JP2716937B2 - High corrosion resistant austenitic stainless steel with excellent hot workability - Google Patents
High corrosion resistant austenitic stainless steel with excellent hot workabilityInfo
- Publication number
- JP2716937B2 JP2716937B2 JP6125176A JP12517694A JP2716937B2 JP 2716937 B2 JP2716937 B2 JP 2716937B2 JP 6125176 A JP6125176 A JP 6125176A JP 12517694 A JP12517694 A JP 12517694A JP 2716937 B2 JP2716937 B2 JP 2716937B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- hot workability
- corrosion resistance
- corrosion
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、熱間加工性に優れる高
耐食オーステナイトステンレス鋼に関し、特に海水熱交
換器や製紙プラントの漂白プロセス用材料として用いる
ときに好適な、いわゆる耐酸性、耐孔食性や耐すきま腐
食性、なかでも、塩化物による腐食に対して優れた抵抗
性を有すると共に熱間加工性にも優れるステンレス鋼に
ついて提案する。
【0002】
【従来の技術】近年、耐食材料に要求される品質のレベ
ルは、安全性やメインテナンスフリーによるコストパー
フォーマンスの観点から非常に高くなっており、これに
伴いステンレス鋼も高級化の要請が高まっている。
【0003】かかるステンレス鋼の耐食性については、
孔食、すきま腐食、応力腐食割れ、全面腐食、粒界腐食
等の指標がある。これらの品質指標の中で特に孔食、す
きま腐食は、ステンレス鋼の用途に関連して最も多く直
面する指標であり、特に海水熱交換器などのように塩素
イオン濃度が高く、かつ温度も高くなる環境条件でもこ
れらの耐食性が良好なものが、とりわけ重要である。
【0004】そこで、従来、耐孔食性やすきま腐食性を
向上させる方法として、CrおよびMo含有量を高くす
ることが知られていた。しかし合金元素としてのCr,
Mo含有量を高くすると、σ相などの金属間化合物が析
出し易く、耐食性の面などで安定した品質が得られがた
くなり、その上、熱間加工性が劣化して製造上の障害に
なるという問題が残る。
【0005】従って、高Cr高Moを含有する高合金に
ついては、耐食性の他σ相析出に対する組織安定性、熱
間加工性を考慮した総合的な合金設計が必要であり、こ
の意味で上述の既知技術は不充分である。
【0006】この点を克服する技術として従来、特公昭
60−23185 号として熱間加工性をも改善したものが提案
されている。しかし、この従来技術も量産化を考えた場
合極めて高い加工性が要求されるので改善の効果はなお
不充分である。
【0007】
【発明が解決しようとする課題】一般に、σ相など金属
間化合物が析出すると、機械的性質の劣化とともに耐食
性も劣化する。従って、オーステナイト組織を安定化さ
せる必要があり、NiやNなどオーステナイト生成元素
を所定量以上含有させねばならない。しかも、工業用材
料としては、耐食性や機械的性質などの品質の他に製造
が容易であることは不可欠な要因であり、特にMoやC
rを多く含有すると熱間加工性が低下するので、量産化
のためにはこの点に関しての解決が必要となるのであ
る。
【0008】要するに、本発明はSUS304やSUS316よりも
一段と優れた高Cr, Mo含有の高耐食合金の提案、す
なわち耐食性、σ相析出に対する組織安定性および熱間
加工性のいずれの点においても優れたオーステナイトス
テンレス鋼を提案することを目的としており、特に量産
化に必要な高い熱間加工性を有するオーステナイトステ
ンレス鋼を提供する。
【0009】
【課題を解決するための手段】本発明は、耐孔食性、耐
すきま腐食性など耐食性に優れかつ、組織的にも異相の
析出が出にくいオーステナイト組織について、さらに熱
間加工性にも優れたものを得ようとする場合に、鋼中の
酸素レベルが低いときBが極めて有効に作用して効果が
あると言う知見に基づいて完成を見たものである。
【0010】すなわち、高Cr高Mo含有鋼だと高温強
度が大きくなり加工性が劣化し、熱間加工時に粒界割れ
が生じ易くなる。しかし、Bを添加するとこのBが粒界
に析出して熱間加工性を向上させる。しかしこのBは、
鋼中の酸素とも結びつき易いため、酸素レベルが高い
と、粒界を強化するフリーBが少なくなり、Bの効果が
充分発揮されなくなる。
【0011】いわゆる発明者らは、B添加による熱間加
工性に対する効果が、Oレベルによって変わり、それが
60 ppm以下になると著しく向上することを見い出し、次
の事項を骨子とする発明を完成した。
【0012】すなわち、本発明の目的とする所は、C≦
0.030重量%、Si≦2.0重量%、Mn≦1.0
重量%、Cr:19〜30重量%、Ni:20重量%を
超え、30重量%以下、Mo:3.5重量%を超え、
6.0重量%未満、B:0.001〜0.010重量%
を含有し、かつ副成分としてW、VまたはCuの少なく
とも一種を合計で2.0重量%以下含有し、
【数3】
であり、そしてN:0.10〜0.40重量%、O≦
0.0060重量%、P≦0.040重量%、S≦0.
