JPS6358214B2 - - Google Patents

Info

Publication number
JPS6358214B2
JPS6358214B2 JP56055593A JP5559381A JPS6358214B2 JP S6358214 B2 JPS6358214 B2 JP S6358214B2 JP 56055593 A JP56055593 A JP 56055593A JP 5559381 A JP5559381 A JP 5559381A JP S6358214 B2 JPS6358214 B2 JP S6358214B2
Authority
JP
Japan
Prior art keywords
steel
less
corrosion resistance
present
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56055593A
Other languages
Japanese (ja)
Other versions
JPS57171651A (en
Inventor
Akihiko Maekita
Kazuma Oda
Toshiro Nagoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP5559381A priority Critical patent/JPS57171651A/en
Publication of JPS57171651A publication Critical patent/JPS57171651A/en
Publication of JPS6358214B2 publication Critical patent/JPS6358214B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は海水と接触する使用条件下において優
れた耐食性を示し、かつ溶接部においても耐食性
劣化のない完全オーステナイトステンレス鋼に関
するものである。ここにいう完全オーステナイト
ステンレス鋼とは、どのような熱処理を受けても
常にオーステナイト状態にあるという種の意味で
ある。 ステンレス鋼は一般に耐食鋼として広範囲に利
用されているが、海水のような高濃度に塩化物が
存在する環境では、しばしば孔食や隙間腐食のよ
うな局部腐食を起して、なお問題があり、特に溶
接部においては粒界腐食を起こし実用性に欠ける
問題がある。 代表的オーステナイトステンレス鋼である
SUS304、SUS316も粒界腐食、応力腐食、孔食
の原因で使用上の制限を受ける。 SUS329J1で代表されるオーステナイト・フエ
ライト二相鋼は素材の耐海水性は非常に優れてい
るが、溶接部に関しては、フエライト単相組織に
なるため全く耐食性が得られない。SUS329J1鋼
で小型の槽を製作し、常温の自然海水を循環して
使用したところ、素材は完全耐食性を示すが、溶
接部は1ケ年で溶接部を貫通する腐食を起こし
た。 一方フエライト系では、高Cr−Mo系鋼が、製
鋼技術の向上に伴つて耐食性に有害なC、N、S
等を極微量になるように製造できるようになり、
海水環境での使用にも供せられるようになつた
が、今一歩耐食性に対する信頼性に欠ける。また
特殊な製錬のため製造上難点があり、価格的に不
利な欠点もある。 通常、海水環境において使用する材料として、
50℃以上の条件で耐食性を有し、加工性(プレス
成形性)、溶接性を具備することが必要である。
これらの要求も可なり満たすものとしては、改良
されたCr−Ni−Mo系完全オーステナイト鋼があ
り、例えば特公昭49−40331号には、 C:0.001〜0.2% Si:0.1〜5.0% Mn:0.25〜10.0% Cr:15.0〜25.0% Ni:8.0〜30.0% Mo:4.0〜6.0% Cu:0.01〜8.0% N:0.1〜0.35% 残部Feよりなる鋼が開示されている。 一般にMoを多量に含む高合金鋼はCrやMoに
富んだ金属間化合物が形成されやすく、析出した
該金属化合物の近傍ではCrやMoの濃度が低くな
り、耐食性の劣化を起す。前記特公昭49−40331
号明細書ではNの添加が金属化合物(「金属間化
合物」の誤記または誤植であろう)及びデルタフ
エライトの析出を防ぐと教示しているが、その耐
食性については具体的に何等記載されておらず、
その機械的性質についても1000℃以上の加熱とそ
れに続く急冷後に少くとも30Kg/mm2の降伏強度と
少なくとも35%の伸びを有するという言及以外に
具体的実証的記載はなにもない。この鋼は後に記
す比較例に示されるように機械的性質ならびに耐
食性においてなお充分でない。 本発明者等は、これをさらに改良すべく努力し
た結果、当該鋼においてAlとLa、Ceあるいは
La、Ce、Bを加え、また必要に応じてCuを添加
することによつて、耐食性と機械的性質のさらに
改良された鋼を得た。 本発明によれば、重量%で、C:0.04%以下、
Si:1.5%以下、Mn:2.0%以下、Cr:18〜25%、
Ni:20〜30%、Mo:4〜8%、N:0.01〜0.3
%、Al:0.02%以下、La+Ce:0.01〜0.06%を含
有し、残部Feおよび不可避的不純物よりなり、
かつ %Cr+%Mo+1.5×%Si/%Ni+30×(%C+%N)+0
.5×%Mn<1.08 なる関係を満足する組成を有することを特徴とす
る溶接部の耐食性にすぐれた完全オーステナイト
ステンレス鋼が提供される。 本発明によれば、さらに上記の鋼に、0.01%以
下のB、または0.01%以下のBと0.3〜3%のCu
を含有する耐食性のさらに改良された鋼が提供さ
れる。 本発明はNi当量とCr当量の比を調節すること
によつて、母材はもちろんのこと、溶接部をも完
全オーステナイト相となる優れた耐食性を有する
完全オーステナイトステンレス鋼を提供するもの
である。 本発明鋼における各成分の役割と含有量限定の
理由は次の通りである。 C:Cは耐孔食性や耐食性の点から低い方がよい
が、製造性を考慮して上限を0.04%とした。 Si:Siは応力腐食割れの面からは多く含有された
方がよいが、溶接性、加工性には有害であり、
そのかねあいから上限を1.5%とした。 Mn:Mnは脱酸および熱間加工性の改善あるい
はオーステナイト安定元素として必要である
が、多すぎると耐食性を劣化させるので、その
上限は20%と判断された。 Cr:Crはステンレス鋼の耐孔食性をはじめ、耐
食性に極めて重要である。18%以下では耐孔食
性や耐食性が充分でなく、多く含有された方が
望ましいが、25%を越えると鋼の加工性を劣化
させるとともに、オーステナイト組織を維持す
るために、Niを多量に添加することが必要と
なるため、価格の上昇を招き、また製造性を困
難にする。 Ni:Niは耐食性の改善、特に活性溶解を抑制す
る点で有効であるが、本発明鋼の場合は組織を
オーステナイト相に維持し、かつ、Cr/Ni当
量比を1.08未満に、保つため、N添加量との関
係を考慮して決定される。Cr量との関係から
最低約20%必要である。上限は限定の必要はな
いが、経済的理由により30%に限定される。 Cu:Cuの添加は高Cr高Ni高Moにおいて、耐酸
性を増すのに有効である。その目的には0.3%
未満では効果が小さく、3%を越えると熱間加
工性に有害であるので、耐酸性が要求される用
途に対しては、0.3〜3%の添加を行なう。 Mo:MoはCr、Ni、Nと共にステンレス鋼の耐
食性、特に耐孔食性抵抗に有効である。4%以
下では充分な耐食性が得られず、8%上になる
と熱間加工性を阻害する。 N:NはCr、Ni、Moと共にステンレス鋼の耐食
性、特に耐孔食抵抗に有効である。本発明鋼に
おいても重要な元素であり、耐食性およびオー
ステナイト相安定のためには多く含有された方
が望ましいが、0.5%は鋼中に固溶する限度で
あり、また製造性を考慮して0.3%とする。 La+Ce:本発明鋼においてLa+Ceは耐食性と熱
間加工性の改善と硫化物生成の低減を目的に
0.01%添加する。ただし過剰に含有させると鋼
中に非金属介在物として残存し、耐食性を害す
るので、その上限は0.06%である。 B:Bは鋼中に微量添加すると熱間加工性、とく
に高温割れ性の改善に役立つ。ただし0.01%を
越えると逆に耐高温割れ性を阻害する。 Al:AlはLa+Ceの酸化を防ぐ目的で添加され
る。多量に添加するとAl2O3系介在物を生成
し、鋼の耐食性、加工性を劣化させるため、添
加されるLa+Ceの量に見合う0.02%までとす
る。 Cr当量/Ni当量の比 鋼の耐食性を劣化させる前記の金属間化合物
の生成は、Cr当量/Ni当量比の数値1.08未満
の組成において、抑制される。このことは後の
本発明の具体的記載において実証される。 本発明においてLaとCeは同効であり、入手で
きる原料は通常LaとCeの混合物(粗合金)であ
るので、La+Ceと記載される。 本発明の鋼において、PとSはこの種の鋼に通
常許容される量、Pについては0.04%程度まで、
Sについては0.03%程度まで含まれてもよい。 以下実施例によつて本発明を具体的に説明す
る。
