.
The crystal grain size number shall be 9.0 or more. Rough processing after molding is less likely to occur as the crystal grain size number is larger, that is, as the grain size of ferrite crystal grains is smaller, and this is set as the lower limit. In order to further suppress rough skin, it is preferably more than 9.5, more preferably more than 10.0. However, if the grain size of the crystal grains becomes excessively small, the strength may increase and the press moldability may decrease. Therefore, the crystal particle size number is preferably 12 or less.

結晶粒度番号は、JIS G 0551(2013)の線分法で求めることができる。なお、「粒度番号:9」は、結晶粒内を横切る1結晶粒あたりの平均線分長が14.1μmであることに相当し、「粒度番号:10」は、結晶粒内を横切る1結晶粒あたりの平均線分長が10.0μmであることに相当する。結晶粒度の測定では、試験片断面の光学顕微鏡組織写真より、1試料につき横切る結晶粒数を500以上とする。エッチング液は王水または逆王水がよいが、結晶粒界が判断できるのであれば他の溶液でも構わない。また隣接する結晶粒の方位関係によっては、粒界が鮮明に見えない場合があるため、濃くエッチングするのが好ましい。また結晶粒界の測定に当たって、双晶粒界は測定しないこととする。 The crystal grain size number can be obtained by the line segment method of JIS G 0551 (2013). Note that "grain size number: 9" corresponds to an average line segment length of 14.1 μm per crystal grain crossing the inside of the crystal grain, and "grain size number: 10" corresponds to one crystal crossing the inside of the crystal grain. This corresponds to an average line segment length of 10.0 μm per grain. In the measurement of the crystal grain size, the number of crystal grains crossed per sample is set to 500 or more from the optical microstructure photograph of the cross section of the test piece. The etching solution is preferably aqua regia or reverse aqua regia, but other solutions may be used as long as the grain boundaries can be determined. Further, depending on the orientation relationship of adjacent crystal grains, the grain boundaries may not be clearly visible, so it is preferable to perform deep etching. In addition, when measuring the grain boundaries, the twin grain boundaries are not measured.

また本実施形態のフェライト系ステンレス鋼板の金属組織は、フェライト単相組織よりなり、かつ後述するPの析出物(リン化物)が生成されている。これはオーステナイト相やマルテンサイト組織を含まないことを意味している。オーステナイト相やマルテンサイト組織を含む場合は、結晶粒径を細かくすることが比較的容易であるためである。さらにオーステナイト相は、TRIP効果により高い成形性を示す。しかし、原料コストが高くなることに加えて、製造時に耳割れ等の歩留まり低下が起こりやすくなるため、金属組織はフェライト単相組織とする。なお、鋼中にリン化物以外にも炭窒化物等の析出物が存在する場合もあるが、本実施形態の効果を大きく左右するものではないため、これらは考慮せず、上記は主相の組織について述べている。 Further, the metal structure of the ferritic stainless steel sheet of the present embodiment has a ferrite single-phase structure, and a precipitate (phosphide) of P described later is formed. This means that it does not contain the austenite phase or the martensite structure. This is because it is relatively easy to make the crystal grain size finer when it contains an austenite phase or a martensite structure. Furthermore, the austenite phase exhibits high moldability due to the TRIP effect. However, in addition to the high raw material cost, a decrease in yield such as ear cracking is likely to occur during production, so the metal structure is a ferrite single-phase structure. In addition to phosphide, precipitates such as carbonitride may be present in the steel, but these do not significantly affect the effect of this embodiment, and the above is the main phase. Describes the organization.

(III)次に、Pの析出量について説明する。
通常、フェライト系ステンレス鋼板におけるPは、成形性(r値および製品伸び)を低下させることから、その含有量を低減させるべきと考えられている。しかし、本発明者らの検討の結果、鋼中のリン化物の析出量が加工肌荒れに影響することを初めて知見した。このことから、本実施形態においては、結晶粒度の制御に加え、リン化物として存在しているP量、すなわちPの析出量Ppを制御することにより、安定的に加工肌荒れをさらに抑制できることを明らかにし、Pの析出量Ppを規定した点に特徴がある。
(III) Next, the amount of P precipitated will be described.
Generally, it is considered that the content of P in a ferritic stainless steel sheet should be reduced because it lowers the formability (r value and product elongation). However, as a result of the studies by the present inventors, it was found for the first time that the amount of phosphide precipitated in steel affects the roughened processed skin. From this, it is clear that in the present embodiment, by controlling the amount of P existing as a phosphide, that is, the amount of precipitation Pp of P, in addition to controlling the crystal grain size, it is possible to further stably further suppress the roughened processed skin. It is characterized in that the precipitation amount Pp of P is defined.

このように、鋼中のリン化物は加工肌荒れ抑制に大きく貢献するため、Pの析出量を確保する必要がある。このことから、本実施形態ではリン化物として存在するP量(Pの析出量Pp)を0.003質量%以上とする。望ましくは0.004質量%以上とし、更に好ましくは0.005質量%以上とする。Pの析出量Ppの上限は特に限定しないが、鋼板のP含有量の上限が0.100%以下であることから、同じようにPの析出量Ppも上限を0.100%以下としてよい。なお、本実施形態でいうリン化物は、例えばFeリン化物、Mnリン化物、Tiリン化物、Nbリン化物、Alリン化物等が挙げられるが、種類や組成は特に限定しない。すなわち本実施形態では、リン化物の具体的な組成、存在形態が問わず、リン化物として存在しているP量(Pの析出量Pp)が上記範囲内であることが重要である。 As described above, since the phosphide in the steel greatly contributes to the suppression of roughened processed skin, it is necessary to secure the amount of P precipitated. For this reason, in the present embodiment, the amount of P existing as a phosphide (precipitation amount of P Pp) is set to 0.003% by mass or more. It is preferably 0.004% by mass or more, and more preferably 0.005% by mass or more. The upper limit of the precipitation amount Pp of P is not particularly limited, but since the upper limit of the P content of the steel sheet is 0.100% or less, the upper limit of the precipitation amount Pp of P may be 0.100% or less in the same manner. The phosphide referred to in this embodiment includes, for example, Fe phosphide, Mn phosphide, Ti phosphide, Nb phosphide, Al phosphide, and the like, but the type and composition are not particularly limited. That is, in the present embodiment, it is important that the amount of P existing as the phosphide (precipitation amount Pp of P) is within the above range regardless of the specific composition and existence form of the phosphide.

Pの析出量Ppを上記範囲内に制御する方法の詳細は後述するが、冷間圧延工程の前後に実施する熱処理(熱延板焼鈍および仕上げ焼鈍)の処理温度を制御し、かつ冷間圧延後の熱処理における加熱過程を急速にて行うことで制御することができる。 The details of the method for controlling the precipitation amount Pp of P within the above range will be described later, but the treatment temperature of the heat treatment (hot-rolled sheet annealing and finish annealing) performed before and after the cold rolling step is controlled, and cold rolling is performed. It can be controlled by rapidly performing the heating process in the subsequent heat treatment.