005重量%であって、残部がFeおよび不可避的不純
物よりなる熱間加工性に優れる高耐食オーステナイトス
テンレス鋼を提供するにある。
【0013】本発明の他の目的とする所は、C≦0.030
重量%、Si≦2.0 重量%、Mn≦1.0 重量%、Cr:
19〜30重量%、Ni:20重量%を超え30重量%以下、M
o:3.5 重量%を超え、6.0 重量%未満、B:0.001 〜
0.010 重量%およびMg≦0.05重量%を含有し、かつ、
W、VまたはCuの少なくとも一種を合計で2.0 重量%
以下含有し、
【数4】Cr+3Mo+20N≧40
Cr+2Mo+8Si+2Mn+W+3V
≦Ni+Cu+50N+6.4
であり、そしてN:0.10〜0.40重量%、O≦0.0060重量
%、P≦0.040 重量%、S≦0.005 重量%であって、残
部がFeおよび不可避的不純物よりなる熱間加工性に優
れる高耐食オーステナイトステンレス鋼を提供するにあ
る。
【0014】また、本発明によれば、上述した高耐食オ
ーステナイトステンレス鋼において、副成分としてMg
を0.05wt%以下含有させることができる。ここ
に、W,VまたはCuの少なくとも一種は、耐食性改善
成分として含有させるもので、この場合、組織の安定性
のための条件を
【数5】
とすることが必要である。
【0015】
【作用】以下に本発明オーステナイトステンレス鋼の成
分組成限定の理由について説明する。
C: 0.03 wt % (以下は「%」で略記する) より高い
と、溶接などの熱影響部にクロム炭化物が析出し粒界が
鋭敏化して耐食性が劣化する。
Si:耐孔食性など耐食性に有効ではあるが、2.0 %を
超えると、σ相などの金属間化合物の析出を著しく促進
し、かえって耐食性が劣化したり靭性が劣化する。
Mn : 1.0%を超えると、耐食性が劣化するとともに、
σ相などの析出を促進する。
Cr:耐食性に不可欠の元素で、19%を下廻ると高耐食
合金の特徴が失なわれる。一方、Crはσ相などの生成
を促進し、30%を超えると組織安定化のために高価なN
iなどの多量添加が必要となる。
Ni:σ相など異相の析出を抑える組織安定化元素とし
て極めて有効であり、20%以下になると組織が不安定と
なる。30%を超える添加は高価となる。
Mo:Crと同様に耐食性向上に不可欠な元素である。
その含有量が 3.5%以下になると、本来の耐食性が得ら
れない。しかし、Crと同様、6%以上となるとσ相な
どの異相の析出を促進するので組織安定化のためにNi
が多量に必要となる。
B: 熱間加工性向上に不可欠な元素であり、その効果を
発揮するには、0.001 %以上必要である。また、0.010
%を超えると逆に加工性を劣化させる。
Mg:Sを固定し、熱間加工性を向上する。ただし、0.
05%を超えると、高温で粒界に化合物を析出し逆に加工
性を劣化する。
N: 組織安定化および耐孔食性に極めて有効である。た
だし、0.10重量%より少いと十分な効果が得られず、0.