The present invention relates to a fully austenitic stainless steel that exhibits excellent corrosion resistance under usage conditions in which it comes into contact with seawater, and that exhibits no deterioration in corrosion resistance even in welded parts. The term fully austenitic stainless steel referred to herein means a type of stainless steel that remains in an austenitic state no matter what kind of heat treatment it undergoes. Stainless steel is generally widely used as a corrosion-resistant steel, but it is still problematic because it often suffers from localized corrosion such as pitting and crevice corrosion in environments with high concentrations of chlorides, such as seawater. However, there is a problem in that intergranular corrosion occurs, especially in welded parts, making it impractical. A typical austenitic stainless steel
SUS304 and SUS316 are also subject to limitations in use due to intergranular corrosion, stress corrosion, and pitting corrosion. Austenite-ferrite duplex steel, represented by SUS329J1, has excellent seawater resistance, but the welded part has a ferrite single-phase structure, so it has no corrosion resistance at all. When a small tank was made from SUS329J1 steel and used to circulate natural seawater at room temperature, the material showed complete corrosion resistance, but the welded parts developed corrosion that penetrated the welded parts within a year. On the other hand, in the case of ferritic steels, high Cr-Mo steels are becoming increasingly popular with C, N, and S, which are harmful to corrosion resistance, as steelmaking technology improves.
etc. can now be manufactured in extremely small amounts,
Although it has become possible to use it in seawater environments, it still lacks reliability in terms of corrosion resistance. In addition, there are manufacturing difficulties due to the special smelting process, and there are disadvantages in terms of price. Typically, as a material used in a seawater environment,
It is necessary to have corrosion resistance under conditions of 50°C or higher, workability (press formability), and weldability.
There is an improved Cr-Ni-Mo fully austenitic steel that satisfies these requirements to a large extent; for example, in Japanese Patent Publication No. 49-40331, C: 0.001-0.2% Si: 0.1-5.0% Mn: A steel is disclosed that consists of 0.25-10.0% Cr: 15.0-25.0% Ni: 8.0-30.0% Mo: 4.0-6.0% Cu: 0.01-8.0% N: 0.1-0.35% with the balance being Fe. In general, high alloy steel containing a large amount of Mo tends to form intermetallic compounds rich in Cr and Mo, and the concentration of Cr and Mo decreases near the precipitated metal compounds, causing deterioration in corrosion resistance. Said Special Public Service No. 49-40331
The specification teaches that the addition of N prevents the precipitation of metal compounds (probably a typo or misprint of "intermetallic compound") and delta ferrite, but there is no specific description of its corrosion resistance. figure,
Regarding its mechanical properties, there is no concrete empirical description other than mentioning that it has a yield strength of at least 30 Kg/mm 2 and an elongation of at least 35% after heating to 1000° C. or higher followed by rapid cooling. This steel still has insufficient mechanical properties and corrosion resistance, as shown in the comparative examples described later. As a result of our efforts to further improve this, the present inventors discovered that Al, La, Ce, or
By adding La, Ce, B and, if necessary, Cu, a steel with further improved corrosion resistance and mechanical properties was obtained. According to the present invention, in weight%, C: 0.04% or less,
Si: 1.5% or less, Mn: 2.0% or less, Cr: 18-25%,
Ni: 20-30%, Mo: 4-8%, N: 0.01-0.3
%, Al: 0.02% or less, La + Ce: 0.01 to 0.06%, the balance consists of Fe and inevitable impurities,
and %Cr+%Mo+1.5×%Si/%Ni+30×(%C+%N)+0
A fully austenitic stainless steel having a composition satisfying the relationship: .5×%Mn<1.08 and having excellent corrosion resistance in welded parts is provided. According to the present invention, the above steel further includes 0.01% or less B, or 0.01% or less B and 0.3 to 3% Cu.
