JP2020164956A - Ferritic stainless steel sheet and manufacturing method therefor - Google Patents

Ferritic stainless steel sheet and manufacturing method therefor Download PDF

Info

Publication number
JP2020164956A
JP2020164956A JP2019068669A JP2019068669A JP2020164956A JP 2020164956 A JP2020164956 A JP 2020164956A JP 2019068669 A JP2019068669 A JP 2019068669A JP 2019068669 A JP2019068669 A JP 2019068669A JP 2020164956 A JP2020164956 A JP 2020164956A
Authority
JP
Japan
Prior art keywords
less
steel sheet
stainless steel
rolling
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019068669A
Other languages
Japanese (ja)
Other versions
JP6738928B1 (en
Inventor
加賀 祐司
Yuji Kaga
祐司 加賀
石丸 詠一朗
Eiichiro Ishimaru
詠一朗 石丸
篤史 田口
Atsushi Taguchi
篤史 田口
木村 謙
Ken Kimura
謙 木村
力 伊藤
Tsutomu Ito
力 伊藤
眞市 田村
Shinichi Tamura
眞市 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2019068669A priority Critical patent/JP6738928B1/en
Application granted granted Critical
Publication of JP6738928B1 publication Critical patent/JP6738928B1/en
Publication of JP2020164956A publication Critical patent/JP2020164956A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To provide a ferritic stainless steel sheet having excellent formability and having excellent surface shape after being formed.SOLUTION: The ferritic stainless steel sheet comprises: Cr: 11.0-25.0%, C: 0.001-0.010%, Si: 0.01-1.0%, Mn: 0.01-1.0%, P: 0.010-0.040%, S: 0.01% or less, N: 0.002-0.020%, Al: 0.003-1.0%, Ti: 0.05-0.30%, and Nb: 0.03-0.30% with balance comprising Fe and impurities; satisfies Formula (1); satisfies XTi: 0.035-0.060%, XNb: 0.010-0.025%, and XP: 0.001-0.010%, where the content of Ti, Nb, and P contained in the compounds in the steel are XTi, XNb, and XP, respectively; and has a crystal grain size number of 9.0 or more, an average plastic strain ratio rAve of 1.5 or less, and an in-plane anisotropy Δr of -0.4-0.1. Ti/48+Nb/93≥2×(C/12+N/14) (1).SELECTED DRAWING: None

Description

本発明は、成形性並びに成形後表面形状に優れるフェライト系ステンレス鋼板に関する。 The present invention relates to a ferritic stainless steel sheet having excellent moldability and surface shape after molding.

ステンレス鋼は、耐食性、加工性、美麗性等に優れることから家電、厨房品、建材等広く用いられている。特に、フェライト系ステンレス鋼は、高価かつ価格変動の激しいNiを含有しない、もしくは含有量が極めて少ないため、コストパフォーマンスに優れる材料として近年需要が増加している。しかしながら、成形用途に使用する場合、成形性とともに、成形後の表面形状が課題となる。 Stainless steel is widely used in home appliances, kitchen products, building materials, etc. because it has excellent corrosion resistance, workability, and beauty. In particular, ferritic stainless steel does not contain or contains very little Ni, which is expensive and has a sharp price fluctuation, and therefore, its demand has been increasing in recent years as a material having excellent cost performance. However, when it is used for molding purposes, not only moldability but also surface shape after molding becomes an issue.

フェライト系ステンレス鋼は、深絞り性を活用して製品形状へ成形される。深絞り性の向上には、固溶炭素および固溶窒素を低減することが有効である。このため、製錬段階で炭素及び窒素を極力低減した上で、さらにTiやNbを添加して炭窒化物として微細析出する手法が広く用いられ、いわゆる、高純度フェライト系ステンレス鋼が開発されている。合金コストは、Nbに比べてTiが安価である。深絞り性の向上には、材料の異方性、具体的にはその指標となる塑性ひずみ比(以下、r値と言う場合がある)の活用が有効である。板面内の塑性ひずみ比の異方性が大き過ぎる場合、前述した表面形状の問題を生じるとともに、図1に示すように成形余り部での高さの差、いわゆる、「耳」が生じる場合がある。不要部である耳は、切り落とされることとなる。したがって、耳が大きい場合には、歩留りロスが大きい。このように、成形用フェライトステンレス鋼板は、塑性ひずみ比の異方性の調整により深絞り性に優れることが求められる。 Ferritic stainless steel is formed into a product shape by utilizing the deep drawing property. To improve the deep drawing property, it is effective to reduce the solid solution carbon and the solid solution nitrogen. For this reason, a method of reducing carbon and nitrogen as much as possible in the smelting stage and then adding Ti and Nb to finely deposit as carbonitride is widely used, and so-called high-purity ferritic stainless steel has been developed. There is. As for the alloy cost, Ti is cheaper than Nb. In order to improve the deep drawing property, it is effective to utilize the anisotropy of the material, specifically, the plastic strain ratio (hereinafter, may be referred to as r value) which is an index thereof. If the anisotropy of the plastic strain ratio in the plate surface is too large, the problem of the surface shape described above occurs, and as shown in FIG. 1, the difference in height at the remainder of molding, so-called "ears", occurs. There is. The ears, which are unnecessary parts, will be cut off. Therefore, when the ears are large, the yield loss is large. As described above, the ferrite stainless steel sheet for forming is required to have excellent deep drawing property by adjusting the anisotropy of the plastic strain ratio.

次に、成形加工後の表面形状について述べる。ここで問題とする表面形状とは、成形後の鋼板表面に生じる微細な凹凸(肌荒れ)を指す。肌荒れは、一般的に結晶粒径に比例する。C,Nを低減させて成形性の向上を図った高純度フェライト系ステンレス鋼は、フェライト系ステンレス鋼の中でも結晶粒が大きくなりやすい傾向にある。 Next, the surface shape after the molding process will be described. The surface shape in question here refers to fine irregularities (rough skin) that occur on the surface of the steel sheet after molding. Rough skin is generally proportional to the crystal grain size. High-purity ferritic stainless steels with reduced C and N to improve moldability tend to have larger crystal grains than ferrite stainless steels.

家電製品の筺体あるいは器物のように比較的厳しい成形が行われ、肌荒れが顕著となる用途では、SUS430LXに代表される高純度フェライト系ステンレス鋼が用いられることが多い。しかし、結晶粒径が大きく、肌荒れが大きい場合、研磨による肌荒れの除去が一般的に行われる。これらは、歩留りロスであるとともに、環境面からも問題となっていた。なお、固溶強化元素である炭素および窒素の低減により低下した強度を担保するため、鋼板の板厚は、0.5mm以上が一般的に必要とされる。 High-purity ferritic stainless steel typified by SUS430LX is often used in applications where relatively severe molding is performed and rough skin is noticeable, such as housings or utensils of home appliances. However, when the crystal grain size is large and the rough skin is large, the rough skin is generally removed by polishing. These are not only yield losses, but also environmental problems. It should be noted that the thickness of the steel sheet is generally required to be 0.5 mm or more in order to secure the strength reduced by the reduction of carbon and nitrogen which are solid solution strengthening elements.

このように、深絞り性に優れ、かつ肌荒れが小さいフェライト系ステンレス鋼が求められている。次に関連技術を示す。 As described above, there is a demand for a ferritic stainless steel having excellent deep drawing property and less rough skin. The related technologies are shown below.

特許文献1には、高純度フェライト系ステンレス鋼を用いて、結晶粒径とともに、析出粒子のサイズを制御して、肌荒れを低減かつ成形性を向上した鋼及びその製造方法が開示されている。しかし、深絞り性や、塑性ひずみ比の異方性を制御する方法の記載がなく、前述のように更なる改善が必要である。 Patent Document 1 discloses a steel in which high-purity ferritic stainless steel is used to control the size of precipitated particles as well as the crystal grain size to reduce rough skin and improve moldability, and a method for producing the same. However, there is no description of a method for controlling the deep drawing property and the anisotropy of the plastic strain ratio, and further improvement is required as described above.

特許文献2には、TiとNbを含有した高純度フェライト系ステンレス鋼への低温熱間圧延と、高い加工率での冷間圧延とを活用して細粒とし、肌荒れの小さい鋼を製造する技術が開示されている。ステンレス鋼板の結晶粒度番号は9.5の細粒組織が得られているものの、深絞り成形時の「耳」の発生防止や、肌荒れ防止の検討が十分ではない。 In Patent Document 2, low-temperature hot rolling onto high-purity ferritic stainless steel containing Ti and Nb and cold rolling at a high processing rate are utilized to produce fine-grained steel with less rough skin. The technology is disclosed. Although a fine grain structure having a crystal grain size of 9.5 has been obtained for the stainless steel sheet, it is not sufficient to study the prevention of "ears" and the prevention of rough skin during deep drawing.

特許文献3には、最終冷延前の結晶粒径を制御することで深絞り性、リジング性を向上させ、肌荒れを改善したNb及び/またはTiを含有する高純度フェライト系ステンレス鋼が開示されている。しかし、結晶粒径が15μm(結晶粒度番号で8.8)にとどまり、肌荒れの更なる改善が必要である。 Patent Document 3 discloses a high-purity ferritic stainless steel containing Nb and / or Ti, which improves deep drawing property and rigging property by controlling the crystal grain size before final cold rolling and improves rough skin. ing. However, the crystal grain size is only 15 μm (the crystal grain size number is 8.8), and further improvement of rough skin is required.

従来、高純度フェライト系ステンレス鋼の肌荒れ軽減のため、鋼板製造の際の強圧下を活用し、結晶粒径を細かくする方法が検討されてきたが、製造負荷が大きく、かえって肌荒れを発生する場合もあり、優れた表面形状を安定して維持できる技術が望まれている。 Conventionally, in order to reduce rough skin of high-purity ferritic stainless steel, a method of making the grain size finer by utilizing strong pressure during steel sheet manufacturing has been studied, but when the manufacturing load is large and rough skin occurs on the contrary. Therefore, a technique capable of stably maintaining an excellent surface shape is desired.

特許第4749888号公報Japanese Patent No. 4479888 特開平7−292417号公報JP-A-7-292417 特許第3788311号公報Japanese Patent No. 3788311

本発明は、上記に鑑みなされたものであり、成形性及び成形後表面形状に優れたフェライト系ステンレス鋼板及びその製造方法を提供することを課題とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a ferritic stainless steel sheet having excellent moldability and surface shape after molding and a method for producing the same.