析出したリン化物が加工肌荒れ抑制に寄与する原因は鋭意調査中であるが、現時点では次のように考えている。
一般的に、析出物は粒界上に析出しやすいため、熱延板焼鈍により析出するリン化物もその多くが粒界上に析出していると考えられる。その後、冷間圧延により金属組織が潰れて圧延方向に伸びることに伴い、粒界上に析出していたリン化物が圧延方向に概ね平行に並んだ状態になっていると考えられる。その状態から、急速加熱、短時間保持、急速冷却とする仕上げ焼鈍を施して再結晶化を図ると、リン化物の上記析出状態をほとんど変えずに金属組織の再結晶組織を得ることとなる。すなわち、仕上げ焼鈍を急速加熱、短時間保持、急速冷却とすることで、リン化物が圧延方向に平行に並んだ状態を維持した再結晶組織となる。
実際に本発明者らは、このような製法(後述する本実施形態の製造方法範囲内)で製造した製品板の薄膜TEM観察において、再結晶組織の結晶粒内のリン化物が圧延方向に平行に並んでいる様子を確認できている。図1は、後述する本実施形態を満たす条件で製造した鋼板における再結晶組織のTEM観察結果を示す。図1からも明らかなように、再結晶組織の結晶粒内において、圧延方向に沿うようにP化物が析出しているのが確認できる。なお、結晶粒内に析出している析出物がP化物であるか否かは、EDS分析および電子回折パターン解析によって同定した。
このような析出状態のリン化物を備えたステンレス鋼板を加工し歪を加えると、互いに平行に並んだリン化物によって転位の移動が妨げられる。結果的にこのリン化物が結晶粒界と同様の作用効果を示し、加工肌荒れの抑制に寄与したと考えられる。
The reason why the precipitated phosphide contributes to the suppression of rough processed skin is under intensive investigation, but at present, it is considered as follows.
In general, since the precipitates are likely to be precipitated on the grain boundaries, it is considered that most of the phosphides precipitated by hot-rolled plate annealing are also precipitated on the grain boundaries. After that, as the metallographic structure is crushed by cold rolling and stretches in the rolling direction, it is considered that the phosphide deposited on the grain boundaries are arranged substantially parallel to the rolling direction. From that state, if finish annealing such as rapid heating, short-time holding, and rapid cooling is performed to recrystallize the phosphide, a recrystallized structure of the metal structure can be obtained with almost no change in the precipitation state of the phosphide. That is, by rapidly heating, holding for a short time, and rapidly cooling the finish annealing, a recrystallized structure in which the phosphide is maintained parallel to the rolling direction is obtained.
In fact, the present inventors observed the thin film TEM of the product plate manufactured by such a manufacturing method (within the manufacturing method range of the present embodiment described later), in which the phosphide in the crystal grains of the recrystallized structure was parallel to the rolling direction. You can see how they are lined up in. FIG. 1 shows a TEM observation result of a recrystallized structure in a steel sheet manufactured under the conditions satisfying the present embodiment described later. As is clear from FIG. 1, it can be confirmed that P-forms are precipitated along the rolling direction in the crystal grains of the recrystallized structure. Whether or not the precipitate deposited in the crystal grains was a P compound was identified by EDS analysis and electron diffraction pattern analysis.
When a stainless steel sheet having a phosphide in such a precipitated state is processed and strained, the movement of dislocations is hindered by the phosphides arranged in parallel with each other. As a result, it is considered that this phosphide showed the same action and effect as the grain boundaries and contributed to the suppression of rough processed skin.

Pの析出量Ppは次のような電解抽出残渣法により測定する。
ステンレス鋼板の幅方向中心から、30mm角程度の大きさの試験片を切り出し、鋼板表面に相当する試験片の全面を番数♯600の耐水研磨紙で湿式研磨する。研磨した後、10%無水マレイン酸および2%テトラメチルアンモニウムクロライドを含むメタノール溶液中で−100mVの定電位で電解することにより試験片母材(ステンレス母材)を溶解する。電気分解後、溶解せずに溶液中に残存した残渣(析出物)を200nmメッシュのフィルタを用いて捕捉する。捕捉した析出物を、純水で洗浄および乾燥する。次いで王水と過塩素酸により析出物を溶解させ、JIS G 1258に準拠してICP発光分光分析法を用いて元素分析を行い析出物中のPの質量を求める。得られたP量を、電解による試験片の質量変化量(「電気分解前の試験片の質量」−「電気分解後の試験片の質量」)で除して百分率で表示したものを「Pの析出量Pp」(質量%)とする。
The amount of P deposited, Pp, is measured by the following electrolytic extraction residue method.
A test piece having a size of about 30 mm square is cut out from the center of the stainless steel sheet in the width direction, and the entire surface of the test piece corresponding to the surface of the steel sheet is wet-polished with water-resistant abrasive paper of number # 600. After polishing, the test piece base material (stainless steel base material) is dissolved by electrolysis at a constant potential of -100 mV in a methanol solution containing 10% maleic anhydride and 2% tetramethylammonium chloride. After electrolysis, the residue (precipitate) remaining in the solution without being dissolved is captured using a 200 nm mesh filter. The captured precipitate is washed and dried with pure water. Next, the precipitate is dissolved with aqua regia and perchloric acid, and elemental analysis is performed using ICP emission spectroscopy in accordance with JIS G 1258 to determine the mass of P in the precipitate. The amount of P obtained is divided by the amount of change in the mass of the test piece due to electrolysis (“mass of the test piece before electrolysis”-“mass of the test piece after electrolysis”) and displayed as a percentage, which is expressed as “P”. Precipitation amount Pp ”(mass%).

(IV)次に、本実施形態のフェライト系ステンレス鋼板の製造方法を説明する。
本実施形態に係るフェライト系ステンレス鋼板の製造方法は、熱間圧延、熱延板焼鈍、冷間圧延及び冷延板焼鈍(仕上げ焼鈍)を組み合わせることとし、必要に応じて、適宜、酸洗を行うこととする。すなわち、製造方法の一例として、例えば、製鋼−熱間圧延−熱延板焼鈍−冷間圧延−冷延板焼鈍(仕上げ焼鈍)の各工程からなる製法を採用できる。
本実施形態において重要な結晶粒径とリン化物の析出状態の両者を上記のとおりに満足するために制御すべき条件は、熱間圧延後の熱処理(熱延板焼鈍)の条件、冷間圧延率、冷延後の熱処理(冷延板焼鈍)の条件であり、それ以外の工程、条件については特に制限はない。
(IV) Next, a method for manufacturing the ferritic stainless steel sheet of the present embodiment will be described.
The method for producing a ferritic stainless steel sheet according to the present embodiment is to combine hot rolling, hot rolling plate annealing, cold rolling and cold rolling plate annealing (finish annealing), and if necessary, pickling as appropriate. I will do it. That is, as an example of the manufacturing method, for example, a manufacturing method including each step of steelmaking-hot rolling-hot-rolled sheet annealing-cold rolling-cold-rolled sheet annealing (finish annealing) can be adopted.
The conditions to be controlled in order to satisfy both the crystal grain size and the precipitation state of the phosphonic acid, which are important in the present embodiment, are the conditions of heat treatment (annealing of hot-rolled sheet) after hot rolling and cold rolling. The conditions are the rate and heat treatment after cold rolling (annealing of cold rolled plate), and there are no particular restrictions on other processes and conditions.

熱間圧延後、850℃以上900℃以下の温度で熱処理(熱延板焼鈍)を施し、熱処理後のリン化物の析出量Ppを確保する。熱処理温度が850℃未満であると、板厚中心部に再結晶不良が生じ、r値の低下による成形性低下やリジング発生による加工後の研磨特性の悪化を引き起こすおそれがある。このため、熱延板焼鈍の熱処理温度の下限は850℃以上とする。望ましくは860℃以上である。また熱処理温度が900℃超であると、リン化物の析出量が不足し、上述した析出量Ppを確保できない。そのため、熱延板焼鈍の熱処理温度の上限を900℃以下とする。望ましくは880℃以下であり、より好ましくは870℃未満である。なお、冷延後の焼鈍(仕上げ焼鈍)では析出状態をほとんど変化させないため、この段階でのPの析出量Ppを制御することが重要である。熱延板焼鈍により、熱延板焼鈍後の段階で、リン化物として存在するP量(Pの析出量Pp)を0.003質量%以上とすることが好ましい。 After hot rolling, heat treatment (hot rolling plate annealing) is performed at a temperature of 850 ° C. or higher and 900 ° C. or lower to secure the precipitation amount Pp of the phosphide after the heat treatment. If the heat treatment temperature is less than 850 ° C., recrystallization defects may occur in the central portion of the plate thickness, which may cause deterioration of moldability due to a decrease in r value and deterioration of polishing characteristics after processing due to rigging. Therefore, the lower limit of the heat treatment temperature for hot-rolled sheet annealing is set to 850 ° C. or higher. Desirably, it is 860 ° C. or higher. Further, if the heat treatment temperature exceeds 900 ° C., the amount of phosphide precipitated is insufficient, and the above-mentioned amount of precipitation Pp cannot be secured. Therefore, the upper limit of the heat treatment temperature for hot-rolled sheet annealing is set to 900 ° C. or lower. It is preferably 880 ° C. or lower, and more preferably less than 870 ° C. In addition, since the precipitation state is hardly changed by annealing after cold stretching (finish annealing), it is important to control the precipitation amount Pp of P at this stage. By hot-rolled plate annealing, the amount of P present as a phosphide (precipitation amount Pp of P) is preferably 0.003% by mass or more at the stage after hot-rolled plate annealing.