A steel containing further improved corrosion resistance is provided. The present invention provides a completely austenitic stainless steel having excellent corrosion resistance, in which not only the base metal but also the weld zone becomes completely austenitic by adjusting the ratio of Ni equivalent to Cr equivalent. The role of each component in the steel of the present invention and the reason for limiting the content are as follows. C: Although it is better to have a lower C content in terms of pitting resistance and corrosion resistance, the upper limit was set to 0.04% in consideration of manufacturability. Si: It is better to contain a large amount of Si in terms of stress corrosion cracking, but it is harmful to weldability and workability.
For this reason, the upper limit was set at 1.5%. Mn: Mn is necessary for deoxidizing and improving hot workability, or as an austenite stabilizing element, but too much will deteriorate corrosion resistance, so the upper limit was determined to be 20%. Cr: Cr is extremely important for corrosion resistance, including pitting corrosion resistance of stainless steel. If it is less than 18%, the pitting corrosion resistance and corrosion resistance will not be sufficient, so a higher content is preferable, but if it exceeds 25%, the workability of the steel will deteriorate and a large amount of Ni will be added to maintain the austenitic structure. This increases the price and makes manufacturability difficult. Ni: Ni is effective in improving corrosion resistance, especially in suppressing active dissolution, but in the case of the steel of the present invention, in order to maintain the structure in the austenitic phase and the Cr/Ni equivalent ratio to be less than 1.08, It is determined in consideration of the relationship with the amount of N added. A minimum content of about 20% is required in relation to the Cr content. There is no need to limit the upper limit, but it is limited to 30% for economic reasons. Cu: Addition of Cu is effective in increasing acid resistance in high Cr, high Ni, and high Mo. 0.3% for that purpose
If it is less than 3%, the effect is small, and if it exceeds 3%, it is harmful to hot workability, so for applications requiring acid resistance, it is added in an amount of 0.3 to 3%. Mo: Mo, along with Cr, Ni, and N, is effective in improving the corrosion resistance of stainless steel, especially pitting corrosion resistance. If it is less than 4%, sufficient corrosion resistance cannot be obtained, and if it is more than 8%, hot workability is inhibited. N: N, together with Cr, Ni, and Mo, is effective in improving the corrosion resistance of stainless steel, especially pitting corrosion resistance. It is also an important element in the steel of the present invention, and it is desirable to contain it in a large amount for corrosion resistance and austenite phase stability, but 0.5% is the limit of solid solution in the steel, and 0.3% in consideration of manufacturability. %. La+Ce: In the steel of the present invention, La+Ce is used to improve corrosion resistance and hot workability, and to reduce sulfide formation.
Add 0.01%. However, if excessively contained, it remains in the steel as non-metallic inclusions and impairs corrosion resistance, so the upper limit is 0.06%. B: Adding a small amount of B to steel helps improve hot workability, especially hot cracking properties. However, if it exceeds 0.01%, the hot cracking resistance will be adversely affected. Al: Al is added to prevent La+Ce from oxidizing. If added in a large amount, Al 2 O 3 type inclusions will be generated, which will deteriorate the corrosion resistance and workability of the steel, so the amount should be limited to 0.02%, which corresponds to the amount of La+Ce added. Cr equivalent/Ni equivalent ratio The formation of the above-mentioned intermetallic compounds that deteriorate the corrosion resistance of steel is suppressed in a composition in which the Cr equivalent/Ni equivalent ratio is less than 1.08. This will be demonstrated later in the detailed description of the invention. In the present invention, La and Ce have the same effect, and the available raw material is usually a mixture (crude alloy) of La and Ce, so it is written as La+Ce. In the steel of the present invention, P and S are contained in amounts normally allowed for this type of steel, with P up to about 0.04%.
S may be included up to about 0.03%. The present invention will be specifically explained below using Examples.

