WO2019188094A1 - フェライト系ステンレス鋼板およびその製造方法 - Google Patents
フェライト系ステンレス鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2019188094A1 WO2019188094A1 PCT/JP2019/009147 JP2019009147W WO2019188094A1 WO 2019188094 A1 WO2019188094 A1 WO 2019188094A1 JP 2019009147 W JP2019009147 W JP 2019009147W WO 2019188094 A1 WO2019188094 A1 WO 2019188094A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- temperature
- stainless steel
- rolled sheet
- ferritic stainless
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the present invention relates to a ferritic stainless steel sheet and a method for producing the same, and more particularly, to a ferritic stainless steel sheet having excellent formability during forming and resistance to roughened workability, and a method for producing the same.
- SUS304 (18Cr-8Ni), which is a representative steel type of austenitic stainless steel, is widely used in home appliances, kitchen products, building materials and the like because of its excellent corrosion resistance, workability, and beauty.
- SUS304 has a large amount of expensive Ni with high price fluctuation, it is said that the price of the steel sheet is high.
- ferritic stainless steel does not contain Ni or has a very low content, and therefore demand is increasing as a material with excellent cost performance.
- the problems are the molding limit and the deterioration of the rough surface due to the formation of surface irregularities after molding.
- the austenitic stainless steel is excellent in the overhanging property, but the overhanging property of the ferritic stainless steel is low and the shape cannot be changed greatly.
- deep drawability can be controlled by adjusting the crystal orientation (texture)
- a forming method mainly using deep drawing is often used.
- surface irregularities refers to fine irregularities (skin roughness) that occur on the surface of a steel sheet after processing or forming, and these fine irregularities correspond to crystal grains. Surface irregularities are also noticeable.
- austenitic stainless steel a steel sheet having a crystal grain size number of about 10 is manufactured because it is excellent in work hardening characteristics and relatively easy to produce a fine grain structure. For this reason, the surface irregularities (skin roughness) after molding are small and hardly cause a problem.
- the grain size of ferritic stainless steel is about 9 for SUS430 and about 7 for SUS430LX, which is smaller than that of austenitic stainless steel.
- a small particle size number indicates that the crystal grain size is large.
- ferritic stainless steel tends to have a large recrystallized grain size and, like SUS430LX, reduces C and N to improve workability and formability. This is because the high-purity ferritic stainless steel that has been improved easily grows. Further, in ferritic stainless steel, even when a product plate having a fine crystal grain size is manufactured by increasing the number of cold rolling, rough skin may be generated, and the cause is not necessarily clear.
- ferritic stainless steel When relatively strict formability is required, such as a housing or container of home appliances, a high purity ferritic stainless steel such as SUS430LX is often used as the ferritic stainless steel.
- the thickness of the stainless steel plate used is 0.6 mm or more in most cases.
- ferritic stainless steel has a large crystal grain size, so The surface roughness of the surface is large, and surface irregularities are usually removed by polishing.
- Patent Document 1 discloses a ferritic stainless steel excellent in formability with less roughened working surface by controlling the size and crystal grain size of precipitated particles using high purity ferritic stainless steel and a method for producing the same. Yes.
- Patent Document 1 although a steel sheet having a small crystal grain size is obtained, the deep drawability at the time of molding is not sufficient, and the rough surface after molding tends to occur despite the small crystal grain size. There was a problem.
- Patent Document 2 in ferritic stainless steel containing Ti and Nb, hot rolling is performed at a low temperature, and a fine grain is obtained by taking a high cold rolling rate, which is excellent in rough skin resistance at the time of molding.
- a technique for producing stainless steel is disclosed. According to such a technique, the stainless steel of Patent Document 2 has a crystal grain size number of 9.5 and a fine-grained structure, but the skin roughness after cup drawing is not always sufficient.
- Patent Document 3 discloses a ferritic stainless steel excellent in deep drawability, ridging properties and skin roughness resistance by controlling the crystal grain size before final cold rolling of steel having a component composition containing Nb and / or Ti. Is disclosed. However, in Patent Document 3, the crystal grain size of the final product is 15 ⁇ m (crystal grain size number: 9.1), and the rough skin property is insufficient.
- the present invention has been made in view of the above problems, and provides a ferritic stainless steel sheet excellent in forming workability and resistance to roughening after forming, and a method for producing the same.
- Crystal grain size and amount of strain are known as factors affecting the rough processing of ferritic stainless steel.
- rough machining may occur even if the crystal grain size and strain are increased by controlling the cold rolling conditions and the like, and in recent years, steels that can more stably suppress the occurrence of rough machining have been desired. It was. Therefore, the present inventors investigated the relationship between the roughened working surface and the metal structure in ferritic stainless steel. For the first time, it has been found that not only the crystal grain size and the strain amount that have been conventionally known, but also the precipitation amount of precipitates in steel affects the roughening of the work surface. In addition, in order to control the amount of precipitation within an appropriate range, it was necessary to control the heat treatment temperature before and after cold rolling, and it was also clarified that rapid heating was necessary in the heat treatment after cold rolling.
- B 0.0001% to 0.0025%
- Sn 0.005% or more and 0.50% or less
- Ni 0.05% or more and 1.00% or less
- Cu 0.05% or more and 1.00% or less
- Mo 0.05% or more and 2.00% or less
- W 0.05% or more and 1.00% or less
- Al 0.05% or more and 1.00% or less
- Co 0.05% or more and 0.50% or less
- V 0.05% or more and 0.50% or less
- Zr 0.05% or more and 0.50% or less
- Ca 0.0001% to 0.0050%
- Mg 0.0001% or more and 0.0050% or less
- Y 0.001% or more and 0.10% or less
- Hf 0.001% or more and 0.10% or less
- REM 0.001% or more and 0.10% or less
- Sb 0.005% or more and 0.50% or less of 1 type or 2 types or more are contained
- a hot rolling process in which the steel having the component described in [1] or [2] is hot-rolled, and heat that is heat-treated at a temperature of 850 ° C. or higher and 900 ° C. or lower after the hot rolling process.
- a rolled sheet annealing process a cold rolling process for rolling at a rolling rate of 75% to 90% after the hot rolled sheet annealing process, and a cold rolled sheet annealing process performed subsequent to the cold rolling process.
- the average rate of temperature increase in the temperature range of 400 ° C. to 800 ° C. in the temperature increasing process is 80 ° C./s or more, and the maximum temperature reached is 880 ° C.
- a hot-rolled sheet annealing step in which the amount of P existing as a phosphide is 0.003% by mass or more, and a cold rolling step in which the rolling rate is rolled at 75% to 90% after the hot-rolled sheet annealing step;
- the maximum temperature of the plate temperature is not less than 880 ° C. and not more than 980 ° C., cooling is started within 5 seconds after reaching the maximum temperature, and the average cooling rate in the temperature range from the maximum temperature to 700 ° C. is 50 Cooling at more than °C / s
- a ferritic stainless steel sheet that is excellent in forming processability and resistance to roughening of the processed skin after forming process.
- Cr is an element that improves the corrosion resistance, which is a basic characteristic of stainless steel. If it is less than 11.0%, sufficient corrosion resistance cannot be obtained, so the lower limit is made 11.0% or more. On the other hand, if an excessive amount of Cr is contained, the formation of an intermetallic compound corresponding to the ⁇ phase (Fe—Cr intermetallic compound) is promoted to promote cracking during production, so the upper limit is 30.0% or less. To do. From 14.0% or more and 25.0% or less are desirable from the viewpoint of stable manufacturability (yield, rolling mill, etc.). More preferably, it is 16.0% or more and 20.0% or less.
- C is an element that lowers the formability that is important in the present embodiment, so it is preferable that C be less, and the upper limit is 0.030% or less.
- the lower limit is made 0.001% or more. In consideration of both the refining cost and the moldability, 0.002% or more and 0.020% or less are preferable.
- Si is an element that improves the oxidation resistance. However, if an excessive amount of Si is contained, the moldability is lowered, so the upper limit is made 2.00% or less. From the viewpoint of formability, the Si content is preferably low, but excessive reduction leads to an increase in raw material cost, so the lower limit is made 0.01% or more. From the viewpoint of manufacturability, the desirable range is 0.05% or more and 1.00% or less, and more desirably 0.05% or more and 0.30% or less.