本発明の要旨は、以下のとおりである。
[1] 化学成分が、質量%で、
Cr:11.0%以上、25.0%以下、
C:0.001%以上、0.010%以下、
Si:0.01%以上、1.0%以下、
Mn:0.01%以上、1.0%以下、
P:0.010%以上0.040%以下、
S:0.01%以下、
N:0.002%以上、0.020%以下、
Al:0.003%以上、1.0%以下、
Ti:0.05%以上、0.30%以下、
Nb:0.03%以上、0.30%以下
を含み、下記(1)式を満足し、残部がFeおよび不純物からなり、
Ti、Nb、Pのうち、鋼中の化合物に含まれるTi,Nb,PをそれぞれXTi、XNb、Xとしたときに、
Ti:0.035%以上、0.060%以下、
Nb:0.010%以上、0.025%以下、
:0.001%以上、0.010%以下
を満足し、
結晶粒度番号が9.0以上であり、
(r+r90+2×r45)/4で示される平均塑性ひずみ比rAveが下記(2)式を満足し、
(r+r90―2×r45)/2で示される面内異方性Δrが下記(3)式を満足するフェライト系ステンレス鋼板。
Ti/48+Nb/93 ≧ 2×(C/12+N/14) … (1)
1.5≦rAve … (2)
―0.4≦Δr≦0.1 … (3)
ただし、r、r90、r45はそれぞれ、r:圧延方向の塑性ひずみ比、r45:圧延方向に対して45°方向の塑性ひずみ比、r90:圧延方向と垂直方向の塑性ひずみ比である。
[2] 前記化学成分が、更に、質量%で、
B:0.0025%以下、
Sn:0.50%以下、
Ni:1.0%以下、
Cu:1.0%以下、
Mo:2.0%以下、
W:1.0%以下、
Co:0.50%以下、
V:0.50%以下、
Zr:0.50%以下、
Ca:0.0050%以下、
Mg:0.0050%以下、
Y:0.10%以下、
Hf:0.20%以下、
REM:0.10%以下、
Sb:0.50%以下
の1種または2種以上を含有する[1]に記載のフェライト系ステンレス鋼板。
[3] [1]または[2]に記載の化学成分を有する鋼片を熱間圧延して鋼板とする第1の工程と、
前記第1工程後の前記鋼板を、T℃以上、(T+35)℃以下の均熱温度で熱処理する第2の工程と、
前記第2工程後の前記鋼板を、650℃以上750℃以下の均熱温度、かつ1分以上5分以下の均熱時間で時効熱処理を施す第3の工程と、
前記第3工程後の前記鋼板に対して、冷間圧延と熱処理とをそれぞれ1回行うか、またはそれぞれ2回以上繰り返し行う第4の工程と、を備え、
前記第4の工程は、少なくとも最終の冷間圧延を圧延率75%以上で行ない、少なくとも最終の熱処理を(T−10)℃以上、(T+30)℃以下の均熱温度で行うことを特徴とする、[1]または[2]に記載のフェライト系ステンレス鋼板の製造方法。
ここで、T、Tはそれぞれ、T:熱間圧延後の再結晶温度(℃)、T:冷間圧延後の再結晶温度(℃)である。
The gist of the present invention is as follows.
[1] The chemical component is mass%,
Cr: 11.0% or more, 25.0% or less,
C: 0.001% or more, 0.010% or less,
Si: 0.01% or more, 1.0% or less,
Mn: 0.01% or more, 1.0% or less,
P: 0.010% or more and 0.040% or less,
S: 0.01% or less,
N: 0.002% or more, 0.020% or less,
Al: 0.003% or more, 1.0% or less,
Ti: 0.05% or more, 0.30% or less,
Nb: contains 0.03% or more and 0.30% or less, satisfies the following equation (1), and the balance is composed of Fe and impurities.
Ti, Nb, among the P, Ti contained in the compound in the steel, Nb, respectively P X Ti, X Nb, when the X P,
X Ti : 0.035% or more, 0.060% or less,
X Nb : 0.010% or more, 0.025% or less,
X P: 0.001% or more, and satisfies the following 0.010%,
The crystal grain size number is 9.0 or higher,
The average plastic strain ratio r Ave represented by (r 0 + r 90 + 2 × r 45 ) / 4 satisfies the following equation (2).
(R 0 + r 90 -2 × r 45) / 2 plane anisotropy Δr is the following (3) represented by the ferritic stainless steel sheet which satisfies the equation.
Ti / 48 + Nb / 93 ≧ 2 × (C / 12 + N / 14)… (1)
1.5 ≤ r Ave ... (2)
―0.4 ≦ Δr ≦ 0.1… (3)
However, r 0 , r 90 , and r 45 are r 0 : plastic strain ratio in the rolling direction, r 45 : plastic strain ratio in the 45 ° direction with respect to the rolling direction, and r 90 : plastic strain in the direction perpendicular to the rolling direction, respectively. The ratio.
[2] The chemical composition is further increased by mass%.
B: 0.0025% or less,
Sn: 0.50% or less,
Ni: 1.0% or less,
Cu: 1.0% or less,
Mo: 2.0% or less,
W: 1.0% or less,
Co: 0.50% or less,
V: 0.50% or less,
Zr: 0.50% or less,
Ca: 0.0050% or less,
Mg: 0.0050% or less,
Y: 0.10% or less,
Hf: 0.20% or less,
REM: 0.10% or less,
Sb: The ferritic stainless steel sheet according to [1], which contains 1 type or 2 or more types of 0.50% or less.
[3] The first step of hot rolling a steel piece having the chemical composition according to [1] or [2] into a steel sheet, and
The second step of heat-treating the steel sheet after the first step at a soaking temperature of T 1 ° C. or higher and (T 1 +35) ° C. or lower, and
A third step of subjecting the steel sheet after the second step to an aging heat treatment at a soaking temperature of 650 ° C. or higher and 750 ° C. or lower and a soaking time of 1 minute or more and 5 minutes or less.
The steel sheet after the third step is provided with a fourth step in which cold rolling and heat treatment are each performed once, or each is repeated two or more times.
The fourth step is at least subjected to final cold rolling at a rolling ratio of 75% or more, at least the final heat treatment (T 2 -10) ℃ above, be carried out in (T 2 +30) ℃ following soaking temperature The method for producing a ferritic stainless steel sheet according to [1] or [2].
Here, T 1 and T 2 are T 1 : recrystallization temperature (° C.) after hot rolling and T 2 : recrystallization temperature (° C.) after cold rolling, respectively.

本発明によれば、成形性及び成形後の表面形状に優れたフェライト系ステンレス鋼板を工業的に安定して提供することができる。 According to the present invention, it is possible to industrially stably provide a ferritic stainless steel sheet having excellent moldability and surface shape after molding.

図1は、実施例における加工後試験片を示す模式図。FIG. 1 is a schematic view showing a post-processed test piece in an example.

本発明者らは、多数の高純度フェライト系ステンレス鋼を試作し、それらの成形性(特に深絞り性)、成形後の表面形状に及ぼす成分及び製造方法について鋭意検討を行った。その結果、Ti、Nbとともに、Pを調整した成分系において、それらを含む析出物を適正に制御することで、深絞り性、異方性、肌荒れのすべてを満足し得る鋼板および製造方法を明らかにし、本発明に至った。 The present inventors have made a large number of high-purity ferritic stainless steels as prototypes, and have diligently studied their moldability (particularly deep drawing property), components affecting the surface shape after molding, and manufacturing methods. As a result, we have clarified a steel sheet and a manufacturing method that can satisfy all of deep drawing property, anisotropy, and rough skin by appropriately controlling the precipitates containing them in the component system in which P is adjusted together with Ti and Nb. This led to the present invention.

その要点を述べれば、本発明は新たに見出されたPの化合物を活用するものである。P化合物は、後述する熱間圧延後に再結晶させた材料への時効熱処理により微細析出させるが、同析出物が冷間圧延後の熱処理での再結晶開始時に深絞り性に有利な結晶方位を優先的に生成すると考えられ、望ましいr値が得られ、成形性を向上する。併せて、前述したTiやNbの炭窒化物とともに高密度に分散することで粒成長を更に抑制し、細粒組織となることで成形後表面形状も更に改善される。すなわち、更に優れた成形性と成形後表面形状が両立するのである。P化合物は、(Ti,Nb)FePないし、それらに近い組成と構造を有すると考えられる。したがって、それらの化合物が活用できる材料、例えば、JIS G 4305に記載される高純度フェライト系ステンレス鋼にも適用できると考えられる。 To state the point, the present invention utilizes a newly discovered compound of P. The P compound is finely precipitated by aging heat treatment on the material recrystallized after hot rolling, which will be described later, and the precipitate has a crystal orientation advantageous for deep drawing property at the start of recrystallization by heat treatment after cold rolling. It is considered to be preferentially generated, a desirable r value is obtained, and moldability is improved. At the same time, the grain growth is further suppressed by dispersing at high density together with the above-mentioned Ti and Nb carbonitrides, and the surface shape after molding is further improved by forming a fine grain structure. That is, even more excellent moldability and the surface shape after molding are compatible. The P compound is considered to have (Ti, Nb) FeP or a composition and structure similar to those of FeP. Therefore, it is considered that it can be applied to materials in which these compounds can be utilized, for example, high-purity ferritic stainless steel described in JIS G 4305.

以下、各要件について詳しく説明する。
まず、成分の限定理由を以下に説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。
Each requirement will be described in detail below.
First, the reasons for limiting the components will be described below. In addition, "%" display of the content of each element means "mass%".

Crは、ステンレス鋼の基本特性である耐食性を向上する元素である。11.0%未満では十分な耐食性が得られないため、下限は11.0以上%とする。一方、過度なCrの含有はσ相(Fe−Crの金属間化合物)相当の金属間化合物の生成を促進し、製造時の割れを助長する。このため、上限は25.0%以下とする。安定製造性(歩留まり、圧延疵等)の点から14.0%以上、22.0%以下が好ましい。更に好ましくは16.0%以上、21.0%以下である。 Cr is an element that improves corrosion resistance, which is a basic property of stainless steel. If it is less than 11.0%, sufficient corrosion resistance cannot be obtained, so the lower limit is set to 11.0 or more. On the other hand, excessive Cr content promotes the formation of an intermetallic compound equivalent to the σ phase (Fe-Cr intermetallic compound) and promotes cracking during production. Therefore, the upper limit is 25.0% or less. From the viewpoint of stable manufacturability (yield, rolling defects, etc.), 14.0% or more and 22.0% or less are preferable. More preferably, it is 16.0% or more and 21.0% or less.

Cは、強力な固溶強化元素であり、伸びの低下にともない成形性を低下させるため、過剰のCの含有は避ける必要がある。上限を0.010%以下とする。一方、結晶粒制御のためにある程度のCの含有が必要であり、過度の低減には精錬コストが増加するため、下限を0.001%以上とする。精錬コスト及び特性(成形性、結晶粒℃)を考慮した場合、0.002%以上、0.008%以下が好ましい。 C is a strong solid solution strengthening element, and the moldability is lowered as the elongation is lowered. Therefore, it is necessary to avoid the excessive content of C. The upper limit is 0.010% or less. On the other hand, the lower limit is set to 0.001% or more because it is necessary to contain a certain amount of C for grain control and the refining cost increases for excessive reduction. Considering the refining cost and characteristics (moldability, crystal grain temperature), 0.002% or more and 0.008% or less are preferable.

Siは、耐酸化性向上元素であるが、過剰なSiの含有により成形性を低下する。このため、1.0%以下を上限とする。成形性の点からは低い方が好ましいが、過度の低下は原料コストの増加を招くため0.01%以上を下限とする。好ましい範囲は0.05%以上、0.60%以下であり、さらに好ましくは0.05%以上、0.30%以下である。 Si is an element for improving oxidation resistance, but its moldability is lowered due to the excessive content of Si. Therefore, the upper limit is 1.0% or less. From the viewpoint of moldability, a lower value is preferable, but an excessive decrease causes an increase in raw material cost, so the lower limit is 0.01% or more. The preferred range is 0.05% or more and 0.60% or less, and more preferably 0.05% or more and 0.30% or less.

MnもSi同様に、多量のMnの含有は成形性の低下を招くため上限を1.0%以下とする。成形性の点から低い方が好ましいが、過度の低下は原料コストの増加を招くため、0.01%以上を下限とする。製造性の観点から好ましい範囲は0.05%以上、0.40%以下であり、さらに好ましくは、0.05%以上、0.30%以下である。 Similar to Si, the upper limit of Mn is set to 1.0% or less because the content of a large amount of Mn causes a decrease in moldability. A lower value is preferable from the viewpoint of moldability, but an excessive decrease causes an increase in raw material cost, so the lower limit is 0.01% or more. From the viewpoint of manufacturability, the preferable ranges are 0.05% or more and 0.40% or less, and more preferably 0.05% or more and 0.30% or less.

Pは、冷間圧延後熱処理での再結晶にて深絞り性に有利な結晶方位を形成すると考えるP化合物の構成元素であり、下限を0.010%以上とする。ただし、過度にPを含有した場合、成形性が劣化し、材料の加工も難しくなるため、上限を0.040%以下とする。成形性と製造コストの両者を考慮し、好ましくは0.012%以上、0.038%以下、さらに好ましくは、0.015%以上、0.035%以下である。 P is a constituent element of the P compound which is considered to form a crystal orientation advantageous for deep drawing by recrystallization by heat treatment after cold rolling, and the lower limit is 0.010% or more. However, if P is excessively contained, the moldability deteriorates and the processing of the material becomes difficult, so the upper limit is set to 0.040% or less. Considering both moldability and manufacturing cost, it is preferably 0.012% or more and 0.038% or less, and more preferably 0.015% or more and 0.035% or less.