その後の冷間圧延における圧延率は75%以上90%以下とする。
冷間圧延後に行う熱処理によって再結晶粒径を細かくするためには、導入ひずみ量を多くする必要がある。再結晶はひずみが多く導入されている部分から始まる。すなわち、加工量が多い(圧延率が大きい)材料ほど、再結晶の起点となる部分(核)が多いため、再結晶粒径が小さくなる。これらのことから、結晶粒度番号を大きくする(結晶粒径を小さくする)ためには、圧延率は高いほうがよい。圧延率が75%未満だと、これら効果を得られず、かつr値が低下して成形性が低下するおそれもある。このため、本実施形態では圧延率は75%以上とする。また圧延率が高いほど、r値は向上するため、圧延率は80%以上であることが望ましい。一方、圧延率が90%超では、逆にr値が低下し、成形性の低下が起こるおそれがある。そのため圧延率は90%以下の範囲とする。
The rolling ratio in the subsequent cold rolling is 75% or more and 90% or less.
In order to make the recrystallized grain size finer by the heat treatment performed after cold rolling, it is necessary to increase the introduced strain amount. Recrystallization starts from the part where a lot of strain is introduced. That is, the larger the amount of processing (the larger the rolling ratio), the larger the portion (nucleus) that becomes the starting point of recrystallization, so that the recrystallization grain size becomes smaller. From these facts, in order to increase the crystal grain size number (decrease the crystal grain size), the rolling ratio should be high. If the rolling ratio is less than 75%, these effects cannot be obtained, and the r value may decrease, resulting in a decrease in moldability. Therefore, in the present embodiment, the rolling ratio is 75% or more. Further, the higher the rolling ratio, the higher the r value, so that the rolling ratio is preferably 80% or more. On the other hand, if the rolling ratio exceeds 90%, the r value may decrease, resulting in a decrease in moldability. Therefore, the rolling ratio is in the range of 90% or less.

冷間圧延後、引き続いて熱処理(冷延板焼鈍)を行うが、本実施形態ではこの熱処理を急速で行うことに特徴がある。具体的には、冷延板焼鈍において、昇温過程のうち400℃〜800℃の温度範囲における平均昇温速度を80℃/s以上とする。最高到達温度が880℃以上980℃以下である。最高到達温度に到達後5sec以内に冷却を開始し、最高到達温度から700℃までの温度範囲における平均冷却速度を50℃/s以上として冷却する。
なお、本実施形態でいう「400℃〜800℃の温度範囲における平均昇温速度」とは、当該温度範囲の鋼板温度の上昇幅(400℃)を、当該温度範囲の昇温に要した時間で除した値とする。「最高到達温度から700℃までの温度範囲における平均冷却速度」とは、最高到達温度から700℃までの鋼板の温度降下幅を、最高到達温度に到達した時点から700℃となった時点までの所要時間で除した値とする。また、以下の説明における温度(℃)はすべて鋼板温度を指す。
After cold rolling, heat treatment (cold-rolled sheet annealing) is subsequently performed, and this embodiment is characterized in that this heat treatment is performed rapidly. Specifically, in the cold-rolled plate annealing, the average heating rate in the temperature range of 400 ° C. to 800 ° C. in the temperature raising process is set to 80 ° C./s or more. The maximum temperature reached is 880 ° C or higher and 980 ° C or lower. Cooling is started within 5 seconds after reaching the maximum temperature, and the average cooling rate in the temperature range from the maximum temperature to 700 ° C. is set to 50 ° C./s or more.
The "average temperature rise rate in the temperature range of 400 ° C. to 800 ° C." in the present embodiment means the time required for raising the temperature of the steel sheet in the temperature range (400 ° C.). The value is divided by. "Average cooling rate in the temperature range from the maximum temperature reached to 700 ° C" means that the temperature drop width of the steel sheet from the maximum temperature to 700 ° C is from the time when the maximum temperature is reached to the time when it reaches 700 ° C. The value is divided by the required time. In addition, all the temperatures (° C) in the following description refer to the temperature of the steel sheet.

上述したように、本実施形態では、熱延板焼鈍によって析出させたリン化物を冷間圧延によって圧潰して冷延方向に平行に並んだ析出状態とし、この析出状態を維持したまま再結晶を行い、製品板を得る。そして、前述の析出状態とされたリン化物を備える製品板は成形加工して歪を加えても、リン化物によって転位の移動が妨げることができるため、加工肌荒れを抑制することが可能となる。
このことから、冷延板焼鈍は、冷間圧延後の析出状態を維持したまま再結晶できる条件で実施することが重要となる。
As described above, in the present embodiment, the phosphide precipitated by hot-rolled sheet annealing is crushed by cold rolling to obtain a precipitated state in which the phosphide is arranged parallel to the cold-rolled direction, and recrystallization is performed while maintaining this precipitated state. And get the product board. Then, even if the product plate containing the phosphide in the above-mentioned precipitated state is formed and strained, the movement of dislocations can be hindered by the phosphide, so that roughened processed skin can be suppressed.
For this reason, it is important that the cold rolled sheet annealing is carried out under conditions that allow recrystallization while maintaining the precipitation state after cold rolling.

冷間圧延後の析出状態を維持し、耐加工肌荒れ効果を得るために昇温過程の400℃〜800℃の温度範囲における平均昇温速度を80℃/s以上とし、かつ最高温度に到達後5秒以内に冷却を開始する。すなわち、400℃〜800℃の温度範囲を平均昇温速度が80℃/s以上で急速昇温し、最高到達温度(880℃以上980℃以下)まで加熱して当該最高到達温度での保持時間を5秒以内として冷却を開始する。なお本実施形態においては、最高到達温度にて保持する際、温度を一定に保ってもよいが、最高到達温度±10℃(最高到達温度−10℃〜最高到達温度+10℃)の範囲内であれば保持温度が変動しても許容される。ただし、保持温度が前記範囲内で変動する場合は、最高到達温度の適正範囲(880℃以上980℃以下)から外れないように制御する必要がある。 After the average temperature rise rate in the temperature range of 400 ° C to 800 ° C in the temperature rise process is set to 80 ° C / s or more and the maximum temperature is reached, in order to maintain the precipitation state after cold rolling and obtain the processing rough surface effect. Start cooling within 5 seconds. That is, the temperature range of 400 ° C. to 800 ° C. is rapidly heated at an average temperature rise rate of 80 ° C./s or more, heated to the maximum temperature reached (880 ° C. or more and 980 ° C. or less), and the holding time at the maximum temperature reached. Start cooling within 5 seconds. In the present embodiment, the temperature may be kept constant when the temperature is maintained at the maximum temperature, but within the range of the maximum temperature ± 10 ° C (maximum temperature −10 ° C to maximum temperature + 10 ° C). If there is, it is permissible even if the holding temperature fluctuates. However, when the holding temperature fluctuates within the above range, it is necessary to control so as not to deviate from the appropriate range of the maximum reached temperature (880 ° C. or higher and 980 ° C. or lower).

400℃〜800℃の温度範囲における平均昇温速度が80℃/s未満または保持時間が5秒超では、リン化物が固溶して製品としての析出量を確保できない場合がある。また、400℃〜800℃の温度範囲での急速昇温は、再結晶粒径を微細化する効果もあり、加工肌荒れの抑制に有効である。さらに析出物が存在する状態で急速昇温すると、析出物のピン止め効果により粒成長を抑制するため、製品粒径を更に微細化し、加工肌荒れをさらに抑制する効果がある。このような観点から、望ましくは400℃〜800℃の温度範囲の平均昇温速度は150℃/s以上である。
また、リン化物の析出状態を維持する観点から、最高到達温度での保持時間は2秒以下とすることが望ましい。保持時間0秒、すなわち最高到達温度に達してすぐに冷却を開始しても構わない。
If the average heating rate in the temperature range of 400 ° C. to 800 ° C. is less than 80 ° C./s or the holding time is more than 5 seconds, the phosphide may dissolve and the amount of precipitation as a product may not be secured. Further, the rapid temperature rise in the temperature range of 400 ° C. to 800 ° C. also has an effect of refining the recrystallized particle size, and is effective in suppressing roughened processed skin. Further, when the temperature is rapidly raised in the presence of precipitates, the grain growth is suppressed by the pinning effect of the precipitates, so that the product particle size is further refined and the processed skin roughness is further suppressed. From this point of view, the average temperature rise rate in the temperature range of 400 ° C. to 800 ° C. is preferably 150 ° C./s or more.
Further, from the viewpoint of maintaining the precipitated state of the phosphide, it is desirable that the holding time at the maximum temperature reached is 2 seconds or less. Cooling may be started as soon as the holding time reaches 0 seconds, that is, the maximum temperature reached.