- the upper limit is made 2.00% or less.
- the amount of Mn is low from the viewpoint of moldability, excessive reduction causes an increase in raw material cost, so the lower limit is made 0.01% or more.
- the desirable range is 0.05% or more and 1.00% or less, and more desirably 0.05% or more and 0.30% or less.
- P is an important element that contributes to the improvement of the rough surface resistance to processing by precipitating as a phosphide in the steel sheet of the present embodiment.
- the P amount is set to 0.003% or more.
- the upper limit is made 0.100% or less.
- a preferable range is 0.010% or more and 0.050% or less, and further desirably. Is 0.020% or more and 0.040% or less.
- S is an impurity element and is preferably lower because it promotes cracking during production.
- the upper limit is 0.0100% or less.
- the lower the amount of S, the better, and 0.0030% or less is desirable.
- the lower limit is preferably 0.0003% or more. From the viewpoint of manufacturability and cost, the preferred range is 0.0004% or more and 0.0020% or less.
- N is an element that lowers the formability like C, and the upper limit is 0.030% or less. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably made 0.002% or more. From the viewpoint of moldability and manufacturability, the preferred range is 0.005% or more and 0.015% or less.
- Ti and Nb are contained as follows. Ti combines with C and N, fixes C and N as precipitates such as TiC and TiN, and improves r value and product elongation through high purity.
- the lower limit is preferably set to 0.03% or more.
- the alloy cost is increased and the manufacturability is lowered with the increase of the recrystallization temperature, so the upper limit is made 0.40% or less.
- the preferred range is 0.05% or more and 0.30% or less.
- the suitable range which utilizes the said effect of Ti actively is 0.10% or more and 0.20% or less.
- Nb is also a stabilizing element that fixes C and N in the same manner as Ti, and improves r value and product elongation through high purity of steel by this action.
- the lower limit is preferably set to 0.03% or more.
- the upper limit is made 0.50% or less.
- the preferred range is 0.03% or more and 0.30% or less.
- the suitable range which utilizes the said effect of Nb actively is 0.04% or more and 0.15% or less. More preferably, it is 0.06 to 0.10%.
- the ferritic stainless steel sheet of the present embodiment is composed of Fe and impurities other than the elements described above (remainder).
- one or more of the following element groups or Two or more kinds may be selectively contained. That is, the lower limit of the content of B, Sn, Ni, Cu, Mo, W, Al, Co, V, Zr, Ca, Mg, Y, Hf, REM, and Sb is 0% or more.
- the “impurities” in the present embodiment are components that are mixed due to various factors in the manufacturing process including raw materials such as ores and scraps when industrially manufacturing steel, and are inevitably mixed. Including ingredients.
- B is an element that improves secondary workability. Since 0.0001% or more is necessary to exert the effect, this is the lower limit. On the other hand, if excessively contained, the productivity, particularly castability, is deteriorated, so the upper limit is made 0.0025% or less. A preferable range is 0.0003% or more and 0.0012% or less.
- Sn is an element having an effect of improving the corrosion resistance, it may be contained according to the corrosive environment at room temperature. Since the effect is exhibited at 0.005% or more, this is the lower limit. On the other hand, if contained in a large amount, the productivity is deteriorated, so the upper limit is made 0.50% or less. Considering manufacturability, the preferred range is 0.02% or less and 0.10% or less.
- Ni, Cu, Mo, Al, W, Co, V, and Zr are effective elements for enhancing the corrosion resistance or oxidation resistance, and may be contained as necessary.
- the effect is manifested by setting each content of Ni, Cu, Mo, Al, W, Co, V, and Zr to 0.05% or more.
- the upper limit of Ni, Cu, Al, and W is made 1.00% or less.
- the upper limit of Ni, Cu, Al, and W is preferably 0.50% or less. Since Mo causes a decrease in manufacturability, the upper limit is made 2.00% or less.
- the upper limit of Mo is preferably 1.00% or less.
- the upper limit of Co, V, and Zr is set to 0.50% or less in consideration of the manifestation of the effect of improving the corrosion resistance or oxidation resistance.
- the lower limit of the more preferable content of any element of Ni, Cu, Mo, Al, W, Co, V, and Zr is 0.10% or more.
- Ca and Mg are elements that improve hot workability and secondary workability, and may be contained as necessary. However, if it is excessively contained, it will lead to inhibition of manufacturability, so the upper limit of Ca and Mg is made 0.0050% or less. Preferred lower limits are both 0.0001% or more. In consideration of manufacturability and hot workability, a preferable range for both Ca and Mg is 0.0002% or more and 0.0010% or less.
- Y, Hf, and REM are effective elements for improving hot workability, cleanliness of steel, and improving oxidation resistance, and may be contained as necessary.
- an upper limit shall be 0.10% or less, respectively.
- the preferable lower limit is 0.001% or more for Y, Hf, and REM.
- “REM” in the present embodiment is composed of one or more elements selected from an element group (lanthanoid) belonging to atomic numbers 57 to 71, such as La, Ce, Pr, and Nd. It is.
- the “REM” content in the present embodiment is the total amount of lanthanoids.
- Sb is an element having an effect of improving the corrosion resistance like Sn, and may be contained if necessary. However, if contained in a large amount, the productivity is deteriorated, so the upper limit is made 0.50% or less. On the other hand, since the effect of improving the corrosion resistance is exhibited at 0.005% or more, this is the lower limit.
- the ferritic stainless steel sheet of the present embodiment is composed of Fe and impurities (including inevitable impurities) other than the elements described above, but the effects of the present embodiment are not impaired in addition to the elements described above. It can be contained in a range. In the present embodiment, for example, Bi, Pb, Se, H, Ta and the like may be contained, but in that case, it is preferable to reduce as much as possible. On the other hand, the content ratio of these elements is controlled to the extent that solves the problem of the present embodiment, and if necessary, Bi ⁇ 100 ppm, Pb ⁇ 100 ppm, Se ⁇ 100 ppm, H ⁇ 100 ppm, Ta ⁇ 500 ppm. You may contain 1 or more types.
- the ferritic stainless steel plate of the present embodiment is composed of a ferrite single phase structure having a crystal grain size number of 9.0 or more.
- the grain size number is 9.0 or more.
- the roughening of the processed skin after molding is less likely to occur as the grain size number is larger, that is, as the grain size of the ferrite crystal grains is smaller.
- it is preferably over 9.5, more preferably over 10.0.
- the crystal grain size number is preferably 12 or less.
- the crystal grain size number can be obtained by the line segment method of JIS G 0551 (2013). “Granularity number: 9” corresponds to an average line segment length of 14.1 ⁇ m per crystal grain traversing the crystal grain, and “grain size number: 10” is one crystal traversing the crystal grain. This corresponds to an average line segment length per grain of 10.0 ⁇ m.
- the etchant is preferably aqua regia or reverse aqua regia, but other solutions may be used as long as the crystal grain boundaries can be determined. Further, depending on the orientation relationship between adjacent crystal grains, the grain boundary may not be seen clearly, so that it is preferable to etch deeply. In measuring grain boundaries, twin grain boundaries are not measured.
- the metal structure of the ferritic stainless steel plate of the present embodiment is composed of a ferrite single phase structure, and P precipitates (phosphides) described later are generated.
- P precipitates phosphides
- an austenite phase and a martensite structure are not included. This is because when an austenite phase or a martensite structure is included, it is relatively easy to reduce the crystal grain size. Furthermore, the austenite phase exhibits high formability due to the TRIP effect.
- a yield reduction such as an ear crack is likely to occur at the time of manufacture, so the metal structure is a ferrite single phase structure.
- precipitates such as carbonitrides may exist in the steel other than phosphides, but these do not take into account the effect of this embodiment, so these are not considered, the above is the main phase Describes the organization.
- the amount of P existing as a phosphide is set to 0.003% by mass or more. Desirably, it is 0.004 mass% or more, More preferably, it is 0.005 mass% or more.