Sは、製造時の割れを助長するため低い方が好ましく、上限を0.01%以下とする。一方、過度の低下は精錬コストの上昇を招くため、下限を0.0003%以上とする。製造性とコストの点から、好ましくは、0.0004%以上、0.0030%以下である。 S is preferably low because it promotes cracking during manufacturing, and the upper limit is 0.01% or less. On the other hand, an excessive decrease causes an increase in refining cost, so the lower limit is set to 0.0003% or more. From the viewpoint of manufacturability and cost, it is preferably 0.0004% or more and 0.0030% or less.

Nは、Cと同様に強力な固溶強化元素であり、伸びの低下にともない成形性を低下させる。このため、上限を0.020%以下とする。しかし、結晶粒制御のためにある程度のNの含有が必要であり、過度の低減には長時間の精錬が必要となるため、0.002%以上を下限とする。好ましくは、0.005%以上、0.015%以下である。 Like C, N is a strong solid solution strengthening element, and as the elongation decreases, the moldability decreases. Therefore, the upper limit is set to 0.020% or less. However, since it is necessary to contain a certain amount of N for crystal grain control and long-term refining is required for excessive reduction, the lower limit is 0.002% or more. Preferably, it is 0.005% or more and 0.015% or less.

Alは、脱酸元素として使用される。また、成形性の向上に寄与する。これら効果を発揮するには、0.003%以上が必要である。一方、多量のAlの含有は材料を硬化し、延性が低下するため、上限を1.0%以下とする。好ましくは0.10%以下であり、より好ましくは0.01%以上、0.07%以下である。 Al is used as a deoxidizing element. It also contributes to the improvement of moldability. In order to exert these effects, 0.003% or more is required. On the other hand, if a large amount of Al is contained, the material is cured and the ductility is lowered, so the upper limit is set to 1.0% or less. It is preferably 0.10% or less, more preferably 0.01% or more and 0.07% or less.

Tiは、結晶粒の成長を抑制する炭窒化物を形成する元素である。このため、下限を0.05%以上とする。一方、過度なTiの含有は合金コストを上昇し、再結晶温度上昇に伴う鋼板の製造性の低下や、伸びの低下を招く。従ってTiの上限は0.30%以下とする。成形性及び製造性の点から、好ましくは、0.08%以上、0.25%以下である。更に好ましくは、0.10%以上、0.20%以下である。 Ti is an element that forms a carbonitride that suppresses the growth of crystal grains. Therefore, the lower limit is set to 0.05% or more. On the other hand, excessive Ti content increases the alloy cost, resulting in a decrease in the manufacturability of the steel sheet and a decrease in elongation due to an increase in the recrystallization temperature. Therefore, the upper limit of Ti is 0.30% or less. From the viewpoint of moldability and manufacturability, it is preferably 0.08% or more and 0.25% or less. More preferably, it is 0.10% or more and 0.20% or less.

Nbは、Ti同様に粒成長を抑制する炭窒化物を形成する元素である。Nbを含む化合物の大きさも比較的小さいため、鋼板の成形時に割れの起点となる可能性も小さい。このため、下限を0.03%以上とする。一方、過度なNbの含有は鋼板の延性を低下し、合金コストの上昇、再結晶温度の上昇に伴う製造性の低下を招く。上限は0.30%以下とする。好ましくは、0.05%以上、0.15%以下である。 Nb is an element that forms a carbonitride that suppresses grain growth like Ti. Since the size of the compound containing Nb is also relatively small, the possibility of becoming a starting point of cracking during molding of the steel sheet is small. Therefore, the lower limit is set to 0.03% or more. On the other hand, excessive Nb content lowers the ductility of the steel sheet, leading to an increase in alloy cost and a decrease in manufacturability due to an increase in recrystallization temperature. The upper limit is 0.30% or less. Preferably, it is 0.05% or more and 0.15% or less.

Ti,Nb,C,Nの含有量に関しては下記(1)式を満足することとする。 Regarding the contents of Ti, Nb, C, and N, the following equation (1) is satisfied.

Ti/48+Nb/93 ≧ 2×(C/12+N/14)・・・(1) Ti / 48 + Nb / 93 ≧ 2 × (C / 12 + N / 14) ・ ・ ・ (1)

上記式(1)を満足しない場合、炭窒化物の析出が少なく、CあるいはNの固溶量が大きくなり、鋼板の深絞り性が低下し、成形時の割れを生じやすくなる。また、溶接した場合、同部の耐食性を低下する。 When the above formula (1) is not satisfied, the precipitation of carbonitride is small, the solid solution amount of C or N is large, the deep drawing property of the steel sheet is lowered, and cracks are likely to occur during molding. In addition, when welded, the corrosion resistance of the same part is reduced.

また、本実施形態のフェライト系ステンレス鋼板では、鋼板中に含まれるTi,Nb,Pのうち、鋼板中の化合物に含まれるTi,Nb,Pの量をそれぞれXTi、XNb、Xとしたときに、
Ti:0.035%以上0.060%以下、
Nb:0.010%以上0.025%以下、
:0.001%以上0.010%以下
を満足することが必要となる。鋼板中の化合物は、Ti及び(あるいは)Nbを含有するものであり、(Ti,Nb)炭窒化物や(Ti,Nb)FePに代表されるP化合物である。これらは、多数かつ微細な析出物の分散でのピン止め効果により、粒成長を抑制し、細粒組織の形成に寄与する。更に、P化合物は、冷間圧延後熱処理での再結晶に際して、深絞り性に有利な結晶方位を形成すると考えられ、望ましいr値を得ることが可能となる。このような効果を得るには、XTi、XNb、Xとの下限はそれぞれ、XTi:0.035%以上、XNb:0.010%以上、X:0.001%以上であることが好ましい。
Also, in ferritic stainless steel sheet according to the present embodiment, among Ti, Nb, P contained in the steel sheet, Ti contained in the compound in the steel sheet, Nb, X the amount of P each Ti, X Nb, and X P When you do
X Ti : 0.035% or more and 0.060% or less,
X Nb : 0.010% or more and 0.025% or less,
X P: it is necessary to satisfy 0.001% to 0.010% or less. The compound in the steel sheet contains Ti and / or Nb, and is a P compound typified by (Ti, Nb) carbonitride and (Ti, Nb) FeP. These contribute to the formation of fine-grained structures by suppressing grain growth due to the pinning effect of dispersion of a large number of fine precipitates. Further, the P compound is considered to form a crystal orientation advantageous for deep drawing property when recrystallized by heat treatment after cold rolling, and a desirable r value can be obtained. To obtain such effects, X Ti, X Nb, respectively the lower limit of the X P is, X Ti: 0.035% or more, X Nb: 0.010% or more, X P: 0.001% or more It is preferable to have.

一方、析出物の過度の分散は、鋼板の延性の低下により成形性が低下し、r値も低下させる。このため、XTi、XNb、Xとの上限はそれぞれ、XTi:0.060%以下、XNb:0.025%以下、X:0.010%以下であることが好ましい。これらの値は同時に満足することで、熱処理での再結晶において深絞り性に有利な結晶方位が生成し、更に化合物による粒成長抑制により細粒組織化と深絞り性に有利な結晶方位が維持されると考えられ、優れた成形性と成形後表面形状が両立する。 On the other hand, excessive dispersion of the precipitates lowers the moldability due to the lower ductility of the steel sheet, and also lowers the r value. Thus, each upper limit of the X Ti, X Nb, X P is, X Ti: 0.060% or less, X Nb: 0.025% or less, X P: is preferably 0.010% or less. By satisfying these values at the same time, a crystal orientation advantageous for deep drawing property is generated in recrystallization by heat treatment, and a crystal orientation advantageous for fine grain organization and deep drawing property is maintained by suppressing grain growth by the compound. It is considered that the surface shape after molding is compatible with the excellent moldability.

Ti、XNb、Xとの測定は、電解抽出残渣法によって鋼中の化合物を残渣として抽出し、化合物中のTi,Nb,Pの量を定量することにより求められる。電解抽出残渣法に用いる電解液は、10%アセチルアセトン−1%テトラメチルアンモニウム−メタノール液とし、残渣の回収には0.2μmメッシュの有機フィルターを用いる。残渣量は1g以上とすることで分析精度のばらつきを防ぐ。残渣中のTi,Nb,Pの分析はICP発光分光法とする。 X Ti, X Nb, measurement of the X P is the electrowinning residue method to extract the compound in the steel as a residue, Ti in the compound, Nb, determined by quantifying the amount of P. The electrolytic solution used in the electrolytic extraction residue method is a 10% acetylacetone-1% tetramethylammonium-methanol solution, and a 0.2 μm mesh organic filter is used to recover the residue. By setting the amount of residue to 1 g or more, variation in analysis accuracy is prevented. The analysis of Ti, Nb, P in the residue is performed by ICP emission spectroscopy.

本実施形態のフェライト系ステンレス鋼は、上記の基本組成に加えて、B:0.0025%以下、Sn:0.50%以下、Ni:1.0%以下、Cu:1.0%以下、Mo:2.0%以下、W:1.0%以下、Co:0.50%以下、V:0.50%以下、Zr:0.50%以下、Ca:0.0050%以下、Mg:0.0050%以下、Y:0.10%以下、Hf:0.20%以下、REM:0.10%以下、Sb:0.50%以下の1種または2種以上を含有させてもよい。これらの元素は含有させなくてもよく、その場合の下限はそれぞれ0%以上である。 In the ferritic stainless steel of the present embodiment, in addition to the above basic composition, B: 0.0025% or less, Sn: 0.50% or less, Ni: 1.0% or less, Cu: 1.0% or less, Mo: 2.0% or less, W: 1.0% or less, Co: 0.50% or less, V: 0.50% or less, Zr: 0.50% or less, Ca: 0.0050% or less, Mg: One or more of 0.0050% or less, Y: 0.10% or less, Hf: 0.20% or less, REM: 0.10% or less, Sb: 0.50% or less may be contained. .. These elements may not be contained, and the lower limit in that case is 0% or more.

Bは、二次加工性を向上させる元素である。その効果を発揮するには0.0001%以上で発現すると考える。ただし、過度のBの含有は製造性、特に鋳造性の劣化を招くため、上限は0.0025%以下とする。好ましくは、0.0020%以下であり、さらに好ましくは0.0012%以下である。 B is an element that improves the secondary processability. It is considered that the expression is 0.0001% or more in order to exert the effect. However, since excessive content of B causes deterioration of manufacturability, especially castability, the upper limit is set to 0.0025% or less. It is preferably 0.0020% or less, and more preferably 0.0012% or less.

Snは、耐食性を向上させるため、腐食環境に応じて含有してもよい。この効果は0.005%以上で発現すると考える。ただし、多量のSnの含有は製造性の劣化を招くため、上限は0.50%以下とする。製造性を考慮して、好ましくは、0.20%以下であり、さらに好ましくは、0.10%以下である。 Sn may be contained depending on the corrosive environment in order to improve the corrosion resistance. It is considered that this effect is exhibited at 0.005% or more. However, since the content of a large amount of Sn causes deterioration of manufacturability, the upper limit is set to 0.50% or less. In consideration of manufacturability, it is preferably 0.20% or less, and more preferably 0.10% or less.