40%を超える添加は、鋳込み時のブローホールの生成、
高温強度が著しく高くなることによる加工性の劣化をま
ねく。
O:O含有量は、Bの熱間加工性改善効果に重要な影響
があり、B添加のもとでO含有量の限定が重要な意味を
持ってくる。
即ち、本発明合金のような完全オーステナイト組織にお
いてはSなどの不純物元素が粒界に析出し易く、熱間加
工性を劣化するが、B添加により、Sなどの有害な作用
を抑えることができる。これは、高温(熱間加工温度)
でBは、合金中で動き易く、Sが粒界に析出する前にB
が析出して、Sの粒界析出による熱間加工性劣化を抑制
する。しかし、Bは、Oとの親和力も大きく、合金中の
O含有量が高いと、BとOが結びついて、粒界に析出す
るフリーBが少なくなりBの熱間加工性改善効果が軽減
される。即ち、O含有量によって、Bの熱間加工性改善
効果に著しい変化があり、熱間加工性改善に寄与する合
金中のフリーBを確保するためには、O量を低く抑える
必要がある。一方、Oによって固定されるB量を超える
Bの添加により、合金中のフリーBを増加させることが
考えられるが、O含有量が多いとB添加量が増え、Bが
合金中の成分と化合物を形成して、逆に熱間加工性を劣
化させる。従って、熱間加工性を確保するためには、図
2に示すような適正量でBとOとを複合させることが必
要である。したがって、本発明鋼ではBの効果を著しく
高くして極めて優れた熱間加工性を確保するために、O
含有量を0.0060%以下に制限する必要がある。
【0016】P:Pは 0.040%を超えると熱間加工性、
溶接性が劣化する。
S:Sは 0.005%を超えると熱間加工性、溶接性、耐食
性を著しく劣化させる。Sは好ましくは0.001 %以下が
良い。
【0017】
【実施例】次に本発明鋼の特性について調べた実施例に
ついて説明する。この実施例で用いた供試材の成分組成
を表1に示す。この供試材(本発明鋼、比較鋼)は、誘
導炉にて10 kg の鋼塊とし、これを熱間鍛造した後焼
鈍、熱間圧延−焼鈍して得た。特性試験は次の方法に従
った。
【0018】(1) 熱間加工性評価: (70t× 100w×
l)mm 、10 kg インゴットを1250℃に加熱し、ハンマー
にて10t× 100w×lにし、端部に生じた最大割れ長さ
で評価した。
(2) 組織安定性:(2t)mm板溶体化処理材を10NのKOH
で電解エッチングし、顕微鏡観察により、析出物の量を
格子点法により測定した。
(3) 耐食性
【数6】【0019】いずれも腐食度で評価した。すきま腐食試
験片を図1に示す。図示の1は輪ゴム、2はガスケット
(テフロン柱)である。以下に試験の結果についてのべ
る。
【0020】(1) 熱間加工性について、
表1に示すように、本発明各鋼は、いずれにおいても、
熱間鍛造で割れが発生しておらず: 熱間加工性は極めて
良好であった。一方、比較各鋼においては、ボロンを含
有しない鋼A,Cおよびボロンを含有するが鋼中の酸素
含有量が60 ppmを超える鋼(B,E)あるいは、ボロン
含有量が0.01%を超える鋼(D,F,G)のいずれも割
れが発生している。特に、鋼中酸素含有量が高くなると
加工性の改善に効果のあるボロンが有効に働らかなくな
ることが判った。また、O濃度が60 ppmより低くてもB
を添加しない鋼(I)は割れが発生している。
【0021】(2) 組織安定性と耐食性について
組織安定性は、鋼に析出したσ相等の析出相量で評価
し、その結果を表1に示す。また、耐食性については表
2にその結果を示す。本発明鋼の場合はいずれも析出相
量は1%以下で低く、耐食性についても孔食試験、すき
ま腐食試験で腐食度は0.1 g/m2・ h以下と低く、全面腐
食試験で2.0 g/m2・ h以下であった。これに対して、比
較鋼は、析出相量は1%を超え、孔食およびすきま腐食
試験の腐食度は0.1 g/m2・h を超えており、耐酸性に対
しても比較鋼A,Bは2g/m2・h を超えていた。
【0022】図2は、この実施例の鋼について熱間加工
性に及ぼすBおよびO含有量の影響を調べた結果を示す
図で、熱間加工性は、Bおよび酸素量に依存し、Bは加
工性改善に有効であるが0.01%を超えると、逆に加工性
は劣化し、また、O含有量が60 ppmを超えると加工性は
著しく劣化することが確められ、B<0.001 %成分の場
合、酸素(O)が低くても割れが発生することが判る。
【0023】また、図3は、σ析出量に及ぼす各元素の
影響を示す図で、
【数7】
になると析出量は急増することが判った。さらに図4
は、耐食性に及ぼす各元素の影響を調べたもので、Cr
+3Mo+20Nが40%以上で耐食性が良くなること
が確認できた。
【0024】
【表1】【0025】
【表2】【0026】
【発明の効果】以上説明したように本発明によれば、B
とOの含有量を厳しく調整するという本発明において特
有な合金設計により、耐酸性の他、耐孔食、耐すきま腐
食などの耐食性に優れると共に熱間加工性にも優れたオ
ーステナイトステンレス鋼を工業的に安価に得ることが
できる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-corrosion-resistant austenitic stainless steel having excellent hot workability, particularly when used as a material for a bleaching process of a seawater heat exchanger or a papermaking plant. The present invention proposes a stainless steel which is suitable for so-called acid resistance, pitting corrosion resistance and crevice corrosion resistance, and has excellent resistance to corrosion by chlorides, and also excellent hot workability. 2. Description of the Related Art In recent years, the level of quality required for corrosion-resistant materials has become extremely high from the viewpoint of safety and cost performance due to maintenance-free operation. Is growing. [0003] Regarding the corrosion resistance of such stainless steel,
There are indexes such as pitting corrosion, crevice corrosion, stress corrosion cracking, general corrosion, and intergranular corrosion. Among these quality indices, pitting corrosion and crevice corrosion are the most frequently encountered indices related to the use of stainless steel, especially when the chloride ion concentration is high and the temperature is high, such as in seawater heat exchangers. What has good corrosion resistance under various environmental conditions is particularly important. Therefore, conventionally, as a method of improving pitting corrosion resistance and crevice corrosion resistance, it has been known to increase the contents of Cr and Mo. However, Cr as an alloying element,