- the upper limit of the P precipitation amount Pp is not particularly limited, but since the upper limit of the P content of the steel sheet is 0.100% or less, the upper limit of the P precipitation amount Pp may be 0.100% or less.
- the phosphide referred to in the present embodiment includes, for example, Fe phosphide, Mn phosphide, Ti phosphide, Nb phosphide, Al phosphide, etc., but the type and composition are not particularly limited. That is, in this embodiment, it is important that the amount of P existing as a phosphide (P precipitation amount Pp) is within the above range regardless of the specific composition and form of the phosphide.
- the processing temperature of the heat treatment (hot rolled sheet annealing and finish annealing) performed before and after the cold rolling process is controlled, and cold rolling is performed. It can be controlled by rapidly performing the heating process in the subsequent heat treatment.
- the cause of the precipitated phosphide contributing to the roughening of the processed skin is under intensive investigation, but at the present time, it is considered as follows.
- precipitates are likely to precipitate on the grain boundaries, it is considered that many of the phosphides precipitated by hot-rolled sheet annealing are also precipitated on the grain boundaries. Thereafter, it is considered that the phosphide precipitated on the grain boundaries is aligned in parallel with the rolling direction as the metal structure is crushed by cold rolling and extends in the rolling direction.
- a recrystallized structure of the metal structure can be obtained with almost no change in the precipitation state of the phosphide. That is, by performing rapid annealing, holding for a short time, and rapid cooling for the finish annealing, a recrystallized structure is obtained in which phosphides are maintained in a state parallel to the rolling direction.
- the present inventors found that the phosphide in the crystal grains of the recrystallized structure is parallel to the rolling direction in the thin film TEM observation of the product plate manufactured by such a manufacturing method (within the manufacturing method range of the present embodiment described later). You can see how they are lined up.
- FIG. 1 shows a TEM observation result of a recrystallized structure in a steel sheet manufactured under conditions that satisfy the present embodiment described later.
- the P compound is precipitated along the rolling direction in the crystal grains of the recrystallized structure.
- the precipitates precipitated in the crystal grains are P compounds was identified by EDS analysis and electron diffraction pattern analysis.
- a stainless steel plate having such a precipitated phosphide is processed and strained, dislocation movement is hindered by the phosphides arranged in parallel to each other. As a result, it is considered that this phosphide exhibited the same effect as the crystal grain boundary and contributed to the suppression of rough processing.
- the precipitation amount Pp of P is measured by the following electrolytic extraction residue method.
- a test piece having a size of about 30 mm square is cut out from the center in the width direction of the stainless steel plate, and the entire surface of the test piece corresponding to the surface of the steel plate is wet-polished with water-resistant abrasive paper of number # 600.
- the test piece base material (stainless steel base material) is dissolved by electrolysis at a constant potential of ⁇ 100 mV in a methanol solution containing 10% maleic anhydride and 2% tetramethylammonium chloride. After the electrolysis, the residue (precipitate) remaining in the solution without being dissolved is captured using a 200 nm mesh filter.
- the trapped precipitate is washed with pure water and dried.
- the precipitate is dissolved with aqua regia and perchloric acid, and elemental analysis is performed using ICP emission spectroscopy in accordance with JIS G 1258 to determine the mass of P in the precipitate.
- the amount of P obtained is divided by the amount of mass change of the test piece due to electrolysis (“the weight of the test piece before electrolysis” ⁇ “the weight of the test piece after electrolysis”) and expressed as a percentage.
- the amount of precipitation Pp (mass%).
- the manufacturing method of the ferritic stainless steel sheet according to the present embodiment is a combination of hot rolling, hot-rolled sheet annealing, cold-rolling and cold-rolled sheet annealing (finish annealing). I will do it. That is, as an example of the manufacturing method, for example, a manufacturing method including steps of steelmaking, hot rolling, hot rolled sheet annealing, cold rolling, and cold rolled sheet annealing (finish annealing) can be employed.
- the conditions to be controlled in order to satisfy both the important crystal grain size and the precipitation state of the phosphide as described above are the conditions of heat treatment after hot rolling (hot-rolled sheet annealing), cold rolling. Rate, conditions for heat treatment after cold rolling (cold rolled sheet annealing), and other processes and conditions are not particularly limited.
- heat treatment is performed at a temperature of 850 ° C. or more and 900 ° C. or less to ensure the precipitation amount Pp of the phosphide after the heat treatment.
- the heat treatment temperature is less than 850 ° C., recrystallization failure occurs in the center portion of the plate thickness, and there is a possibility of causing deterioration in formability due to a decrease in r value and deterioration in polishing characteristics after processing due to ridging.
- the minimum of the heat processing temperature of hot-rolled sheet annealing shall be 850 degreeC or more. Desirably, it is 860 degreeC or more.
- the upper limit of the heat treatment temperature for hot-rolled sheet annealing is set to 900 ° C. or less. Desirably, it is 880 degreeC or less, More preferably, it is less than 870 degreeC.
- the amount of P existing as a phosphide is 0.003% by mass or more by hot-rolled sheet annealing at a stage after the hot-rolled sheet annealing.
- the rolling rate in the subsequent cold rolling is 75% or more and 90% or less.
- a rolling rate shall be 75% or more. Moreover, since r value improves, so that a rolling rate is high, it is desirable that a rolling rate is 80% or more. On the other hand, if the rolling rate exceeds 90%, the r value decreases, and the formability may decrease. Therefore, a rolling rate shall be 90% or less of range.
- heat treatment cold rolled sheet annealing
- this embodiment is characterized in that this heat treatment is performed rapidly.
- the average rate of temperature increase in the temperature range of 400 ° C. to 800 ° C. is set to 80 ° C./s or more in the temperature increasing process.
- the maximum temperature reached is 880 ° C. or higher and 980 ° C. or lower.
- Cooling is started within 5 seconds after reaching the maximum temperature, and the average cooling rate in the temperature range from the maximum temperature to 700 ° C. is set to 50 ° C./s or more.
- to 800 ° C.” refers to the time required for temperature increase in the temperature range of the steel plate temperature increase range (400 ° C.) in the temperature range.
- the value divided by. “Average cooling rate in the temperature range from the highest temperature to 700 ° C.” means the temperature drop width of the steel plate from the highest temperature to 700 ° C. from the time when the highest temperature was reached to 700 ° C. The value divided by the required time.
- all the temperature (degreeC) in the following description points out steel plate temperature.
- the phosphide precipitated by hot-rolled sheet annealing is crushed by cold rolling to form a precipitated state parallel to the cold rolling direction, and recrystallization is performed while maintaining this precipitated state. Go and get the product board. And even if the product plate provided with the phosphide in the above-described precipitation state is molded and subjected to distortion, the movement of dislocations can be hindered by the phosphide, and therefore it is possible to suppress rough processing. For this reason, it is important to carry out the cold-rolled sheet annealing under conditions that allow recrystallization while maintaining the precipitation state after cold rolling.
- the average heating rate in the temperature range of 400 ° C to 800 ° C in the temperature rising process is set to 80 ° C / s or more and the maximum temperature is reached.
- the cooling is started within 5 seconds.
- the temperature when the temperature is held at the maximum temperature, the temperature may be kept constant, but within the range of the maximum temperature ⁇ 10 ° C.
- the average rate of temperature increase in the temperature range of 400 ° C. to 800 ° C. is less than 80 ° C./s or the holding time is longer than 5 seconds, the phosphide may be dissolved and the amount of precipitation as a product may not be ensured.
- rapid temperature increase in the temperature range of 400 ° C. to 800 ° C. has the effect of reducing the recrystallized grain size and is effective in suppressing rough processing.
- the temperature is rapidly raised in the presence of precipitates, the grain growth is suppressed by the pinning effect of the precipitates, so that there is an effect of further miniaturizing the product particle size and further suppressing roughness of the processed skin.
- the average rate of temperature increase in the temperature range of 400 ° C. to 800 ° C. is preferably 150 ° C./s or more.
- the holding time at the highest temperature is desirably 2 seconds or less.