Ni、Cu、Mo、W、Co、V、Zrは、耐食性あるいは耐酸化性を高めるのに有効な元素であり、これらの元素は必要に応じて含有させる。これらの元素の効果は0.1%以上で発現すると考える。ただし、これらの元素の過度な含有は成形性を低下するばかりなく、合金コストの上昇や製造性を阻害する恐れがある。そのため、Ni、Cu、Wの上限は1.0%以下、Moの上限は2.0%以下、Co、V、Zrの上限は0.50%以下とする。 Ni, Cu, Mo, W, Co, V, and Zr are elements effective for enhancing corrosion resistance or oxidation resistance, and these elements are contained as necessary. It is considered that the effects of these elements are expressed at 0.1% or more. However, excessive inclusion of these elements may not only reduce moldability, but also increase alloy cost and hinder manufacturability. Therefore, the upper limit of Ni, Cu, and W is 1.0% or less, the upper limit of Mo is 2.0% or less, and the upper limit of Co, V, and Zr is 0.50% or less.

Ca、Mgは、熱間加工性や二次加工性を向上させる元素であり、必要に応じて含有させる。この効果は0.0001%以上で発現すると考える。ただし、これらの元素の過度な含有は鋼板の製造性を阻害するため、上限は0.0050%以下とする。好ましくは、0020%以下であり、さらに好ましくは、0.0010%以下である。 Ca and Mg are elements that improve hot workability and secondary workability, and are contained as necessary. It is considered that this effect is exhibited at 0.0001% or more. However, since excessive content of these elements hinders the manufacturability of the steel sheet, the upper limit is set to 0.0050% or less. It is preferably 0020% or less, and more preferably 0.0010% or less.

Y、Hf、REMは、熱間加工性や鋼の清浄度を向上ならびに耐酸化性改善に対して有効な元素であり、必要に応じて含有させる。これらの効果は0.001%以上で発現すると考えられる。ただし、これらの元素の過度な含有は鋼板の製造性を阻害するため、上限は、Y、REMが0.10%以下、Hfが0.20%以下とする。なお、本実施形態における「REM」は原子番号57〜71に帰属する元素(ランタノイド)を指し、例えば、La、Ce、Pr、Nd等である。 Y, Hf, and REM are elements effective for improving hot workability and cleanliness of steel and improving oxidation resistance, and are contained as necessary. It is considered that these effects are exhibited at 0.001% or more. However, since excessive content of these elements hinders the manufacturability of the steel sheet, the upper limit is set to 0.10% or less for Y and REM and 0.20% or less for Hf. In addition, "REM" in this embodiment refers to an element (lanthanoid) belonging to atomic numbers 57 to 71, and is, for example, La, Ce, Pr, Nd and the like.

Sbは、Snと同様に耐食性向上効果を持つ元素であり、必要に応じて含有させる。この効果は、0.005%以上で発現すると考えられる。ただし、過度のSbの含有は製造性の劣化を招くため、上限は0.50%以下とする。 Sb is an element having an effect of improving corrosion resistance like Sn, and is contained as necessary. This effect is considered to be expressed at 0.005% or more. However, since excessive Sb content causes deterioration in manufacturability, the upper limit is set to 0.50% or less.

本実施形態のフェライト系ステンレス鋼鈑は、上述してきた元素以外は、Fe及び不純物(不可避的不純物を含む)からなるが、本発明の効果を損なわない範囲で下記を含有させることが出来る。本実施形態では、例えばBi、Pb、Se、H、Ta等を含有させてもよいが、その場合は可能な限り低減することが好ましい。一方、これらの元素は、本発明の課題を解決する限度において、その含有割合が制御され、必要に応じて、Bi≦100ppm、Pb≦100ppm、Se≦100ppm、H≦100ppm、Ta≦500ppmの1種以上を含有してもよい。 The ferritic stainless steel plate of the present embodiment is composed of Fe and impurities (including unavoidable impurities) other than the elements described above, but can contain the following as long as the effects of the present invention are not impaired. In the present embodiment, for example, Bi, Pb, Se, H, Ta and the like may be contained, but in that case, it is preferable to reduce as much as possible. On the other hand, the content ratio of these elements is controlled to the extent that the problem of the present invention is solved, and if necessary, Bi ≦ 100 ppm, Pb ≦ 100 ppm, Se ≦ 100 ppm, H ≦ 100 ppm, Ta ≦ 500 ppm. It may contain more than a seed.

次に、金属組織について説明する。
本実施形態のフェライト系ステンレス鋼鈑は、結晶粒度番号9.0以上よりなる。前述した肌荒れは、結晶粒度番号が大きいほど、すなわち、粒径が小さいほど生じにくい。優れた成形後表面形状を得るため、結晶粒度番号が9.0以上とする。好ましくは9.0超であり、より好ましくは9.5以上であり、更に好ましくは、10.0以上である。
Next, the metal structure will be described.
The ferrite-based stainless steel plate of the present embodiment has a crystal grain size number of 9.0 or more. The above-mentioned rough skin is less likely to occur as the crystal grain size number is larger, that is, the smaller the grain size is. In order to obtain an excellent surface shape after molding, the crystal grain size number is set to 9.0 or more. It is preferably more than 9.0, more preferably 9.5 or more, and even more preferably 10.0 or more.

結晶粒度番号の測定方法は、JIS G 0551(2013)の線分法で求めることができる。なお、番号は、例えば、9が結晶粒内を横切る1結晶粒あたりの平均線分長が14.1μmに相当し、10が同線分長10.0μmに相当する。調査は、試験片のエッチング後断面での光学顕微鏡組織写真にて実施し、1試料につき結晶粒数で500以上を測定する。エッチング液は王水または逆王水がよいが、結晶粒界が判断できるのであれば他の溶液でも構わない。隣接する結晶粒の方位関係等により粒界が鮮明に見えない場合があるため、濃くエッチングするのが好ましい。なお、調査に際して、双晶は測定しないこととする。 The method for measuring the crystal grain size number can be obtained by the line segment method of JIS G 0551 (2013). As for the numbers, for example, 9 corresponds to an average line segment length of 14.1 μm per crystal grain crossing the inside of the crystal grain, and 10 corresponds to the same line segment length of 10.0 μm. The investigation is carried out by an optical microscope microstructure photograph of the cross section of the test piece after etching, and the number of crystal grains per sample is measured to be 500 or more. The etching solution is preferably aqua regia or reverse aqua regia, but other solutions may be used as long as the grain boundaries can be determined. Since the grain boundaries may not be clearly visible due to the orientation of adjacent crystal grains, it is preferable to perform deep etching. Twins will not be measured during the survey.

塑性ひずみ比(r値)は、試験片の幅の減少の伸び(長さの増加)への寄与を示す値であり、フェライト系ステンレス鋼では深絞り性が向上する。平均塑性ひずみ比rAveを以下の(2)式で算出し、面内異方性Δrを以下の(3)式で算出する。平均塑性ひずみ比rAveは大きい方が成形性に優れるため、1.5以上とする。好ましくは、1.7以上である。面内異方性Δrは、絶対値が小さい方が成形性に優れ、−0.4未満および0.1超では面内異方性が大きくなり、深絞り成形時に耳の発生が顕著になり、また、成形中に割れを生じやすくなる。好ましくは、−0.3以上、0.1以下である。 The plastic strain ratio (r value) is a value indicating the contribution of the decrease in the width of the test piece to the elongation (increase in the length), and the ferritic stainless steel improves the deep drawing property. The average plastic strain ratio rAve is calculated by the following formula (2), and the in-plane anisotropy Δr is calculated by the following formula (3). The larger the average plastic strain ratio rAve, the better the moldability, so it is set to 1.5 or more. It is preferably 1.7 or more. The smaller the absolute value of the in-plane anisotropy Δr, the better the moldability, and when it is less than -0.4 and more than 0.1, the in-plane anisotropy becomes large, and the generation of ears becomes remarkable during deep drawing. In addition, cracks are likely to occur during molding. Preferably, it is −0.3 or more and 0.1 or less.

塑性ひずみ比の測定方法は、JIS Z 2254(2008)に準拠し、鋼板の各方向と平行に採取した試験片について引張りひずみ15%以上にて実施する。なお、ここで、r:試験片を板面の圧延方向に対し平行に採取し測定した塑性ひずみ比、r45:試験片を板面の圧延方向に対し45°方向に採取し測定した塑性ひずみ比、r90:試験片を板面の圧延方向に対し90°方向に採取し測定した塑性ひずみ比である。 The method for measuring the plastic strain ratio is in accordance with JIS Z 2254 (2008), and the test piece collected in parallel with each direction of the steel sheet is subjected to a tensile strain of 15% or more. Here, r 0 : the plastic strain ratio measured by collecting the test piece parallel to the rolling direction of the plate surface, and r 45 : the plasticity measured by collecting the test piece in the 45 ° direction with respect to the rolling direction of the plate surface. Strain ratio, r 90 : The plastic strain ratio measured by collecting the test piece in the 90 ° direction with respect to the rolling direction of the plate surface.

1.5≦rAve … (2)
―0.4≦Δr≦0.1 … (3)
ただし、式(2)のrAve=はrAve(r+r90+2×r45)/4であり、式(3)のΔrはΔr=(r+r90―2×r45)/2である。
1.5 ≤ r Ave ... (2)
―0.4 ≦ Δr ≦ 0.1… (3)
However, a r Ave = the r Ave (r 0 + r 90 + 2 × r 45) / 4 of the formula (2), [Delta] r of formula (3) is Δr = (r 0 + r 90 -2 × r 45) / 2 Is.

本実施形態のフェライト系ステンレス鋼板の金属組織は、フェライト単相組織よりなる。オーステナイト相やマルテンサイト相を含む複相組織の場合は、結晶粒径を細かくすることが比較的容易であり、加えてオーステナイト相はTRIP効果により高成形性を示す。しかし、一般的には合金元素の増加にともない原料コストが高くなることに加えて、製造時に耳割れ等が発生し、歩留まりが低下する。耳割れが著しく発生した場合、製造が困難となる。このため、体積%で98%以上をフェライト相とする。好ましくは、99%以上であり、鋼板の製造、加工性から100%が当然ながら最も好ましい。フェライト相以外の残部組織は0〜2%とする。なお、鋼中には炭窒化合物やP化合物等も存在するが、これらは総計でも極微量であり、ここでは無視する。 The metal structure of the ferritic stainless steel sheet of the present embodiment has a ferrite single-phase structure. In the case of a multi-phase structure containing an austenite phase or a martensite phase, it is relatively easy to make the crystal grain size finer, and in addition, the austenite phase exhibits high moldability due to the TRIP effect. However, in general, the raw material cost increases as the alloying elements increase, and ear cracks and the like occur during manufacturing, resulting in a decrease in yield. If the ear cracks occur significantly, it becomes difficult to manufacture. Therefore, 98% or more by volume is a ferrite phase. It is preferably 99% or more, and 100% is naturally the most preferable from the viewpoint of manufacturing and processability of the steel sheet. The residual structure other than the ferrite phase is 0 to 2%. Although carbon dioxide compounds, P compounds, etc. are also present in steel, these are extremely small in total and are ignored here.

これらの金属組織の規定により、実施例にて後述するように、優れた成形性と成形後表面形状が得られる。理由は鋭意調査継続中ではあるが、現時点では前述したように次のように推測する。 According to the regulations of these metal structures, excellent moldability and post-molding surface shape can be obtained as described later in Examples. The reason is that the investigation is ongoing, but at the moment, it is speculated as follows as mentioned above.