If the Mo content is high, intermetallic compounds such as the σ phase are likely to precipitate, and it is difficult to obtain stable quality in terms of corrosion resistance, etc. In addition, hot workability is deteriorated and manufacturing problems are hindered. The problem remains. Therefore, for a high alloy containing high Cr and high Mo, it is necessary to design a comprehensive alloy in consideration of corrosion resistance, microstructure stability against σ phase precipitation, and hot workability. Known techniques are inadequate. [0006] As a technique for overcoming this point, a conventional technique has been disclosed in
Japanese Patent Application No. 60-23185 proposes an improved hot workability. However, this prior art also requires extremely high workability when considering mass production, and the effect of improvement is still insufficient. In general, when an intermetallic compound such as the σ phase is precipitated, the mechanical properties are deteriorated and the corrosion resistance is also deteriorated. Therefore, it is necessary to stabilize the austenite structure, and it is necessary to contain an austenite-forming element such as Ni or N in a predetermined amount or more. In addition, as an industrial material, easy production is an indispensable factor in addition to quality such as corrosion resistance and mechanical properties.
If a large amount of r is contained, the hot workability is reduced, so that a solution in this respect is necessary for mass production. In short, the present invention proposes a highly corrosion-resistant alloy containing much higher Cr and Mo than SUS304 and SUS316, that is, excellent in all aspects of corrosion resistance, structural stability against σ phase precipitation, and hot workability. It is an object of the present invention to provide an austenitic stainless steel having high hot workability necessary for mass production, in particular. SUMMARY OF THE INVENTION The present invention relates to an austenitic structure which is excellent in corrosion resistance such as pitting corrosion resistance and crevice corrosion resistance and in which a heterogeneous phase is hardly precipitated even in terms of structure. In order to obtain an excellent product, the present inventors have completed the present invention based on the finding that when the oxygen level in the steel is low, B acts very effectively and is effective. That is, if the steel contains high Cr and high Mo, the high-temperature strength increases, the workability deteriorates, and grain boundary cracks easily occur during hot working. However, when B is added, the B precipitates at the grain boundaries and improves hot workability. But this B is
Since it is easily associated with oxygen in steel, when the oxygen level is high, the amount of free B that strengthens the grain boundaries decreases, and the effect of B cannot be sufficiently exhibited. The inventors have found that the effect on the hot workability of the addition of B changes depending on the O level.