【表】 第1表に示す化学組成の鋼試料について機械強
度を測定し、母材および溶接部について腐食試験
を行なつた。試料A、B、C、D、Eは比較鋼で
あり、そのうちA、BはJIS規格のSUS316およ
びSUS329J1に相当するものである。これらの試
料についてはAlの含有量が分析されていないが、
通常の造塊において使用されて残留する量、即
ち、0.01%以下含有されていると解される。ここ
に注意すべきことは試料Aは前に述べた特公昭49
−40331号の鋼をも代表することである。なんと
なれば該鋼においてCuは許容される不純物であ
ると記されているからである。試料C、D、Eは
本発明の鋼に類似した鋼である。試料F、G、
H、I、J、Kは本発明鋼である。 試料A、Bは市販で入手できるものを用い、試
料C〜Kは100Kg電炉で溶製、分塊圧延、冷間圧
延して2mmの板とし、1150℃で溶体化処理した。 溶体化処理した試料鋼を常法により鏡検試料と
し、その組織を顕微鏡観察した。400倍の拡大で
試料Dでは第1図イに示すように、金属間化合物
の析出物が可なり顕著に出現している。走査型電
子顕微鏡による特性X線像の観察から、この金属
間化合物はMoに富んでいることが判明した。こ
れに対して本発明の条件を満たす試料Gでは第1
図ロに示すようにこの析出物は全く現われていな
い。 同じ鋼に後記のようなTIG溶接を施した溶接部
の組織の同様の顕微鏡写真は同図ハ,ニに示して
ある。試料Gは溶接組織においても析出物が殆ん
どみられない。 各試料について、溶接部における析出物の有無
と母材の組成との関係について、いわゆるシエフ
ラー状態図上にプロツトしてみると、第2図のよ
うになる。そこに示されるように、金属間化合物
の析出はCr当量/Ni当量値1.08以上の領域で生
ずることがわかる。即ち、オーステナイト単相域
であつてかつ前記比が1.08未満であるならば、溶
接部が完全オーステナイトであつて、しかも金属
間化合物の析出がないことが判明した。 次に、海水環境での使用を想定して、前記試料
鋼の母材および共金溶接部を、N/20HCl水溶液
に50g/のFeCl3を添加した50℃の試験液中に
48時間浸漬して耐孔食性を試験した。試料は、母
材は、29mm×31mm(厚さ2mm)の試片とし、溶接
材は平板にTIG溶接を同じ位置に2回くり返して
行ない、溶接ビードを中央にして溶接方向を長辺
として29mm×31mm(厚さ2mm)の試片とし、溶接
スケールを研摩して除去して作成した。腐食度の
評価は毎時毎平方メートルあたりの重量減(g/
m2・hr)として測定した。結果は第3図にまとめ
て示してある。これによれば、本発明鋼は比較鋼
に比し、著しく母材、溶接部とも耐食性が優れて
いる。 さらにこれらの試料の母材および溶接部を海水
中のNaClの同濃度の3.5%のNaCl溶液中でその
孔食電位を50℃〜70℃の温度で動電位法で測定し
た。その一部の試料についての結果を第4図に示
す。何れの試料も温度が高くなるにつれて、孔食
電位は低くなるが組成が本発明の範囲を外れ、か
つCr当量/Ni当量値が大きく金属間化合物の析
出の著しい比較鋼BおよびDでは溶接部の孔食電
位の低下が著しい。本発明鋼であつても、Cr当
量/Ni当量値が1.0程度の鋼Fでは、温度が高く
なると、溶接部の孔食電位は若干低いが、比較鋼
(例えばD)では母材に対して溶接部の孔食電位
が著しく低下することに比すれば、著しい改良が
見られる。第4図はまた本発明鋼の使用温度に応
じた組成の選定について示唆を与える。即ち、使
用温度が50℃なら鋼Fでよいが、70℃なら鋼Gを
用いる必要がある。 耐酸性を調べるために、29×31×2mmに切り出
した試片を1%HClに浸漬し、沸騰状態で連続6
時間腐食試験を行ない、その結果を第5図に示
す。耐食性は腐食度で示される。本発明鋼Gおよ
びJはいずれも比較鋼Aに比べて耐酸性がすぐれ
ている。さらに本発明鋼のGとJを較べると、
Cuを1%含むJの方がすぐれている。これによ
り、耐酸性がとくに要求される用途に対してCu
の添加は有利である。 この種の鋼の使用における成形加工(例えば熱
交換器のプレートの製造)を考慮すると、材料に
は40%以上の伸びが要求される。この点、本発明
鋼はCr、Mo、Ni、Nを多量に含有するにかかわ
らず、金属間加工物の析出が抑制されているた
め、前掲第1表に記入されているように、何れも
40%以上の伸びを有する。 一般にMoを多量に含む高合金鋼では製造性、
とくに熱間加工性がしばしば問題になる。 次の第2表は試料D、G、I、Jについての落
重試験の結果である。
[Table] Mechanical strength was measured for steel samples having the chemical compositions shown in Table 1, and corrosion tests were conducted on the base metal and welded parts. Samples A, B, C, D, and E are comparative steels, of which A and B correspond to SUS316 and SUS329J1 of JIS standards. Although the Al content of these samples has not been analyzed,
It is understood that the content is the amount that remains after being used in normal agglomeration, that is, 0.01% or less. What should be noted here is that sample A is the aforementioned special public
-It also represents steel No. 40331. This is because it states that Cu is an acceptable impurity in this steel. Samples C, D, and E are steels similar to the steel of the present invention. Samples F, G,
H, I, J, and K are steels of the present invention. Samples A and B were commercially available, and samples C to K were melted in a 100 kg electric furnace, bloomed, and cold rolled into 2 mm plates, which were solution treated at 1150°C. The solution-treated steel sample was used as a microscopic specimen using a conventional method, and its structure was observed using a microscope. As shown in Figure 1A in Sample D under 400x magnification, intermetallic compound precipitates appear quite clearly. Observation of a characteristic X-ray image using a scanning electron microscope revealed that this intermetallic compound was rich in Mo. On the other hand, in sample G that satisfies the conditions of the present invention, the first