深絞り性の向上には、固溶するC,Nを低減することが有効である。Ti,Nbの含有により短窒化物として固定することは、既に知られている。本発明は、更に、Pの化合物を活用するものである。P化合物は後述する熱間圧延後再結晶させた材料への時効熱処理により微細析出させるが、同析出物が冷間圧延後の熱処理での再結晶開始時に深絞り性に有利な結晶方位を優先的に生成すると考えられ、望ましいr値が得られ、成形性を向上するのである。併せて、TiやNbの炭窒化物とともに高密度に分散して粒成長を更に抑制し、細粒組織となることで成形後の表面形状も更に改善される。すなわち、本発明は、Ti,Nb,Pの化合物が所定量の場合、更に優れた成形性と成形後表面形状を両立する。P化合物は、(Ti,Nb)FePないし、それらに近い組成と構造を有すると考えられる。 In order to improve the deep drawing property, it is effective to reduce C and N that dissolve in solid solution. It is already known that it is fixed as a short nitride by containing Ti and Nb. The present invention further utilizes a compound of P. The P compound is finely precipitated by aging heat treatment on the material recrystallized after hot rolling, which will be described later. However, priority is given to the crystal orientation that is advantageous for deep drawing property at the start of recrystallization in the heat treatment after cold rolling. The desired r value is obtained, and the moldability is improved. At the same time, it is dispersed at high density together with the carbonitrides of Ti and Nb to further suppress the grain growth, and the fine grain structure is formed, so that the surface shape after molding is further improved. That is, the present invention achieves both excellent moldability and a surface shape after molding when the amount of the Ti, Nb, P compound is a predetermined amount. The P compound is considered to have (Ti, Nb) FeP or a composition and structure similar to those of FeP.

なお、本実施形態のフェライト系ステンレス鋼板の板厚は特に限定しないが、強度確保の観点から0.5mm以上、好ましくは0.6mm以上であることが望ましい。板厚が薄い場合は成形後の部品において強度が不十分となる場合があるためである。ただし、製造対象物のサイズや形状、耐荷重等を考慮して板厚を設計する必要がある。 The thickness of the ferritic stainless steel sheet of the present embodiment is not particularly limited, but it is preferably 0.5 mm or more, preferably 0.6 mm or more from the viewpoint of ensuring strength. This is because if the plate thickness is thin, the strength of the molded part may be insufficient. However, it is necessary to design the plate thickness in consideration of the size and shape of the product to be manufactured, the load capacity, and the like.

次に、フェライト系ステンレス鋼板の製造方法について説明する。
本実施形態のフェライト系ステンレス鋼板の製造方法では、同鋼を常法により溶製、鋳造し、熱間圧延に供する鋼片を得る。この鋼片は、鋼塊を鍛造又は圧延したものでもよいが、生産性の観点から、連続鋳造により鋼片を製造することが好ましい。また、薄スラブキャスター等を用いて製造してもよい。
Next, a method for manufacturing a ferritic stainless steel sheet will be described.
In the method for producing a ferritic stainless steel sheet of the present embodiment, the steel is melted and cast by a conventional method to obtain a steel piece to be subjected to hot rolling. This steel piece may be a steel ingot forged or rolled, but from the viewpoint of productivity, it is preferable to manufacture the steel piece by continuous casting. Further, it may be manufactured by using a thin slab caster or the like.

次いで、鋼片を熱間圧延して鋼板とする第1の工程と、再結晶を目的とする熱処理を行う第2の工程と、化合物析出を目的とする時効熱処理を行う第3の工程と、冷間圧延と再結晶を目的とする熱処理とを一回ないし二回以上繰り返す第4の工程とを行うことにより、本実施形態のフェライト系ステンレス鋼板を製造する。 Next, a first step of hot rolling the steel pieces into a steel plate, a second step of performing a heat treatment for the purpose of recrystallization, and a third step of performing an aging heat treatment for the purpose of compound precipitation. The ferrite-based stainless steel sheet of the present embodiment is produced by performing a fourth step of repeating cold rolling and heat treatment for the purpose of recrystallization once or twice or more.

第1の工程では、熱間圧延により、鋼片を所定の温度に加熱後、所定の板厚まで減厚する。温度やパススケジュールは特に規定するものではなく、再結晶温度以上で内部まで均一な温度に加熱、保持し、効率的に減厚する。 In the first step, the steel pieces are heated to a predetermined temperature by hot rolling and then reduced to a predetermined plate thickness. The temperature and pass schedule are not particularly specified, and the temperature is heated and maintained at a uniform temperature to the inside above the recrystallization temperature, and the thickness is reduced efficiently.

第2の工程では、熱間圧延後の鋼板に対して再結晶を目的とする熱処理を行う。第2の工程の熱処理は、次工程の時効熱処理にてP化合物を微細析出させるために、均熱温度としての到達温度をT℃〜(T+35)℃の範囲に制御する必要がある。Tは熱間圧延後の再結晶温度(℃)である。再結晶温度Tは、鋼成分、板厚、熱間圧延の温度や圧下率の影響により変化する。再結晶温度Tの制御により、P化合物を微細かつ高密度に析出させることができる。また、到達温度がT℃未満である場合、未再結晶粒が残存、軟化不足により、その後の冷間圧延が難しくなる。また、鋼板でのリジング性や成形性も不良となる。一方、到達温度が(T+35)℃超であると、粒成長が進行してその影響が後工程後にも残存し、冷延と熱処理を繰り返した後の鋼板の粒径が粗大化し、バラつきも大きくなり、成形後の表面粗さが不良となる。第2の工程の熱処理の均熱時間は、5分以下がよい。 In the second step, the steel sheet after hot rolling is heat-treated for the purpose of recrystallization. In the heat treatment of the second step, it is necessary to control the reached temperature as the soaking temperature in the range of T 1 ° C. to (T 1 +35) ° C. in order to finely precipitate the P compound in the aging heat treatment of the next step. .. T 1 is the recrystallization temperature (° C.) after hot rolling. The recrystallization temperature T 1 changes depending on the influence of the steel composition, the plate thickness, the temperature of hot rolling, and the rolling reduction rate. By controlling the recrystallization temperature T 1 , the P compound can be deposited finely and at high density. Further, when the ultimate temperature is less than T 1 ° C., unrecrystallized grains remain and insufficient softening makes subsequent cold rolling difficult. In addition, the rigging property and formability of the steel sheet are also poor. On the other hand, when the reached temperature exceeds (T 1 +35) ° C., grain growth progresses and the effect remains even after the post-process, and the grain size of the steel sheet after repeated cold rolling and heat treatment becomes coarse and varies. Also becomes large, and the surface roughness after molding becomes poor. The soaking time of the heat treatment in the second step is preferably 5 minutes or less.

次いで、第3工程で実施する時効熱処理は、実験結果に基づき、650℃以上、750℃以下の均熱温度にて1分(60秒)以上、5分以下の均熱時間で保持する。均熱温度が650℃未満または750℃超では、P化合物が析出しないと考えられる。保持時間が1分(60秒)未満では、化合物の析出量が不十分となる。逆に、5分を超えた場合、化合物の析出量が増大し、XTi、XNb、Xの値が前述の範囲を超える可能性が高くなり、優れた成形性や成形後表面形状が得られない。また、工業的には短時間での処理が望ましい。好ましくは、660℃以上、740℃以下にて、2分以上、4分以下の条件がよい。 Next, the aging heat treatment carried out in the third step is held at a soaking temperature of 650 ° C. or higher and 750 ° C. or lower for a soaking time of 1 minute (60 seconds) or more and 5 minutes or less based on the experimental results. It is considered that the P compound does not precipitate when the soaking temperature is less than 650 ° C or higher than 750 ° C. If the holding time is less than 1 minute (60 seconds), the amount of the compound precipitated will be insufficient. Conversely, if it exceeds 5 minutes, increasing the amount of precipitation of the compound, X Ti, X Nb, the value of X P is more likely to exceed the above-mentioned range, excellent moldability and molded after surface shape I can't get it. In addition, industrially, processing in a short time is desirable. Preferably, the conditions are 660 ° C. or higher and 740 ° C. or lower for 2 minutes or longer and 4 minutes or shorter.

第4工程では、1回の冷間圧延後に熱処理を1回行うか、あるいは、冷間圧延を2回以上行うとともに冷間圧延の間に適宜熱処理を行い、最終の冷間圧延後に最終熱処理を行う。第4の工程において、少なくとも最終の冷間圧延での冷間圧延率は70%以上にする必要である。第4の工程において冷間圧延を1回のみ行う場合は、その1回の冷間圧延が最終の冷間圧延になる。冷間圧延によって、その後の熱処理と合わせて深絞り性に有効な結晶方位を形成する。最終の冷間圧延の圧延率は好ましくは75%以上、更に好ましくは80%以上である。なお、圧延率の上限は特に限定しないが、圧延機の能力やコストの観点から、97%以下とするのが現実的である。また、最終以外の冷間圧延における冷間圧延率は、最終の冷間圧延の圧延率と同様にしてもよく、適宜変更してもよい。第4の工程の最終の熱処理の均熱時間は5分以下がよい。 In the fourth step, the heat treatment is performed once after one cold rolling, or the cold rolling is performed twice or more and the heat treatment is appropriately performed during the cold rolling, and the final heat treatment is performed after the final cold rolling. Do. In the fourth step, at least the cold rolling ratio in the final cold rolling needs to be 70% or more. When the cold rolling is performed only once in the fourth step, the one cold rolling becomes the final cold rolling. By cold rolling, a crystal orientation effective for deep drawing is formed together with the subsequent heat treatment. The rolling ratio of the final cold rolling is preferably 75% or more, more preferably 80% or more. The upper limit of the rolling ratio is not particularly limited, but it is realistic to set it to 97% or less from the viewpoint of the capacity and cost of the rolling mill. Further, the cold rolling ratio in cold rolling other than the final may be the same as the rolling ratio in the final cold rolling, or may be changed as appropriate. The soaking time of the final heat treatment in the fourth step is preferably 5 minutes or less.

一回ないし二回以上の冷間圧延と熱処理を繰り返す第4の工程において、少なくとも最終冷間圧延後の熱処理は、均熱温度としての到達温度を(T−10)℃〜(T+30)℃の範囲に制御する必要がある。Tは最終冷間圧延後の再結晶温度(℃)である。再結晶温度のTも、熱延後の再結晶温度Tと同様に、鋼成分、板厚、冷間圧下率の影響により変化する。到達温度が(T−10)℃未満の場合、再結晶、軟化ともに不十分となり、鋼板の成形性は著しく劣化し、成形不良となる。一方、(T+30)℃超の場合、再結晶粒の成長が進み、望ましいr値が得られず、成形後の形状が悪くなる。また、所定の結晶粒度を越えた場合、成形後の表面形状が不良となる。なお、最終の熱処理以外の熱処理条件は、最終の熱処理条件と同様にしてもよく、適宜変更してもよい。 In the fourth step of repeating the heat treatment and once or twice or more cold rolling, heat treatment after at least the final cold rolling, the temperature reached the soaking temperature (T 2 -10) ℃ ~ ( T 2 +30 ) It is necessary to control in the temperature range. T 2 is the recrystallization temperature (° C.) after the final cold rolling. The recrystallization temperature T 2 also changes due to the influence of the steel component, the plate thickness, and the cold reduction rate, similarly to the recrystallization temperature T 1 after hot spreading. If the ultimate temperature is lower than (T 2 -10) ℃, recrystallization, becomes softened both insufficient, the formability of the steel sheet is remarkably deteriorated, and defective molding. On the other hand, when the temperature exceeds (T 2 +30) ° C., the recrystallized grains grow, the desired r value cannot be obtained, and the shape after molding deteriorates. Further, if the crystal grain size exceeds a predetermined value, the surface shape after molding becomes defective. The heat treatment conditions other than the final heat treatment may be the same as the final heat treatment conditions, or may be changed as appropriate.