It has been found that when the concentration is reduced to 60 ppm or less, the invention is remarkably improved. That is, the object of the present invention is that C ≦
0.030% by weight, Si ≦ 2.0% by weight, Mn ≦ 1.0
% By weight, Cr: 19 to 30% by weight, Ni: Over 20% by weight, 30% by weight or less, Mo: Over 3.5% by weight,
Less than 6.0% by weight, B: 0.001 to 0.010% by weight
And at least one of W, V and Cu as an accessory component in a total amount of 2.0% by weight or less, And N: 0.10 to 0.40% by weight, O ≦
0.0060% by weight, P ≦ 0.040% by weight, S ≦ 0.
It is an object of the present invention to provide a highly corrosion-resistant austenitic stainless steel which is 005% by weight, the balance being Fe and inevitable impurities and having excellent hot workability. Another object of the present invention is that C ≦ 0.030.
Wt%, Si ≦ 2.0 wt%, Mn ≦ 1.0 wt%, Cr:
19-30% by weight, Ni: more than 20% by weight and 30% by weight or less, M
o: More than 3.5% by weight and less than 6.0% by weight, B: 0.001 to
0.010% by weight and Mg ≦ 0.05% by weight, and
2.0% by weight in total of at least one of W, V and Cu
Cr + 3Mo + 20N ≧ 40 Cr + 2Mo + 8Si + 2Mn + W + 3V ≦ Ni + Cu + 50N + 6.4, and N: 0.10 to 0.40% by weight, O ≦ 0.0060% by weight, P ≦ 0.040% by weight, S ≦ 0.005% by weight, and the balance Is to provide a high corrosion resistant austenitic stainless steel having excellent hot workability comprising Fe and unavoidable impurities. Further, according to the present invention, in the high corrosion resistant austenitic stainless steel described above, Mg
Can be contained at 0.05 wt% or less. Here, at least one of W, V and Cu is contained as a component for improving corrosion resistance. In this case, the condition for the stability of the structure is as follows: It is necessary to The reasons for limiting the composition of the austenitic stainless steel of the present invention will be described below. C: If it is higher than 0.03 wt% (hereinafter abbreviated as “%”), chromium carbide precipitates in a heat-affected zone such as welding, and the grain boundary becomes sharp, resulting in deterioration of corrosion resistance. Si: Effective for corrosion resistance such as pitting corrosion resistance, but if it exceeds 2.0%, precipitation of intermetallic compounds such as σ phase is remarkably promoted, and corrosion resistance and toughness are rather deteriorated. Mn: If it exceeds 1.0%, corrosion resistance deteriorates, and
Promotes precipitation of σ phase and the like. Cr: an element indispensable for corrosion resistance. If it is less than 19%, the characteristics of a high corrosion resistance alloy are lost. On the other hand, Cr promotes the formation of the σ phase and the like.
It is necessary to add a large amount such as i. Ni: Ni is extremely effective as a structure stabilizing element for suppressing the precipitation of a different phase such as the σ phase. When the content is 20% or less, the structure becomes unstable. Additions above 30% are expensive. Mo: Like Cr, it is an element indispensable for improving corrosion resistance.
If the content is less than 3.5%, the original corrosion resistance cannot be obtained. However, like Cr, when the content is 6% or more, precipitation of a different phase such as a σ phase is promoted.
Is required in large quantities. B: An element indispensable for improving hot workability, and 0.001% or more is required to exhibit its effect. Also, 0.010
%, On the contrary, the workability deteriorates. Fixes Mg: S and improves hot workability. However, 0.
If it exceeds 05%, the compound precipitates at the grain boundary at a high temperature, and on the contrary, the workability deteriorates. N: Extremely effective for stabilizing tissue and pitting resistance. However, if the content is less than 0.10% by weight, sufficient effects cannot be obtained.