本実施形態では昇温過程を急速加熱によって行うため、昇温に要する時間が短時間となる。この短時間に再結晶を完了させるために、最高到達温度を880℃以上とする。最高到達温度が880℃未満であると、再結晶が不十分となり、伸び低下により加工性が劣化するおそれがある。そのため、本実施形態では、最高到達温度は880℃以上とし、好ましくは、900℃以上とする。一方、再結晶完了後の結晶粒成長が進行すると、結晶粒の粗大化やリン化物固溶による析出量の不足によって、耐加工肌荒れ性が悪化するおそれがあるため、最高到達温度は980℃以下を上限とする。望ましくは950℃以下である。 In the present embodiment, since the heating process is performed by rapid heating, the time required for heating is shortened. In order to complete recrystallization in this short time, the maximum temperature reached is 880 ° C. or higher. If the maximum temperature reached is less than 880 ° C., recrystallization may be insufficient and workability may be deteriorated due to a decrease in elongation. Therefore, in the present embodiment, the maximum temperature reached is 880 ° C. or higher, preferably 900 ° C. or higher. On the other hand, if the grain growth progresses after the completion of recrystallization, the maximum temperature reached is 980 ° C or lower because the roughened skin resistance may deteriorate due to the coarsening of the crystal grains and the insufficient precipitation amount due to the solid solution of the phosphide. Is the upper limit. It is preferably 950 ° C. or lower.

冷却過程において結晶粒成長やリン化物の固溶が進行すると、耐加工肌荒れ性が劣化するため、最高到達温度から700℃までの温度範囲における平均冷却速度の下限を50℃/s以上とする。望ましくは100℃/s以上である。最高到達温度から700℃までの温度範囲における平均冷却速度の上限は、好ましくは500℃/s以下である。 If crystal grain growth or solid solution of phosphide progresses in the cooling process, the rough surface resistance to processing deteriorates. Therefore, the lower limit of the average cooling rate in the temperature range from the maximum temperature reached to 700 ° C. is set to 50 ° C./s or more. Desirably, it is 100 ° C./s or higher. The upper limit of the average cooling rate in the temperature range from the maximum temperature reached to 700 ° C. is preferably 500 ° C./s or less.

なお、冷延板焼鈍において、上記の条件よりも低温域で長時間熱処理することによって、リン化物を担保し再結晶組織を得ることも可能であるが、結晶粒径が大きくなり、耐肌荒れ特性が劣化する。さらに、粒内のリン化物の析出状態が圧延方向に平行に並んだ状態となってはじめて耐加工肌荒れを抑制する効果を発揮する。このため、冷延板焼鈍の過程でリン化物を析出させたとしても、それは当該効果を発揮しない。つまり、冷間圧延によってリン化物の析出状態を制御し、かつこの析出状態を維持させうる上記の条件で冷延板焼鈍を行うことが重要である。 In cold-rolled plate annealing, it is possible to secure a phosphide and obtain a recrystallized structure by heat-treating for a longer time in a lower temperature range than the above conditions, but the crystal grain size becomes large and the skin roughness resistance is obtained. Deteriorates. Further, the effect of suppressing the roughening of the processed skin is exhibited only when the precipitation state of the phosphide in the grain is arranged parallel to the rolling direction. Therefore, even if a phosphide is precipitated in the process of annealing a cold-rolled plate, it does not exert the effect. That is, it is important to perform cold rolled sheet annealing under the above conditions in which the precipitation state of the phosphide can be controlled by cold rolling and the precipitation state can be maintained.

以上説明した製造方法によって、本実施形態に係るフェライト系ステンレス鋼板を製造することができる。
なお、本実施形態においては、熱延板焼鈍および冷延板焼鈍は、バッチ式焼鈍でも連続式焼鈍でも構わない。また、各焼鈍は、必要であれば水素ガスあるいは窒素ガスなどの無酸化雰囲気で焼鈍する光輝焼鈍でもよいし、大気中で焼鈍しても構わない。
The ferrite-based stainless steel sheet according to the present embodiment can be manufactured by the manufacturing method described above.
In the present embodiment, the hot-rolled plate annealing and the cold-rolled plate annealing may be batch annealing or continuous annealing. Further, each annealing may be bright annealing, which is annealed in a non-oxidizing atmosphere such as hydrogen gas or nitrogen gas, if necessary, or may be annealed in the atmosphere.

また本実施形態のフェライト系ステンレス鋼板に適用される板厚は、特に限定しないが、強度確保の観点から0.5mm以上、好ましくは0.6mm以上であることが望ましい。板厚が薄い場合は、成形後の部品において強度が不十分となる場合があるためである。製造対象となる部品のサイズや形状、耐荷重等を考慮して設計する必要がある。 The thickness applied to the ferritic stainless steel sheet of the present embodiment is not particularly limited, but is preferably 0.5 mm or more, preferably 0.6 mm or more from the viewpoint of ensuring strength. This is because if the plate thickness is thin, the strength of the molded part may be insufficient. It is necessary to design in consideration of the size and shape of the parts to be manufactured, the load capacity, etc.

以上、本実施形態によれば、成形加工性及び成形後の耐加工肌荒れ性に優れたフェライト系ステンレス鋼板を提供することができる。また、本実施形態のフェライト系ステンレス鋼板は、耐加工肌荒れ性に優れるため、特に、成形加工後に表面凹凸(肌荒れ)を除去するための研磨を要する用途に好適である。 As described above, according to the present embodiment, it is possible to provide a ferritic stainless steel sheet having excellent molding processability and rough surface resistance after molding. Further, since the ferrite-based stainless steel sheet of the present embodiment has excellent resistance to rough skin, it is particularly suitable for applications that require polishing to remove surface irregularities (rough skin) after molding.

次に本発明の実施例を示す。本実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、以下の実施例で用いた条件に限定されるものではない。本発明は、本発明の要件を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
なお、下記にて示す表中の下線は、本実施形態の範囲から外れているものを示す。
Next, an example of the present invention will be shown. The conditions in this example are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is not limited to the conditions used in the following examples. In the present invention, various conditions can be adopted as long as the object of the present invention is achieved without departing from the requirements of the present invention.
The underlined lines in the table below indicate those outside the scope of the present embodiment.

表1に示す成分組成を有するステンレス鋼を溶製してスラブに鋳造し、スラブを熱間圧延にて所定の板厚まで圧延した。その後、熱延板焼鈍、冷間圧延、冷延板焼鈍を施して0.6mm厚のステンレス鋼板(製品板)No.1〜44を製造した。熱延板焼鈍の熱処理温度(焼鈍温度)、冷延率、冷延板焼鈍における400〜800℃間の平均昇温速度、最高到達温度、冷却開始までの所要時間(保持時間)、ならびに最高到達温度から700℃までの温度範囲における平均冷却速度は表2〜表4のように変化させた。なお、熱延板焼鈍における焼鈍時間(保持時間)は、40〜60秒の範囲内とした。 Stainless steel having the composition shown in Table 1 was melted and cast into a slab, and the slab was hot-rolled to a predetermined plate thickness. After that, hot-rolled sheet annealing, cold rolling, and cold-rolled sheet annealing were performed to obtain a 0.6 mm thick stainless steel sheet (product plate) No. 1-44 were manufactured. Heat treatment temperature (annealing temperature) of hot-rolled plate annealing, cold spreading rate, average temperature rise rate between 400 and 800 ° C. in cold-rolled plate annealing, maximum temperature reached, time required to start cooling (holding time), and maximum reached The average cooling rate in the temperature range from temperature to 700 ° C. was changed as shown in Tables 2 to 4. The annealing time (holding time) in the hot-rolled plate annealing was within the range of 40 to 60 seconds.

