JPS61136662A - Austenitic stainless steel having superior resistance to stress corrosion cracking - Google Patents

Austenitic stainless steel having superior resistance to stress corrosion cracking

Info

Publication number
JPS61136662A
JPS61136662A JP25831584A JP25831584A JPS61136662A JP S61136662 A JPS61136662 A JP S61136662A JP 25831584 A JP25831584 A JP 25831584A JP 25831584 A JP25831584 A JP 25831584A JP S61136662 A JPS61136662 A JP S61136662A
Authority
JP
Japan
Prior art keywords
stress corrosion
corrosion cracking
stainless steel
austenitic stainless
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25831584A
Other languages
Japanese (ja)
Inventor
Hayao Kurahashi
倉橋 速生
Yuji Sone
雄二 曽根
Kayoko Wada
和田 佳代子
Yoichi Nakai
中井 揚一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25831584A priority Critical patent/JPS61136662A/en
Publication of JPS61136662A publication Critical patent/JPS61136662A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide superior resistance to stress corrosion cracking of an austenitic stainless steel as a material for a storage tank contg. tap water or treated water for recycling, contg. a trace of chlorine by specifying the composition and adding a specified amount of La. CONSTITUTION:The composition of an austenitic stainless steel is composed of, by weight, <0.6% C, <1% Si, <2% Mn, 16-20% Cr, 7-13% Ni, 0.1-0.5% La, <0.35% P, <0.01% S and the balance Fe with inevitable impurities. In the composition, La hinders stress corrosion cracking because it forms a compound with P which deteriorates the resistance to chloride stress corrosion cracking.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐応力腐食割れ性にすぐれたオーステナイト系
ステンレス鋼に関し、貯湯槽、貯水槽、熱交換器等の塩
素イオンを微量に含む環境において利用される。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to austenitic stainless steel with excellent stress corrosion cracking resistance, and is suitable for use in environments containing trace amounts of chlorine ions, such as hot water tanks, water storage tanks, and heat exchangers. used.

〔従来の技術〕[Conventional technology]

5US3o4.316などのオーステナイト系ステンレ
ス鋼はその主合金成分であるCr5NiわよびMOによ
り、すぐれた耐食性を示すとともに溶接性、加工性にも
すぐれているため、耐食性が要求される多くの用途に使
用されている。しかしながらオーステナイト系ステンレ
ス鋼の最大の弱点は、塩素イオンを微量に含む比較的高
温の上水道、中水道あるいは工業用水環境においてさえ
、応力腐食割れを起す場合があることであり、その対策
には苦慮している。このためこれらの用途に対しては、
フェライト系ステンレス鋼が応力腐食割れに免疫的であ
ることから、Moを添加して耐食性を高めた高純度フェ
ライト系ステンレス鋼(SUS444)の使用が検討さ
れつつある。
Austenitic stainless steels such as 5US3o4.316 exhibit excellent corrosion resistance due to their main alloy components, Cr5Ni and MO, as well as excellent weldability and workability, so they are used in many applications that require corrosion resistance. has been done. However, the biggest weakness of austenitic stainless steel is that stress corrosion cracking may occur even in relatively high-temperature water supply, gray water, or industrial water environments that contain trace amounts of chlorine ions, and it is difficult to prevent this from occurring. ing. Therefore, for these uses,
Since ferritic stainless steel is immune to stress corrosion cracking, the use of high-purity ferritic stainless steel (SUS444) with added Mo to improve corrosion resistance is being considered.

しかし、このステンレス鋼は高価なうえ、加工性や溶接
性が劣るため、一般的に普及するまでにはいたっていな
い。従って耐塩化物応力腐食割れにすぐれたオーステナ
イト系ステンレス鋼に対する要求には根強いものがある
However, this stainless steel is expensive and has poor workability and weldability, so it has not become widely used. Therefore, there is a strong demand for austenitic stainless steels that are resistant to chloride stress corrosion cracking.

オーステナイト系ステンレス鋼の塩化物応力腐食割れに
関する研究は従来多数報告されており、その中で鋼中の
成分元素の影響については、例えば小若正倫著「金属の
腐食損傷と防食技術」 (アグネ社発行)の339ペー
ジにまとめられている。
Many studies have been reported on chloride stress corrosion cracking in austenitic stainless steel, and among them, the influence of constituent elements in steel has been studied, for example, in ``Metal Corrosion Damage and Corrosion Prevention Technology'' by Masamichi Kowaka (Agne Publishing Co., Ltd.). It is summarized on page 339 of the publication).