Addition exceeding 40% generates blowholes during casting,
The workability is degraded due to the extremely high temperature strength. O: The O content has a significant effect on the hot workability improving effect of B, and the limitation of the O content under B addition has an important meaning. That is, in a perfect austenite structure such as the alloy of the present invention, impurity elements such as S are likely to precipitate at grain boundaries and deteriorate hot workability. However, by adding B, harmful effects such as S can be suppressed. . This is high temperature (hot working temperature)
B is easy to move in the alloy, and B is deposited before S precipitates at the grain boundary.
Precipitates to suppress deterioration of hot workability due to precipitation of S at the grain boundary. However, B also has a high affinity for O, and if the O content in the alloy is high, B and O are combined to reduce free B precipitated at grain boundaries, and the effect of improving hot workability of B is reduced. You. That is, depending on the O content, there is a remarkable change in the effect of improving the hot workability of B. In order to secure free B in the alloy that contributes to the improvement of the hot workability, it is necessary to keep the O content low. On the other hand, it is conceivable to increase the free B in the alloy by adding B in excess of the B amount fixed by O. However, when the O content is high, the B addition amount increases, and B becomes a component and a compound in the alloy. And, conversely, deteriorates hot workability. Therefore, in order to ensure hot workability, it is necessary to combine B and O in appropriate amounts as shown in FIG. Therefore, in the steel of the present invention, in order to significantly increase the effect of B and secure extremely excellent hot workability, O
It is necessary to limit the content to 0.0060% or less. P: Hot workability when P exceeds 0.040%,
Deterioration of weldability. S: If S exceeds 0.005%, hot workability, weldability, and corrosion resistance are significantly deteriorated. S is preferably 0.001% or less. Examples Next, examples in which the characteristics of the steel of the present invention were examined will be described. Table 1 shows the component compositions of the test materials used in this example. This test material (steel of the present invention, comparative steel) was obtained as a 10 kg steel ingot in an induction furnace, hot forging, annealing, hot rolling and annealing. The characteristic test was performed according to the following method. (1) Hot workability evaluation: (70t × 100w ×
l) A 10 kg ingot was heated to 1250 ° C., and made into 10 t × 100 w × l with a hammer, and evaluated by the maximum crack length generated at the end. (2) Tissue stability: (2t) mm plate solution treated with 10N KOH
, And the amount of the precipitate was measured by a lattice point method by microscopic observation. (3) Corrosion resistance [Equation 6] All were evaluated by the degree of corrosion. The crevice corrosion test piece is shown in FIG. 1 is a rubber band and 2 is a gasket (Teflon pillar). The test results are described below. (1) Regarding hot workability As shown in Table 1, each steel of the present invention
No cracks occurred during hot forging: hot workability was very good. On the other hand, in the comparative steels, steels A and C containing no boron and steels containing boron but having an oxygen content of more than 60 ppm (B, E) or steels having a boron content of more than 0.01% All of (D, F, G) have cracks. In particular, it has been found that when the oxygen content in steel increases, boron, which is effective in improving workability, does not work effectively. Even if the O concentration is lower than 60 ppm, B
The steel (I) to which Cr is not added has cracks. (2) Structure Stability and Corrosion Resistance The structure stability was evaluated by the amount of the precipitated phase such as the σ phase precipitated on the steel, and the results are shown in Table 1. Table 2 shows the results of the corrosion resistance. In the case of the steels of the present invention, the amount of precipitated phase was as low as 1% or less, and the corrosion resistance was as low as 0.1 g / m 2 · h or less in pitting corrosion test and crevice corrosion test, and 2.0 g / m m 2 · h or less. On the other hand, in the comparative steel, the amount of the precipitated phase exceeded 1%, the degree of corrosion in the pitting and crevice corrosion tests exceeded 0.1 g / m 2 · h, and the comparative steels A, B exceeded 2 g / m 2 · h. FIG. 2 is a graph showing the effect of the B and O contents on the hot workability of the steel of this example. The hot workability depends on the amounts of B and oxygen. Is effective for improving the workability, but when it exceeds 0.01%, the workability deteriorates conversely, and when the O content exceeds 60 ppm, the workability is remarkably deteriorated, and B <0.001% In the case of the component, it can be seen that cracking occurs even if oxygen (O) is low. FIG. 3 is a diagram showing the effect of each element on the σ precipitation amount. It was found that the amount of precipitation rapidly increased when the temperature reached. FIG. 4
Indicates the effect of each element on the corrosion resistance.