- the holding time may be 0 seconds, that is, the cooling may be started as soon as the maximum temperature is reached.
- the maximum temperature reached is 880 ° C. or higher. If the maximum temperature reached is less than 880 ° C., recrystallization becomes insufficient, and the workability may deteriorate due to a decrease in elongation. Therefore, in this embodiment, the maximum temperature reached is 880 ° C. or higher, preferably 900 ° C. or higher.
- the upper limit Desirably, it is 950 degrees C or less.
- the lower limit of the average cooling rate in the temperature range from the highest temperature to 700 ° C. is set to 50 ° C./s or more. Desirably, it is 100 ° C./s or more.
- the upper limit of the average cooling rate in the temperature range from the highest attained temperature to 700 ° C. is preferably 500 ° C./s or less.
- the ferritic stainless steel sheet according to the present embodiment can be manufactured by the manufacturing method described above.
- the hot-rolled sheet annealing and the cold-rolled sheet annealing may be batch-type annealing or continuous-type annealing.
- Each annealing may be bright annealing performed in a non-oxidizing atmosphere such as hydrogen gas or nitrogen gas if necessary, or may be performed in the air.
- the thickness applied to the ferritic stainless steel plate of the present embodiment is not particularly limited, but is desirably 0.5 mm or more, preferably 0.6 mm or more from the viewpoint of ensuring strength. This is because when the plate thickness is thin, the strength of the molded part may be insufficient. It is necessary to design in consideration of the size and shape of parts to be manufactured, load resistance, and the like.
- the ferritic stainless steel sheet of the present embodiment is excellent in formability and resistance to roughening after forming. Moreover, since the ferritic stainless steel sheet of the present embodiment is excellent in resistance to rough processing, it is particularly suitable for applications that require polishing to remove surface irregularities (skin roughness) after forming.
- the conditions in this example are one example of conditions used to confirm the feasibility and effects of the present invention, and the present invention is not limited to the conditions used in the following examples.
- the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the requirements of the present invention.
- surface shown below shows what has remove
- Stainless steel having the composition shown in Table 1 was melted and cast into a slab, and the slab was rolled to a predetermined plate thickness by hot rolling. Thereafter, hot-rolled sheet annealing, cold rolling, and cold-rolled sheet annealing were performed to obtain a 0.6 mm thick stainless steel plate (product plate) No. 1-44 were produced.
- Heat treatment temperature (annealing temperature) of hot-rolled sheet annealing, cold rolling rate, average heating rate between 400 and 800 ° C in cold-rolled sheet annealing, maximum temperature reached, required time to start cooling (holding time), and maximum temperature reached The average cooling rate in the temperature range from temperature to 700 ° C. was changed as shown in Tables 2 to 4.
- the annealing time (holding time) in the hot-rolled sheet annealing was set in the range of 40 to 60 seconds.
- the obtained stainless steel plate No. 1-No. A test piece was cut out from the vicinity of the width center of 44, and the crystal grain size number (GSN) was measured by a line segment method in accordance with JIS G 0551 (2013).
- the number of crystal grains crossing per sample was set to 500 or more from an optical microscopic microstructure photograph of the cross section of the test piece.
- a rust preventive oil “Dafney Oil Coat Z3 (registered trademark)” manufactured by Idemitsu Kosan Co., Ltd. was applied. Thereafter, in order to protect the surface of the steel sheet after forming, a lubricating sheet “Naflon Tape TOMBO9001 manufactured by NICHIAS Corporation” was attached.
- molding was measured and the roughened processing skin was evaluated.
- the survey results will be described in detail.
- the present inventors investigated the surface roughness of each part of the sample after cup molding.
- the roughness of the processed skin after cup molding is not simply proportional to the crystal grain size and strain, as is generally known, and the formation of irregularities on the surface of the molded product is suppressed by contact with the mold during molding. Therefore, it has been found that the surface roughness is reduced.
- the outer wall of the vertical wall of the molded product has a strong force to be pressed against the mold during molding, and there is a competition between the generation of irregularities during molding and the suppression of irregularities due to contact with the mold. It was found that the roughness of the scatter increases greatly at each measurement position. Therefore, it was considered inappropriate to evaluate the roughness of the processed skin after cup molding on the outer wall of the vertical wall. Therefore, the surface roughness of the inner wall of the vertical wall portion with a relatively small force pressed against the mold was measured. As a result, it was found that the surface roughness after cup molding can be measured with high accuracy.
- the inner wall has a larger surface roughness than the outer wall, the inner wall having the larger roughness takes the most polishing time in the polishing step after molding. For this reason, it is considered appropriate to measure the roughness of the surface (evaluation of roughness of the processed skin) assuming polishing after molding on the inner wall of the vertical wall portion of the molded product. If the rough evaluation of the processed skin is good for the inner wall of the vertical wall portion of the molded product, it can be determined that the outer wall is also good.
- the precipitation amount Pp of P on the product plate was measured by the electrolytic extraction residue method.
- a test piece having a size of about 30 mm square was cut out from the center in the width direction of the stainless steel plate, and the entire test piece corresponding to the surface of the steel plate was wet-polished with water-resistant abrasive paper of number # 600.
- the test piece base material (stainless base material) was dissolved by electrolysis at a constant potential of ⁇ 100 mV in a methanol solution containing 10% maleic anhydride and 2% tetramethylammonium chloride.
- the residue (precipitate) remaining in the solution without being dissolved was captured using a 200 nm mesh filter.
- the trapped precipitate was washed with pure water and dried.
- the precipitate was dissolved with aqua regia and perchloric acid, and elemental analysis was performed using ICP emission spectroscopy in accordance with JIS G 1258 to determine the mass of P in the precipitate.
- the amount of P obtained is divided by the amount of mass change of the test piece due to electrolysis (“the weight of the test piece before electrolysis” ⁇ “the weight of the test piece after electrolysis”) and expressed as a percentage.
- Precipitation amount Pp "(mass%).
- it measured by the same method also about the precipitation amount Pp of P in the hot rolled annealing board before performing cold rolling. The measurement results and evaluation results are shown in Tables 5 to 7.
- Nos. 25 and 26 are examples in which the component composition was out of the range, but in both cases, the precipitation amount Pp and the crystal grain size number of P were within the range of the embodiment, but the formability deteriorated and could not be narrowed down. It was. No. 27 and 28 are examples using steel L without addition of Ti and Nb, but the immobilization of P is insufficient and the precipitation amount Pp of P becomes less than 0.001%, and the formability deteriorates. I could't squeeze it. No. In Nos. 3 and 22, the average heating rate during cold-rolled sheet annealing was too low, so that the solid solution of the phosphide progressed and the precipitation amount Pp of P was insufficient.
- the roughening of the processed skin can be expected to be somewhat reduced due to the relatively fine particles, but there is no effect of suppressing the roughened processing skin due to the P compound. For this reason, it is inferior in the rough surface resistance to processing compared with the present invention example having a similar particle size number and a large amount of precipitated P.
