JP2008202080A - Vacuum vessel structure and repairing method of vacuum-degassing facility - Google Patents

Vacuum vessel structure and repairing method of vacuum-degassing facility Download PDF

Info

Publication number
JP2008202080A
JP2008202080A JP2007037853A JP2007037853A JP2008202080A JP 2008202080 A JP2008202080 A JP 2008202080A JP 2007037853 A JP2007037853 A JP 2007037853A JP 2007037853 A JP2007037853 A JP 2007037853A JP 2008202080 A JP2008202080 A JP 2008202080A
Authority
JP
Japan
Prior art keywords
tank
vacuum
vacuum degassing
intermediate tank
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007037853A
Other languages
Japanese (ja)
Other versions
JP5181489B2 (en
Inventor
Makoto Kato
誠 加藤
Hisaki Kato
久樹 加藤
Shinya Yoshimitsu
信也 吉光
Yoshiyuki Nakamura
善幸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007037853A priority Critical patent/JP5181489B2/en
Publication of JP2008202080A publication Critical patent/JP2008202080A/en
Application granted granted Critical
Publication of JP5181489B2 publication Critical patent/JP5181489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the vacuum vessel structure of a vacuum-degassing facility with which even in the case of needing the repair of a lining refractory layer in the upper vessel, the upper vessel can be replaced with the upper vessel having sound lining refractory layer in an extremely short operation stopping time. <P>SOLUTION: The structure of the vacuum vessel 5 of the vacuum-degassing facility 1 is provided with: the upper vessel 6 having a raw material charging port 14 and a duct 13 for exhaust gas; a lower vessel 9 having submerging tubes 10, 11 to be submerged into molten steel and to hold the molten steel 3; and intermediate vessels 7, 8 arranged in between the upper vessel and the lower vessel so as to be attachable to and detachable from the upper vessel and the lower vessel. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、溶鋼の精錬炉として使用されているRH真空脱ガス装置やDH真空脱ガス装置などの真空脱ガス設備の真空槽の構造、並びに、真空脱ガス設備の補修方法に関するものである。   The present invention relates to a structure of a vacuum tank of a vacuum degassing equipment such as an RH vacuum degassing apparatus and a DH vacuum degassing apparatus used as a molten steel refining furnace, and a repair method of the vacuum degassing equipment.

鋼の高級化並びに用途の拡大化に伴って、近年、真空脱ガス精錬を必要とする鋼種は益々増加しており、製鋼精錬工程においては、RH真空脱ガス装置やDH真空脱ガス装置などの真空脱ガス設備が広く使用されている。この真空脱ガス設備のうちで、RH真空脱ガス装置の真空槽は、天蓋を有する上部槽と、その下方に位置する下部槽とから構成され、下部槽には、溶鋼吸い上げ用及び溶鋼排出用の2本の浸漬管(上昇側浸漬管及び下降側浸漬管)が設けられている。上部槽及び下部槽の内面は耐火物で内張りされている。   In recent years, with the upgrading of steel and the expansion of applications, the number of steel types that require vacuum degassing refining is increasing, and in the steelmaking refining process, RH vacuum degassing equipment, DH vacuum degassing equipment, etc. Vacuum degassing equipment is widely used. Among these vacuum degassing equipment, the vacuum tank of the RH vacuum degassing apparatus is composed of an upper tank having a canopy and a lower tank positioned below the upper tank, and the lower tank is for sucking molten steel and discharging molten steel These two dip tubes (an ascending side dip tube and a descending side dip tube) are provided. The inner surfaces of the upper and lower tanks are lined with refractory.

このRH真空脱ガス装置では、上昇側浸漬管及び下降側浸漬管をそれぞれ取鍋内の溶鋼中に浸漬させ、そして上昇側浸漬管の内部にArガスなどの不活性ガスを吹き込むことで、溶鋼を上昇側浸漬管を通じて真空槽内に上昇させ、そして上昇した溶鋼を下降側浸漬管を通じて下方の取鍋内に戻し、これを繰返して溶鋼を環流させ、そして、真空槽内で溶鋼の脱ガス処理などの精錬を行っている。   In this RH vacuum degassing apparatus, the ascending-side dip tube and the descending-side dip tube are each immersed in the molten steel in the ladle, and an inert gas such as Ar gas is blown into the ascending-side dip tube, so that the molten steel Is raised into the vacuum chamber through the rising side dip tube, and the elevated molten steel is returned to the lower ladle through the lower side dip tube, and this is repeated to circulate the molten steel, and the molten steel is degassed in the vacuum vessel. Refining such as processing.

ところで、このRH真空脱ガス装置で精錬する場合、溶鋼と接するのは主として下部槽であり、従って下部槽の内張り耐火物層の溶損速度が大きい。そこで、下部槽については脱着式とし、溶損状況に応じて下部槽を上部槽から取り外し、別の下部槽を取り付けて操業の続行を可能としている。この場合にRH真空脱ガス装置の操業休止時間は十数時間であり、それほどには長くならない。   By the way, when refining with this RH vacuum degassing apparatus, it is mainly the lower tank that comes into contact with the molten steel, and therefore the erosion rate of the refractory layer of the inner lining of the lower tank is large. Therefore, the lower tank is detachable, the lower tank is removed from the upper tank according to the state of melting, and another lower tank is attached to allow the operation to continue. In this case, the operation stop time of the RH vacuum degassing apparatus is a dozen hours, which is not so long.

一方、上部槽は、下部槽に比べて内張り耐火物層の溶損の程度は少ないものの、特に上部槽の下端部の内張り耐火物層は、精錬中に飛散する溶鋼スプラッシュやスラグが付着し、これらの付着物を溶解処理する際に発生する酸化鉄によって溶損が進行する。また、上部槽の側壁に溶鋼成分調整用の合金鉄や生石灰などのフラックスを投入するための原料投入口が設置されている場合には、投入される合金鉄などが衝突することによって原料投入口の対面の側壁耐火物が損傷することがある。従って、上部槽についても、下部槽に比べると頻度は少ないものの、定期的な補修を行っている。   On the other hand, although the upper tank has less erosion of the lining refractory layer than the lower tub, the inner refractory layer at the lower end of the upper tub adheres to the molten steel splash and slag that are scattered during refining, The erosion progresses due to iron oxide generated when these deposits are dissolved. In addition, when a raw material input port for introducing a flux of alloy iron or quick lime for adjusting the molten steel composition is installed on the side wall of the upper tank, the raw material input port is caused by the collision of the introduced alloy iron or the like The opposite side wall refractories may be damaged. Therefore, although the frequency of the upper tank is less than that of the lower tank, it is periodically repaired.

しかしながら、この上部槽の内張り耐火物層の補修は、上部槽を現場に設置した状態のまま、上部槽の内部に足場を設置し、作業者が狭い上部槽の内部に入って先ず古い内張り耐火物層を解体除去し、その後、同じく上部槽の内部において耐火煉瓦を1つ1つ手積み施工して行くことにより行われている。内部に作業者が入ることから、上部槽の冷却期間が必要であり、また、上部槽内部は狭い空間であるために複数の作業者が同時に入って作業をすることは困難であり、そのために上部槽の補修には、1週間程度の長時間を要している。その間、RH真空脱ガス装置は操業停止しなければならず、製造工程を阻害する大きな原因の1つとなっていた。   However, the repair of the lining refractory layer of the upper tub is done by installing a scaffold inside the upper tub while the upper tub is installed on the site, and when the worker enters the inside of the narrow upper tub, The material layer is dismantled and removed, and then the refractory bricks are manually stacked one by one in the upper tank. Because the worker enters the inside, it is necessary to cool the upper tank, and since the inside of the upper tank is a narrow space, it is difficult for multiple workers to enter and work at the same time. Repairing the upper tank takes a long time of about one week. In the meantime, the RH vacuum degassing apparatus had to be shut down, which was one of the major causes that hindered the manufacturing process.

上記説明は、RH真空脱ガス装置を例として説明したが、この問題は2分割方式の真空槽を有するDH真空脱ガス装置においても共通して生じる問題である。   In the above description, the RH vacuum degassing apparatus has been described as an example. However, this problem also occurs in common with a DH vacuum degassing apparatus having a two-divided vacuum chamber.

その対策として、RH真空脱ガス装置を、上部槽を2基有するツインベッセル(Twin Vessel)タイプとして構成し、その一方を稼動させ、他方をオフラインでの内張り耐火物層の施工とし、これによって操業停止時間を短縮するといった方法もあるが、この場合には上部槽2基分の空間が必要となるため、新規にRH真空脱ガス装置を設置する場合でないと実現できないという問題点があり、また、2つの上部槽が必要であることから設備費が高価になるという問題点もある。   As a countermeasure, the RH vacuum degassing unit is configured as a Twin Vessel type with two upper tanks, one of which is operated, and the other is operated as an off-line refractory layer construction. Although there is a method of shortening the stop time, in this case, since a space for two upper tanks is required, there is a problem that it cannot be realized unless a new RH vacuum degassing apparatus is installed. Since two upper tanks are required, there is also a problem that the equipment cost becomes expensive.

そこで、上部槽の補修時間を短縮するための手段が提案されている。例えば、特許文献1には、上部槽の内張り耐火物層を形成する煉瓦ブロックを、複数の耐火煉瓦を組み合せて予め炉外で形成しておき、補修すべき古い内張り耐火物層を解体除去した後、前記煉瓦ブロックを上部槽の周方向に繋いで施工して新規の内張り耐火物層を形成する方法が提案されている。また、特許文献2には、上部槽の内部に上方から装入可能であり、起伏、旋回及び進退自在なブレーカーを備えた、内張り耐火物層の表面に付着した地金・滓の除去或いは内張り耐火物層自体を打崩すことが可能な解体装置が提案されている。
特開2005−48240号公報 特開2005−146356号公報
Therefore, means for reducing the repair time of the upper tank has been proposed. For example, in Patent Document 1, a brick block that forms the lining refractory layer of the upper tank is formed in advance outside the furnace by combining a plurality of refractory bricks, and the old lining refractory layer to be repaired is dismantled and removed. Thereafter, a method of forming a new lining refractory layer by connecting the brick blocks in the circumferential direction of the upper tub has been proposed. Further, Patent Document 2 discloses the removal or lining of metal bullion or lining adhering to the surface of the lining refractory layer, which can be inserted into the upper tank from above, and is provided with a breaker that can be swung, swung, and retreated. A dismantling device that can break down the refractory layer itself has been proposed.
JP 2005-48240 A JP 2005-146356 A

特許文献1及び特許文献2によって、上部槽を1基のみ有するRH真空脱ガス装置における上部槽の補修時間は短縮されたが、特許文献1及び特許文献2ともに、補修すべき上部槽を現場に設置したままの状態で内張り耐火物層の補修を行うので、一括交換する下部槽に比べると、相変わらず長時間を必要とし、RH真空脱ガス装置の稼働率を低下させる主たる原因となっていた。   According to Patent Document 1 and Patent Document 2, although the repair time of the upper tank in the RH vacuum degassing apparatus having only one upper tank has been shortened, both Patent Document 1 and Patent Document 2 have the upper tank to be repaired in the field. Since the lining refractory layer is repaired in the state where it is installed, it still requires a long time as compared with the lower tank to be replaced at once, which has been the main cause of lowering the operating rate of the RH vacuum degassing apparatus.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、上部槽の内張り耐火物層の補修が必要であっても、極めて短い操業停止時間の間に、健全な内張り耐火物層を有する上部槽に交換することのできる、真空脱ガス設備の真空槽構造及び補修方法を提供することである。   The present invention has been made in view of the above circumstances, and the purpose thereof is to provide a sound lining refractory during a very short operation stoppage time even if the lining refractory layer of the upper tank is required to be repaired. The object is to provide a vacuum tank structure and a repair method for a vacuum degassing facility that can be replaced with an upper tank having a layer.

本発明者等は、上記課題を解決するべく鋭意検討・研究を行った。その結果、上部槽の内張り耐火物層において補修が必要な箇所は、下部槽に流入する溶鋼のスプラッシュが飛散する上部槽の下端部分、具体的には下部槽との接合部から600〜1000mm程度上方までの部分、及び、上部槽の側壁に設置された原料投入口から投入される合金鉄などが衝突する、原料投入口からおよそ1500mm下方側の、原料投入口に相対する側壁部分であり、その他の部分は定期的な補修は必要ないことが分かった。   The present inventors have intensively studied and studied to solve the above problems. As a result, in the lining refractory layer of the upper tank, the place where repair is necessary is about 600 to 1000 mm from the lower end part of the upper tank where the splash of molten steel flowing into the lower tank scatters, specifically, the joint with the lower tank The upper part and the side wall part facing the raw material inlet, approximately 1500 mm below the raw material inlet, where the iron alloy and the like introduced from the raw material inlet installed on the side wall of the upper tank collide, It was found that other parts do not need periodic repairs.

そこで、これらの内張り耐火物層の損傷が激しい範囲を上部槽から分割できるように真空槽を構成し、その部分を熱間状態のままとして予めオフラインで内張り耐火物層を施工したものと交換することによって、上部槽の冷却期間、上部槽内での内張り耐火物層の解体・施工作業が不要となり、操業停止時間を大幅に短縮できるとの知見を得た。   Therefore, the vacuum tank is configured so that the severely damaged area of the lining refractory layer can be divided from the upper tank, and the part is left in a hot state and replaced with a previously constructed off-line refractory layer. As a result, it was found that the cooling time of the upper tank, the dismantling and construction work of the lining refractory layer in the upper tank became unnecessary, and the operation stop time could be greatly shortened.

本発明は、上記知見に基づいてなされたものであり、第1の発明に係る真空脱ガス設備の真空槽構造は、原料投入口及び排気用ダクトを有する上部槽と、溶鋼中に浸漬させる浸漬管を有し、溶鋼を保持するための下部槽と、前記上部槽と前記下部槽との間に設けられた、上部槽及び下部槽に対して脱着可能な中間槽と、を備えることを特徴とするものである。   The present invention has been made on the basis of the above knowledge, and the vacuum tank structure of the vacuum degassing equipment according to the first invention includes an upper tank having a raw material inlet and an exhaust duct, and an immersion immersed in molten steel. A lower tank for holding molten steel, and an intermediate tank that is provided between the upper tank and the lower tank and is detachable from the upper tank and the lower tank. It is what.

第2の発明に係る真空脱ガス設備の真空槽構造は、第1の発明において、前記中間槽は、下部側の第一中間槽と上部側の第二中間槽との上下2段に分割され、第一中間槽と第二中間槽とは脱着可能であることを特徴とするものである。   The vacuum tank structure of the vacuum degassing equipment according to the second invention is the vacuum tank structure according to the first invention, wherein the intermediate tank is divided into upper and lower two stages of a lower first intermediate tank and an upper second intermediate tank. The first intermediate tank and the second intermediate tank are detachable.

第3の発明に係る真空脱ガス設備の真空槽構造は、第2の発明において、前記第一中間槽の鉛直方向高さは600〜1000mmであることを特徴とするものである。   The vacuum tank structure of the vacuum degassing facility according to the third invention is characterized in that, in the second invention, the vertical height of the first intermediate tank is 600 to 1000 mm.

第4の発明に係る真空脱ガス設備の真空槽構造は、第2または第3の発明において、前記第二中間槽の鉛直方向高さは、1200〜1800mmであることを特徴とするものである。   The vacuum tank structure of the vacuum degassing equipment according to the fourth invention is characterized in that, in the second or third invention, the vertical height of the second intermediate tank is 1200 to 1800 mm. .

第5の発明に係る真空脱ガス設備の補修方法は、第1ないし第4の発明の何れか1つに記載の真空槽構造を有する真空脱ガス設備において、補修を必要とする真空槽の部分を熱間状態で交換することを特徴とするものである。   A vacuum degassing equipment repair method according to a fifth aspect of the present invention is the vacuum degassing equipment having the vacuum tank structure according to any one of the first to fourth inventions, wherein the vacuum tank portion requiring repair Is exchanged in a hot state.

本発明によれば、RH真空脱ガス装置などの真空脱ガス設備の真空槽において、下部槽は当然のこととして、従来の上部槽の部位であっても、内張り耐火物層の損傷の激しい部分を分割可能な構造としたので、その部分を熱間状態のままとして予めオフラインで内張り耐火物槽を施工したものと交換することが可能となり、その結果、上部槽の冷却期間、上部槽内での内張り耐火物層の解体・施工作業が不要となり、真空槽の内張り耐火物層の補修に際して、従来に比べて操業停止時間を大幅に短縮することが可能となる。   According to the present invention, in the vacuum tank of the vacuum degassing equipment such as the RH vacuum degassing apparatus, the lower tank is, of course, the portion of the conventional upper tank where the lining refractory layer is severely damaged. It is possible to replace the part with a refractory tank that has been lined off-line in advance while maintaining that part in a hot state. This eliminates the need for dismantling and construction work for the lining refractory layer, and for the repair of the lining refractory layer in the vacuum chamber, it is possible to significantly reduce the operation stop time compared to the conventional case.

以下、本発明を図面に基づき具体的に説明する。図1は、本発明に係る真空槽を備えたRH真空脱ガス装置の概略縦断面である。   Hereinafter, the present invention will be specifically described with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view of an RH vacuum degassing apparatus equipped with a vacuum chamber according to the present invention.

図1に示すように、RH真空脱ガス装置1の真空槽5は、鉛直方向上方側から順に、上部槽6、第二中間槽7、第一中間槽8及び下部槽9の4つの部分で構成されている。これらの上部槽6、第二中間槽7、第一中間槽8及び下部槽9は、外殻を鉄皮15とし、鉄皮15の内部には、耐火煉瓦の施工された内張り耐火物層16が形成されている。上部槽6は1基のみであり固定されていて移動できないが、上部槽6と第二中間槽7との接合部、第二中間槽7と第一中間槽8との接合部、及び、第一中間槽8と下部槽9との接合部は何れもフランジ構造となっており、これらの任意の位置で脱着可能な構造になっている。つまり、真空槽5から下部槽9のみを外すことも、下部槽9と第一中間槽8とを連結させた状態で外すことも、下部槽9と第一中間槽8と第二中間槽7とを連結させた状態で外すことも、何れも可能な構造となっている。当然ながら、下部槽9、第一中間槽8及び第二中間槽7を1つずつ外すことも可能である。   As shown in FIG. 1, the vacuum tank 5 of the RH vacuum degassing apparatus 1 includes four parts of an upper tank 6, a second intermediate tank 7, a first intermediate tank 8, and a lower tank 9 in order from the upper side in the vertical direction. It is configured. The upper tank 6, the second intermediate tank 7, the first intermediate tank 8, and the lower tank 9 have a shell 15 as an outer shell, and a refractory layer 16 lining a refractory brick in which a refractory brick is constructed. Is formed. There is only one upper tank 6 that is fixed and cannot move, but the joint between the upper tank 6 and the second intermediate tank 7, the joint between the second intermediate tank 7 and the first intermediate tank 8, and the first The joint portion between the one intermediate tank 8 and the lower tank 9 has a flange structure, and is structured to be removable at these arbitrary positions. That is, removing only the lower tank 9 from the vacuum tank 5, or removing the lower tank 9 and the first intermediate tank 8 in a connected state, the lower tank 9, the first intermediate tank 8, and the second intermediate tank 7. Both of them can be removed in a connected state. Of course, it is possible to remove the lower tank 9, the first intermediate tank 8, and the second intermediate tank 7 one by one.

そして、上部槽6には、排気装置(図示せず)と接続する排気用のダクト13、及び、真空槽5の内部に成分調整用合金鉄などを投入するための原料投入口14が設けられ、下部槽9の下部には上昇側浸漬管10及び下降側浸漬管11が設けられている。上昇側浸漬管10には環流用ガスを吹き込むための環流用ガス吹き込みノズル12が設けられている。環流用ガス吹き込みノズル12からは環流用ガスとしてArガスなどの不活性ガスが上昇側浸漬管10の内部に吹き込まれる構造となっている。尚、図1では環流用ガス吹き込みノズル12を1本のみ記載しているが、上昇側浸漬管10にはその円周方向に、1つの供給管から枝分かれした複数個の環流用ガス吹き込みノズル12が、その吐出方向を上昇側浸漬管10の中心部に向けた水平方向として設置されている。また、図1では環流用ガス吹き込みノズル12の吐出方向を上昇側浸漬管10の中心部に向けた水平方向としているが、上向きまたは下向きにする、若しくは中心に向かう方向から水平方向へ傾斜させた方向としてもよい。   The upper tank 6 is provided with an exhaust duct 13 connected to an exhaust device (not shown), and a raw material inlet 14 for introducing the component adjusting alloy iron into the vacuum tank 5. A lower side dip tube 10 and a lower side dip tube 11 are provided below the lower tank 9. The ascending-side dip tube 10 is provided with a circulating gas blowing nozzle 12 for blowing the circulating gas. From the recirculation gas blowing nozzle 12, an inert gas such as Ar gas is blown into the ascending-side dip tube 10 as a recirculation gas. Although only one recirculation gas blowing nozzle 12 is shown in FIG. 1, a plurality of recirculation gas blowing nozzles 12 branched from one supply pipe in the circumferential direction of the ascending-side dip pipe 10. However, the discharge direction is set as a horizontal direction toward the center of the ascending-side dip tube 10. Further, in FIG. 1, the discharge direction of the circulating gas blowing nozzle 12 is the horizontal direction toward the center of the ascending-side dip tube 10, but it is upward or downward or inclined from the direction toward the center to the horizontal direction. It is good also as a direction.

このような構成のRH真空脱ガス装置1において、転炉や電気炉などで精錬した溶鋼3を収容する取鍋2を真空槽5の直下に搬送し、昇降装置(図示せず)で取鍋2を上昇させ、上昇側浸漬管10及び下降側浸漬管11を取鍋2に収容された溶鋼3に浸漬させる。取鍋2には転炉や電気炉などにおける精錬で発生したスラグ4が一部混入し、溶鋼3の湯面を覆っている。そして、環流用ガス吹き込みノズル12から上昇側浸漬管10の内部にArガスなどの不活性ガスを環流用ガスとして吹き込む。この環流用ガスの吹き込みに前後して、真空槽5の内部を、ダクト13を介して排気装置で排気して真空槽5の内部を減圧する。真空槽5の内部が減圧されると、取鍋2に収容された溶鋼3は、環流用ガス吹き込みノズル12から吹き込まれる環流ガスの気泡17とともにガスリフトポンプの原理によって上昇側浸漬管10を上昇して真空槽5に流入し、その後、下降側浸漬管11を介して取鍋2に戻る流れ、所謂、環流を形成して、脱水素処理、脱窒素処理、脱炭処理などのRH真空脱ガス精錬が施される。RH真空脱ガス精錬の末期には、原料投入口14から金属AlやFe−Siなどの合金鉄が真空槽5を環流する溶鋼3に投入され、溶鋼3の成分調整が行われ、RH真空脱ガス精錬が終了する。   In the RH vacuum degassing apparatus 1 having such a configuration, the ladle 2 containing the molten steel 3 refined in a converter or an electric furnace is transported directly under the vacuum tank 5 and is taken up by a lifting device (not shown). 2 is raised, and the ascending-side dip tube 10 and the descending-side dip tube 11 are immersed in the molten steel 3 accommodated in the pan 2. The ladle 2 is partially mixed with slag 4 generated by refining in a converter or an electric furnace, and covers the molten steel 3 surface. Then, an inert gas such as Ar gas is blown into the ascending-side dip tube 10 from the reflux gas blowing nozzle 12 as the reflux gas. Before and after the introduction of the reflux gas, the inside of the vacuum chamber 5 is evacuated by the exhaust device through the duct 13 to reduce the pressure inside the vacuum chamber 5. When the inside of the vacuum chamber 5 is depressurized, the molten steel 3 accommodated in the ladle 2 ascends the ascending-side dip tube 10 by the principle of the gas lift pump together with the bubbles 17 of the circulating gas blown from the circulating gas blowing nozzle 12. Flow into the vacuum chamber 5 and then return to the ladle 2 via the descending side dip tube 11, forming a so-called recirculation flow, and RH vacuum degassing such as dehydrogenation, denitrogenation, and decarburization. Refined. At the end of the RH vacuum degassing refining, alloy iron such as metal Al or Fe-Si is introduced from the raw material inlet 14 into the molten steel 3 circulating in the vacuum tank 5, the components of the molten steel 3 are adjusted, and the RH vacuum degassing is performed. Gas refining ends.

このようにして行われるRH真空脱ガス精錬に基づき、本発明に係る真空槽5の各部位の高さ方向の最適な寸法が以下のように設定されている。   Based on the RH vacuum degassing performed in this way, the optimum dimensions in the height direction of each part of the vacuum chamber 5 according to the present invention are set as follows.

下部槽9は、真空槽5の内部を環流する溶鋼3と直接接触する部位であり、従って、下部槽9の鉛直方向高さ上端位置は、下部槽9と第一中間槽8との接合部に溶鋼3が侵入しないようにするために、環流する溶鋼3の湯面よりも若干(数十mm〜数百mm)高くする。この場合の溶鋼3の湯面位置は、気泡17によって盛り上がった部位の高さではなく、溶鋼3が下部槽9と接触する位置の最高位置とする。   The lower tank 9 is a part that is in direct contact with the molten steel 3 circulating inside the vacuum tank 5, and therefore, the upper end position in the vertical direction of the lower tank 9 is the joint between the lower tank 9 and the first intermediate tank 8. In order to prevent the molten steel 3 from entering the steel, it is slightly higher (several tens mm to several hundred mm) than the molten metal surface of the molten steel 3 to be circulated. In this case, the surface position of the molten steel 3 is not the height of the portion raised by the bubbles 17 but the highest position where the molten steel 3 comes into contact with the lower tank 9.

第一中間槽8は、RH真空脱ガス精錬中に飛散する溶鋼3のスプラッシュが付着したり、脱硫処理時に原料投入口14から投入されるCaO系脱硫剤が付着したりする部位である。付着した地金がRH真空脱ガス精錬中に溶け落ちて溶鋼3に混入すると、溶鋼3の成分外れなどの問題を引き起こすので、この問題を防止するために、図示しないランスやバーナーなどから、酸素ガスを供給したりバーナー火炎を照射したりして地金の溶解処理が行われる。この地金溶解処理において生成される酸化鉄によって内張り耐火物層16が損傷する。この地金の付着する範囲は、下部槽9の上端位置と下部槽内の溶鋼湯面位置との距離によっても変化するが、下部槽9との接合部から600〜1000mm望ましくは700〜900mmとすれば十分であり、この範囲を第一中間槽8とすることが好ましい。   The first intermediate tank 8 is a part to which a splash of the molten steel 3 scattered during the RH vacuum degassing refining or a CaO-based desulfurizing agent charged from the raw material charging port 14 during desulfurization treatment adheres. If the attached metal melts down during RH vacuum degassing and enters the molten steel 3, it causes problems such as detachment of the components of the molten steel 3. To prevent this problem, oxygen or oxygen from a lance or burner (not shown) is used. The metal is melted by supplying gas or irradiating a burner flame. The lining refractory layer 16 is damaged by the iron oxide produced in this metal melting process. Although the range to which this metal adheres changes also with the distance of the upper end position of the lower tank 9, and the molten steel surface position in a lower tank, it is 600-1000 mm from the junction part with the lower tank 9, Preferably it is 700-900 mm. This is sufficient, and this range is preferably the first intermediate tank 8.

第二中間槽7は、溶鋼3の成分調整のために原料投入口14から投入される金属Alや合金鉄の衝突によって内張り耐火物層16が損傷する部位である。原料投入口14から投入される金属Alや合金鉄の衝突する位置は、原料投入口14の向かい側の、原料投入口14の下端から1500mm程度下がった位置から下方の部位である。従って、原料投入口14の下端から1500mm程度下がった位置を第二中間槽7の上端位置とすることが好ましい。   The second intermediate tank 7 is a part where the lining refractory layer 16 is damaged by the collision of metal Al or alloy iron introduced from the raw material introduction port 14 for adjusting the components of the molten steel 3. The position where the metal Al or the alloyed iron charged from the raw material inlet 14 collides is a portion on the opposite side of the raw material inlet 14 from a position lower than the lower end of the raw material inlet 14 by about 1500 mm. Therefore, it is preferable that the position lowering about 1500 mm from the lower end of the raw material inlet 14 is the upper end position of the second intermediate tank 7.

上部槽6の側壁に原料投入口14が設置されたRH真空脱ガス装置1において、原料投入口14の下端から1500mm程度下がった位置を、下部槽9の上端位置からの距離として求めると、2200〜2400mm程度となる。第一中間槽8の高さが600〜1000mmであるので、第二中間槽7の高さとしては、1200〜1800mm、更には1300〜1700mmとすることが好ましい。但し、RH真空脱ガス装置1の処理能力に応じてRH真空脱ガス装置1の大きさが変るので、上記の位置関係は全てのRH真空脱ガス装置には当てはまらないが、200トン以上の溶鋼を処理するRH真空脱ガス装置であれは、上記の位置関係で問題はない。   In the RH vacuum degassing apparatus 1 in which the raw material charging port 14 is installed on the side wall of the upper tank 6, a position lowered by about 1500 mm from the lower end of the raw material charging port 14 is obtained as a distance from the upper end position of the lower tank 9. It is about ~ 2400mm. Since the height of the first intermediate tank 8 is 600 to 1000 mm, the height of the second intermediate tank 7 is preferably 1200 to 1800 mm, and more preferably 1300 to 1700 mm. However, since the size of the RH vacuum degassing device 1 varies depending on the processing capacity of the RH vacuum degassing device 1, the above positional relationship does not apply to all RH vacuum degassing devices, but molten steel of 200 tons or more. In the RH vacuum degassing apparatus that processes the above, there is no problem in the above positional relationship.

尚、第二中間槽7は、原料投入口14が上部槽6の側壁に設置されている場合に発生する内張り耐火物層16の損傷に対する対策であり、原料投入口14が上部槽6の天蓋に設置されていて合金鉄などが鉛直方向に向けて投入される場合には、必要としない対策であり、この場合には、第二中間槽7は必要とせず、第一中間槽8のみで十分である。   The second intermediate tank 7 is a measure against damage to the lining refractory layer 16 that occurs when the raw material inlet 14 is installed on the side wall of the upper tank 6, and the raw material inlet 14 is a canopy of the upper tank 6. This is a measure that is not necessary when the alloy iron or the like is introduced in the vertical direction. In this case, the second intermediate tank 7 is not necessary, and only the first intermediate tank 8 is used. It is enough.

この構成の真空槽5を備えたRH真空脱ガス装置1において、真空槽5の内張り耐火物層16を補修するに当たっては、次のような方法を採用することができる。   In repairing the lining refractory layer 16 of the vacuum chamber 5 in the RH vacuum degassing apparatus 1 including the vacuum chamber 5 having this configuration, the following method can be employed.

例えば、下部槽9を処理数に応じて定期的に交換し、下部槽9を2回交換する毎に第一中間槽8を交換し、下部槽9を4回交換する毎に第二中間槽7を交換する方法を採用することができる。それぞれの部位の交換は全て熱間状態で実施する。この場合、下部槽9、第一中間槽8及び第二中間槽7の全てが新品の内張り耐火物層16で操業を開始したとすると、所定量の処理数を実施した後、第1回目の補修では、下部槽9のみを外し、予めオフラインで内張り耐火物層16を施工した別の下部槽9と交換する。第2回目の補修では、下部槽9及び第一中間槽8を連結したまま、第一中間槽8と第二中間槽7との接合面で外し、予めオフラインで内張り耐火物層16を施工し、組み立てられた下部槽9及び第一中間槽8を一括交換する。第3目の補修では、下部槽9のみを外し、予めオフラインで内張り耐火物層16を施工した別の下部槽9と交換する。第4回目の補修では、下部槽9、第一中間槽8及び第二中間槽7を連結したまま、第二中間槽7と上部槽6との接合面で外し、予めオフラインで内張り耐火物層16を施工し、組み立てられた下部槽9、第一中間槽8及び第二中間槽7を一括交換する。これ以降、上記に準じて交換する。外した下部槽9、第一中間槽8及び第二中間槽7には、適宜オフラインで内張り耐火物層16が施工される。   For example, the lower tank 9 is periodically replaced according to the number of treatments, the first intermediate tank 8 is replaced every time the lower tank 9 is replaced twice, and the second intermediate tank is replaced every time the lower tank 9 is replaced four times. A method of exchanging 7 can be employed. Exchange of each part is performed in a hot state. In this case, assuming that all of the lower tank 9, the first intermediate tank 8 and the second intermediate tank 7 have started operation with the new lining refractory layer 16, after performing a predetermined number of treatments, the first time In the repair, only the lower tank 9 is removed and replaced with another lower tank 9 in which the lining refractory layer 16 has been previously constructed offline. In the second repair, the lower tank 9 and the first intermediate tank 8 are connected and removed at the joining surface of the first intermediate tank 8 and the second intermediate tank 7, and the lining refractory layer 16 is preliminarily constructed offline. The assembled lower tank 9 and first intermediate tank 8 are collectively replaced. In the third repair, only the lower tank 9 is removed and replaced with another lower tank 9 in which the lining refractory layer 16 has been previously constructed offline. In the fourth repair, the lower tank 9, the first intermediate tank 8 and the second intermediate tank 7 are connected and removed at the joint surface between the second intermediate tank 7 and the upper tank 6, and the lining refractory layer is offline beforehand. 16 is constructed, and the assembled lower tank 9, first intermediate tank 8, and second intermediate tank 7 are collectively replaced. Thereafter, replacement is performed according to the above. A lining refractory layer 16 is appropriately applied to the removed lower tank 9, first intermediate tank 8, and second intermediate tank 7 offline.

また、下部槽9を処理数に応じて定期的に交換し、下部槽9と同時に第一中間槽8を交換し、下部槽9を2回交換する毎に第二中間槽7を交換する方法を採用することもできる。この場合、下部槽9、第一中間槽8及び第二中間槽7の全てが新品の内張り耐火物層16で操業を開始したとすると、所定量の処理数を実施した後、第1回目の補修では、下部槽9及び第一中間槽8を連結したまま、第一中間槽8と第二中間槽7との接合面で外し、予めオフラインで内張り耐火物層16を施工し、組み立てられた下部槽9及び第一中間槽8を一括交換する。第2回目の補修では、下部槽9、第一中間槽8及び第二中間槽7を連結したまま、第二中間槽7と上部槽6との接合面で外し、予めオフラインで内張り耐火物層16を施工し、組み立てられた下部槽9、第一中間槽8及び第二中間槽7を一括交換する。これ以降、上記に準じて交換する。尚、第一中間槽8の内張り耐火物層16の損傷が激しく、常に下部槽9及び第一中間槽8を一括交換する必要がある場合には、下部槽9及び第一中間槽8を一体的に構成し、上部槽6、第二中間槽7及び一体的に構成した下部槽の3分割方式としてもよい。   Moreover, the method of replacing | exchanging the 2nd intermediate tank 7 whenever the lower tank 9 is replaced | exchanged regularly according to the number of processes, the 1st intermediate tank 8 is replaced simultaneously with the lower tank 9, and the lower tank 9 is replaced twice. Can also be adopted. In this case, assuming that all of the lower tank 9, the first intermediate tank 8 and the second intermediate tank 7 have started operation with the new lining refractory layer 16, after performing a predetermined number of treatments, the first time In the repair, the lower tank 9 and the first intermediate tank 8 are connected and removed at the joint surface between the first intermediate tank 8 and the second intermediate tank 7, and the lining refractory layer 16 is preliminarily constructed and assembled offline. The lower tank 9 and the first intermediate tank 8 are collectively replaced. In the second repair, the lower tank 9, the first intermediate tank 8 and the second intermediate tank 7 are connected and removed at the joint surface between the second intermediate tank 7 and the upper tank 6, and the lining refractory layer is offline beforehand. 16 is constructed, and the assembled lower tank 9, first intermediate tank 8, and second intermediate tank 7 are collectively replaced. Thereafter, replacement is performed according to the above. If the refractory layer 16 of the first intermediate tank 8 is severely damaged and the lower tank 9 and the first intermediate tank 8 need to be exchanged all at once, the lower tank 9 and the first intermediate tank 8 are integrated. The upper tank 6, the second intermediate tank 7, and the integrally formed lower tank may be divided into three.

その他、上記に限ることなく、種々の組み合せによって内張り耐火物層16の補修を実施することができる。   In addition, the lining refractory layer 16 can be repaired by various combinations without being limited to the above.

このように、本発明によれば、RH真空脱ガス装置1の真空槽5において、内張り耐火物層16の損傷の激しい部分を分割可能な構造としたので、その部分を熱間状態のままとして予めオフラインで内張り耐火物層16を施工したものと交換することが可能となり、その結果、上部槽6を冷却する必要がなく、また、上部槽内での内張り耐火物層16の解体・施工作業が不要となり、真空槽5の内張り耐火物層16の補修に当たり、従来に比べて操業停止時間を大幅に短縮することが可能となる。   As described above, according to the present invention, in the vacuum chamber 5 of the RH vacuum degassing apparatus 1, the severely damaged part of the lining refractory layer 16 is divided so that the part remains in a hot state. It is possible to replace the refractory layer 16 that has been lined in advance offline, and as a result, there is no need to cool the upper tub 6, and the dismantling and construction work of the refractory lining layer 16 in the upper tub. Is no longer necessary, and when the lining refractory layer 16 of the vacuum chamber 5 is repaired, the operation stop time can be greatly shortened compared to the conventional case.

尚、上記説明はRH真空脱ガス装置1の真空槽5に関して説明したが、本発明はRH真空脱ガス装置1の真空槽5にのみ適用されるものではなく、DH真空脱ガス装置の真空槽においても上記に沿って本発明を適用することができる。   In addition, although the said description demonstrated the vacuum tank 5 of the RH vacuum degassing apparatus 1, this invention is not applied only to the vacuum tank 5 of the RH vacuum degassing apparatus 1, but the vacuum tank of a DH vacuum degassing apparatus. The present invention can be applied along the above.

250トンの溶鋼を処理する、図1に示すRH真空脱ガス装置において本発明を適用した例を説明する。   An example in which the present invention is applied to the RH vacuum degassing apparatus shown in FIG. 1 that processes 250 tons of molten steel will be described.

下部槽の上部に鉛直方向高さが800mmの第一中間槽を設け、この第一中間槽の上部に鉛直方向高さが1500mmの第二中間槽を設けた。この場合、第二中間槽の上端位置は、上部槽の側壁に設けられた原料投入口の下端から1500mmの位置に相当した。   A first intermediate tank having a vertical height of 800 mm was provided above the lower tank, and a second intermediate tank having a vertical height of 1500 mm was provided above the first intermediate tank. In this case, the upper end position of the second intermediate tank corresponds to a position of 1500 mm from the lower end of the raw material charging port provided on the side wall of the upper tank.

下部槽を1500ヒート処理する毎に交換し、下部槽の交換と同時に第一中間槽を一括交換した。また、下部槽交換の2回毎に、第二中間槽までを一括交換した。   The lower tank was replaced every time 1500 heat treatment was performed, and the first intermediate tank was replaced at the same time as the lower tank was replaced. In addition, every time the lower tank was replaced, up to the second intermediate tank was replaced at once.

上部槽と下部槽とから構成される従来のRH真空脱ガス装置では、上部槽の内張り耐火物層の補修におよそ7.5日(180時間)を費やしていたが、本発明を適用することによって15時間で交換作業が終了し、大幅に操業停止時間を短縮することができた。   In the conventional RH vacuum degassing apparatus composed of the upper tank and the lower tank, approximately 7.5 days (180 hours) were spent on repairing the lining refractory layer of the upper tank, but the present invention is applied. As a result, the replacement work was completed in 15 hours, and the operation stop time could be greatly shortened.

本発明に係る真空槽を備えたRH真空脱ガス装置の概略縦断面である。It is a schematic longitudinal cross-section of the RH vacuum degassing apparatus provided with the vacuum chamber which concerns on this invention.

符号の説明Explanation of symbols

1 RH真空脱ガス装置
2 取鍋
3 溶鋼
4 スラグ
5 真空槽
6 上部槽
7 第二中間槽
8 第一中間槽
9 下部槽
10 上昇側浸漬管
11 下降側浸漬管
12 環流用ガス吹き込みノズル
13 ダクト
14 原料投入口
15 鉄皮
16 内張り耐火物層
17 気泡
DESCRIPTION OF SYMBOLS 1 RH vacuum degassing apparatus 2 Ladle 3 Molten steel 4 Slag 5 Vacuum tank 6 Upper tank 7 Second intermediate tank 8 First intermediate tank 9 Lower tank 10 Ascending side dip pipe 11 Descending side dip pipe 12 Gas flow nozzle for recirculation 13 Duct 14 Raw material inlet 15 Iron skin 16 Lined refractory layer 17 Air bubbles

Claims (5)

原料投入口及び排気用ダクトを有する上部槽と、溶鋼中に浸漬させる浸漬管を有し、溶鋼を保持するための下部槽と、前記上部槽と前記下部槽との間に設けられた、上部槽及び下部槽に対して脱着可能な中間槽と、を備えることを特徴とする、真空脱ガス設備の真空槽構造。   An upper tank having a raw material inlet and an exhaust duct, a dip pipe immersed in molten steel, a lower tank for holding molten steel, and an upper part provided between the upper tank and the lower tank A vacuum tank structure for vacuum degassing equipment, comprising: an intermediate tank detachable from the tank and the lower tank. 前記中間槽は、下部側の第一中間槽と上部側の第二中間槽との上下2段に分割され、第一中間槽と第二中間槽とは脱着可能であることを特徴とする、請求項1に記載の真空脱ガス設備の真空槽構造。   The intermediate tank is divided into upper and lower two stages of a lower first intermediate tank and an upper second intermediate tank, and the first intermediate tank and the second intermediate tank are detachable, The vacuum tank structure of the vacuum degassing equipment according to claim 1. 前記第一中間槽の鉛直方向高さは600〜1000mmであることを特徴とする、請求項2に記載の真空脱ガス設備の真空槽構造。   The vacuum tank structure for vacuum degassing equipment according to claim 2, wherein the vertical height of the first intermediate tank is 600 to 1000 mm. 前記第二中間槽の鉛直方向高さは、1200〜1800mmであることを特徴とする、請求項2または請求項3に記載の真空脱ガス設備の真空槽構造。   The vacuum tank structure of the vacuum degassing equipment according to claim 2 or 3, wherein the vertical height of the second intermediate tank is 1200 to 1800 mm. 請求項1ないし請求項4の何れか1つに記載の真空槽構造を有する真空脱ガス設備において、補修を必要とする真空槽の部分を熱間状態で交換することを特徴とする、真空脱ガス設備の補修方法。   The vacuum degassing equipment having the vacuum chamber structure according to any one of claims 1 to 4, wherein a vacuum chamber portion requiring repair is exchanged in a hot state. How to repair gas equipment.
JP2007037853A 2007-02-19 2007-02-19 Vacuum tank structure and repair method for vacuum degassing equipment Active JP5181489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007037853A JP5181489B2 (en) 2007-02-19 2007-02-19 Vacuum tank structure and repair method for vacuum degassing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007037853A JP5181489B2 (en) 2007-02-19 2007-02-19 Vacuum tank structure and repair method for vacuum degassing equipment

Publications (2)

Publication Number Publication Date
JP2008202080A true JP2008202080A (en) 2008-09-04
JP5181489B2 JP5181489B2 (en) 2013-04-10

Family

ID=39779877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007037853A Active JP5181489B2 (en) 2007-02-19 2007-02-19 Vacuum tank structure and repair method for vacuum degassing equipment

Country Status (1)

Country Link
JP (1) JP5181489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021134427A (en) * 2020-02-25 2021-09-13 Jfeスチール株式会社 Method for suppressing temperature change of refractory, method for operating vacuum degassing facility, and method for producing molten steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159525A (en) * 1984-12-29 1986-07-19 Nippon Steel Corp Removal of base metal in rh vessel
JPH07268444A (en) * 1994-03-29 1995-10-17 Kawasaki Steel Corp Recirculation type vacuum degassing apparatus
JPH11209818A (en) * 1998-01-26 1999-08-03 Tokyo Yogyo Co Ltd Vacuum degassing apparatus
JP2006152444A (en) * 2006-01-04 2006-06-15 Jfe Steel Kk MELTING AND MANUFACTURING METHOD OF Ti-ADDED ULTRA-LOW CARBON STEEL
JP2006283144A (en) * 2005-03-31 2006-10-19 Sanyo Special Steel Co Ltd Method for decarburizing in rh-degassing apparatus at production of stainless steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159525A (en) * 1984-12-29 1986-07-19 Nippon Steel Corp Removal of base metal in rh vessel
JPH07268444A (en) * 1994-03-29 1995-10-17 Kawasaki Steel Corp Recirculation type vacuum degassing apparatus
JPH11209818A (en) * 1998-01-26 1999-08-03 Tokyo Yogyo Co Ltd Vacuum degassing apparatus
JP2006283144A (en) * 2005-03-31 2006-10-19 Sanyo Special Steel Co Ltd Method for decarburizing in rh-degassing apparatus at production of stainless steel
JP2006152444A (en) * 2006-01-04 2006-06-15 Jfe Steel Kk MELTING AND MANUFACTURING METHOD OF Ti-ADDED ULTRA-LOW CARBON STEEL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021134427A (en) * 2020-02-25 2021-09-13 Jfeスチール株式会社 Method for suppressing temperature change of refractory, method for operating vacuum degassing facility, and method for producing molten steel
JP7222407B2 (en) 2020-02-25 2023-02-15 Jfeスチール株式会社 Method for suppressing temperature change in refractory, method for operating vacuum degassing facility, and method for producing molten steel

Also Published As

Publication number Publication date
JP5181489B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
KR101349124B1 (en) Direct smelting plant
CN101351566B (en) Degassing apparatus having duplex vacuum vessel
JP5726614B2 (en) Refractory brick cooling structure and method for converter
KR101174678B1 (en) Metallurgical Processing Installation
JP7024600B2 (en) Refining lance, refining lance equipment, RH type refining equipment, and method for manufacturing ultra-low sulfur molten steel
JP5181489B2 (en) Vacuum tank structure and repair method for vacuum degassing equipment
JP4207820B2 (en) How to use vacuum degassing equipment
JP2006214647A (en) Water-cooled cover for ladle refining and refining treatment method
JP4830514B2 (en) RH vacuum degassing unit reflux tube brick structure
JP6036727B2 (en) Hot metal pretreatment method
JP5026694B2 (en) RH degassing equipment
JP2011202236A (en) Top-blowing lance for converter, and method for operating converter
JP2009149956A (en) Method for producing molten steel with converter
KR100417628B1 (en) The multi-function repair equipment in hot condition for tundish
RU2766401C1 (en) Apparatus for bottom blowing of liquid metal with gas in a ladle
JP7222407B2 (en) Method for suppressing temperature change in refractory, method for operating vacuum degassing facility, and method for producing molten steel
JP4036167B2 (en) Molten steel heating method and molten steel heating device
JP3272372B2 (en) Tank heating method and apparatus for vacuum degassing tank
JP5026693B2 (en) RH degassing refining method
JP2000146452A (en) Fixed smelting furnace
JP6327304B2 (en) Shutter door of converter refining furnace and method of operating converter refining furnace
Roy et al. Increasing refractory lifetime
JP3754154B2 (en) Blowing acid decarburization refining method of stainless steel under vacuum
JPH0277517A (en) Method and device for heating rh vacuum degasification vessel
JP2005248251A (en) Method for operating vacuum-degassing vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121231

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5181489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250