It was confirmed that the corrosion resistance was improved when + 3Mo + 20N was 40% or more. [Table 1] [Table 2] As described above, according to the present invention, B
The austenitic stainless steel, which has excellent corrosion resistance such as pitting corrosion and crevice corrosion resistance, as well as excellent hot workability, in addition to acid resistance, is manufactured by the unique alloy design of the present invention in which the contents of chromium and O are strictly adjusted. It can be obtained at low cost.
【図面の簡単な説明】
【図1】図1の(a),(b)は、すきま腐食試験片の
正面図および側面図である。
【図2】図2は、熱間加工性に及ぼすB,Oの影響を示
すグラフである。
【図3】図3は、σ相析出量と各成分組成との関係を示
すグラフである。
【図4】図4は、耐孔食性と各成分組成との関係を示す
グラフである。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) and (b) are a front view and a side view of a crevice corrosion test piece. FIG. 2 is a graph showing the influence of B and O on hot workability. FIG. 3 is a graph showing the relationship between the σ phase precipitation amount and the composition of each component. FIG. 4 is a graph showing the relationship between pitting corrosion resistance and composition of each component.
Claims (1)
≦1.0重量%、Cr:19〜30重量%、Ni:20
重量%を超え、30重量%以下、Mo:3.5重量%を
超え、6.0重量%未満、B:0.001〜0.010
重量%を含有し、かつ副成分としてW、VまたはCuの
少なくとも一種を合計で2.0重量%以下含有し、 【数1】 であり、そしてN:0.10〜0.40重量%、O≦
0.0060重量%、P≦0.040重量%、S≦0.
005重量%であって、残部がFeおよび不可避的不純
物よりなる熱間加工性に優れる高耐食オーステナイトス
テンレス鋼。 2.C≦0.030重量%、Si≦2.0重量%、Mn
≦1.0重量%、Cr:19〜30重量%、Ni:20
重量%を超え30重量%以下、Mo:3.5重量%を超
え、6.0重量%未満、B:0.001〜0.010重
量%およびMg≦0.05重量%を含有し、かつ、W、
VまたはCuの少なくとも一種を合計で2.0重量%以
下含有し、 【数2】 であり、そしてN:0.10〜0.40重量%、O≦
0.0060重量%、P≦0.040重量%、S≦0.
005重量%であって、残部がFeおよび不可避的不純
物よりなる熱間加工性に優れる高耐食オーステナイトス
テンレス鋼。(57) [Claims] C ≦ 0.030% by weight, Si ≦ 2.0% by weight, Mn
≦ 1.0% by weight, Cr: 19 to 30% by weight, Ni: 20
More than 30% by weight, Mo: more than 3.5% by weight, less than 6.0% by weight, B: 0.001 to 0.010
% By weight, and at least one of W, V and Cu as an accessory component in a total amount of 2.0% by weight or less. And N: 0.10 to 0.40% by weight, O ≦
0.0060% by weight, P ≦ 0.040% by weight, S ≦ 0.
005% by weight, the balance being Fe and unavoidable impurities. 2. C ≦ 0.030% by weight, Si ≦ 2.0% by weight, Mn
≦ 1.0% by weight, Cr: 19 to 30% by weight, Ni: 20
More than 30% by weight, Mo: more than 3.5% by weight and less than 6.0% by weight, B: 0.001 to 0.010% by weight and Mg ≦ 0.05% by weight, and , W,
Containing at least one kind of V or Cu in a total amount of 2.0% by weight or less; And N: 0.10 to 0.40% by weight, O ≦
0.0060% by weight, P ≦ 0.040% by weight, S ≦ 0.