- the ferritic stainless steel plate of this embodiment is applied suitably for a forming use.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本願は、2018年3月30日に、日本に出願された特願2018-069775号に基づき優先権を主張し、その内容をここに援用する。
オーステナイト系ステンレス鋼の場合、加工硬化特性に優れており細粒組織が比較的作りやすいため、結晶粒度番号が約10の鋼板が製造されている。このため、成形加工後の表面凹凸(肌荒れ)は小さく、ほとんど問題とならない。一方、フェライト系ステンレス鋼の結晶粒度はSUS430で9程度、SUS430LXで7程度とオーステナイト系ステンレス鋼に比べて小さい。ここで粒度番号が小さいことは、結晶粒径が大きいことを示している。
フェライト系ステンレス鋼が粗粒になりやすい要因としては、フェライト系ステンレス鋼では、再結晶粒径が大きくなりやすいことに加え、SUS430LXのような、C、Nを低減させて加工性、成形性の向上を図った高純度フェライト系ステンレス鋼では、粒成長しやすいためである。またフェライト系ステンレス鋼において、冷延回数を増やして結晶粒径が細かい製品板を製造しても肌荒れが生成する場合があり、その原因は必ずしも明確ではない。
特許文献1には、高純度のフェライト系ステンレス鋼を用いて析出粒子のサイズ及び結晶粒径を制御して、加工肌荒れの少ない成形性に優れたフェライト系ステンレス鋼及びその製造方法が開示されている。しかし特許文献1では、結晶粒径が小さい鋼板が得られているものの、成形した際の深絞り性は十分ではなく、また結晶粒径が小さいにもかかわらず、成形後の肌荒れが発生しやすい問題があった。
そこで本発明者らは、フェライト系ステンレス鋼における加工肌荒れと金属組織の関係を調査した。従来から知られている結晶粒度と歪量だけでなく、鋼中の析出物の析出量が加工肌荒れに影響することを初めて知見した。また、析出量を適正範囲に制御するためには、冷間圧延前後の熱処理温度を制御する必要があり、さらに冷間圧延後の熱処理において急速加熱が必要であることを明らかにした。
[1]質量%にて、
Cr:11.0%以上30.0%以下、
C:0.001%以上0.030%以下、
Si:0.01%以上2.00%以下、
Mn:0.01%以上2.00%以下、
P:0.003%以上0.100%以下、
S:0.0100%以下、
N:0.030%以下、
B:0%以上0.0025%以下、
Sn:0%以上0.50%以下、
Ni:0%以上1.00%以下、
Cu:0%以上1.00%以下、
Mo:0%以上2.00%以下、
W:0%以上1.00%以下、
Al:0%以上1.00%以下、
Co:0%以上0.50%以下、
V:0%以上0.50%以下、
Zr:0%以上0.50%以下、
Ca:0%以上0.0050%以下、
Mg:0%以上0.0050%以下、
Y:0%以上0.10%以下、
Hf:0%以上0.10%以下、
REM:0%以上0.10%以下、
Sb:0%以上0.50%以下を含み、さらに、
Ti:0.40%以下、Nb:0.50%以下のうち、いずれか一方又は両方を含み、残部がFe及び不純物からなり、
リン化物として存在しているP量が0.003質量%以上であり、
JIS G 0551にて測定される結晶粒度番号が9.0以上であることを特徴とするフェライト系ステンレス鋼板。
[2]質量%にて、更に、
B:0.0001%以上0.0025%以下、
Sn:0.005%以上0.50%以下、
Ni:0.05%以上1.00%以下、
Cu:0.05%以上1.00%以下、
Mo:0.05%以上2.00%以下、
W:0.05%以上1.00%以下、
Al:0.05%以上1.00%以下、
Co:0.05%以上0.50%以下、
V:0.05%以上0.50%以下、
Zr:0.05%以上0.50%以下、
Ca:0.0001%以上0.0050%以下、
Mg:0.0001%以上0.0050%以下、
Y:0.001%以上0.10%以下、
Hf:0.001%以上0.10%以下、
REM:0.001%以上0.10%以下、
Sb:0.005%以上0.50%以下の1種または2種以上を含有していることを特徴とする上記[1]に記載のフェライト系ステンレス鋼板。
[4]上記[1]又は[2]に記載の成分を有する鋼を、熱間圧延する熱間圧延工程と、前記熱間圧延工程後、850℃以上900℃以下の温度で熱処理を施して、リン化物として存在するP量を0.003質量%以上とする熱延板焼鈍工程と、前記熱延板焼鈍工程後、圧延率を75%以上90%以下として圧延する冷間圧延工程と、前記冷間圧延工程に引き続いて行う冷延板焼鈍工程と、を備え、前記冷延板焼鈍工程において、昇温過程のうち400℃~800℃の温度範囲における平均昇温速度が80℃/s以上であり、板温の最高到達温度が880℃以上980℃以下であり、最高到達温度に到達後5sec以内に冷却を開始し、最高到達温度から700℃までの温度範囲における平均冷却速度を50℃/s以上として冷却することを特徴とする、上記[1]又は[2]に記載のフェライト系ステンレス鋼板の製造方法。
Tiは、C,Nと結合し、TiC、TiN等の析出物としてC,Nを固定し、高純度化を通じてr値及び製品伸びの向上をもたらす。これらの効果を得るため、Tiを含有させる場合は、下限を0.03%以上とすることが好ましい。一方、過度に含有させると、合金コストの上昇や再結晶温度上昇に伴う製造性の低下を招くため、上限は0.40%以下とする。成形性及び製造性の点から、好ましい範囲は0.05%以上、0.30%以下である。更に、Tiの上記効果を積極的に活用する好適な範囲は0.10%以上、0.20%以下である。
なお、本実施形態における「不純物」とは、鋼を工業的に製造する際に鉱石やスクラップ等のような原料をはじめとして製造工程の種々の要因によって混入する成分であり、不可避的に混入する成分も含む。
本実施形態のフェライト系ステンレス鋼鈑は、結晶粒度番号が9.0以上のフェライト単相組織からなる。
結晶粒度番号は9.0以上とする。成形後の加工肌荒れは結晶粒度番号が大きいほど、すなわちフェライト結晶粒の粒径が小さいほど生じにくいためこれを下限とする。肌荒れをさらに抑制するためには9.5超が好ましく、更に望ましくは10.0超である。但し、結晶粒の粒径が過度に小さくなると、強度が上昇しプレス成型性が低下する恐れがある。このため、結晶粒度番号は12以下であることが好ましい。
通常、フェライト系ステンレス鋼板におけるPは、成形性(r値および製品伸び)を低下させることから、その含有量を低減させるべきと考えられている。しかし、本発明者らの検討の結果、鋼中のリン化物の析出量が加工肌荒れに影響することを初めて知見した。このことから、本実施形態においては、結晶粒度の制御に加え、リン化物として存在しているP量、すなわちPの析出量Ppを制御することにより、安定的に加工肌荒れをさらに抑制できることを明らかにし、Pの析出量Ppを規定した点に特徴がある。
一般的に、析出物は粒界上に析出しやすいため、熱延板焼鈍により析出するリン化物もその多くが粒界上に析出していると考えられる。その後、冷間圧延により金属組織が潰れて圧延方向に伸びることに伴い、粒界上に析出していたリン化物が圧延方向に概ね平行に並んだ状態になっていると考えられる。その状態から、急速加熱、短時間保持、急速冷却とする仕上げ焼鈍を施して再結晶化を図ると、リン化物の上記析出状態をほとんど変えずに金属組織の再結晶組織を得ることとなる。すなわち、仕上げ焼鈍を急速加熱、短時間保持、急速冷却とすることで、リン化物が圧延方向に平行に並んだ状態を維持した再結晶組織となる。
実際に本発明者らは、このような製法(後述する本実施形態の製造方法範囲内)で製造した製品板の薄膜TEM観察において、再結晶組織の結晶粒内のリン化物が圧延方向に平行に並んでいる様子を確認できている。図1は、後述する本実施形態を満たす条件で製造した鋼板における再結晶組織のTEM観察結果を示す。図1からも明らかなように、再結晶組織の結晶粒内において、圧延方向に沿うようにP化物が析出しているのが確認できる。なお、結晶粒内に析出している析出物がP化物であるか否かは、EDS分析および電子回折パターン解析によって同定した。
このような析出状態のリン化物を備えたステンレス鋼板を加工し歪を加えると、互いに平行に並んだリン化物によって転位の移動が妨げられる。結果的にこのリン化物が結晶粒界と同様の作用効果を示し、加工肌荒れの抑制に寄与したと考えられる。
ステンレス鋼板の幅方向中心から、30mm角程度の大きさの試験片を切り出し、鋼板表面に相当する試験片の全面を番数♯600の耐水研磨紙で湿式研磨する。研磨した後、10%無水マレイン酸および2%テトラメチルアンモニウムクロライドを含むメタノール溶液中で-100mVの定電位で電解することにより試験片母材(ステンレス母材)を溶解する。電気分解後、溶解せずに溶液中に残存した残渣(析出物)を200nmメッシュのフィルタを用いて捕捉する。捕捉した析出物を、純水で洗浄および乾燥する。次いで王水と過塩素酸により析出物を溶解させ、JIS G 1258に準拠してICP発光分光分析法を用いて元素分析を行い析出物中のPの質量を求める。得られたP量を、電解による試験片の質量変化量(「電気分解前の試験片の質量」-「電気分解後の試験片の質量」)で除して百分率で表示したものを「Pの析出量Pp」(質量%)とする。
本実施形態に係るフェライト系ステンレス鋼板の製造方法は、熱間圧延、熱延板焼鈍、冷間圧延及び冷延板焼鈍(仕上げ焼鈍)を組み合わせることとし、必要に応じて、適宜、酸洗を行うこととする。すなわち、製造方法の一例として、例えば、製鋼-熱間圧延-熱延板焼鈍-冷間圧延-冷延板焼鈍(仕上げ焼鈍)の各工程からなる製法を採用できる。
本実施形態において重要な結晶粒径とリン化物の析出状態の両者を上記のとおりに満足するために制御すべき条件は、熱間圧延後の熱処理(熱延板焼鈍)の条件、冷間圧延率、冷延後の熱処理(冷延板焼鈍)の条件であり、それ以外の工程、条件については特に制限はない。
冷間圧延後に行う熱処理によって再結晶粒径を細かくするためには、導入ひずみ量を多くする必要がある。再結晶はひずみが多く導入されている部分から始まる。すなわち、加工量が多い(圧延率が大きい)材料ほど、再結晶の起点となる部分(核)が多いため、再結晶粒径が小さくなる。これらのことから、結晶粒度番号を大きくする(結晶粒径を小さくする)ためには、圧延率は高いほうがよい。圧延率が75%未満だと、これら効果を得られず、かつr値が低下して成形性が低下するおそれもある。このため、本実施形態では圧延率は75%以上とする。また圧延率が高いほど、r値は向上するため、圧延率は80%以上であることが望ましい。一方、圧延率が90%超では、逆にr値が低下し、成形性の低下が起こるおそれがある。そのため圧延率は90%以下の範囲とする。
なお、本実施形態でいう「400℃~800℃の温度範囲における平均昇温速度」とは、当該温度範囲の鋼板温度の上昇幅(400℃)を、当該温度範囲の昇温に要した時間で除した値とする。「最高到達温度から700℃までの温度範囲における平均冷却速度」とは、最高到達温度から700℃までの鋼板の温度降下幅を、最高到達温度に到達した時点から700℃となった時点までの所要時間で除した値とする。また、以下の説明における温度(℃)はすべて鋼板温度を指す。
このことから、冷延板焼鈍は、冷間圧延後の析出状態を維持したまま再結晶できる条件で実施することが重要となる。
また、リン化物の析出状態を維持する観点から、最高到達温度での保持時間は2秒以下とすることが望ましい。保持時間0秒、すなわち最高到達温度に達してすぐに冷却を開始しても構わない。
なお、本実施形態においては、熱延板焼鈍および冷延板焼鈍は、バッチ式焼鈍でも連続式焼鈍でも構わない。また、各焼鈍は、必要であれば水素ガスあるいは窒素ガスなどの無酸化雰囲気で焼鈍する光輝焼鈍でもよいし、大気中で焼鈍しても構わない。
なお、下記にて示す表中の下線は、本実施形態の範囲から外れているものを示す。
ここで、カップ成形後の試料(成形品)の部位毎の表面粗さの程度、ばらつきについて調査したところ、縦壁部の内側と外側でばらつきがあること知見した。調査結果について詳述する。
本発明者らは、カップ成形後の試料の各部位の表面粗さを調査した。カップ成形した後の加工肌荒れは、一般に知られているように単純に結晶粒度と歪量に比例するわけではなく、成形時の金型との接触により成形品の表面での凹凸の生成が抑制されるため、表面粗さが小さくなることを知見した。特に成形品の縦壁部のうち外壁においては、成形時に金型に押さえつけられる力が強く、成形時の凹凸の生成と金型との接触による凹凸の抑制とが競合しているため、成形品の粗さは測定位置ごとにばらつきが大きくなることが分かった。よって、カップ成形後の加工肌荒れの評価を縦壁部の外壁で行うことは不適切と考えた。
そこで、金型に押さえつけられる力が比較的小さい縦壁部の内壁の表面粗さを測定した。その結果、カップ成形後の表面粗さを精度良く測定できることを知見した。また、外壁よりも内壁の方が表面粗さは大きいため、成形後の研磨工程において粗さが大きい内壁が最も研磨時間がかかってしまう。そのため、成形後の研磨を想定した表面粗さの測定(加工肌荒れの評価)は、成形品の縦壁部の内壁で実施するのが適切と考えられる。加工肌荒れの評価が、成形品の縦壁部の内壁で良好であれば、外壁でも良好であると判断することができる。
まず、ステンレス鋼板の幅方向中心から、30mm角程度の大きさの試験片を切り出し、鋼板表面に相当する試験片全面を番数♯600の耐水研磨紙で湿式研磨した。研磨した後、10%無水マレイン酸および2%テトラメチルアンモニウムクロライドを含むメタノール溶液中で-100mVの定電位で電解することにより試験片母材(ステンレス母材)を溶解した。電気分解後、溶解せずに溶液中に残存した残渣(析出物)を200nmメッシュのフィルタを用いて捕捉した。捕捉した析出物を、純水で洗浄および乾燥した。次いで、王水と過塩素酸により析出物を溶解させ、JIS G 1258に準拠してICP発光分光分析法を用いて元素分析を行い析出物中のPの質量を求めた。得られたP量を、電解による試験片の質量変化量(「電気分解前の試験片の質量」-「電気分解後の試験片の質量」)で除して百分率で表示したものを「Pの析出量Pp」(質量%)とした。
なお、冷間圧延を施す前の熱延焼鈍板におけるPの析出量Ppついても同じ方法によって測定した。
以上、測定結果、評価結果を表5~表7に示す。
本発明例では、Ra<1.00μmであり加工肌荒れは抑制された。
No.3、22は、冷延板焼鈍時の平均昇温速度が低すぎたため、リン化物の固溶が進行してPの析出量Ppが不足した。さらに、結晶粒度番号が小さくなり、加工肌荒れ性が劣化した。
No.5、10、12、24は、保持時間が長すぎたため、リン化物の固溶が進行してPの析出量Ppが不足した。さらに、結晶粒度番号も小さくなり、加工肌荒れ性が劣化した。
No.6、15は、熱延板焼鈍時の焼鈍温度が低く、かつ平均昇温速度が低すぎたため、結晶粒度番号が小さくなり、加工肌荒れ性が劣化した。
No.7は、冷延率が小さく、さらに最高到達温度が高すぎたため、粒成長が進行して結晶粒度番号が小さくなり、加工肌荒れ性が劣化した。
No.9は、熱延板焼鈍時の焼鈍温度が高すぎたため、Pの析出量Ppを確保できず加工肌荒れ性が劣化した。
No.16は、最高到達温度が高すぎたため、結晶粒度番号が小さくなり、加工肌荒れ性が劣化した。
No.19は、冷延板焼鈍時の平均昇温速度が低く、かつ保持時間が長すぎたため、リン化物の固溶が進行してPの析出量Ppが不足した。さらに、結晶粒度番号も小さくなり加工肌荒れ性が劣化した。
No.20は、冷延率が小さすぎたため、結晶粒度番号が小さくなった。その結果、加工肌荒れ性が劣化した。
No.21は、熱延板焼鈍時の焼鈍温度が高すぎたため、Pの析出量Ppを確保できず加工肌荒れ性が劣化した。
No.14は、最高到達温度が高すぎたため、粒成長が進行して結晶粒度番号が小さくなり、加工肌荒れ性が劣化した。
No.31は、冷延板焼鈍時の平均冷却速度が低いため、リン化物の固溶が進行してPの析出量Ppが不足し、かつ結晶粒度番号も小さくなり加工肌荒れ性が劣化した。
No.32は、冷延板焼鈍時の平均冷却速度が低いため、リン化物の固溶が進行してPの析出量Ppが不足し、加工肌荒れ性が劣化した。
No.36は、熱延板焼鈍時の焼鈍温度が高すぎたため、Pの析出量Ppを確保できず加工肌荒れ性が劣化した。
No.38は、冷延板焼鈍時の平均昇温速度が低く、さらに最高到達温度が高すぎたため、粒成長が進行して結晶粒度番号が小さくなり加工肌荒れ性が劣化した。
Claims (4)
- 質量%にて、
Cr:11.0%以上30.0%以下、
C:0.001%以上0.030%以下、
Si:0.01%以上2.00%以下、
Mn:0.01%以上2.00%以下、
P:0.003%以上0.100%以下、
S:0.0100%以下、
N:0.030%以下、
B:0%以上0.0025%以下、
Sn:0%以上0.50%以下、
Ni:0%以上1.00%以下、
Cu:0%以上1.00%以下、
Mo:0%以上2.00%以下、
W:0%以上1.00%以下、
Al:0%以上1.00%以下、
Co:0%以上0.50%以下、
V:0%以上0.50%以下、
Zr:0%以上0.50%以下、
Ca:0%以上0.0050%以下、
Mg:0%以上0.0050%以下、
Y:0%以上0.10%以下、
Hf:0%以上0.10%以下、
REM:0%以上0.10%以下、
Sb:0%以上0.50%以下を含み、さらに、
Ti:0.40%以下、Nb:0.50%以下のうち、いずれか一方又は両方を含み、残部がFe及び不純物からなり、
リン化物として存在しているP量が0.003質量%以上であり、
JIS G 0551にて測定される結晶粒度番号が9.0以上であることを特徴とするフェライト系ステンレス鋼板。 - 質量%にて、更に、
B:0.0001%以上0.0025%以下、
Sn:0.005%以上0.50%以下、
Ni:0.05%以上1.00%以下、
Cu:0.05%以上1.00%以下、
Mo:0.05%以上2.00%以下、
W:0.05%以上1.00%以下、
Al:0.05%以上1.00%以下、
Co:0.05%以上0.50%以下、
V:0.05%以上0.50%以下、
Zr:0.05%以上0.50%以下、
Ca:0.0001%以上0.0050%以下、
Mg:0.0001%以上0.0050%以下、
Y:0.001%以上0.10%以下、
Hf:0.001%以上0.10%以下、
REM:0.001%以上0.10%以下、
Sb:0.005%以上0.50%以下の1種または2種以上を含有していることを特徴とする請求項1に記載のフェライト系ステンレス鋼板。 - 請求項1又は2に記載の成分を有する鋼を、熱間圧延する熱間圧延工程と、
前記熱間圧延工程後、850℃以上900℃以下の温度で熱処理を施す熱延板焼鈍工程と、