As shown in Figure B, this precipitate did not appear at all. Similar micrographs of the weld structure of the same steel subjected to TIG welding as described below are shown in Figures C and D. In sample G, almost no precipitates are observed in the weld structure. For each sample, the relationship between the presence or absence of precipitates in the weld zone and the composition of the base metal is plotted on a so-called Schiefler phase diagram, as shown in Figure 2. As shown there, precipitation of intermetallic compounds occurs in the region where the Cr equivalent/Ni equivalent value is 1.08 or more. That is, it has been found that if the weld is in the austenite single phase region and the ratio is less than 1.08, the weld is completely austenite and there is no precipitation of intermetallic compounds. Next, assuming that it will be used in a seawater environment, the base metal and co-metal welded part of the sample steel were placed in a test solution at 50°C made by adding 50 g/FeCl 3 to a N/20HCl aqueous solution.
Pitting corrosion resistance was tested by soaking for 48 hours. The base metal is a 29mm x 31mm (thickness 2mm) specimen, and the welding material is a flat plate that is TIG welded twice at the same position, with the weld bead in the center and the long side in the welding direction. A specimen of 31 mm x 2 mm (thickness) was prepared by polishing and removing the welding scale. The corrosion rate is evaluated as weight loss per square meter per hour (g/
m2・hr). The results are summarized in Figure 3. According to this, the steel of the present invention has significantly better corrosion resistance in both the base metal and the welded part than the comparative steel. Furthermore, the pitting potential of the base metal and welded parts of these samples was measured potentiodynamically at a temperature of 50°C to 70°C in a 3.5% NaCl solution with the same concentration as NaCl in seawater. The results for some of the samples are shown in FIG. As the temperature increases, the pitting corrosion potential of all samples decreases, but in comparison steels B and D, whose compositions are outside the range of the present invention and whose Cr equivalent/Ni equivalent values are large and where precipitation of intermetallic compounds is significant, the weld zone There is a significant decrease in pitting potential. Even among the steels of the present invention, in steel F with a Cr equivalent/Ni equivalent value of about 1.0, the pitting potential of the weld is slightly lower when the temperature increases, but in comparative steels (for example, D), This is a significant improvement compared to the significant reduction in the pitting potential of the weld. FIG. 4 also gives suggestions regarding the selection of the composition depending on the service temperature of the steel of the present invention. That is, if the operating temperature is 50°C, steel F may be used, but if the operating temperature is 70°C, steel G must be used. To examine acid resistance, a specimen cut into 29 x 31 x 2 mm was immersed in 1% HCl and heated continuously for 6 hours in a boiling state.
A time corrosion test was conducted and the results are shown in Figure 5. Corrosion resistance is indicated by the degree of corrosion. Inventive steels G and J both have superior acid resistance compared to comparative steel A. Furthermore, when comparing G and J of the steel of the present invention,
J containing 1% Cu is superior. This makes Cu suitable for applications where acid resistance is particularly required.
The addition of is advantageous. Taking into account the forming operations in the use of this type of steel (for example, in the production of plates for heat exchangers), elongations of the material of more than 40% are required. In this regard, although the steel of the present invention contains large amounts of Cr, Mo, Ni, and N, precipitation of intermetallic products is suppressed, so as shown in Table 1 above, all
It has an elongation of more than 40%. In general, high alloy steel containing a large amount of Mo has low manufacturability.
In particular, hot workability is often a problem. Table 2 below shows the results of the drop weight test for samples D, G, I, and J.

【表】 落重試験とは、直径20mm高さ30mmの円筒状試験
片を鋳造鋼塊から切り出し、加熱して(この場合
は、第2に記した各温度に加熱)から、定盤上に
立て、重さ200Kgのおもりを800mmの高さから試験
片上に落下させることにより、その高さが約10mm
になるまで加工を加え、加工後の割れ状態から熱
間加工性を判断する試験である。La+Ceを0.01
%以上含有する本発明鋼G、Iは製造上の障害と
なる熱間加工の困難がない。さらBを0.0028%添
加した本発明鋼Jでは高温においても割れの程度
が小さい。これに比し比較鋼Dは熱間加工は不可
能または極めて困難である。 以上述べたように、本発明鋼は温熱海水との接
触する使用において、とくにその溶接部の耐食性
に優れ、かつ製造性、加工性にも優れている。本
発明は当技術分野に新規な有用な材料を提供する
ものである。
[Table] A drop weight test is a test in which a cylindrical test piece with a diameter of 20 mm and a height of 30 mm is cut out from a cast steel ingot, heated (in this case, heated to each temperature listed in 2), and then placed on a surface plate. By dropping a weight weighing 200 kg onto the test piece from a height of 800 mm, the height becomes approximately 10 mm.
In this test, hot workability is determined by processing the material until it becomes . La + Ce 0.01
Steels G and I of the present invention containing % or more have no difficulty in hot working, which is a hindrance in manufacturing. Furthermore, steel J of the present invention to which 0.0028% of B was added has a small degree of cracking even at high temperatures. In comparison, hot working of Comparative Steel D is impossible or extremely difficult. As described above, the steel of the present invention has excellent corrosion resistance, especially in the welded portion, when used in contact with hot seawater, and is also excellent in manufacturability and workability. The present invention provides a new and useful material to the art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ,ロは比較鋼と本発明鋼の冷延板の溶
体化処理後の組織の、ハ,ニは比較鋼と本発明鋼
の溶接部の組織の400倍の顕微鏡写真である。第
2図は本発明鋼および比較鋼の溶接部の組織と
Cr当量とNi当量の関係を示す図である。第3図
は、本発明鋼と比較鋼の材料自身および溶接部の
50℃における耐孔食性試験の結果を示す図であ
る。第4図は、本発明鋼と比較鋼の3.5%NaCl溶
液中における温熱水温度における孔食電位の測定
結果を示す図である。第5図は本発明鋼と比較鋼
の沸騰1%HCl溶液中における耐食性を示す図で
ある。
Figures 1A and 1B are micrographs of the structures after solution treatment of cold-rolled sheets of comparative steel and inventive steel, and C and D are 400 times magnified micrographs of the structures of welded parts of comparative steel and inventive steel. Figure 2 shows the structures of the welds of the inventive steel and comparative steel.
FIG. 3 is a diagram showing the relationship between Cr equivalent and Ni equivalent. Figure 3 shows the materials themselves and welded parts of the inventive steel and comparative steel.
FIG. 3 is a diagram showing the results of a pitting corrosion resistance test at 50°C. FIG. 4 is a diagram showing the measurement results of the pitting corrosion potential of the steel of the present invention and the comparative steel in a 3.5% NaCl solution at a hot water temperature. FIG. 5 is a diagram showing the corrosion resistance of the present invention steel and comparative steel in a boiling 1% HCl solution.