これらの成分元素の中で不純物元素として含まれるPの
含有量を低下させればオーステナイト系ステンレス鋼の
塩化物応力腐食割れは著しく発生し難くなることは公知
の事実であるが、いかんせんステンレス鋼の脱Pはきわ
めて難かしく、塩化物応力腐食割れに対しステンレス鋼
が免疫的になるまで脱Pを行うことは、著しいコスト上
昇をきたし、現在の技術レベルでは現実的ではない。し
かもなお耐塩化物応力腐食割れ性にすぐれたステンレス
鋼に対して、強い要望が存在している。
It is a well-known fact that if the content of P, which is included as an impurity element among these component elements, is reduced, chloride stress corrosion cracking in austenitic stainless steel becomes significantly less likely to occur. Dephosphorization is extremely difficult, and dephosphorization until stainless steel becomes immune to chloride stress corrosion cracking would result in a significant increase in cost and is not practical at the current technological level. Moreover, there is still a strong demand for stainless steel that has excellent resistance to chloride stress corrosion cracking.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上記従来技術に対する要望に応えて、
耐応力腐食割れ性にすぐれたオーステナイト系ステンレ
ス鋼を提供するにある。
The purpose of the present invention is to meet the above-mentioned demands for the prior art,
An object of the present invention is to provide an austenitic stainless steel having excellent stress corrosion cracking resistance.

〔問題点を解決するための手段および作用〕本発明の要
旨とするところ、は次の如くである。
[Means and operations for solving the problems] The gist of the present invention is as follows.

すなわち、重量比にて C:0.06%以下、 Si:1.O%以下Mn:2%
以下、    Cr:16〜20%Niニア 〜1.3
%、   La: o、1〜0.5%P: 0.035
%以下、   S:0.01%以下を含み、残部ばFe
および不可避的不純物から成ることを特徴とする耐応力
腐食割れ性にすぐれたオーステナイト系ステンレス鋼で
ある。
That is, C: 0.06% or less, Si: 1. 0% or less Mn: 2%
Below, Cr: 16-20% Ni near ~1.3
%, La: o, 1-0.5%P: 0.035
% or less, including S: 0.01% or less, the remainder being Fe
It is an austenitic stainless steel with excellent stress corrosion cracking resistance and is characterized by consisting of unavoidable impurities.

本発明者らは、耐塩化物応力腐食割れ性を阻害するPを
除去するよりもPを無害化する方法について種々検討を
重ねた。すなわち、Pと化合物を形成しゃすいYSLa
、Ce、I n、Se等の第3元素を添加し、Pの無害
化が可能かどうかを調べた。塩化物応力腐食割れの試験
としては、従来から一般的に用いられていた高濃度塩化
物環境中での割れ試験は現実の環境とあまりにもかけは
なれているため、さきに特開昭57−47850公報で
述べられた低濃度塩化物水溶液中の気液界面に三点スポ
ット試験片を浸漬する方法で行った。
The present inventors have repeatedly investigated various methods for rendering P harmless rather than removing P, which inhibits chloride stress corrosion cracking resistance. That is, YSLa that forms a compound with P
It was investigated whether it was possible to make P harmless by adding a third element such as , Ce, In, or Se. As a test for chloride stress corrosion cracking, the cracking test in a high-concentration chloride environment that has been commonly used in the past is far from the actual environment, so we first conducted a test using JP-A-57-47850. The test was carried out using the method described in the publication, in which a three-point spot test piece was immersed at the gas-liquid interface in a low-concentration chloride aqueous solution.

その検討の結果、I、aがPと化合物を作り応力腐食割
れを著しく阻止することを見い出し、本発明はこの知見
に基づいてなされたものである。
As a result of the study, it was found that I and a form a compound with P and significantly inhibit stress corrosion cracking, and the present invention was made based on this knowledge.

本発明における成分限定理由について説明する。The reason for limiting the components in the present invention will be explained.

C: Cは応力腐食割れに対し、多いほど阻止効果が大とされ
ているが、O,OS%を越すと溶接部の鋭敏化による粒
界腐食感受性が著しくなり、かつ強度が上昇し加工性が
劣化するため上限を0.06%とした。
C: It is said that the higher the amount of C, the greater the inhibiting effect on stress corrosion cracking, but if it exceeds O,OS%, the susceptibility to intergranular corrosion due to the sensitization of the weld becomes significant, and the strength increases and the workability decreases. The upper limit was set at 0.06% because of the deterioration of the content.

Si: Siは応力腐食割れに対し改善効果はない。しかし製鋼
時の脱酸目的に少量必要とするが、添加量が多くなると
加工性が劣化するため上限を1.0%とした。
Si: Si has no improvement effect on stress corrosion cracking. However, although a small amount is required for deoxidizing purposes during steel manufacturing, if the amount added is large, workability deteriorates, so the upper limit was set at 1.0%.

M n : Mnは製鋼時の脱酸剤、脱硫剤として使用されるもので
、応力腐食割れにほとんど無関係であるため、通常用い
られる2%以下に限定した。
Mn: Mn is used as a deoxidizing agent and a desulfurizing agent during steel manufacturing, and has little to do with stress corrosion cracking, so it was limited to the normally used 2% or less.

C「 : Crはステンレス鋼の耐食性を決定づける元素で、その
量は多いほど好ましいが、20%を越すとα相など金属
間化合物の析出の恐れがあり、加工性が劣化するため2
0%を上限とした。また安定なオーステナイト相を得る
には少くとも16%を必要とするので、これを下限とし
た。
Cr: Cr is an element that determines the corrosion resistance of stainless steel, and the higher the amount, the better, but if it exceeds 20%, there is a risk of precipitation of intermetallic compounds such as α phase, and workability will deteriorate.
The upper limit was 0%. Furthermore, since at least 16% is required to obtain a stable austenite phase, this was set as the lower limit.

N I : Niはオーステナイト相を保持するための主要元素であ
り、Cr量との兼ねあいで、・最低7%以上必要である
。またNiは耐食性、特に耐酸性を向上させるため、そ
の量は多いほど好ましいが、経済的見地より13%を上
限とした。
N I: Ni is a main element for maintaining the austenite phase, and in consideration of the amount of Cr, it is required to be at least 7%. Further, since Ni improves corrosion resistance, particularly acid resistance, the amount of Ni is preferably as large as possible, but from an economical point of view, the upper limit was set at 13%.

L a : Laは本発明において最も重要な元素で、Pと化合物を
作り応力腐食割れを阻止する効果が大であるが、0.1
%未満ではその効果がなく0.5%を越すとその効果が
飽和するため経済的見地と兼ね合せこれを上限とし、0
.1〜0.5の範囲に限定した。
La: La is the most important element in the present invention, forming a compound with P and having a great effect of inhibiting stress corrosion cracking.
If it is less than 0.5%, there is no effect, and if it exceeds 0.5%, the effect is saturated, so from an economic point of view, this is the upper limit.
.. It was limited to a range of 1 to 0.5.

P: Pは応力腐食割れに対してきわめて有害であるため少な
いほど好ましいが、現状の説P技術から上限を0.03
5%とした。
P: Since P is extremely harmful to stress corrosion cracking, it is preferable to reduce it as much as possible, but based on the current theory of P technology, the upper limit is set at 0.03.
It was set at 5%.

S : Sはステンレス鋼の耐食性、待に耐孔食性を著しく損ね
るもので特にその量が0.01%を越えると耐孔食性が
急激に劣化するため0.01%を上限とした。
S: S significantly impairs the corrosion resistance, especially the pitting corrosion resistance, of stainless steel, and in particular, if its amount exceeds 0.01%, the pitting corrosion resistance rapidly deteriorates, so the upper limit was set at 0.01%.

本発明は上記の如くオーステナイト系ステンレy、tM
のC,Si、Mn、Cr1NiSP1Sを限定し待にL
a:0.1〜0.5%を添加しPを無害化することによ
゛り耐塩化物応力腐食割れ性を著しく向上することがで
きた。
As mentioned above, the present invention relates to austenitic stainless steel y, tM.
By limiting C, Si, Mn, Cr1NiSP1S, L
By adding 0.1 to 0.5% of a to render P harmless, the resistance to chloride stress corrosion cracking could be significantly improved.

〔実施例〕〔Example〕

真空誘導炉にて第1表に示す如き成分の本発明鋼および
比較tfI7t14種をそれぞれ100kgづつ溶製し
た。これらの鋼を熱間圧延にて5印厚まで圧延したのち
、1050℃X15分の軟化焼鈍をし、その後2−まで
冷間圧延を行った。最終熱処理として1050℃×5分
の溶体化処理を行い試験に供した。
In a vacuum induction furnace, 100 kg each of the invention steel and 14 types of comparative tfI7t having the components shown in Table 1 were melted. These steels were hot rolled to a thickness of 5 mm, softened and annealed at 1050° C. for 15 minutes, and then cold rolled to a thickness of 2 mm. As a final heat treatment, solution treatment was performed at 1050° C. for 5 minutes, and the sample was subjected to a test.

第1図(Al、(B)に示す如く2個の試験片2を3点
でスポット溶接4を行った溶接試験片を作り、第2図に
示すように硝子ビーカー6内の80℃の3.5%食塩水
8の気液界面に2ケ月間浸漬したのち、スポット溶接部
を切断し、応力腐食割れの有無を調査した。試験は各鋼
種につき3本実施した。その試験結果を第1表に同時に
示した。
As shown in FIG. 1 (Al, (B), two test pieces 2 were spot welded 4 at three points to make a welded test piece, and as shown in FIG. After being immersed in the gas-liquid interface of .5% saline solution 8 for two months, the spot welds were cut and the presence or absence of stress corrosion cracking was investigated.Three tests were conducted for each steel type. They are also shown in the table.

第1表の応力腐食割れ試験結果において0印は割れなし
、X印は割れありを示すものである。
In the stress corrosion cracking test results shown in Table 1, the mark 0 indicates no cracking, and the mark X indicates cracking.

第1表において通常の5US304ステンレス鋼である
比較鋼No、5は3本ともに割れが見つかった。比較鋼
N006はSiの量が本発明より高く、比較鋼No、7
はLaが0.1%未満のものであるが、いずれも3本中
2本に割れが発見された。一方本発明鋼No、1〜4は
いずれも各3本とも応力腐食割れが認められず、耐塩化
物応力腐食割れ性にすぐれていることが判明した。
In Table 1, cracks were found in all three comparative steels No. 5, which is ordinary 5US304 stainless steel. Comparative steel No. 7 has a higher Si content than the present invention, and comparative steel No. 7
Although the La content was less than 0.1%, cracks were found in two out of three of them. On the other hand, no stress corrosion cracking was observed in any of the three steels of the present invention Nos. 1 to 4, indicating that they had excellent resistance to chloride stress corrosion cracking.

〔発明の効果〕〔Effect of the invention〕

本発明は上記実施例からも明らかな如くオーステナイト
系ステンレス鋼の成分を限定し、特にL&を限定量添加
することによって上水道、中水道の貯蔵槽などの微量の
塩素を含有する環境において応力腐食割れがなく良好な
耐食性を発揮する効果をあげることができた。
As is clear from the above examples, the present invention limits the components of the austenitic stainless steel, and in particular, by adding a limited amount of L&, stress corrosion can occur in environments containing trace amounts of chlorine, such as storage tanks for waterworks and gray water. It was possible to achieve the effect of exhibiting good corrosion resistance without any corrosion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(Al、(Blは3点スポット試験片を示し、(
Alは側面図、(B)は平面図、第2図は3点スポット
試験片の3.5%食塩水への気液界面浸漬腐食試験を示
す断面図である。
Figure 1 (Al, (Bl indicates a 3-point spot test piece, (
Al is a side view, (B) is a plan view, and FIG. 2 is a cross-sectional view showing a corrosion test of a three-point spot test piece immersed in a 3.5% saline solution at the gas-liquid interface.

Claims (1)

【特許請求の範囲】[Claims] (1)重量比にて C:0.06%以下、Si:1.0%以下 Mn:2%以下、Cr:16〜20% Ni:7〜13%、La:0.1〜0.5%P:0.0
35%以下、S:0.01%以下を含み残部はFeおよ
び不可避的不純物から成ることを特徴とする耐応力腐食
割れ性にすぐれたオーステナイト系ステンレス鋼。
(1) Weight ratio C: 0.06% or less, Si: 1.0% or less Mn: 2% or less, Cr: 16-20% Ni: 7-13%, La: 0.1-0.5 %P: 0.0
An austenitic stainless steel with excellent stress corrosion cracking resistance, characterized in that it contains S: 35% or less, S: 0.01% or less, and the remainder consists of Fe and inevitable impurities.
JP25831584A 1984-12-06 1984-12-06 Austenitic stainless steel having superior resistance to stress corrosion cracking Pending JPS61136662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25831584A JPS61136662A (en) 1984-12-06 1984-12-06 Austenitic stainless steel having superior resistance to stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25831584A JPS61136662A (en) 1984-12-06 1984-12-06 Austenitic stainless steel having superior resistance to stress corrosion cracking

Publications (1)

Publication Number Publication Date
JPS61136662A true JPS61136662A (en) 1986-06-24

Family

ID=17318539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25831584A Pending JPS61136662A (en) 1984-12-06 1984-12-06 Austenitic stainless steel having superior resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JPS61136662A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028348A (en) * 1988-06-27 1990-01-11 Power Reactor & Nuclear Fuel Dev Corp Stainless steel having excellent intergranular corrosion resistance of heat-affected zone
CN113768906A (en) * 2021-10-25 2021-12-10 上海方予健康医药科技有限公司 Novel glucocorticoid inhalation aerosol and drug component
WO2022145063A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
WO2022145066A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028348A (en) * 1988-06-27 1990-01-11 Power Reactor & Nuclear Fuel Dev Corp Stainless steel having excellent intergranular corrosion resistance of heat-affected zone
JPH0534417B2 (en) * 1988-06-27 1993-05-24 Doryokuro Kakunenryo Kaihatsu Jigyodan
WO2022145063A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
WO2022145066A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
CN113768906A (en) * 2021-10-25 2021-12-10 上海方予健康医药科技有限公司 Novel glucocorticoid inhalation aerosol and drug component

Similar Documents

Publication Publication Date Title
JPH0244896B2 (en)
EP0084588A2 (en) Heat-resistant and corrosion-resistant weld metal alloy and welded structure
KR930005899B1 (en) Heat-resistant austenitic stainless steel
GB2166159A (en) Method of enhancing intergranular corrosion resistance of a weld of the stainless duplex ferritic austenitic steel
JPH05247594A (en) Dual phase stainless steel excellent in weatherability
JP3576472B2 (en) Welding material for low carbon martensitic stainless steel and arc welding method for low carbon martensitic stainless steel
JPH06279951A (en) Ferritic stainless steel for water heater
US4832765A (en) Duplex alloy
EP0546549A1 (en) Line pipe having good corrosion-resistance and weldability
JPS6358214B2 (en)
JPH0121863B2 (en)
JPS61136662A (en) Austenitic stainless steel having superior resistance to stress corrosion cracking
JP2756545B2 (en) Austenitic stainless steel with excellent corrosion resistance in hot water
JP4465066B2 (en) Welding materials for ferrite and austenitic duplex stainless steels
JPS59127991A (en) Deposited metal of austenitic stainless steel having resistance to chloride stress corrosion cracking
JP3713833B2 (en) Ferritic stainless steel for engine exhaust members with excellent heat resistance, workability, and weld corrosion resistance
JPH0635615B2 (en) Manufacturing method of ferritic stainless steel with excellent corrosion resistance of welds
EP0306029B1 (en) Austenitic stainless steel having improved corrosion resistance in hot water
JPH0357181B2 (en)
JP2551511B2 (en) Welding material for high Cr ferritic heat resistant steel
JP2575250B2 (en) Line pipe with excellent corrosion resistance and weldability
JP2551512B2 (en) Welding material for high Cr ferritic heat resistant steel
JP2759222B2 (en) Austenitic stainless steel with excellent stress corrosion cracking resistance in chloride environment
JPH058084A (en) Wire for welding concentrated sulfuric acid resistant high-si austenitic stainless steel
JP2668116B2 (en) Austenitic stainless steel with excellent corrosion resistance in hot water