再結晶温度T、Tは、熱延板あるいは冷延板を用いて熱処理した後の金属組織観察から決定できる。すなわち鋼板を切断し、加熱速度10℃/sで昇温し、到達温度T℃にて30s保持した後に急冷する。急冷は、水冷あるいはHeクエンチとする。熱処理における到達温度Tは20℃ピッチで10水準実施する。熱処理後の鋼板の圧延幅方向から見た断面(L断面)を研磨・エッチングし、結晶粒界を現出させる。光学顕微鏡により結晶粒形状及び粒内のひずみ有無から再結晶/未再結晶を判断する。到達温度Tが高い場合に再結晶が進行するが、金属組織が完全再結晶となる最も低い温度を持って再結晶温度とする。 The recrystallization temperatures T 1 and T 2 can be determined by observing the metallographic structure after heat treatment using a hot-rolled plate or a cold-rolled plate. That is, the steel sheet is cut, the temperature is raised at a heating rate of 10 ° C./s, the temperature is maintained at the ultimate temperature T ° C. for 30 seconds, and then the steel sheet is rapidly cooled. The quenching is water cooling or He quench. The ultimate temperature T in the heat treatment is 10 levels at a pitch of 20 ° C. The cross section (L cross section) of the heat-treated steel sheet viewed from the rolling width direction is polished and etched to reveal grain boundaries. Recrystallized / unrecrystallized is judged from the crystal grain shape and the presence or absence of strain in the grain by an optical microscope. Recrystallization proceeds when the ultimate temperature T is high, but the lowest temperature at which the metal structure becomes completely recrystallized is set as the recrystallization temperature.

また、第2の工程における熱延後の熱処理と、第の4工程における冷延後の最終の熱処理は、迅速に進行すると考える再結晶を目的とし、粒成長の抑制、工業的側面から短時間で行うことが好ましい。具体的には、5分以下である。更に、好ましくは、1秒以上、3分以下である。熱処理は、バッチ式炉、連続式炉の何れの実施でも構わず、ステンレス鋼の製造にて一般的に用いられるものでよい。熱処理雰囲気は、水素ガス、窒素ガスなどを含む非酸化性雰囲気でもよいし、大気でも構わない。表面スケールが形成される場合、脱スケール処理を施せばよい。ただし、冷延後の最終熱処理は、製品加工後の表面形状に影響するため、非酸化性雰囲気での実施がより好ましい。 Further, the heat treatment after hot rolling in the second step and the final heat treatment after cold rolling in the fourth step are aimed at recrystallization, which is considered to proceed rapidly, and suppress grain growth and take a short time from the industrial aspect. It is preferable to carry out with. Specifically, it is 5 minutes or less. Further, it is preferably 1 second or more and 3 minutes or less. The heat treatment may be carried out in either a batch type furnace or a continuous type furnace, and may be generally used in the production of stainless steel. The heat treatment atmosphere may be a non-oxidizing atmosphere containing hydrogen gas, nitrogen gas, or the like, or may be an atmosphere. When the surface scale is formed, it may be descaled. However, since the final heat treatment after cold rolling affects the surface shape after product processing, it is more preferable to carry out in a non-oxidizing atmosphere.

以上の製造工程を経ることによって、本実施形態のフェライト系ステンレス鋼板が得られる。 By going through the above manufacturing steps, the ferritic stainless steel sheet of the present embodiment can be obtained.

本実施形態のフェライト系ステンレス鋼板は、成形性及び成形後の表面形状に優れたものとなる。特に、本実施形態のフェライト系ステンレス鋼板は、成形性の中でも深絞り性が向上する。また、本実施形態のフェライト系ステンレス鋼板は、面内異方性Δrが優れた値を示すため、鋼板の面内異方性が小さくなり、深絞り成形後の成形品における耳をより小さくすることができる。 The ferrite-based stainless steel sheet of the present embodiment is excellent in moldability and surface shape after molding. In particular, the ferrite-based stainless steel sheet of the present embodiment has improved deep drawability among moldability. Further, since the ferritic stainless steel sheet of the present embodiment shows an excellent value of the in-plane anisotropy Δr, the in-plane anisotropy of the steel sheet becomes small, and the ear of the molded product after deep drawing is made smaller. be able to.

次に本発明の実施例を示す。実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例である。このため、本発明は、以下の実施例で用いた条件に限定されるものではない。本発明の要旨を逸脱せず、目的を達成する限りにて、種々の条件を採用し得るものである。
なお、下記にて示す表中の下線は、本発明の範囲から外れているものを示す。
Next, an example of the present invention will be shown. The conditions of the examples are one condition example adopted for confirming the feasibility and effect of the present invention. Therefore, the present invention is not limited to the conditions used in the following examples. Various conditions can be adopted as long as the object is achieved without departing from the gist of the present invention.
The underlined lines in the table below indicate those outside the scope of the present invention.

表1に示す成分組成のステンレス鋼を実験室レベルの小型溶解炉で溶製し、第1の工程として厚さ5mm前後に熱間圧延した。次いで、熱延板の再結晶温度(T℃)を調査した後、第2の工程として、(T+10)℃を主体に所定温度にて3分保持での熱処理を実施した。次いで、第3の工程として、化合物析出を目的とする所定の時効熱処理を一部の鋼板を除き実施した。その後、第4の工程として、冷間圧延を実施した。冷間圧延は、実験室レベルの小型単スタンド圧延機を用いて、加工率を変化させて全て厚さ0.6mmに減厚した。更に、冷延板の再結晶温度(T℃)を調査し、T℃を主体に所定温度にて30秒保持での熱処理を実施した。このようにして、鋼板No.1〜No.26を製造した。なお、T、T℃の調査結果は、表2中に併せて記載した。 Stainless steel with the composition shown in Table 1 was melted in a small laboratory-level melting furnace and hot-rolled to a thickness of about 5 mm as the first step. Next, after investigating the recrystallization temperature (T 1 ° C.) of the hot-rolled plate, as a second step, heat treatment was carried out at a predetermined temperature mainly at (T 1 + 10) ° C. for 3 minutes. Next, as a third step, a predetermined aging heat treatment for the purpose of compound precipitation was carried out except for some steel sheets. Then, as a fourth step, cold rolling was carried out. For cold rolling, a small single-stand rolling mill at the laboratory level was used, and the processing ratio was changed to reduce the thickness to 0.6 mm. Further, the recrystallization temperature (T 2 ° C.) of the cold rolled plate was investigated, and a heat treatment was carried out mainly at T 2 ° C. at a predetermined temperature for 30 seconds. In this way, the steel plate No. 1-No. 26 was manufactured. The survey results at T 1 and T 2 ° C are also shown in Table 2.

得られたステンレス鋼板No.1〜No.26の特性を調査した。
時効熱処理後の化合物中に含まれるTi,Nb,P量、L断面での結晶粒度番号(GSNo.)、深絞り性としてrAve、Δrを測定した。各特性の測定方法は前述した通りである。
The obtained stainless steel plate No. 1-No. Twenty-six characteristics were investigated.
The amounts of Ti, Nb, and P contained in the compound after the aging heat treatment, the crystal particle size number (GSNo.) In the L cross section, and r Ave and Δr as the deep drawing property were measured. The method for measuring each characteristic is as described above.

次に、得られた鋼板よりφ110mmの試料を切り出し、円筒深絞り試験により成形性を調査した。評価は、成形可能であった場合が〇、途中で割れた場合を×とした。深絞りが可能であった加工後試験片の模式図を図1に示す。次いで、深絞り可能であった試験片について、図1中に示す耳の最大高さと最小高さの差を耳高さとして測定した。耳高さは5mm以内であるものを合格の〇、5mmを超えるものを不合格の×とした。 Next, a sample having a diameter of 110 mm was cut out from the obtained steel sheet, and the formability was investigated by a cylindrical deep drawing test. The evaluation was 0 when it was moldable and x when it cracked in the middle. FIG. 1 shows a schematic view of the post-processed test piece that was capable of deep drawing. Next, with respect to the test piece that could be deep-drawn, the difference between the maximum height and the minimum height of the ear shown in FIG. 1 was measured as the ear height. Those with an ear height of 5 mm or less were evaluated as acceptable, and those with an ear height of more than 5 mm were evaluated as rejected.

また、深絞りが可能であった加工後試験片について、肌荒れを測定した。肌荒れは、二次元接触式の表面粗さ測定機を用いて、縦壁部の高さ中央部にて高さ方向に平行に5mmの長さについて表面粗さ測定を行った。JIS B 0031(2003)に記述される算術平均粗さRaを比較し、通常の冷延後鋼板と同等の2.0μmを基準とし、それ以下の場合を○、2.0μm超の場合を×とした。なお、Raが2.0μm超の場合、肌荒れが顕著となる。 In addition, rough skin was measured on the post-processed test piece that could be deep-drawn. For rough skin, a two-dimensional contact type surface roughness measuring machine was used to measure the surface roughness at the center of the height of the vertical wall portion for a length of 5 mm parallel to the height direction. Comparing the arithmetic mean roughness Ra described in JIS B 0031 (2003), the standard is 2.0 μm, which is the same as that of ordinary cold-rolled steel sheet, and the case of less than that is ○, and the case of more than 2.0 μm is ×. And said. When Ra exceeds 2.0 μm, rough skin becomes remarkable.

なお、深絞り試験は、ポンチ径が50mm、ポンチ肩Rが5mm、ダイス径が53mm、ダイス肩Rが8mm、しわ押さえ圧が10トン、試料とポンチ間の潤滑は、出光興産株式会社製の防錆油「ダフニーオイルコートZ3(登録商標)」を塗布後に潤滑シート「ニチアス株式会社製ナフロンテープTOMBO9001」を貼り付けて実施した。 In the deep drawing test, the punch diameter is 50 mm, the punch shoulder R is 5 mm, the die diameter is 53 mm, the die shoulder R is 8 mm, the wrinkle pressing pressure is 10 tons, and the lubrication between the sample and the punch is manufactured by Idemitsu Kosan Co., Ltd. After applying the rust preventive oil "Daphne Oil Coat Z3 (registered trademark)", the lubricating sheet "Nachias Corporation Naflon Tape TOMBO9001" was attached.

表2にステンレス鋼板No.1〜No.26の調査結果を示す。なお、本発明例の鋼板は全てフェライト単相(オーステナイト相やマルテンサイト組織を含まない)であることを別に確認した。 Table 2 shows the stainless steel plate No. 1-No. The results of 26 surveys are shown. It was separately confirmed that all the steel sheets of the examples of the present invention were ferrite single phases (excluding the austenite phase and the martensite structure).

本発明例のNo.1、5,7、9、11、13、15、19は、化合物中のTi、NbおよびPの含有量、結晶粒度番号が本発明の範囲であり、深絞り成形が可能であって優れた成形性を示し、また、成形後の肌荒れが抑制されており、優れた成形後表面形状を有するものとなった。更に、深絞り成形後の成形品の耳高さも小さくなり、面内異方性が小さく、成形性により優れていた。 No. of the example of the present invention. 1, 5, 7, 9, 11, 13, 15, and 19 have the contents of Ti, Nb and P in the compound and the crystal grain size number within the range of the present invention, and are excellent because they can be deep drawn. It showed moldability, was suppressed from rough skin after molding, and had an excellent surface shape after molding. Further, the ear height of the molded product after deep drawing molding was also reduced, the in-plane anisotropy was small, and the moldability was excellent.

他方、比較例は、以下のように化合物の含有量、結晶粒度番号の何れかが未達となり、深絞り性も未達となるため、成形が不可、ないし、成形可能であっても肌荒れが発生した。 On the other hand, in the comparative example, as shown below, either the compound content or the crystal particle size number is not achieved, and the deep drawing property is not achieved, so that molding is not possible, or even if molding is possible, rough skin is caused. Occurred.

No.2は熱間圧延後の熱処理温度が高く、No.3は時効熱処理温度が高く、X、粒度番号が未達となり、肌荒れを発生した。また、Δrも未達であり、耳高さも不良となった。 No. No. 2 has a high heat treatment temperature after hot rolling, and No. In No. 3, the aging heat treatment temperature was high, XP and the particle size number were not reached, and rough skin occurred. In addition, Δr was not reached, and the ear height was also poor.

No.4は、冷間圧延後の熱処理温度が低く、軟化、再結晶ともに不十分であり、成形が困難であった。結晶粒度やr値の測定は困難であった。 No. In No. 4, the heat treatment temperature after cold rolling was low, both softening and recrystallization were insufficient, and molding was difficult. It was difficult to measure the crystal grain size and r-value.