次に、得られたステンレス鋼板No.1〜No.44の幅中央付近から試験片を切り出し、JIS G 0551(2013)に準拠して線分法によって結晶粒度番号(GSN)を測定した。なお、結晶粒度を測定する際は、試験片断面の光学顕微鏡組織写真より、1試料につき横切る結晶粒数を500以上とした。 Next, the obtained stainless steel plate No. 1-No. A test piece was cut out from the vicinity of the center of the width of 44, and the crystal grain size number (GSN) was measured by the line segment method according to JIS G 0551 (2013). When measuring the crystal grain size, the number of crystal grains crossed per sample was set to 500 or more from the optical microscope microstructure photograph of the cross section of the test piece.

さらに、ステンレス鋼板No.1〜No.44よりφ110mmの試料を切り出し、油圧成形試験機により、絞り比2.2のカップ成形試験を行った。カップ成形後の肌荒れには絞り比が大きく影響するが、その他の成形条件は、影響を及ぼさないことが分かっている。なお、今回実施したカップ成形試験条件は、ポンチ径が50mm、ポンチ肩Rが5mm、ダイス径が52mm、ダイス肩Rが5mm、しわ押さえ圧が1トン、クリアランスが片側1.67t(tは板厚)とした。さらに、試料とポンチ間の潤滑剤として、出光興産株式会社製の防錆油「ダフニーオイルコートZ3(登録商標)」を塗布した。その後に成形後の鋼板表面を保護するために潤滑シート「ニチアス株式会社製ナフロンテープTOMBO9001」を貼り付けた。 Furthermore, the stainless steel plate No. 1-No. A sample having a diameter of 110 mm was cut out from 44, and a cup forming test with a drawing ratio of 2.2 was carried out by a hydraulic forming tester. It is known that the drawing ratio has a great influence on the rough skin after cup molding, but other molding conditions have no influence. The cup forming test conditions carried out this time are: punch diameter 50 mm, punch shoulder R 5 mm, die diameter 52 mm, die shoulder R 5 mm, wrinkle pressing pressure 1 ton, clearance 1.67 t on one side (t is a plate). Thick). Further, as a lubricant between the sample and the punch, a rust preventive oil "Daphne Oil Coat Z3 (registered trademark)" manufactured by Idemitsu Kosan Co., Ltd. was applied. After that, a lubricating sheet "Nachias Corporation Naflon Tape TOMBO9001" was attached to protect the surface of the steel sheet after molding.

絞り比2.2で成形が出来た試料については、カップ成形後の表面粗さを測定し加工肌荒れを評価した。
ここで、カップ成形後の試料(成形品)の部位毎の表面粗さの程度、ばらつきについて調査したところ、縦壁部の内側と外側でばらつきがあること知見した。調査結果について詳述する。
本発明者らは、カップ成形後の試料の各部位の表面粗さを調査した。カップ成形した後の加工肌荒れは、一般に知られているように単純に結晶粒度と歪量に比例するわけではなく、成形時の金型との接触により成形品の表面での凹凸の生成が抑制されるため、表面粗さが小さくなることを知見した。特に成形品の縦壁部のうち外壁においては、成形時に金型に押さえつけられる力が強く、成形時の凹凸の生成と金型との接触による凹凸の抑制とが競合しているため、成形品の粗さは測定位置ごとにばらつきが大きくなることが分かった。よって、カップ成形後の加工肌荒れの評価を縦壁部の外壁で行うことは不適切と考えた。
そこで、金型に押さえつけられる力が比較的小さい縦壁部の内壁の表面粗さを測定した。その結果、カップ成形後の表面粗さを精度良く測定できることを知見した。また、外壁よりも内壁の方が表面粗さは大きいため、成形後の研磨工程において粗さが大きい内壁が最も研磨時間がかかってしまう。そのため、成形後の研磨を想定した表面粗さの測定(加工肌荒れの評価)は、成形品の縦壁部の内壁で実施するのが適切と考えられる。加工肌荒れの評価が、成形品の縦壁部の内壁で良好であれば、外壁でも良好であると判断することができる。
For the sample that could be molded with a drawing ratio of 2.2, the surface roughness after cup molding was measured to evaluate the processed skin roughness.
Here, when the degree and variation of the surface roughness of each part of the sample (molded product) after cup molding was investigated, it was found that there was a variation between the inside and the outside of the vertical wall portion. The survey results will be described in detail.
The present inventors investigated the surface roughness of each part of the sample after cup molding. Rough processing after cup molding is not simply proportional to the crystal grain size and the amount of strain as is generally known, and the formation of irregularities on the surface of the molded product is suppressed by contact with the mold during molding. Therefore, it was found that the surface roughness becomes small. In particular, in the outer wall of the vertical wall portion of the molded product, the force of being pressed against the mold during molding is strong, and the generation of unevenness during molding and the suppression of unevenness due to contact with the mold compete with each other. It was found that the roughness of was greatly varied depending on the measurement position. Therefore, it was considered inappropriate to evaluate the rough texture of the processed skin after cup molding on the outer wall of the vertical wall.
Therefore, the surface roughness of the inner wall of the vertical wall portion where the force pressed by the mold is relatively small was measured. As a result, it was found that the surface roughness after cup molding can be measured with high accuracy. Further, since the surface roughness of the inner wall is larger than that of the outer wall, the inner wall having a large roughness takes the longest polishing time in the polishing process after molding. Therefore, it is considered appropriate to measure the surface roughness assuming polishing after molding (evaluation of processed skin roughness) on the inner wall of the vertical wall portion of the molded product. If the evaluation of the roughened skin is good on the inner wall of the vertical wall portion of the molded product, it can be judged that the outer wall is also good.

カップ成形後の試料の縦壁部の内側の高さ中央部において、高さ方向に平行に5mm長さについて、二次元接触式の表面粗さ測定機を用いて、JIS B 0601に記載の表面粗さ測定を行い、算術平均粗さRaを算出した。算術平均粗さRa1.00μmを基準とし、Raが1.00μm未満の場合を加工肌荒れ評価が良好(「○」)と判断し、Raが1.00μm以上の場合を加工肌荒れ評価を不良(「×」)と判断した。 The surface according to JIS B 0601 using a two-dimensional contact type surface roughness measuring machine for a length of 5 mm parallel to the height direction at the center of the height inside the vertical wall portion of the sample after cup forming. Roughness measurement was performed and the arithmetic mean roughness Ra was calculated. Based on the arithmetic mean roughness Ra 1.00 μm, if Ra is less than 1.00 μm, the processed skin roughness evaluation is judged to be good (“○”), and if Ra is 1.00 μm or more, the processed skin roughness evaluation is poor (““ ○ ”). × ”) was judged.

また、上記と同様に、電解抽出残渣法によって製品板におけるPの析出量Ppを測定した。
まず、ステンレス鋼板の幅方向中心から、30mm角程度の大きさの試験片を切り出し、鋼板表面に相当する試験片全面を番数♯600の耐水研磨紙で湿式研磨した。研磨した後、10%無水マレイン酸および2%テトラメチルアンモニウムクロライドを含むメタノール溶液中で−100mVの定電位で電解することにより試験片母材(ステンレス母材)を溶解した。電気分解後、溶解せずに溶液中に残存した残渣(析出物)を200nmメッシュのフィルタを用いて捕捉した。捕捉した析出物を、純水で洗浄および乾燥した。次いで、王水と過塩素酸により析出物を溶解させ、JIS G 1258に準拠してICP発光分光分析法を用いて元素分析を行い析出物中のPの質量を求めた。得られたP量を、電解による試験片の質量変化量(「電気分解前の試験片の質量」−「電気分解後の試験片の質量」)で除して百分率で表示したものを「Pの析出量Pp」(質量%)とした。
なお、冷間圧延を施す前の熱延焼鈍板におけるPの析出量Ppついても同じ方法によって測定した。
以上、測定結果、評価結果を表5〜表7に示す。
Further, in the same manner as described above, the precipitation amount Pp of P on the product plate was measured by the electrolytic extraction residue method.
First, a test piece having a size of about 30 mm square was cut out from the center of the stainless steel sheet in the width direction, and the entire surface of the test piece corresponding to the surface of the steel sheet was wet-polished with water-resistant abrasive paper of number # 600. After polishing, the test piece base material (stainless steel base material) was dissolved by electrolysis at a constant potential of -100 mV in a methanol solution containing 10% maleic anhydride and 2% tetramethylammonium chloride. After electrolysis, the residue (precipitate) remaining in the solution without being dissolved was captured using a 200 nm mesh filter. The captured precipitate was washed with pure water and dried. Next, the precipitate was dissolved with aqua regia and perchloric acid, and elemental analysis was performed using ICP emission spectroscopy in accordance with JIS G 1258 to determine the mass of P in the precipitate. The amount of P obtained is divided by the amount of change in the mass of the test piece due to electrolysis (“mass of the test piece before electrolysis”-“mass of the test piece after electrolysis”) and displayed as a percentage, which is expressed as “P”. Precipitation amount Pp ”(mass%).
The precipitation amount Pp of P in the hot-rolled annealed sheet before cold rolling was also measured by the same method.
The measurement results and evaluation results are shown in Tables 5 to 7.

表2〜表7に示すように、本実施形態によると、焼鈍条件、圧延条件の適正化によりリン化物の析出量を制御することで、加工後の肌荒れ性に優れ、かつ成形性に優れたフェライト系ステンレス鋼板を得ることが出来ることが分かった。
本発明例では、Ra<1.00μmであり加工肌荒れは抑制された。
As shown in Tables 2 to 7, according to the present embodiment, by controlling the precipitation amount of the phosphide by optimizing the annealing conditions and rolling conditions, the rough skin after processing is excellent and the moldability is excellent. It was found that a ferritic stainless steel sheet can be obtained.
In the example of the present invention, Ra <1.00 μm, and rough processed skin was suppressed.

一方、表2〜表7のNo.25、26は成分組成が範囲外となった例であるが、いずれもPの析出量Ppおよび結晶粒度番号は実施形態の範囲内となったものの、成形性が劣化し絞りきることができなかった。またNo.27、28はともにTi、Nbが無添加の鋼Lを用いた例であるが、Pの固定化が不十分でPの析出量Ppが0.001%未満となるとともに、成形性が劣化し絞りきることができなかった。
No.3、22は、冷延板焼鈍時の平均昇温速度が低すぎたため、リン化物の固溶が進行してPの析出量Ppが不足した。さらに、結晶粒度番号が小さくなり、加工肌荒れ性が劣化した。
No.5、10、12、24は、保持時間が長すぎたため、リン化物の固溶が進行してPの析出量Ppが不足した。さらに、結晶粒度番号も小さくなり、加工肌荒れ性が劣化した。
No.6、15は、熱延板焼鈍時の焼鈍温度が低く、かつ平均昇温速度が低すぎたため、結晶粒度番号が小さくなり、加工肌荒れ性が劣化した。
No.7は、冷延率が小さく、さらに最高到達温度が高すぎたため、粒成長が進行して結晶粒度番号が小さくなり、加工肌荒れ性が劣化した。
No.9は、熱延板焼鈍時の焼鈍温度が高すぎたため、Pの析出量Ppを確保できず加工肌荒れ性が劣化した。
No.16は、最高到達温度が高すぎたため、結晶粒度番号が小さくなり、加工肌荒れ性が劣化した。
No.19は、冷延板焼鈍時の平均昇温速度が低く、かつ保持時間が長すぎたため、リン化物の固溶が進行してPの析出量Ppが不足した。さらに、結晶粒度番号も小さくなり加工肌荒れ性が劣化した。
No.20は、冷延率が小さすぎたため、結晶粒度番号が小さくなった。その結果、加工肌荒れ性が劣化した。
No.21は、熱延板焼鈍時の焼鈍温度が高すぎたため、Pの析出量Ppを確保できず加工肌荒れ性が劣化した。
No.14は、最高到達温度が高すぎたため、粒成長が進行して結晶粒度番号が小さくなり、加工肌荒れ性が劣化した。
No.31は、冷延板焼鈍時の平均冷却速度が低いため、リン化物の固溶が進行してPの析出量Ppが不足し、かつ結晶粒度番号も小さくなり加工肌荒れ性が劣化した。
No.32は、冷延板焼鈍時の平均冷却速度が低いため、リン化物の固溶が進行してPの析出量Ppが不足し、加工肌荒れ性が劣化した。
No.36は、熱延板焼鈍時の焼鈍温度が高すぎたため、Pの析出量Ppを確保できず加工肌荒れ性が劣化した。
No.38は、冷延板焼鈍時の平均昇温速度が低く、さらに最高到達温度が高すぎたため、粒成長が進行して結晶粒度番号が小さくなり加工肌荒れ性が劣化した。
On the other hand, No. in Tables 2 to 7. Examples 25 and 26 are examples in which the component composition is out of the range. In each case, although the precipitation amount Pp of P and the crystal particle size number are within the range of the embodiment, the moldability is deteriorated and it cannot be squeezed out. It was. In addition, No. Both 27 and 28 are examples of using steel L to which Ti and Nb are not added, but the immobilization of P is insufficient, the precipitation amount Pp of P is less than 0.001%, and the moldability deteriorates. I couldn't squeeze it out.
No. In Nos. 3 and 22, the average rate of temperature rise during annealing of the cold-rolled plate was too low, so that the solid solution of the phosphide proceeded and the amount of P deposited Pp was insufficient. Further, the crystal grain size number became smaller, and the roughened surface was deteriorated.
No. In Nos. 5, 10, 12, and 24, the retention time was too long, so that the solid solution of the phosphide progressed and the amount of P deposited Pp was insufficient. Further, the crystal grain size number was also reduced, and the roughened surface was deteriorated.
No. In Nos. 6 and 15, the annealing temperature at the time of annealing the hot-rolled plate was low and the average heating rate was too low, so that the crystal grain size number became small and the roughened surface was deteriorated.
No. In No. 7, since the cold spreading ratio was small and the maximum temperature reached was too high, the grain growth progressed, the crystal grain size number became small, and the processed skin roughness deteriorated.
No. In No. 9, since the annealing temperature at the time of annealing the hot-rolled plate was too high, the precipitation amount Pp of P could not be secured and the roughened surface of the processed surface deteriorated.
No. In No. 16, since the maximum temperature reached was too high, the crystal grain size number became small and the processed skin roughness deteriorated.
No. In No. 19, the average rate of temperature rise during annealing of the cold-rolled plate was low, and the holding time was too long, so that the solid solution of the phosphide progressed and the amount of P deposited Pp was insufficient. Further, the crystal grain size number was also reduced, and the roughened surface was deteriorated.
No. In No. 20, the crystal grain size number became small because the cold spreading ratio was too small. As a result, the rough texture of the processed skin deteriorated.
No. In No. 21, the annealing temperature at the time of annealing the hot-rolled plate was too high, so that the precipitation amount Pp of P could not be secured and the roughened surface of the processed surface deteriorated.
No. In No. 14, since the maximum temperature reached was too high, the grain growth progressed, the crystal grain size number became small, and the processed skin roughness deteriorated.
No. In No. 31, since the average cooling rate at the time of annealing the cold-rolled plate was low, the solid solution of the phosphide progressed, the precipitation amount Pp of P was insufficient, the crystal grain size number was also small, and the roughened texture was deteriorated.
No. In No. 32, since the average cooling rate at the time of annealing the cold-rolled plate was low, the solid solution of the phosphide progressed, the amount of P deposited Pp was insufficient, and the roughened skin was deteriorated.
No. In No. 36, the annealing temperature at the time of annealing the hot-rolled plate was too high, so that the precipitation amount Pp of P could not be secured and the roughened surface of the processed skin deteriorated.
No. In No. 38, the average rate of temperature rise during annealing of the cold-rolled plate was low, and the maximum temperature reached was too high, so that grain growth progressed, the crystal grain size number became smaller, and the roughened surface of the processed material deteriorated.

また図2において粒度番号9.0以上かつ析出P量0.003%未満の領域では、比較的細粒のため加工肌荒れは多少の低下は望めるが、P化物による加工肌荒れを抑制する効果が無いため、同程度の粒度番号で析出P量の多い本発明例に比べて耐加工肌荒れ性で劣っている。 Further, in the region where the particle size number is 9.0 or more and the amount of precipitated P is less than 0.003% in FIG. Therefore, it is inferior in processing rough skin resistance as compared with the example of the present invention in which the particle size number is the same and the amount of precipitated P is large.

なお、Pが0.003%未満の鋼成分については、表2〜表7のNo.4と同様に製造したところ、析出P量が0.003%以下であり、成形試験後のRaは1.00μm以上であった。Pが0.1%超の鋼組成については、表2〜表7のNo.4と同様に製造したところ、成形性が劣り、成形できなかった。 For steel components with P of less than 0.003%, refer to No. 1 in Tables 2 to 7. When manufactured in the same manner as in No. 4, the amount of precipitated P was 0.003% or less, and Ra after the molding test was 1.00 μm or more. Regarding the steel composition in which P exceeds 0.1%, No. 1 in Tables 2 to 7. When it was manufactured in the same manner as in No. 4, the moldability was inferior and it could not be molded.

本実施形態によれば、成形加工性及び成形加工後の耐加工肌荒れ性に優れたフェライト系ステンレス鋼板とその製造方法を提供することが可能である。このため、本実施形態のフェライト系ステンレス鋼板は、成形用途に好適に適用される。 According to the present embodiment, it is possible to provide a ferritic stainless steel sheet having excellent molding processability and rough surface resistance after molding processing, and a method for producing the same. Therefore, the ferritic stainless steel sheet of the present embodiment is suitably applied to molding applications.

Claims (4)

質量%にて、
Cr:11.0%以上30.0%以下、
C:0.001%以上0.030%以下、
Si:0.01%以上2.00%以下、
Mn:0.01%以上2.00%以下、
P:0.003%以上0.100%以下、
S:0.0100%以下、
N:0.030%以下、
B:0%以上0.0025%以下、
Sn:0%以上0.50%以下、
Ni:0%以上1.00%以下、
Cu:0%以上1.00%以下、
Mo:0%以上2.00%以下、
W:0%以上1.00%以下、
Al:0%以上1.00%以下、
Co:0%以上0.50%以下、
V:0%以上0.50%以下、
Zr:0%以上0.50%以下、
Ca:0%以上0.0050%以下、
Mg:0%以上0.0050%以下、
Y:0%以上0.10%以下、
Hf:0%以上0.10%以下、
REM:0%以上0.10%以下、
Sb:0%以上0.50%以下を含み、さらに、
Ti:0.40%以下、Nb:0.50%以下のうち、いずれか一方又は両方を含み、残部がFe及び不純物からなり、
リン化物として存在しているP量が0.003質量%以上であり、
JIS G 0551にて測定される結晶粒度番号が9.0以上であることを特徴とするフェライト系ステンレス鋼板。
By mass%
Cr: 11.0% or more and 30.0% or less,
C: 0.001% or more and 0.030% or less,
Si: 0.01% or more and 2.00% or less,
Mn: 0.01% or more and 2.00% or less,
P: 0.003% or more and 0.100% or less,
S: 0.0100% or less,
N: 0.030% or less,
B: 0% or more and 0.0025% or less,
Sn: 0% or more and 0.50% or less,
Ni: 0% or more and 1.00% or less,
Cu: 0% or more and 1.00% or less,
Mo: 0% or more and 2.00% or less,
W: 0% or more and 1.00% or less,
Al: 0% or more and 1.00% or less,
Co: 0% or more and 0.50% or less,
V: 0% or more and 0.50% or less,
Zr: 0% or more and 0.50% or less,
Ca: 0% or more and 0.0050% or less,
Mg: 0% or more and 0.0050% or less,
Y: 0% or more and 0.10% or less,
Hf: 0% or more and 0.10% or less,
REM: 0% or more and 0.10% or less,
Sb: Contains 0% or more and 0.50% or less, and further
Ti: 0.40% or less, Nb: 0.50% or less, one or both of them are contained, and the balance is composed of Fe and impurities.
The amount of P present as a phosphide is 0.003% by mass or more,
A ferritic stainless steel sheet having a crystal grain size number of 9.0 or more as measured by JIS G 0551.
質量%にて、更に、
B:0.0001%以上0.0025%以下、
Sn:0.005%以上0.50%以下、
Ni:0.05%以上1.00%以下、
Cu:0.05%以上1.00%以下、
Mo:0.05%以上2.00%以下、
W:0.05%以上1.00%以下、
Al:0.05%以上1.00%以下、
Co:0.05%以上0.50%以下、
V:0.05%以上0.50%以下、
Zr:0.05%以上0.50%以下、
Ca:0.0001%以上0.0050%以下、
Mg:0.0001%以上0.0050%以下、
Y:0.001%以上0.10%以下、
Hf:0.001%以上0.10%以下、
REM:0.001%以上0.10%以下、
Sb:0.005%以上0.50%以下の1種または2種以上を含有していることを特徴とする請求項1に記載のフェライト系ステンレス鋼板。
In% by mass,
B: 0.0001% or more and 0.0025% or less,
Sn: 0.005% or more and 0.50% or less,
Ni: 0.05% or more and 1.00% or less,
Cu: 0.05% or more and 1.00% or less,
Mo: 0.05% or more and 2.00% or less,
W: 0.05% or more and 1.00% or less,
Al: 0.05% or more and 1.00% or less,
Co: 0.05% or more and 0.50% or less,
V: 0.05% or more and 0.50% or less,
Zr: 0.05% or more and 0.50% or less,
Ca: 0.0001% or more and 0.0050% or less,
Mg: 0.0001% or more and 0.0050% or less,
Y: 0.001% or more and 0.10% or less,
Hf: 0.001% or more and 0.10% or less,
REM: 0.001% or more and 0.10% or less,
Sb: The ferrite-based stainless steel sheet according to claim 1, wherein it contains one or more of 0.005% or more and 0.50% or less.
請求項1又は2に記載の成分を有する鋼を、熱間圧延する熱間圧延工程と、
前記熱間圧延工程後、850℃以上900℃以下の温度で熱処理を施す熱延板焼鈍工程と、
前記熱延板焼鈍工程後、圧延率を75%以上90%以下として圧延する冷間圧延工程と、
前記冷間圧延工程に引き続いて行う冷延板焼鈍工程と、を備え、
前記冷延板焼鈍工程において、昇温過程のうち400℃〜800℃の温度範囲における平均昇温速度が80℃/s以上であり、板温の最高到達温度が880℃以上980℃以下であり、最高到達温度に到達後5sec以内に冷却を開始し、最高到達温度から700℃までの温度範囲における平均冷却速度を50℃/s以上として冷却することを特徴とする、請求項1または2に記載のフェライト系ステンレス鋼板の製造方法。
A hot rolling step of hot rolling a steel having the component according to claim 1 or 2.
After the hot rolling step, a hot rolled sheet annealing step of performing heat treatment at a temperature of 850 ° C. or higher and 900 ° C. or lower,
After the hot-rolled sheet annealing step, a cold rolling step of rolling with a rolling ratio of 75% or more and 90% or less, and a cold rolling step.
It is provided with a cold rolled sheet annealing step that is performed following the cold rolling step.
In the cold-rolled plate annealing step, the average temperature rise rate in the temperature range of 400 ° C. to 800 ° C. is 80 ° C./s or more, and the maximum temperature reached is 880 ° C. or higher and 980 ° C. or lower. According to claim 1 or 2, cooling is started within 5 seconds after reaching the maximum temperature, and the average cooling rate in the temperature range from the maximum temperature to 700 ° C is 50 ° C / s or more. The method for manufacturing a ferrite-based stainless steel sheet according to the description.
請求項1又は2に記載の成分を有する鋼を、熱間圧延する熱間圧延工程と、
前記熱間圧延工程後、850℃以上900℃以下の温度で熱処理を施して、リン化物として存在するP量を0.003質量%以上とする熱延板焼鈍工程と、
前記熱延板焼鈍工程後、圧延率を75%以上90%以下として圧延する冷間圧延工程と、
前記冷間圧延工程に引き続いて行う冷延板焼鈍工程と、を備え、
前記冷延板焼鈍工程において、昇温過程のうち400℃〜800℃の温度範囲における平均昇温速度が80℃/s以上であり、板温の最高到達温度が880℃以上980℃以下であり、最高到達温度に到達後5sec以内に冷却を開始し、最高到達温度から700℃までの温度範囲における平均冷却速度を50℃/s以上として冷却することを特徴とする、請求項1または2に記載のフェライト系ステンレス鋼板の製造方法。
A hot rolling step of hot rolling a steel having the component according to claim 1 or 2.
After the hot rolling step, heat treatment is performed at a temperature of 850 ° C. or higher and 900 ° C. or lower to bring the amount of P present as a phosphide to 0.003% by mass or more, and a hot rolling plate annealing step.
After the hot-rolled sheet annealing step, a cold rolling step of rolling with a rolling ratio of 75% or more and 90% or less, and a cold rolling step.
It is provided with a cold rolled sheet annealing step that is performed following the cold rolling step.
In the cold-rolled plate annealing step, the average temperature rise rate in the temperature range of 400 ° C. to 800 ° C. in the temperature rise process is 80 ° C./s or more, and the maximum temperature reached is 880 ° C. or higher and 980 ° C. or lower. According to claim 1 or 2, cooling is started within 5 seconds after reaching the maximum temperature, and the average cooling rate in the temperature range from the maximum temperature to 700 ° C is 50 ° C / s or more. The method for manufacturing a ferrite-based stainless steel sheet according to the description.
JP2020509785A 2018-03-30 2019-03-07 Ferritic stainless steel sheet and its manufacturing method Active JP6906688B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018069775 2018-03-30
JP2018069775 2018-03-30
PCT/JP2019/009147 WO2019188094A1 (en) 2018-03-30 2019-03-07 Ferritic stainless steel sheet and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2019188094A1 true JPWO2019188094A1 (en) 2020-12-17
JP6906688B2 JP6906688B2 (en) 2021-07-21

Family

ID=68059877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020509785A Active JP6906688B2 (en) 2018-03-30 2019-03-07 Ferritic stainless steel sheet and its manufacturing method

Country Status (6)

Country Link
EP (1) EP3805417A4 (en)
JP (1) JP6906688B2 (en)
KR (1) KR102443897B1 (en)
CN (1) CN111655890B (en)
BR (1) BR112020015001A2 (en)
WO (1) WO2019188094A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145066A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
JP7469714B2 (en) 2020-12-28 2024-04-17 日本製鉄株式会社 Steel
CN113388780A (en) * 2021-05-25 2021-09-14 宁波宝新不锈钢有限公司 430 ferrite stainless steel for kitchenware panel and preparation method thereof
TWI796838B (en) * 2021-11-17 2023-03-21 日商日鐵不銹鋼股份有限公司 Fertilized iron series stainless steel plate
CN116024504A (en) * 2022-12-16 2023-04-28 坤石容器制造有限公司 Ferrite stainless steel for high-purity unstable electron special gas in semiconductor industry and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106725A1 (en) * 2002-06-01 2003-12-24 Jfeスチール株式会社 FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF
JP2007314837A (en) * 2006-05-25 2007-12-06 Nisshin Steel Co Ltd Age hardening type ferritic stainless steel sheet and age-treated steel material using the same
JP2017048417A (en) * 2015-08-31 2017-03-09 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel sheet for deep draw forming excellent in secondary working brittleness resistance and production method therefor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1012181B (en) * 1984-06-28 1991-03-27 日新制钢株式会社 P-added ferritic stainless steel having excellent formability and secondary workability
JP2818182B2 (en) * 1989-02-20 1998-10-30 新日本製鐵株式会社 Manufacturing method of ferritic stainless steel sheet with excellent workability without surface flaws
JP3142427B2 (en) * 1993-11-02 2001-03-07 川崎製鉄株式会社 Ferritic stainless steel sheet excellent in secondary work brittleness resistance and method for producing the same
JPH07292417A (en) 1994-04-22 1995-11-07 Sumitomo Metal Ind Ltd Production of ferritic stainless steel sheet excellent in formed surface characteristic
KR0167168B1 (en) * 1994-10-28 1999-03-20 이희종 Voltage decision method for digital instrument
JP3477957B2 (en) * 1995-11-24 2003-12-10 Jfeスチール株式会社 Ferritic stainless steel with excellent corrosion resistance under high temperature oxidation environment of 200-400 ° C
JP3455047B2 (en) * 1997-01-23 2003-10-06 新日本製鐵株式会社 Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
JP3788311B2 (en) * 2001-10-31 2006-06-21 Jfeスチール株式会社 Ferritic stainless steel sheet and manufacturing method thereof
EP1738926A4 (en) * 2004-03-18 2010-07-07 Sakura Color Prod Corp Ball-point pen tip
JP4749888B2 (en) 2006-02-22 2011-08-17 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in formability with less rough processing and manufacturing method thereof
WO2011052630A1 (en) * 2009-10-28 2011-05-05 コニカミノルタホールディングス株式会社 Method for producing organic electroluminescent panel, and organic electroluminescent panel
JP5670064B2 (en) * 2010-02-22 2015-02-18 日新製鋼株式会社 Ferrite single-phase stainless steel slab manufacturing method
JP2014183254A (en) * 2013-03-21 2014-09-29 Jfe Steel Corp Ferrite-based stainless foil for solar battery substrate use
CN104109809B (en) * 2014-06-20 2018-11-06 宝钢不锈钢有限公司 A kind of high formability low chrome ferritic stainless steel and manufacturing method
CN105839021B (en) * 2015-01-12 2017-07-28 宝钢特钢有限公司 The manufacture of steel pipe of ferritic stainless steel containing rare-earth and high chromium
JP6022097B1 (en) * 2016-03-30 2016-11-09 日新製鋼株式会社 Ti-containing ferritic stainless steel sheet and manufacturing method
JP2018069775A (en) 2016-10-25 2018-05-10 いすゞ自動車株式会社 Inverter-cooling pump control apparatus and vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106725A1 (en) * 2002-06-01 2003-12-24 Jfeスチール株式会社 FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF
JP2007314837A (en) * 2006-05-25 2007-12-06 Nisshin Steel Co Ltd Age hardening type ferritic stainless steel sheet and age-treated steel material using the same
JP2017048417A (en) * 2015-08-31 2017-03-09 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel sheet for deep draw forming excellent in secondary working brittleness resistance and production method therefor

Also Published As

Publication number Publication date
EP3805417A1 (en) 2021-04-14
CN111655890A (en) 2020-09-11
JP6906688B2 (en) 2021-07-21
BR112020015001A2 (en) 2020-12-29
KR102443897B1 (en) 2022-09-19
KR20200100159A (en) 2020-08-25
EP3805417A4 (en) 2022-01-05
CN111655890B (en) 2021-10-29
WO2019188094A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6906688B2 (en) Ferritic stainless steel sheet and its manufacturing method
JP5924459B1 (en) Stainless steel for cold rolled steel
JPWO2015105046A1 (en) Ferritic stainless steel and manufacturing method thereof
JP6093210B2 (en) Heat-resistant ferritic stainless steel sheet with excellent low-temperature toughness and method for producing the same
JP7268182B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
TW202012649A (en) Steel sheet
JP6738928B1 (en) Ferritic stainless steel sheet and method of manufacturing the same
JP3932020B2 (en) Ferritic stainless steel with excellent deep drawability and small in-plane anisotropy and method for producing the same
JP2016113670A (en) Ferritic stainless steel and method for producing the same
JP6617182B1 (en) Ferritic stainless steel sheet
JP6518961B1 (en) Ferritic stainless hot rolled annealed steel sheet and method for producing the same
JP6836969B2 (en) Ferritic stainless steel sheet
JP7304715B2 (en) Ferritic stainless steel plate
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
CN111868283B (en) Steel plate
JPWO2019189872A1 (en) Ferritic stainless steel sheets, their manufacturing methods, and ferritic stainless steel members
TW202024349A (en) Steel sheet and manufacturing method for steel sheet
KR102515016B1 (en) Ferritic stainless steel plate
CN111868286B (en) Steel plate
JP5644148B2 (en) Stainless cold-rolled steel sheet with excellent surface appearance after processing and method for producing the same
JP2022079072A (en) Ferritic stainless steel sheet and method for manufacturing the same
JP2023147504A (en) Ferritic stainless steel sheet and method of manufacturing the same
JP2022150255A (en) Ferritic stainless steel hot-rolled plate and method for manufacturing the same and ferritic stainless cold-rolled plate
JP2024058836A (en) Ferritic stainless steel plate with excellent corrosion resistance and workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6906688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150