Claims (1)

【特許請求の範囲】 1 重量%で、C:0.04%以下、Si:1.5%以下、
Mn:2.0%以下、Cr:18〜25%、Ni:20〜30%、
Mo:4〜8%、N:0.01〜0.3%、Al:0.02%以
下、La+Ce:0.01〜0.06%を含有し、残部Feお
よび不可避的不純物よりなり、かつ %Cr+%Mo+1.5×%Si/%Ni+30×(%C+%N)+0
.5×%Mn<1.08 なる関係を満足する組成を有することを特徴とす
る溶接部の耐食性にすぐれた完全オーステナイト
ステンレス鋼。 2 重量%で、C:0.04%以下、Si:1.5%以下、
Mn:2.0%以下、Cr:18〜25%、Ni:20〜30%、
Mo:4〜8%、N:0.01〜0.3%、Al:0.02%以
下、La+Ce:0.01〜0.06%、B:0.01%以下を含
有し、残部Feおよび不可避的不純物よりなり、
かつ %Cr+%Mo+1.5×%Si/%Ni+30×(%C+%N)+0
.5×%Mn<1.08 なる関係式を満足する組成を有することを特徴と
する溶接部の耐食性にすぐれた完全オーステナイ
トステンレス鋼。 3 重量%で、C:0.04%以下、Si:1.5%以下、
Mn:2.0%以下、Cr:18〜25%、Ni:20〜30%、
Mo:4〜8%、Cu:0.3〜3%、N:0.01〜0.3
%、Al:0.02%以下、La+Ce:0.01〜0.06%、
B:0.01%以下を含有し、残部Feおよび不可避的
不純物よりなり、かつ、 %Cr+%Mo+1.5×%Si/%Ni+30×(%C+%N)+0
.5×%Mn<1.08 なる関係式を満足する組成を有することを特徴と
する溶接部の耐食性にすぐれた完全オーステナイ
トステンレス鋼。
[Claims] 1% by weight, C: 0.04% or less, Si: 1.5% or less,
Mn: 2.0% or less, Cr: 18-25%, Ni: 20-30%,
Contains Mo: 4 to 8%, N: 0.01 to 0.3%, Al: 0.02% or less, La+Ce: 0.01 to 0.06%, the balance consists of Fe and unavoidable impurities, and %Cr+%Mo+1.5×%Si/ %Ni+30×(%C+%N)+0
Fully austenitic stainless steel with excellent corrosion resistance in welded parts, characterized by having a composition that satisfies the relationship: .5×%Mn<1.08. 2 In weight%, C: 0.04% or less, Si: 1.5% or less,
Mn: 2.0% or less, Cr: 18-25%, Ni: 20-30%,
Contains Mo: 4 to 8%, N: 0.01 to 0.3%, Al: 0.02% or less, La + Ce: 0.01 to 0.06%, B: 0.01% or less, and the balance consists of Fe and inevitable impurities,
and %Cr+%Mo+1.5×%Si/%Ni+30×(%C+%N)+0
Fully austenitic stainless steel with excellent corrosion resistance in welded parts, characterized by having a composition that satisfies the relational expression: .5×%Mn<1.08. 3 In weight%, C: 0.04% or less, Si: 1.5% or less,
Mn: 2.0% or less, Cr: 18-25%, Ni: 20-30%,
Mo: 4-8%, Cu: 0.3-3%, N: 0.01-0.3
%, Al: 0.02% or less, La+Ce: 0.01-0.06%,
B: Contains 0.01% or less, the balance consists of Fe and unavoidable impurities, and %Cr + %Mo + 1.5 x %Si / %Ni + 30 x (%C + %N) + 0
Fully austenitic stainless steel with excellent corrosion resistance in welded parts, characterized by having a composition that satisfies the relational expression: .5×%Mn<1.08.
JP5559381A 1981-04-15 1981-04-15 Perfect austenite stainless steel with superior corrosion resistance at weld zone Granted JPS57171651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5559381A JPS57171651A (en) 1981-04-15 1981-04-15 Perfect austenite stainless steel with superior corrosion resistance at weld zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5559381A JPS57171651A (en) 1981-04-15 1981-04-15 Perfect austenite stainless steel with superior corrosion resistance at weld zone

Publications (2)

Publication Number Publication Date
JPS57171651A JPS57171651A (en) 1982-10-22
JPS6358214B2 true JPS6358214B2 (en) 1988-11-15

Family

ID=13003051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5559381A Granted JPS57171651A (en) 1981-04-15 1981-04-15 Perfect austenite stainless steel with superior corrosion resistance at weld zone

Country Status (1)

Country Link
JP (1) JPS57171651A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3407305A1 (en) * 1984-02-24 1985-08-29 Mannesmann AG, 4000 Düsseldorf USE OF A CORROSION-RESISTANT AUSTENITIC ALLOY FOR MECHANICALLY STRESSED, WELDABLE COMPONENTS
US4824638A (en) * 1987-06-29 1989-04-25 Carondelet Foundry Company Corrosion resistant alloy
JPH0674490B2 (en) * 1987-09-09 1994-09-21 日本鋼管株式会社 Austenitic stainless steel for seawater resistance
JP2555243B2 (en) * 1992-03-23 1996-11-20 日本碍子株式会社 Edge polishing device
JP2716937B2 (en) * 1994-06-07 1998-02-18 日本冶金工業株式会社 High corrosion resistant austenitic stainless steel with excellent hot workability
US6576068B2 (en) * 2001-04-24 2003-06-10 Ati Properties, Inc. Method of producing stainless steels having improved corrosion resistance
SE525252C2 (en) * 2001-11-22 2005-01-11 Sandvik Ab Super austenitic stainless steel and the use of this steel
CN100447283C (en) * 2006-01-13 2008-12-31 宝山钢铁股份有限公司 Stainless teel casting material for anti-high temp, sulfide, ammonium salt corrosion and mfg. process thereof
CN102212758A (en) * 2011-05-24 2011-10-12 宣达实业集团有限公司 High-alloy stainless steel for impurity-containing dilute sulphuric acid medium and processing method thereof
DK2725112T3 (en) 2011-06-24 2018-11-26 Nippon Steel & Sumitomo Metal Corp COATING RESISTANT METAL MATERIALS AND USES OF THE COATING RESISTANT METAL MATERIAL

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508967A (en) * 1973-06-02 1975-01-29
JPS5295524A (en) * 1976-02-02 1977-08-11 Avesta Jernverks Ab Austenite stainless steel
JPS54141310A (en) * 1978-04-24 1979-11-02 Kobe Steel Ltd Austentic stainless steel with superior corrosion resistance and hot workability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508967A (en) * 1973-06-02 1975-01-29
JPS5295524A (en) * 1976-02-02 1977-08-11 Avesta Jernverks Ab Austenite stainless steel
JPS54141310A (en) * 1978-04-24 1979-11-02 Kobe Steel Ltd Austentic stainless steel with superior corrosion resistance and hot workability

Also Published As

Publication number Publication date
JPS57171651A (en) 1982-10-22

Similar Documents

Publication Publication Date Title
EP0545753B1 (en) Duplex stainless steel having improved strength and corrosion resistance
KR101256268B1 (en) Austenitic stainless steel
US5582656A (en) Ferritic-austenitic stainless steel
CA2743741C (en) Ferritic-austenitic stainless steel
EP2246454B1 (en) Carburization-resistant metal material
JP5186769B2 (en) Sulfuric acid dew-point corrosion steel
US4155752A (en) Corrosion-resistant ferritic chrome-molybdenum-nickel steel
JP4823930B2 (en) Acid corrosion resistant steel
KR20090078813A (en) Duplex stainless steel alloy and use of this alloy
CA3019556A1 (en) Welding structure member
RU2280707C2 (en) Duplex stainless steel, method of making such steel and industrial article made from this steel (versions)
US8865060B2 (en) Austenitic stainless steel
JPS6358214B2 (en)
JPH0121863B2 (en)
JPS635196B2 (en)
JPS61113749A (en) High corrosion resistance alloy for oil well
US4808371A (en) Exterior protective member made of austenitic stainless steel for a sheathing heater element
CA2070535A1 (en) Austenitic steel
JP2003166039A (en) Heat resistant austenitic steel excellent in characteristics for sensitization, high-temperature strength and corrosion resistance, and manufacturing method therefor
JPS6036466B2 (en) Ferritic-austenitic duplex stainless steel
JP3574903B2 (en) High alloy austenitic stainless steel with excellent hot workability
JP4082288B2 (en) Mo-containing austenitic stainless steel and method for producing the same
JPS6199661A (en) High strength and high toughness welded clad steel pipe for line pipe
JPS59211553A (en) High cr steel with superior toughness and superior strength at high temperature
JP2543801B2 (en) Coated arc welding rod for high Cr ferritic heat resistant steel