No.6は、時効時間が短く、XNb、X、結晶粒度ともに未達となり、肌荒れを発生した。Δrも未達であり、耳高さも不良となった。 No. 6 has a short aging time, X Nb, X P, not achieved in grain size both, caused the rough skin. Δr was not reached, and the ear height was also poor.

No.8は、冷延率が低く、結晶粒度が未達とともに、望まし結晶方位も得られていないと考えられ、rAveが未達となり、成形が困難であった。 No. In No. 8, it was considered that the cold rolling ratio was low, the crystal grain size was not reached, and the desired crystal orientation was not obtained, rAve was not reached, and molding was difficult.

No.10は時効を行わず、X、結晶粒度が未達となり、肌荒れが発生した。また、Δrも未達であり、耳高さも不良となった。 No. 10 does not perform the aging, X P, the grain size is not achieved, rough skin has occurred. In addition, Δr was not reached, and the ear height was also poor.

No.12は時効温度が低く、X、粒度番号が未達となり、肌荒れが発生した。Δrも未達であり、耳高さも不良となった。 No. In No. 12, the aging temperature was low, XP and the particle size number were not reached, and rough skin occurred. Δr was not reached, and the ear height was also poor.

No.14は時効の時間が長く、XNb、X、粒度番号ともに未達となり、肌荒れが発生した。Δrも未達であり、耳高さも不良となった。 No. 14 has a long time of aging, X Nb, X P, not achieved in both the grain size number, rough skin has occurred. Δr was not reached, and the ear height was also poor.

No.16は、熱延後の熱処理温度が低く、X、rAveが未達となり、成形が困難であった。 No. 16, lower the heat treatment temperature after hot rolling is, X P, is r Ave not achieved, molding was difficult.

No.17は時効を行わず、冷延率も低いため、XTi、X、粒度番号ともに未達であり、成形が困難であった。 No. 17 without aging, since lower cold rolling reduction, X Ti, X P, is not reached in both the grain size number, the molding was difficult.

No.18は冷延後の熱処理温度が高く、結晶粒度、rAve、Δrが未達となり、成形が困難であった。 No. In No. 18, the heat treatment temperature after cold rolling was high, and the crystal grain size, rAve , and Δr were not reached, and molding was difficult.

No.20は時効温度が低く、XTi、X、粒度番号ともに未達となり、肌荒れが発生した。また、Δrが未達であり、耳高さも不良となった。 No. 20 has a low aging temperature, X Ti, X P, not achieved in both the grain size number, rough skin has occurred. In addition, Δr was not reached, and the ear height was also poor.

Ti含有量が対象外の鋼Iを用いた比較例No.21、22はXTiが未達になった。また、Nb含有量が対象外の鋼Jを用いた比較例No.23、24はXNbが未達になった。更に、P含有量が対象外の鋼Kを用いた比較例No.25、26はXが未達になった。また、No.21〜26の大部分で粒度番号が未達となり、成形不良ないし肌荒れが発生した。また、No.21〜26の大部分でΔrが未達であり、耳高さも不良となった。 Comparative Example No. using steel I whose Ti content is not applicable. In 21 and 22, X Ti was not reached. Further, in Comparative Examples Nos. 23 and 24 using steel J whose Nb content was not the target, X Nb was not reached. Furthermore, Comparative Example No.25,26 the P content using a steel K outside object X P becomes not achieved. In addition, No. In most of 21 to 26, the particle size number was not reached, and molding defects or rough skin occurred. In addition, No. In most of 21 to 26, Δr was not reached and the ear height was also poor.

Figure 2020164956
Figure 2020164956

Figure 2020164956
Figure 2020164956

本発明によれば、成形性及び成形後の表面形状に優れたフェライト系ステンレス鋼板を工業的に安定提供することが可能である。さらに、本発明鋼板は成形後の肌荒れを起こさないため、従来行われていた肌荒れの除去を目的とする成形後の研磨工程を省略することができるため、環境面や製造コストの面でも効果を十分に享受できる。 According to the present invention, it is possible to industrially stably provide a ferritic stainless steel sheet having excellent moldability and surface shape after molding. Further, since the steel sheet of the present invention does not cause rough skin after molding, it is possible to omit the polishing step after molding for the purpose of removing the rough skin, which is effective in terms of environment and manufacturing cost. You can fully enjoy it.

本発明の要旨は、以下のとおりである。
[1] 化学成分が、質量%で、
Cr:11.0%以上、25.0%以下、
C:0.001%以上、0.010%以下、
Si:0.01%以上、1.0%以下、
Mn:0.01%以上、1.0%以下、
P:0.010%以上0.040%以下、
S:0.01%以下、
N:0.002%以上、0.020%以下、
Al:0.003%以上、1.0%以下、
Ti:0.05%以上、0.30%以下、
Nb:0.03%以上、0.30%以下
を含み、下記(1)式を満足し、残部がFeおよび不純物からなり、
Ti、Nb、Pのうち、電解抽出残渣法によって抽出された鋼中の化合物に含まれるTi,Nb,PをそれぞれXTi、XNb、Xとしたときに、質量%で、
Ti:0.035%以上、0.060%以下、
Nb:0.010%以上、0.025%以下、
:0.001%以上、0.010%以下
を満足し、
結晶粒度番号が9.0以上であり、
(r+r90+2×r45)/4で示される平均塑性ひずみ比rAveが下記(2)式を満足し、
(r+r90―2×r45)/2で示される面内異方性Δrが下記(3)式を満足するフェライト系ステンレス鋼板。
Ti/48+Nb/93 ≧ 2×(C/12+N/14) … (1)
1.5≦rAve … (2)
―0.4≦Δr≦0.1 … (3)
ただし、r、r90、r45はそれぞれ、r:圧延方向の塑性ひずみ比、r45:圧延方向に対して45°方向の塑性ひずみ比、r90:圧延方向と垂直方向の塑性ひずみ比であり、上記式(1)におけるTi、Nb、C及びNは鋼板中の各元素の含有量(質量%)である。
[2] 前記化学成分が、更に、質量%で、
B:0.0025%以下、
Sn:0.50%以下、
Ni:1.0%以下、
Cu:1.0%以下、
Mo:2.0%以下、
W:1.0%以下、
Co:0.50%以下、
V:0.50%以下、
Zr:0.50%以下、
Ca:0.0050%以下、
Mg:0.0050%以下、
Y:0.10%以下、
Hf:0.20%以下、
REM:0.10%以下、
Sb:0.50%以下
の1種または2種以上を含有する[1]に記載のフェライト系ステンレス鋼板。
[3] [1]または[2]に記載の化学成分を有する鋼片を熱間圧延して鋼板とする第1の工程と、
前記第1工程後の前記鋼板を、T℃以上、(T+35)℃以下の均熱温度で熱処理する第2の工程と、
前記第2工程後の前記鋼板を、650℃以上750℃以下の均熱温度、かつ1分以上5分以下の均熱時間で時効熱処理を施す第3の工程と、
前記第3工程後の前記鋼板に対して、冷間圧延と熱処理とをそれぞれ1回行うか、またはそれぞれ2回以上繰り返し行う第4の工程と、を備え、
前記第4の工程は、少なくとも最終の冷間圧延を圧延率75%以上で行ない、少なくとも最終の熱処理を(T−10)℃以上、(T+30)℃以下の均熱温度で行うことを特徴とする、[1]または[2]に記載のフェライト系ステンレス鋼板の製造方法。
ここで、T、Tはそれぞれ、T:熱間圧延後の再結晶温度(℃)、T:冷間圧延後の再結晶温度(℃)である。
The gist of the present invention is as follows.
[1] The chemical component is mass%,
Cr: 11.0% or more, 25.0% or less,
C: 0.001% or more, 0.010% or less,
Si: 0.01% or more, 1.0% or less,
Mn: 0.01% or more, 1.0% or less,
P: 0.010% or more and 0.040% or less,
S: 0.01% or less,
N: 0.002% or more, 0.020% or less,
Al: 0.003% or more, 1.0% or less,
Ti: 0.05% or more, 0.30% or less,
Nb: contains 0.03% or more and 0.30% or less, satisfies the following equation (1), and the balance is composed of Fe and impurities.
Ti, Nb, among the P, Ti contained in the compounds in extracted steels by electrowinning residue method, Nb, respectively P X Ti, X Nb, when the X P, in mass%,
X Ti : 0.035% or more, 0.060% or less,
X Nb : 0.010% or more, 0.025% or less,
X P: 0.001% or more, and satisfies the following 0.010%,
The crystal grain size number is 9.0 or higher,
The average plastic strain ratio r Ave represented by (r 0 + r 90 + 2 × r 45 ) / 4 satisfies the following equation (2).
(R 0 + r 90 -2 × r 45) / 2 plane anisotropy Δr is the following (3) represented by the ferritic stainless steel sheet which satisfies the equation.
Ti / 48 + Nb / 93 ≧ 2 × (C / 12 + N / 14)… (1)
1.5 ≤ r Ave ... (2)
―0.4 ≦ Δr ≦ 0.1… (3)
However, r 0 , r 90 , and r 45 are r 0 : plastic strain ratio in the rolling direction, r 45 : plastic strain ratio in the 45 ° direction with respect to the rolling direction, and r 90 : plastic strain in the direction perpendicular to the rolling direction, respectively. the ratio der Ri, Ti in the formula (1), Nb, C and N are the contents of the elements in the steel sheet (mass%).
[2] The chemical composition is further increased by mass%.
B: 0.0025% or less,
Sn: 0.50% or less,
Ni: 1.0% or less,
Cu: 1.0% or less,
Mo: 2.0% or less,
W: 1.0% or less,
Co: 0.50% or less,
V: 0.50% or less,
Zr: 0.50% or less,
Ca: 0.0050% or less,
Mg: 0.0050% or less,
Y: 0.10% or less,
Hf: 0.20% or less,
REM: 0.10% or less,
Sb: The ferritic stainless steel sheet according to [1], which contains 1 type or 2 or more types of 0.50% or less.
[3] The first step of hot rolling a steel piece having the chemical composition according to [1] or [2] into a steel sheet, and
The second step of heat-treating the steel sheet after the first step at a soaking temperature of T 1 ° C. or higher and (T 1 +35) ° C. or lower, and
A third step of subjecting the steel sheet after the second step to an aging heat treatment at a soaking temperature of 650 ° C. or higher and 750 ° C. or lower and a soaking time of 1 minute or more and 5 minutes or less.
The steel sheet after the third step is provided with a fourth step in which cold rolling and heat treatment are each performed once, or each is repeated two or more times.
The fourth step is at least subjected to final cold rolling at a rolling ratio of 75% or more, at least the final heat treatment (T 2 -10) ℃ above, be carried out in (T 2 +30) ℃ following soaking temperature The method for producing a ferritic stainless steel sheet according to [1] or [2].
Here, T 1 and T 2 are T 1 : recrystallization temperature (° C.) after hot rolling and T 2 : recrystallization temperature (° C.) after cold rolling, respectively.

Claims (3)

化学成分が、質量%で、
Cr:11.0%以上、25.0%以下、
C:0.001%以上、0.010%以下、
Si:0.01%以上、1.0%以下、
Mn:0.01%以上、1.0%以下、
P:0.010%以上0.040%以下、
S:0.01%以下、
N:0.002%以上、0.020%以下、
Al:0.003%以上、1.0%以下、
Ti:0.05%以上、0.30%以下、
Nb:0.03%以上、0.30%以下
を含み、下記(1)式を満足し、残部がFeおよび不純物からなり、
Ti、Nb、Pのうち、鋼中の化合物に含まれるTi,Nb,PをそれぞれXTi、XNb、Xとしたときに、
Ti:0.035%以上、0.060%以下、
Nb:0.010%以上、0.025%以下、
:0.001%以上、0.010%以下
を満足し、
結晶粒度番号が9.0以上であり、
(r+r90+2×r45)/4で示される平均塑性ひずみ比rAveが下記(2)式を満足し、
(r+r90―2×r45)/2で示される面内異方性Δrが下記(3)式を満足するフェライト系ステンレス鋼板。
Ti/48+Nb/93 ≧ 2×(C/12+N/14) … (1)
1.5≦rAve … (2)
―0.4≦Δr≦0.1 … (3)
ただし、r、r90、r45はそれぞれ、r:圧延方向の塑性ひずみ比、r45:圧延方向に対して45°方向の塑性ひずみ比、r90:圧延方向と垂直方向の塑性ひずみ比である。
The chemical composition is mass%,
Cr: 11.0% or more, 25.0% or less,
C: 0.001% or more, 0.010% or less,
Si: 0.01% or more, 1.0% or less,
Mn: 0.01% or more, 1.0% or less,
P: 0.010% or more and 0.040% or less,
S: 0.01% or less,
N: 0.002% or more, 0.020% or less,
Al: 0.003% or more, 1.0% or less,
Ti: 0.05% or more, 0.30% or less,
Nb: contains 0.03% or more and 0.30% or less, satisfies the following equation (1), and the balance is composed of Fe and impurities.
Ti, Nb, among the P, Ti contained in the compound in the steel, Nb, respectively P X Ti, X Nb, when the X P,
X Ti : 0.035% or more, 0.060% or less,
X Nb : 0.010% or more, 0.025% or less,
X P: 0.001% or more, and satisfies the following 0.010%,
The crystal grain size number is 9.0 or higher,
The average plastic strain ratio r Ave represented by (r 0 + r 90 + 2 × r 45 ) / 4 satisfies the following equation (2).
(R 0 + r 90 -2 × r 45) / 2 plane anisotropy Δr is the following (3) represented by the ferritic stainless steel sheet which satisfies the equation.
Ti / 48 + Nb / 93 ≧ 2 × (C / 12 + N / 14)… (1)
1.5 ≤ r Ave ... (2)
―0.4 ≦ Δr ≦ 0.1… (3)
However, r 0 , r 90 , and r 45 are r 0 : plastic strain ratio in the rolling direction, r 45 : plastic strain ratio in the 45 ° direction with respect to the rolling direction, and r 90 : plastic strain in the direction perpendicular to the rolling direction, respectively. The ratio.
前記化学成分が、更に、質量%で、
B:0.0025%以下、
Sn:0.50%以下、
Ni:1.0%以下、
Cu:1.0%以下、
Mo:2.0%以下、
W:1.0%以下、
Co:0.50%以下、
V:0.50%以下、
Zr:0.50%以下、
Ca:0.0050%以下、
Mg:0.0050%以下、
Y:0.10%以下、
Hf:0.20%以下、
REM:0.10%以下、
Sb:0.50%以下
の1種または2種以上を含有する請求項1に記載のフェライト系ステンレス鋼板。
The chemical composition is further increased by mass%.
B: 0.0025% or less,
Sn: 0.50% or less,
Ni: 1.0% or less,
Cu: 1.0% or less,
Mo: 2.0% or less,
W: 1.0% or less,
Co: 0.50% or less,
V: 0.50% or less,
Zr: 0.50% or less,
Ca: 0.0050% or less,
Mg: 0.0050% or less,
Y: 0.10% or less,
Hf: 0.20% or less,
REM: 0.10% or less,
Sb: The ferrite-based stainless steel sheet according to claim 1, which contains one or more of 0.50% or less.
請求項1または請求項2に記載の化学成分を有する鋼片を熱間圧延して鋼板とする第1の工程と、
前記第1工程後の前記鋼板を、T℃以上、(T+35)℃以下の均熱温度で熱処理する第2の工程と、
前記第2工程後の前記鋼板を、650℃以上750℃以下の均熱温度、かつ1分以上5分以下の均熱時間で時効熱処理を施す第3の工程と、
前記第3工程後の前記鋼板に対して、冷間圧延と熱処理とをそれぞれ1回行うか、またはそれぞれ2回以上繰り返し行う第4の工程と、を備え、
前記第4の工程は、少なくとも最終の冷間圧延を圧延率75%以上で行ない、少なくとも最終の熱処理を(T−10)℃以上、(T+30)℃以下の均熱温度で行うことを特徴とする、請求項1または請求項2に記載のフェライト系ステンレス鋼板の製造方法。
ここで、T、Tはそれぞれ、T:熱間圧延後の再結晶温度(℃)、T:最終冷間圧延後の再結晶温度(℃)である。
The first step of hot rolling a steel piece having the chemical composition according to claim 1 or 2 into a steel sheet, and
The second step of heat-treating the steel sheet after the first step at a soaking temperature of T 1 ° C. or higher and (T 1 +35) ° C. or lower, and
A third step of subjecting the steel sheet after the second step to an aging heat treatment at a soaking temperature of 650 ° C. or higher and 750 ° C. or lower and a soaking time of 1 minute or more and 5 minutes or less.
The steel sheet after the third step is provided with a fourth step in which cold rolling and heat treatment are each performed once, or each is repeated two or more times.
The fourth step is at least subjected to final cold rolling at a rolling ratio of 75% or more, at least the final heat treatment (T 2 -10) ℃ above, be carried out in (T 2 +30) ℃ following soaking temperature The method for producing a ferritic stainless steel sheet according to claim 1 or 2, wherein the ferritic stainless steel sheet is produced.
Here, T 1 and T 2 are T 1 : recrystallization temperature (° C.) after hot rolling and T 2 : recrystallization temperature (° C.) after final cold rolling, respectively.
JP2019068669A 2019-03-29 2019-03-29 Ferritic stainless steel sheet and method of manufacturing the same Active JP6738928B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019068669A JP6738928B1 (en) 2019-03-29 2019-03-29 Ferritic stainless steel sheet and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019068669A JP6738928B1 (en) 2019-03-29 2019-03-29 Ferritic stainless steel sheet and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP6738928B1 JP6738928B1 (en) 2020-08-12
JP2020164956A true JP2020164956A (en) 2020-10-08

Family

ID=71949315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019068669A Active JP6738928B1 (en) 2019-03-29 2019-03-29 Ferritic stainless steel sheet and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6738928B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796838B (en) * 2021-11-17 2023-03-21 日商日鐵不銹鋼股份有限公司 Fertilized iron series stainless steel plate
WO2023075283A1 (en) * 2021-10-25 2023-05-04 주식회사 포스코 Ferritic stainless steel with excellent clad sheet workability, and manufacturing method therefor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292417A (en) * 1994-04-22 1995-11-07 Sumitomo Metal Ind Ltd Production of ferritic stainless steel sheet excellent in formed surface characteristic
JPH08199235A (en) * 1995-01-19 1996-08-06 Kawasaki Steel Corp Production of niobium-containing ferritic steel sheet
JP2003138348A (en) * 2001-10-31 2003-05-14 Kawasaki Steel Corp Ferritic stainless steel sheet, and production method therefor
JP2004131830A (en) * 2002-10-15 2004-04-30 Nisshin Steel Co Ltd Deep-drawn formed body of ferritic stainless steel
JP2005307298A (en) * 2004-04-23 2005-11-04 Nisshin Steel Co Ltd Method for manufacturing stainless steel with ferrite single phase superior in deep drawability
JP2006193771A (en) * 2005-01-12 2006-07-27 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet with excellent workability, and its manufacturing method
WO2010016014A1 (en) * 2008-08-06 2010-02-11 Thyssenkrupp Acciali Speciali Terni S.P.A. Ferritic stainless steel
JP2017048417A (en) * 2015-08-31 2017-03-09 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel sheet for deep draw forming excellent in secondary working brittleness resistance and production method therefor
WO2017170611A1 (en) * 2016-03-30 2017-10-05 日新製鋼株式会社 Nb-containing ferritic stainless steel sheet and manufacturing method therefor
WO2018181060A1 (en) * 2017-03-27 2018-10-04 新日鐵住金ステンレス株式会社 Ferrite stainless steel sheet and production method therefor, and exhaust components
JP2019026913A (en) * 2017-08-02 2019-02-21 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292417A (en) * 1994-04-22 1995-11-07 Sumitomo Metal Ind Ltd Production of ferritic stainless steel sheet excellent in formed surface characteristic
JPH08199235A (en) * 1995-01-19 1996-08-06 Kawasaki Steel Corp Production of niobium-containing ferritic steel sheet
JP2003138348A (en) * 2001-10-31 2003-05-14 Kawasaki Steel Corp Ferritic stainless steel sheet, and production method therefor
JP2004131830A (en) * 2002-10-15 2004-04-30 Nisshin Steel Co Ltd Deep-drawn formed body of ferritic stainless steel
JP2005307298A (en) * 2004-04-23 2005-11-04 Nisshin Steel Co Ltd Method for manufacturing stainless steel with ferrite single phase superior in deep drawability
JP2006193771A (en) * 2005-01-12 2006-07-27 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet with excellent workability, and its manufacturing method
WO2010016014A1 (en) * 2008-08-06 2010-02-11 Thyssenkrupp Acciali Speciali Terni S.P.A. Ferritic stainless steel
JP2017048417A (en) * 2015-08-31 2017-03-09 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel sheet for deep draw forming excellent in secondary working brittleness resistance and production method therefor
WO2017170611A1 (en) * 2016-03-30 2017-10-05 日新製鋼株式会社 Nb-containing ferritic stainless steel sheet and manufacturing method therefor
WO2018181060A1 (en) * 2017-03-27 2018-10-04 新日鐵住金ステンレス株式会社 Ferrite stainless steel sheet and production method therefor, and exhaust components
JP2019026913A (en) * 2017-08-02 2019-02-21 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023075283A1 (en) * 2021-10-25 2023-05-04 주식회사 포스코 Ferritic stainless steel with excellent clad sheet workability, and manufacturing method therefor
TWI796838B (en) * 2021-11-17 2023-03-21 日商日鐵不銹鋼股份有限公司 Fertilized iron series stainless steel plate

Also Published As

Publication number Publication date
JP6738928B1 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
JP5056985B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
KR100977600B1 (en) The ferritic stainless steel plate having low orange peel and exhibiting excellent formability, and method for producing the same
JP5020572B2 (en) High strength thin steel sheet with excellent delayed fracture resistance after forming
JP6115691B1 (en) Steel plate and enamel products
JP6906688B2 (en) Ferritic stainless steel sheet and its manufacturing method
JP6417252B2 (en) Martensitic stainless steel for brake disc and its manufacturing method
JP2013133497A (en) High-strength hot-rolled steel sheet excellent in stretch flange formability, and manufacturing method therefor
JP5924459B1 (en) Stainless steel for cold rolled steel
JP4383181B2 (en) Non-oriented electrical steel sheet with excellent uniformity of magnetic properties in coil and high production yield, and method for producing the same
JP6738928B1 (en) Ferritic stainless steel sheet and method of manufacturing the same
JP4471688B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP6617182B1 (en) Ferritic stainless steel sheet
JP6836969B2 (en) Ferritic stainless steel sheet
WO2021256145A1 (en) Precipitation-hardening type martensitic stainless steel sheet having excellent fatigue resistance
JP7304715B2 (en) Ferritic stainless steel plate
JP5884781B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP6984320B2 (en) Nickel-containing steel sheet for low temperature with excellent toughness and its manufacturing method
JP6809325B2 (en) Duplex stainless steel shaped steel and its manufacturing method
JP3477098B2 (en) Ferritic stainless steel sheet excellent in surface properties and ridging properties and method for producing the same
TWI785942B (en) Matian loose iron series stainless steel material and manufacturing method thereof
CN112513303B (en) Ferritic stainless steel sheet
JP3923485B2 (en) Manufacturing method of ferritic single-phase stainless steel with excellent deep drawability
EP4108796A1 (en) Steel sheet for can, and method for producing same
JP7166878B2 (en) Ferritic stainless steel plate, manufacturing method thereof, and ferritic stainless steel member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R150 Certificate of patent or registration of utility model

Ref document number: 6738928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250