前記熱延板焼鈍工程後、圧延率を75%以上90%以下として圧延する冷間圧延工程と、
前記冷間圧延工程に引き続いて行う冷延板焼鈍工程と、を備え、
前記冷延板焼鈍工程において、昇温過程のうち400℃~800℃の温度範囲における平均昇温速度が80℃/s以上であり、板温の最高到達温度が880℃以上980℃以下であり、最高到達温度に到達後5sec以内に冷却を開始し、最高到達温度から700℃までの温度範囲における平均冷却速度を50℃/s以上として冷却することを特徴とする、請求項1または2に記載のフェライト系ステンレス鋼板の製造方法。 - 請求項1又は2に記載の成分を有する鋼を、熱間圧延する熱間圧延工程と、
前記熱間圧延工程後、850℃以上900℃以下の温度で熱処理を施して、リン化物として存在するP量を0.003質量%以上とする熱延板焼鈍工程と、
前記熱延板焼鈍工程後、圧延率を75%以上90%以下として圧延する冷間圧延工程と、
前記冷間圧延工程に引き続いて行う冷延板焼鈍工程と、を備え、
前記冷延板焼鈍工程において、昇温過程のうち400℃~800℃の温度範囲における平均昇温速度が80℃/s以上であり、板温の最高到達温度が880℃以上980℃以下であり、最高到達温度に到達後5sec以内に冷却を開始し、最高到達温度から700℃までの温度範囲における平均冷却速度を50℃/s以上として冷却することを特徴とする、請求項1または2に記載のフェライト系ステンレス鋼板の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207021338A KR102443897B1 (ko) | 2018-03-30 | 2019-03-07 | 페라이트계 스테인리스 강판 및 그 제조 방법 |
CN201980010612.XA CN111655890B (zh) | 2018-03-30 | 2019-03-07 | 铁素体系不锈钢板及其制造方法 |
EP19776987.0A EP3805417A4 (en) | 2018-03-30 | 2019-03-07 | FERRITIC STAINLESS STEEL SHEET AND METHOD OF MANUFACTURING THEREOF |
BR112020015001-0A BR112020015001A2 (pt) | 2018-03-30 | 2019-03-07 | Folha de aço inoxidável ferrítico e método para a produção da mesma |
JP2020509785A JP6906688B2 (ja) | 2018-03-30 | 2019-03-07 | フェライト系ステンレス鋼板およびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018069775 | 2018-03-30 | ||
JP2018-069775 | 2018-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019188094A1 true WO2019188094A1 (ja) | 2019-10-03 |
Family
ID=68059877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/009147 WO2019188094A1 (ja) | 2018-03-30 | 2019-03-07 | フェライト系ステンレス鋼板およびその製造方法 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3805417A4 (ja) |
JP (1) | JP6906688B2 (ja) |
KR (1) | KR102443897B1 (ja) |
CN (1) | CN111655890B (ja) |
BR (1) | BR112020015001A2 (ja) |
WO (1) | WO2019188094A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113388780A (zh) * | 2021-05-25 | 2021-09-14 | 宁波宝新不锈钢有限公司 | 一种厨具面板用430铁素体不锈钢及其制备方法 |
WO2022145063A1 (ja) * | 2020-12-28 | 2022-07-07 | 日本製鉄株式会社 | 鋼材 |
WO2022145066A1 (ja) * | 2020-12-28 | 2022-07-07 | 日本製鉄株式会社 | 鋼材 |
WO2024135997A1 (ko) * | 2022-12-21 | 2024-06-27 | 주식회사 포스코 | 구조용 페라이트계 스테인리스강 및 그 제조방법 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI796838B (zh) * | 2021-11-17 | 2023-03-21 | 日商日鐵不銹鋼股份有限公司 | 肥粒鐵系不鏽鋼板 |
CN116024504B (zh) * | 2022-12-16 | 2024-08-02 | 坤石容器制造有限公司 | 一种半导体行业高纯化学不稳定电子特气用铁素体不锈钢及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07292417A (ja) | 1994-04-22 | 1995-11-07 | Sumitomo Metal Ind Ltd | 成形面性状に優れたフェライト系ステンレス鋼板の製造方法 |
WO2003106725A1 (ja) * | 2002-06-01 | 2003-12-24 | Jfeスチール株式会社 | Ti添加フェライト系ステンレス鋼板およびその製造方法 |
JP3788311B2 (ja) | 2001-10-31 | 2006-06-21 | Jfeスチール株式会社 | フェライト系ステンレス鋼板及びその製造方法 |
JP2007314837A (ja) * | 2006-05-25 | 2007-12-06 | Nisshin Steel Co Ltd | 時効硬化型フェライト系ステンレス鋼板およびそれを用いた時効処理鋼材 |
JP4749888B2 (ja) | 2006-02-22 | 2011-08-17 | 新日鐵住金ステンレス株式会社 | 加工肌荒れの少ない成形性に優れたフェライト系ステンレス鋼板およびその製造方法 |
JP2017048417A (ja) * | 2015-08-31 | 2017-03-09 | 新日鐵住金ステンレス株式会社 | 耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板およびその製造方法 |
JP2018069775A (ja) | 2016-10-25 | 2018-05-10 | いすゞ自動車株式会社 | インバータ冷却用ポンプの制御装置及び車両 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1012181B (zh) * | 1984-06-28 | 1991-03-27 | 日新制钢株式会社 | 具有优良成型性和二次加工性的加磷铁素体不锈钢 |
JP2818182B2 (ja) * | 1989-02-20 | 1998-10-30 | 新日本製鐵株式会社 | 表面疵のない加工性に優れたフェライト系ステンレス鋼薄板の製造法 |
JP3142427B2 (ja) * | 1993-11-02 | 2001-03-07 | 川崎製鉄株式会社 | 耐2次加工脆性に優れるフェライト系ステンレス鋼板およびその製造方法 |
KR0167168B1 (ko) * | 1994-10-28 | 1999-03-20 | 이희종 | 수/배전반용 디지탈 계측기의 정격전압 결정 방법 |
JP3477957B2 (ja) * | 1995-11-24 | 2003-12-10 | Jfeスチール株式会社 | 200〜400℃の高温酸化環境下での耐食性に優れたフェライト系ステンレス鋼 |
JP3455047B2 (ja) * | 1997-01-23 | 2003-10-06 | 新日本製鐵株式会社 | 加工性及びローピング特性に優れたフェライト系ステンレス鋼薄板及びその製造方法 |
US20070196160A1 (en) * | 2004-03-18 | 2007-08-23 | Sakura Color Products Corporation | Tips for ball-point pens, roller ball pens or gel ink roller ball pens |
JP5545301B2 (ja) * | 2009-10-28 | 2014-07-09 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンスパネルの製造方法、有機エレクトロルミネッセンスパネル |
JP5670064B2 (ja) * | 2010-02-22 | 2015-02-18 | 日新製鋼株式会社 | フェライト単相系ステンレス鋼スラブの製造方法 |
JP2014183254A (ja) * | 2013-03-21 | 2014-09-29 | Jfe Steel Corp | 太陽電池基板用フェライト系ステンレス箔 |
CN104109809B (zh) * | 2014-06-20 | 2018-11-06 | 宝钢不锈钢有限公司 | 一种高成形性低铬铁素体不锈钢及制造方法 |
CN105839021B (zh) * | 2015-01-12 | 2017-07-28 | 宝钢特钢有限公司 | 含稀土高铬铁素体不锈钢钢管制造方法 |
JP6022097B1 (ja) * | 2016-03-30 | 2016-11-09 | 日新製鋼株式会社 | Ti含有フェライト系ステンレス鋼板および製造方法 |
-
2019
- 2019-03-07 CN CN201980010612.XA patent/CN111655890B/zh active Active
- 2019-03-07 BR BR112020015001-0A patent/BR112020015001A2/pt active IP Right Grant
- 2019-03-07 WO PCT/JP2019/009147 patent/WO2019188094A1/ja active Application Filing
- 2019-03-07 EP EP19776987.0A patent/EP3805417A4/en active Pending
- 2019-03-07 JP JP2020509785A patent/JP6906688B2/ja active Active
- 2019-03-07 KR KR1020207021338A patent/KR102443897B1/ko active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07292417A (ja) | 1994-04-22 | 1995-11-07 | Sumitomo Metal Ind Ltd | 成形面性状に優れたフェライト系ステンレス鋼板の製造方法 |
JP3788311B2 (ja) | 2001-10-31 | 2006-06-21 | Jfeスチール株式会社 | フェライト系ステンレス鋼板及びその製造方法 |
WO2003106725A1 (ja) * | 2002-06-01 | 2003-12-24 | Jfeスチール株式会社 | Ti添加フェライト系ステンレス鋼板およびその製造方法 |
JP4749888B2 (ja) | 2006-02-22 | 2011-08-17 | 新日鐵住金ステンレス株式会社 | 加工肌荒れの少ない成形性に優れたフェライト系ステンレス鋼板およびその製造方法 |
JP2007314837A (ja) * | 2006-05-25 | 2007-12-06 | Nisshin Steel Co Ltd | 時効硬化型フェライト系ステンレス鋼板およびそれを用いた時効処理鋼材 |
JP2017048417A (ja) * | 2015-08-31 | 2017-03-09 | 新日鐵住金ステンレス株式会社 | 耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板およびその製造方法 |
JP2018069775A (ja) | 2016-10-25 | 2018-05-10 | いすゞ自動車株式会社 | インバータ冷却用ポンプの制御装置及び車両 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3805417A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022145063A1 (ja) * | 2020-12-28 | 2022-07-07 | 日本製鉄株式会社 | 鋼材 |
WO2022145066A1 (ja) * | 2020-12-28 | 2022-07-07 | 日本製鉄株式会社 | 鋼材 |
JP7469714B2 (ja) | 2020-12-28 | 2024-04-17 | 日本製鉄株式会社 | 鋼材 |
CN113388780A (zh) * | 2021-05-25 | 2021-09-14 | 宁波宝新不锈钢有限公司 | 一种厨具面板用430铁素体不锈钢及其制备方法 |
WO2024135997A1 (ko) * | 2022-12-21 | 2024-06-27 | 주식회사 포스코 | 구조용 페라이트계 스테인리스강 및 그 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
EP3805417A1 (en) | 2021-04-14 |
CN111655890A (zh) | 2020-09-11 |
JP6906688B2 (ja) | 2021-07-21 |
KR20200100159A (ko) | 2020-08-25 |
BR112020015001A2 (pt) | 2020-12-29 |
KR102443897B1 (ko) | 2022-09-19 |
CN111655890B (zh) | 2021-10-29 |
EP3805417A4 (en) | 2022-01-05 |
JPWO2019188094A1 (ja) | 2020-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019188094A1 (ja) | フェライト系ステンレス鋼板およびその製造方法 | |
JP5315811B2 (ja) | 耐硫酸腐食性に優れたフェライト系ステンレス鋼板 | |
JP4749888B2 (ja) | 加工肌荒れの少ない成形性に優れたフェライト系ステンレス鋼板およびその製造方法 | |
EP1846584A1 (en) | Austenitic steel having high strenght and formability method of producing said steel and use thereof | |
JP2008208412A (ja) | 加工肌荒れの小さい成形性に優れたフェライト系ステンレス鋼板およびその製造方法 | |
JP7564664B2 (ja) | フェライト系ステンレス鋼板およびその製造方法ならびに排気部品 | |
EP4043597A1 (en) | Ferritic stainless steel sheet, method for producing same and ferritic stainless steel member | |
JP7166878B2 (ja) | フェライト系ステンレス鋼板、およびその製造方法ならびにフェライト系ステンレス部材 | |
JP6738928B1 (ja) | フェライト系ステンレス鋼板およびその製造方法 | |
JP6617182B1 (ja) | フェライト系ステンレス鋼板 | |
JP7304715B2 (ja) | フェライト系ステンレス鋼板 | |
JP2001271143A (ja) | 耐リジング性に優れたフェライト系ステンレス鋼及びその製造方法 | |
JP6836969B2 (ja) | フェライト系ステンレス鋼板 | |
JP2023147504A (ja) | フェライト系ステンレス鋼板およびその製造方法 | |
JP6986135B2 (ja) | フェライト系ステンレス鋼板、およびその製造方法ならびにフェライト系ステンレス部材 | |
KR102515016B1 (ko) | 페라이트계 스테인리스 강판 | |
JP3477098B2 (ja) | 表面性状とリジング性に優れたフェライト系ステンレス鋼薄板およびその製造方法 | |
WO2023153185A1 (ja) | オーステナイト系ステンレス鋼およびオーステナイト系ステンレス鋼の製造方法 | |
JP3923485B2 (ja) | 深絞り性に優れたフェライト単相系ステンレス鋼の製造方法 | |
WO2023153184A1 (ja) | オーステナイト系ステンレス鋼およびオーステナイト系ステンレス鋼の製造方法 | |
JP2022079072A (ja) | フェライト系ステンレス鋼板及びその製造方法 | |
JP2024137014A (ja) | フェライト・オーステナイト二相ステンレス鋼板 | |
CN118829737A (zh) | 铁素体系不锈钢板和排气部件 | |
JP2023060596A (ja) | フェライト系ステンレス鋼板およびその製造方法 | |
JP2024137012A (ja) | フェライト・オーステナイト二相ステンレス鋼板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19776987 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020509785 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207021338 Country of ref document: KR Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020015001 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019776987 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 112020015001 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200723 |