005% by weight, the balance being Fe and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6125176A JP2716937B2 (en) | 1994-06-07 | 1994-06-07 | High corrosion resistant austenitic stainless steel with excellent hot workability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6125176A JP2716937B2 (en) | 1994-06-07 | 1994-06-07 | High corrosion resistant austenitic stainless steel with excellent hot workability |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14028686A Division JPS62297443A (en) | 1986-06-18 | 1986-06-18 | Austenitic stainless steel having superior hot workability and high corrosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07157851A JPH07157851A (en) | 1995-06-20 |
JP2716937B2 true JP2716937B2 (en) | 1998-02-18 |
Family
ID=14903781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6125176A Expired - Lifetime JP2716937B2 (en) | 1994-06-07 | 1994-06-07 | High corrosion resistant austenitic stainless steel with excellent hot workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2716937B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002069591A (en) * | 2000-09-01 | 2002-03-08 | Nkk Corp | High corrosion resistant stainless steel |
JP5005298B2 (en) * | 2006-09-05 | 2012-08-22 | 新日鐵住金ステンレス株式会社 | High Ni, Cr containing austenitic stainless steel wire |
KR20210028382A (en) * | 2019-09-04 | 2021-03-12 | 주식회사 포스코 | High corrosion resistant austenitic stainless steel with excellent impact toughness and hot workability |
KR102463031B1 (en) * | 2020-11-24 | 2022-11-03 | 주식회사 포스코 | High corrosion resistant austenitic stainless steel |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE411130C (en) * | 1976-02-02 | 1985-09-09 | Avesta Jernverks Ab | AUSTENITIC STAINLESS STEEL WITH HIGH MO CONTENT |
JPS5910426B2 (en) * | 1978-04-24 | 1984-03-08 | 株式会社神戸製鋼所 | Fully austenitic stainless steel with excellent crevice corrosion resistance and hot workability. |
JPS5521547A (en) * | 1978-08-01 | 1980-02-15 | Hitachi Metals Ltd | Austenite stainless steel having high strength and pitting corrosion resistance |
JPS57171651A (en) * | 1981-04-15 | 1982-10-22 | Nisshin Steel Co Ltd | Perfect austenite stainless steel with superior corrosion resistance at weld zone |
JPS59226155A (en) * | 1983-06-03 | 1984-12-19 | Kawasaki Steel Corp | High-alloy stainless steel with high corrosion resistance and superior hot workability |
JPS59226151A (en) * | 1983-06-03 | 1984-12-19 | Kawasaki Steel Corp | Austenitic high-alloy stainless steel with superior weldability and hot workability |
-
1994
- 1994-06-07 JP JP6125176A patent/JP2716937B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07157851A (en) | 1995-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8137613B2 (en) | Austenitic stainless steel welded joint and austenitic stainless steel welding material | |
JP4803174B2 (en) | Austenitic stainless steel | |
JP5870201B2 (en) | Duplex stainless steel | |
JP3647861B2 (en) | Ferritic-austenitic stainless steel and its use | |
JP3271262B2 (en) | Duplex stainless steel with excellent corrosion resistance | |
KR100545301B1 (en) | A ferritic-austenitic steel alloy | |
KR20090078813A (en) | Duplex stainless steel alloy and use of this alloy | |
JP5088455B2 (en) | Duplex stainless steel | |
JP3424599B2 (en) | Austenitic stainless steel with excellent hot workability | |
JP2716937B2 (en) | High corrosion resistant austenitic stainless steel with excellent hot workability | |
JP3746877B2 (en) | Stainless steel wire for springs with excellent corrosion resistance and spring characteristics | |
JP2774709B2 (en) | Sulfuric acid dew point corrosion resistant stainless steel with excellent hot workability | |
JPS62297443A (en) | Austenitic stainless steel having superior hot workability and high corrosion resistance | |
JP2607594B2 (en) | Coated arc welding rod for Cr-Mo low alloy steel | |
JPH07138708A (en) | Austenitic steel good in high temperature strength and hot workability | |
JPH0543986A (en) | High chromium ferritic heat resisting steel reduced in deterioration in strength in weld heat-affected zone | |
JP2970432B2 (en) | High temperature stainless steel and its manufacturing method | |
JP5098552B2 (en) | Duplex stainless steel, and steel bar, steel wire, wire rod, and steel parts using the same | |
RU76647U1 (en) | SHAFT (OPTIONS) | |
JP2833385B2 (en) | Corrosion resistant austenitic Fe-based alloy | |
JPS5928622B2 (en) | Austenitic stainless steel for high temperature and low chlorine concentration environments | |
JP3890223B2 (en) | Austenitic stainless steel | |
JP2726591B2 (en) | High corrosion resistance, high strength, high toughness duplex stainless steel | |
JPH0717988B2 (en) | Ferritic stainless steel with excellent toughness and corrosion resistance | |
JP7194012B2 (en) | Ni-Cu alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |