JP2009149956A - Method for producing molten steel with converter - Google Patents

Method for producing molten steel with converter Download PDF

Info

Publication number
JP2009149956A
JP2009149956A JP2007330403A JP2007330403A JP2009149956A JP 2009149956 A JP2009149956 A JP 2009149956A JP 2007330403 A JP2007330403 A JP 2007330403A JP 2007330403 A JP2007330403 A JP 2007330403A JP 2009149956 A JP2009149956 A JP 2009149956A
Authority
JP
Japan
Prior art keywords
lance
oxygen
oxygen injection
angle
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007330403A
Other languages
Japanese (ja)
Inventor
Takenori Miyazawa
剛徳 宮沢
Hisanori Ando
寿憲 安藤
Kazuo Hara
和夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007330403A priority Critical patent/JP2009149956A/en
Publication of JP2009149956A publication Critical patent/JP2009149956A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing molten steel with which a local erosion generated in an oxygen-blowing hole direction is restrained while preventing the generation of stuck scull. <P>SOLUTION: In the method for performing refining while supplying oxygen by using a top-blowing lance at the flow of 2.5 to 5.0 Nm<SP>3</SP>/min×t to molten iron in a converter; the lance has 3 to 6 pieces of the oxygen-blowing holes, forming 10° to 20° angle between the center axis of the lance and the center axes of the oxygen-blowing holes, at the tip part of the lance and also, a mechanism for rotating around the center axis of the lance, and a blowing process, in which the continuous use of the lance is regulated (to be) within 150 heats (processes), and the lance during use, is rotated in the range of θ defined with following formula (1), is provided. äm×(360°/n)+10°<θ<(m+1)×(360°/n)-10°}... (1). Wherein, m: an optional integer, n: the number of the oxygen-blowing holes arranged at the angle of ≥10° from the lance center at the tip part of the lance, the integer being 3 to 6. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、精錬を行う転炉による溶鋼の製造方法に関し、詳しくは転炉の寿命延命のため、転炉における炉壁の耐火物の最大溶損部位に、ランス酸素噴射口の方向が継続的に向くことを避けるようにランスを回転させる転炉による溶鋼の製造方法に関する。   The present invention relates to a method for producing molten steel by a refining converter, and in particular, in order to prolong the life of the converter, the direction of the lance oxygen injection port is continuously at the maximum melting point of the refractory on the furnace wall in the converter. The present invention relates to a method for producing molten steel by a converter in which a lance is rotated so as to avoid turning to a steel.

転炉型精錬炉の生産能率を向上させるためには、酸素流量増大が最も効果的である。しかし、酸素流量を増大すると、火点からの溶鉄やスラグのスピッティング量は増加し、ランスに地金等が付着したり、副原料投入不可能となったりするなどのトラブルを招いていた。   In order to improve the production efficiency of the converter type refining furnace, increasing the oxygen flow rate is the most effective. However, when the oxygen flow rate is increased, the amount of spitting of molten iron and slag from the fire point increases, causing troubles such as adhesion of ingots to the lance and the inability to add auxiliary materials.

そこで、この炉壁から炉口に至る領域の炉内に付着した地金やスラグ(以下「付着地金」という。)を除去すべく、例えば、特許文献1や2に開示されるように、酸素噴射口がランス中心軸周りに回転する機構を備えた地金切り専用のランスを用いたり、特許文献3に開示されるように、吹錬用のランスと地金切りのための噴射口とが一体化されたランスを用いたりする技術が提案されている。   Therefore, in order to remove ingots and slag adhering to the furnace in the region from the furnace wall to the furnace port (hereinafter referred to as “attached ingots”), for example, as disclosed in Patent Documents 1 and 2, A dedicated lance cutting lance having a mechanism in which the oxygen injection port rotates around the center axis of the lance is used. As disclosed in Patent Document 3, a lance for blowing and an injection port for cutting a metal There has been proposed a technique using a lance integrated with the.

また、ランス先端の酸素噴射口の中心軸とランス中心軸とのなす角度(以下「酸素噴射口傾角」という。)を大きくして、鉛直方向への溶鉄飛散を防止して付着地金の発生を抑制する方法が提案されている。
特開平5−320732号公報 特開平5−78728号公報 特開2006−213940号公報
In addition, the angle formed between the central axis of the oxygen injection port at the tip of the lance and the central axis of the lance (hereinafter referred to as the “oxygen injection angle”) is increased to prevent the molten iron from being scattered in the vertical direction and to generate adhered metal. A method for suppressing the above has been proposed.
JP-A-5-320732 JP-A-5-78728 JP 2006-213940 A

ところが、付着した地金等を専用ランスで除去する方法は、専用のランスを用意することから設備的に負荷の大きな方法である。また、地金等を除去するための作業を別途設けることになるため、生産性を著しく低下させる。さらに、環境保護の観点からエネルギー効率を高めることが特に重視されている昨今の事情を考慮すると、そもそも、付着地金を生成させることを前提とするこの方法は好ましくない。   However, the method of removing the attached bullion or the like with a dedicated lance is a method that requires a large load from the standpoint of preparing a dedicated lance. Moreover, since the operation | work for removing bullion etc. will be provided separately, productivity will fall remarkably. Furthermore, in view of the recent circumstances in which increasing energy efficiency is particularly important from the viewpoint of environmental protection, this method based on the premise that the attached metal is generated is not preferable.

また、後者の方法では、酸素噴射口傾角を大きくし過ぎると、酸素噴射口方向(酸素噴射口から噴出し溶銑面に衝突して反射した酸素が転炉側壁に向かう、ランス中心軸を中心とする放射状の方向)にある炉壁耐火物が溶損するという問題を有する。この耐火物溶損のメカニズムを調査したところ、飛散した溶銑が酸化され、その酸化鉄が耐火物を溶損させていることが明らかになった。つまり、酸素噴射口傾角を大きくすると、酸素ジェットと炉壁との距離が小さくなるため、酸素ジェットによるスピッティングが炉壁に到達する量が酸素噴射方向の炉壁について特に多くなり、溶損が促進されるのである。このため、炉の寿命は炉壁の溶損が著しい酸素噴射口方向の炉壁の残厚が少なくなることによってもたらされており、酸素噴射口方向から離れた炉壁は全く寿命に達していないことも明らかになった。   Further, in the latter method, if the oxygen injection nozzle tilt angle is increased too much, the oxygen injection direction (the oxygen injected from the oxygen injection nozzle and colliding with the molten iron surface and reflected toward the converter side wall is centered on the lance central axis. The furnace wall refractory in the radial direction) melts down. The investigation of the mechanism of refractory erosion revealed that the molten iron was oxidized and the iron oxide was causing refractory erosion. In other words, when the oxygen injection port tilt angle is increased, the distance between the oxygen jet and the furnace wall is reduced, so that the amount of spitting by the oxygen jet reaches the furnace wall is particularly increased for the furnace wall in the oxygen injection direction, resulting in melting loss. It is promoted. For this reason, the life of the furnace is brought about by reducing the remaining thickness of the furnace wall in the direction of the oxygen injection port, where the melting of the furnace wall is significant, and the furnace wall far from the direction of the oxygen injection port has reached the end of its life. It became clear that there was no.

そこで、この対策として、酸素噴射口方向の異なる精錬用ランスを多数用意し、溶損が進行した部位に噴射口が向かないようにランスを交換することが考えられるが、精錬炉で使用するランスは、炉回数、すなわち炉容積に応じて使用する酸素噴射口の口径を変化させており、実操業上ではランスの予備を持つ本数にも限界があるため、酸素噴射口方向の変更のみでは精錬炉の炉壁の局部溶損を完全には防止できない。また、噴射口を多孔化し、溶損を均一化する対策も考えられるが、限られたランス径の中で、大流量の酸素を吹き込むためには、最適な噴射口径を確保する必要があるため、6孔までが限界である。更なる多孔化のためにはランス径を拡大する必要があり、莫大な設備投資が必要となることからも実現困難である。   Therefore, as a countermeasure, it is conceivable to prepare a number of refining lances with different oxygen injection port directions and replace the lances so that the injection port does not face the site where the erosion has progressed. Since the diameter of the oxygen injection port to be used is changed according to the number of furnaces, that is, the furnace volume, and there is a limit to the number of spare lances in actual operation, refining only by changing the direction of the oxygen injection port Local melting of the furnace wall of the furnace cannot be completely prevented. In addition, it is possible to make the injection port porous and make the melting loss uniform, but in order to blow a large flow of oxygen within a limited lance diameter, it is necessary to ensure an optimal injection port diameter. , Up to 6 holes is the limit. In order to further increase the porosity, it is necessary to enlarge the lance diameter, and it is difficult to realize it because enormous capital investment is required.

以上の背景の下、本発明の目的は、付着地金の発生を防止しつつ、酸素噴射口方向に生じる局部溶損を抑制する溶鋼の製造方法を提供することにある。   In view of the above background, an object of the present invention is to provide a method for producing molten steel that suppresses local melting that occurs in the direction of an oxygen injection port while preventing the formation of attached metal.

本発明者らは、上記従来技術の課題を解決するために、これまで小酸素流量(2.5Nm3/min・t未満)の地金切り工程でしか行われていなかったランスの回転を2.5Nm3/min・t以上の大流量の酸素を供給する吹錬工程においても行うことで酸素噴射口方向を変えることに着目し、その可能性について詳細な検討を行い、下記の知見を得た。 In order to solve the above-mentioned problems of the prior art, the present inventors have performed rotation of the lance that has been performed only in the metal cutting process with a small oxygen flow rate (less than 2.5 Nm 3 / min · t) until now. Focusing on changing the direction of the oxygen injection port by performing it in the blowing process for supplying oxygen at a large flow rate of 5 Nm 3 / min · t or more, we conducted a detailed study of the possibility and obtained the following knowledge It was.

転炉を用いて溶銑から溶鋼を製造する場合、通常は2.5〜5.0Nm3/min・tの酸素流量で、1ヒートあたり10〜20分間の吹錬を行う。この酸素流量は、各ヒートの吹錬中に変更される場合もあれば、各ヒート間で変更される場合もある。そのような酸素は、主として上吹きランスから溶銑へ向けて吹き付けられるが、一部または全部を転炉の底部に設けた底吹き羽口から供給される場合もある。 When manufacturing molten steel from hot metal using a converter, blowing is usually performed for 10 to 20 minutes per heat at an oxygen flow rate of 2.5 to 5.0 Nm 3 / min · t. This oxygen flow rate may be changed during the blowing of each heat, or may be changed between each heat. Such oxygen is mainly blown from the top blowing lance toward the hot metal, but may be supplied from a bottom blowing tuyere partly or entirely provided at the bottom of the converter.

上吹きランスから2.5〜5.0Nm3/min・tの酸素を溶銑へ吹き付ける場合、そのランスには3〜6個程度の酸素噴射口を、ランス先端部に同心円状に設けることが多い。この同心円は、一つとは限らず、複数の場合もある。例えば、3個の噴射口の中心軸をランス中心軸に近い同心円上に並べ、他の3個をそれよりも外側の同心円上に並べるなどのランス形態が知られている。そのほかに、さらに1個の酸素噴射口をランスの中心軸に設けてある場合もある。 When oxygen of 2.5 to 5.0 Nm 3 / min · t is blown from the top lance to the hot metal, about 3 to 6 oxygen injection ports are often provided concentrically at the tip of the lance. . The concentric circles are not limited to one and may be plural. For example, a lance configuration is known in which the central axes of three injection ports are arranged on a concentric circle close to the lance central axis, and the other three are arranged on a concentric circle on the outer side. In addition, another oxygen injection port may be provided on the central axis of the lance.

また、各ランスに設けられた酸素噴射口の口径は、各ランスの中においても同一ではないことがある。
このように、転炉における酸素の使い方は一様ではないので、単にランスを回転させるだけでは、そのランス回転による耐火物の溶損防止効果が安定しないと予測される。
Moreover, the diameter of the oxygen injection port provided in each lance may not be the same in each lance.
Thus, since the usage of oxygen in the converter is not uniform, it is predicted that the refractory preventing effect of refractory due to the rotation of the lance will not be stabilized simply by rotating the lance.

そこで、予め予備脱燐された溶銑260〜290tをスクラップ10〜30tと共に転炉に装入して、溶鋼中の炭素含有率が0.03%〜0.10%の低炭素鋼を得る吹錬を、酸素供給条件を条件毎に40〜50ヒート固定して連続操業し、転炉の炉壁溶損状況を、レーザー距離計を用いて実測して、酸素供給条件と炉壁溶損との関係をまず調査した。   Therefore, hot metal 260-290t preliminarily dephosphorized is charged into a converter together with scrap 10-30t to obtain a low carbon steel having a carbon content of 0.03% -0.10% in the molten steel. The oxygen supply conditions are continuously operated with 40 to 50 heat fixed for each condition, and the furnace wall erosion status of the converter is measured using a laser distance meter to determine the oxygen supply conditions and the furnace wall erosion. The relationship was first investigated.

その炉壁溶損の測定結果を、その測定に用いた酸素供給条件とともに、図1に示す。図1において横軸は、酸素噴射口1個あたりの酸素流量を、各ヒート内の平均値で表した数値である。ランス中心軸から供給した酸素は除外してある。   The measurement result of the furnace wall melting loss is shown in FIG. 1 together with the oxygen supply conditions used for the measurement. In FIG. 1, the horizontal axis is a numerical value representing the oxygen flow rate per oxygen injection port as an average value in each heat. Oxygen supplied from the lance central axis is excluded.

この実験調査においては、ランス中心軸とランス口から噴出される酸素ジェットの方向が問題であるため、各ランスに設けられた酸素噴射口の中心軸が、各ランスに一つの同心円上に設けてある(=各ランスについて、いずれの酸素噴射口も酸素噴射口傾角を同一とし、さらに、各酸素噴射口の中心のランス底部からの距離が同一である)タイプを使用した。   In this experimental investigation, the center axis of the lance and the direction of the oxygen jet ejected from the lance port are problems, so the center axis of the oxygen injection port provided in each lance is provided on one concentric circle for each lance. A certain type (= for each lance, all oxygen injection nozzles have the same oxygen injection nozzle tilt angle and the same distance from the lance bottom at the center of each oxygen injection nozzle) was used.

一方、図1において縦軸は、炉壁の溶損状況を、その溶損部の広がり角度で表す。ランスから噴出された酸素は、一旦溶銑と反応した後、溶銑面から跳ね返って転炉側壁へと向かう。その酸素噴射口方向の炉壁形状を、レーザー距離計を用いて実測し、その最大溶損部位を含む転炉横断面における、溶損が最小で煉瓦残厚が最も厚くなっている最小溶損部煉瓦残厚X1と、酸素噴射口方向の局部溶損煉瓦残厚X2との差が10mm以上となる範囲の角度を、炉壁溶損傾角として図1の縦軸とした。   On the other hand, the vertical axis in FIG. The oxygen spouted from the lance once reacts with the hot metal and then bounces off the hot metal surface toward the converter side wall. The furnace wall shape in the direction of the oxygen injection port was measured using a laser distance meter, and the minimum erosion in the cross section of the converter including the maximum erosion site was the smallest and the remaining brick thickness was the largest. The angle in the range where the difference between the partial brick residual thickness X1 and the local molten brick residual thickness X2 in the direction of the oxygen injection port becomes 10 mm or more is taken as the vertical axis of FIG.

図1の結果から、酸素噴射口1個あたりの送酸速度が増加すると、炉壁溶損傾角が拡大すること、および酸素噴射口傾角が増加しても、炉壁溶損傾角が拡大することが分かった。   From the results shown in FIG. 1, the furnace wall melting inclination angle increases when the oxygen feed rate per oxygen injection port increases, and the furnace wall melting inclination angle increases even when the oxygen injection nozzle inclination angle increases. I understood.

しかし、本発明のための調査検討を通じて図1のような酸素供給条件と炉壁溶損状況との関係を認識していても、実際の転炉操業において、この関係をその転炉寿命の延長に活用するには工夫が必要である。   However, even if the relationship between the oxygen supply condition and the furnace wall melted state as shown in FIG. 1 is recognized through the investigation for the present invention, this relationship is extended in the converter life in the actual converter operation. Ingenuity is necessary to utilize it.

なぜならば、実際に行われる転炉操業では、酸素流量は頻繁に変更されるものであり、酸素噴射口傾角も、一定ではなく複数混在することが珍しくないからである。また、吹錬の合間に炉壁の溶損状況を実測することは時間的なロスが大きいため、極力回避する必要がある。   This is because in an actual converter operation, the oxygen flow rate is frequently changed, and it is not uncommon for the oxygen injection port inclination angles to be mixed and not constant. In addition, it is necessary to avoid as much as possible to actually measure the melting state of the furnace wall between the blow smelting because of the time loss.

そこでまず、調査した範囲で最も炉壁溶損傾角が狭かった範囲が連続して溶損され続けることは確実に避けられるように、ランスを中心軸回りに回転させる方法が考えられる。そのような条件は、酸素噴射口が中心軸方向の噴射口を除き6個のランスであって、その酸素噴射口傾角が10°のランスを用いて、噴射口1つ当たりの酸素流量が0.42Nm3/min・tの吹錬を行った場合の、炉壁溶損傾角12°である。このことから、炉壁溶損傾角の内側からその周辺にかけての溶損進行部分の存在も考慮して、ランスの回転が10°未満では、ランス回転による溶損均等化効果を十分に挙げることが困難と分かった。但し、この酸素噴射口が中心軸方向の噴射口を除き6個のランスでは60°毎に酸素噴射口を有しており、もしそのランスを60°回転させると、ランスを回転させなかったのと同じ状況になってしまう。そのような状況を回避するためには、ランス回転は50°(60°−10°)以下である必要がある。 Therefore, firstly, a method of rotating the lance around the central axis can be considered so that it is surely avoided that the range in which the furnace wall melting inclination angle is narrowest in the investigated range is continuously melted. Such a condition is that the oxygen flow rate is 6 lances except for the central-axis direction jet port, and the oxygen flow rate per jet port is 0 with the lance having an oxygen jet angle of 10 °. The furnace wall melting inclination is 12 ° when blown at 42 Nm 3 / min · t. Therefore, in consideration of the existence of a progressing portion of the erosion from the inside of the furnace wall erosion inclination angle to the periphery thereof, if the lance rotation is less than 10 °, the effect of equalizing the erosion caused by the lance rotation can be sufficiently mentioned. I found it difficult. However, this oxygen injection port has an oxygen injection port every 60 ° except for the central axis direction injection port, and if the lance was rotated 60 °, the lance was not rotated. Would be the same situation. In order to avoid such a situation, the lance rotation needs to be 50 ° (60 ° -10 °) or less.

ところで、図1の炉壁溶損傾角は、40〜50ヒートの試験操業により得られた「周辺との溶損差≧10mm」の範囲であるが、実際の操業では操業上の都合によって頻繁にはランス回転を行えない場合も多い。この対策として、実際の転炉煉瓦の長さが1000〜2000mmであることを考慮し、「周辺との溶損差≦25mm」の範囲で炉壁溶損の均一化操作を行うことを考えた。別途行った試験によって、この40〜50ヒートで溶損10mmを生ずる条件は、約150ヒートで溶損25mmを生ずる条件に相当することを確認したので、実際の転炉操業時には、150ヒート以内に所定のランス回転を行えばよいと言える。したがって、以降、炉壁溶損傾角βは、図2に示されるように、溶損が最小で煉瓦残厚が最も厚くなっている最小溶損部煉瓦残厚X1と、酸素噴射口方向の局部溶損煉瓦残厚X2との差が25mm以上となる範囲の角度と定義する。なお、図3には、前述の酸素噴射口傾角αを示している。   By the way, the furnace wall melting inclination angle in FIG. 1 is in the range of “melting difference with surroundings ≧ 10 mm” obtained by the test operation of 40 to 50 heat, but it is frequently used in actual operation due to operational reasons. In many cases, the lance cannot be rotated. As a countermeasure, considering that the actual length of the converter brick is 1000 to 2000 mm, it was considered to perform the furnace wall melting equalization operation in the range of “melting difference with surroundings ≦ 25 mm”. . As a result of a separate test, it was confirmed that the condition that caused a melting loss of 10 mm with 40 to 50 heats was equivalent to the condition that caused a melting loss of 25 mm with about 150 heats. It can be said that a predetermined lance rotation may be performed. Therefore, hereinafter, the furnace wall melting inclination angle β, as shown in FIG. 2, is the minimum melted portion brick residual thickness X1 in which the melting loss is the smallest and the brick residual thickness is the thickest, and the local portion in the oxygen injection nozzle direction. It is defined as an angle in a range where the difference from the remaining brick thickness X2 is 25 mm or more. FIG. 3 shows the aforementioned oxygen injection port tilt angle α.

以上の検討の結果をまとめると下記式(1)のようになる。
{m×(360°/n)+10°<θ<(m+1)×(360°/n)−10°}・・・(1)
θ:ランス回転角度(deg)
m:任意の整数
n:ランス先端にランス中心軸から10°以上の角度で設けられた酸素噴射口の数であって、3〜6の整数
The results of the above studies are summarized as shown in the following formula (1).
{M × (360 ° / n) + 10 ° <θ <(m + 1) × (360 ° / n) −10 °} (1)
θ: Lance rotation angle (deg)
m: Arbitrary integer n: Number of oxygen injection nozzles provided at the tip of the lance at an angle of 10 ° or more from the center axis of the lance, and an integer of 3 to 6

次に、調査した範囲の結果を示す図1の関係を、多重回帰により定量的な実験式に纏めて、その実験式により得られた炉壁溶損傾角以上を1回あたりのランス回転角度とする方法が考えられる。図1に示した結果を、実験式に纏めた結果として下記式(2)を示す。   Next, the relationship of FIG. 1 showing the results of the investigated range is summarized into a quantitative empirical formula by multiple regression, and the furnace wall melting inclination angle obtained by the empirical formula is more than the lance rotation angle per time. A way to do this is conceivable. As a result of putting the results shown in FIG. 1 into an empirical formula, the following formula (2) is shown.

{m×(360/n)+ξ}°<θ<{(m+1)×(360/n)−ξ}°・・・(2)
ξ=0.520xα+31.73xV+k
m:任意の整数
n:ランス先端に鉛直軸から10°以上の角度で設けられた酸素噴射口の数であって、3〜6の整数
α:ランスの中心軸と酸素噴射口の中心軸とがなす角度(°)の平均値
V:噴射口1つあたりの酸素噴出速度(Nm3/min・t)の平均値
k:-6.244(定数)
{M × (360 / n) + ξ} ° <θ <{(m + 1) × (360 / n) −ξ} ° (2)
ξ = 0.520xα + 31.73xV + k
m: Arbitrary integer n: Number of oxygen injection ports provided at the tip of the lance at an angle of 10 ° or more from the vertical axis, an integer of 3 to 6 α: The central axis of the lance and the central axis of the oxygen injection port Average value of angle (°) formed by V V: Average value of oxygen ejection speed per nozzle (Nm 3 / min · t) k: -6.244 (constant)

さらに、比較的高頻度で炉壁溶損傾角βが計測可能な場合には、その結果を用いて下記式(3)に基づいてランス回転角を設定することも可能である。   Further, when the furnace wall melting inclination angle β can be measured relatively frequently, the lance rotation angle can be set based on the following formula (3) using the result.

{m×(360/n)+β}°<θ<{(m+1)×(360/n)−β}°・・・(3)
m:任意の整数
n:ランス先端に鉛直軸から10°以上の角度で設けられた酸素噴射口の数であって、3〜6の整数
{M × (360 / n) + β} ° <θ <{(m + 1) × (360 / n) −β} ° (3)
m: Arbitrary integer n: Number of oxygen injection holes provided at an angle of 10 ° or more from the vertical axis at the tip of the lance, and an integer of 3-6

本発明は、以上の知見に基づいてなされたもので、その要旨は下記の通りである。
(1)転炉内の溶銑に2.5〜5.0Nm3/min・tの流量で上吹きランスを用いて酸素を供給しつつ精錬を行う溶鋼の製造方法であって、前記ランスは、その先端にランスの中心軸と酸素噴射口の中心軸とが10°〜20°の角度をなす酸素噴射口を3〜6個有するとともに、そのランス中心軸回りに回転可能とする機構を備え、前記ランスの継続使用が150ヒート以内に、その使用中のランスを下記式(1)で定義されるθの範囲内で回転させる吹錬工程を備えることを特徴とする、転炉による溶鋼の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) A method for producing molten steel in which refining is performed while supplying oxygen to a hot metal in a converter at a flow rate of 2.5 to 5.0 Nm 3 / min · t using an upper blowing lance, The front end has 3 to 6 oxygen injection ports in which the central axis of the lance and the central axis of the oxygen injection port form an angle of 10 ° to 20 °, and a mechanism that can rotate around the central axis of the lance, Production of molten steel by a converter, comprising a blowing step of rotating the lance in use within the range of θ defined by the following formula (1) within 150 heat of continuous use of the lance. Method.

{m×(360°/n)+10°<θ<(m+1)×(360°/n)−10°}・・・(1)
m:任意の整数
n:ランス先端にランス中心から10°以上の角度で設けられた酸素噴射口の数であって、3〜6の整数
{M × (360 ° / n) + 10 ° <θ <(m + 1) × (360 ° / n) −10 °} (1)
m: Arbitrary integer n: Number of oxygen injection ports provided at the tip of the lance at an angle of 10 ° or more from the center of the lance, and an integer of 3 to 6

(2)転炉内の溶銑に2.5〜5.0Nm3/min・tの流量で上吹きランスを用いて酸素を供給しつつ精錬を行う溶鋼の製造方法であって、前記ランスは、その先端にランスの中心軸と酸素噴射口の中心軸とが10°〜20°の角度をなす酸素噴射口を3〜6個有するとともに、そのランス中心軸回りに回転可能とする機構を備え、前記ランスの継続使用が150ヒート以内に、その使用中ランスを下記式(2)で定義されるθの範囲内で回転させる吹錬工程を備えることを特徴とする、転炉による溶鋼の製造方法。 (2) A method for producing molten steel in which refining is performed while supplying oxygen to the hot metal in the converter at a flow rate of 2.5 to 5.0 Nm 3 / min · t using an upper blowing lance, The front end has 3 to 6 oxygen injection ports in which the central axis of the lance and the central axis of the oxygen injection port form an angle of 10 ° to 20 °, and a mechanism that can rotate around the central axis of the lance, A method for producing molten steel by a converter, comprising a blowing step of rotating the lance within the range of θ defined by the following formula (2) within 150 heat of continuous use of the lance. .

{m×(360/n)+ξ}°<θ<{(m+1)×(360/n)−ξ}°・・・(2)
ξ=0.520xα+31.73xV+k
m:任意の整数
n:ランス先端に鉛直軸から10°以上の角度で設けられた酸素噴射口の数であって、3〜6の整数
α:ランスの中心軸と酸素噴射口の中心軸とがなす角度(°)の平均値
V:噴射口1つあたりの酸素噴出速度(Nm3/min・t)の平均値
k:-6.244(定数)
{M × (360 / n) + ξ} ° <θ <{(m + 1) × (360 / n) −ξ} ° (2)
ξ = 0.520xα + 31.73xV + k
m: Arbitrary integer n: Number of oxygen injection ports provided at the tip of the lance at an angle of 10 ° or more from the vertical axis, an integer of 3 to 6 α: The central axis of the lance and the central axis of the oxygen injection port Average value of angle (°) formed by V V: Average value of oxygen ejection speed per nozzle (Nm 3 / min · t) k: -6.244 (constant)

(3)転炉内の溶銑に2.5〜5.0Nm3/min・tの流量で上吹きランスを用いて酸素を供給しつつ精錬を行う溶鋼の製造方法であって、前記ランスは、その先端にランスの中心軸と酸素噴射口の中心軸とが10°〜20°の角度をなす酸素噴射口を3〜6個有するとともに、そのランス中心軸回りに回転可能とする機構を備え、前記ランスの継続使用が150ヒート以内に、使用中転炉の最大溶損部位を含む横断面における煉瓦残厚が最大の最小溶損部煉瓦残厚X1とランス酸素噴射口方向の局部溶損煉瓦残厚X2との差が25mm以上となる範囲の角度βを測定して、その使用中ランスを下記式(3)で定義されるθの範囲内で回転させる吹錬工程を備えることを特徴とする、転炉による溶鋼の製造方法。 (3) A method for producing molten steel in which refining is performed while supplying oxygen to the hot metal in the converter at a flow rate of 2.5 to 5.0 Nm 3 / min · t using an upper blowing lance, The front end has 3 to 6 oxygen injection ports in which the central axis of the lance and the central axis of the oxygen injection port form an angle of 10 ° to 20 °, and a mechanism that can rotate around the central axis of the lance, Within 150 heats of continuous use of the lance, the minimum remaining brick thickness X1 with the largest remaining brick thickness X1 in the cross section including the maximum damaged portion of the converter in use and the locally damaged brick in the direction of the lance oxygen injection port It is characterized by comprising a blowing step of measuring an angle β in a range where the difference from the remaining thickness X2 is 25 mm or more and rotating the lance in use within the range of θ defined by the following formula (3). The manufacturing method of the molten steel by a converter.

{m×(360/n)+β}°<θ<{(m+1)×(360/n)−β}°・・・(3)
m:任意の整数
n:ランス先端に鉛直軸から10°以上の角度で設けられた酸素噴射口の数であって、3〜6の整数
{M × (360 / n) + β} ° <θ <{(m + 1) × (360 / n) −β} ° (3)
m: Arbitrary integer n: Number of oxygen injection holes provided at an angle of 10 ° or more from the vertical axis at the tip of the lance, and an integer of 3-6

精錬炉において本発明法に係る角度でランスを回転させることにより、ランス酸素噴射口方向に生じる局部溶損を解消することが可能となる。その結果、精錬炉の寿命を大幅に延命することが可能となる。したがって本発明法を採用することで炉の補修頻度を低くすることができ耐火物コストを低減できる上に、設備の稼動効率が高まり、生産性の向上も実現される。   By rotating the lance at an angle according to the method of the present invention in the smelting furnace, it is possible to eliminate local melting damage that occurs in the direction of the lance oxygen injection port. As a result, the life of the smelting furnace can be extended significantly. Therefore, by adopting the method of the present invention, the frequency of repairing the furnace can be reduced, the refractory cost can be reduced, the operating efficiency of the equipment is increased, and the productivity is improved.

以下、本発明を実施するための形態を、添付図面を参照しながら詳細に説明する。
図4は、本実施の形態の精錬用回転ランス構造を示す説明図であり、図4(a)は全体図であり、図4(b)は精錬用回転ランス先端に取り付けられた精錬用ノズル形状の例である。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.
FIG. 4 is an explanatory view showing a refining rotary lance structure of the present embodiment, FIG. 4 (a) is an overall view, and FIG. 4 (b) is a refining nozzle attached to the tip of the refining rotary lance. It is an example of a shape.

本実施の形態の説明では、この精錬用ノズルの酸素噴射口の設置数は、鉛直方向を除き6個としたが、これに限定されるものではなく、同心円状に3〜6個であればよい。また、この同心円は、複数あってもよい。   In the description of the present embodiment, the number of oxygen injection ports of the refining nozzle is six except for the vertical direction, but is not limited to this, and is 3 to 6 concentrically. Good. There may be a plurality of concentric circles.

本実施の形態では、この精錬用ノズルの酸素噴射口傾角は、ランス中心軸鉛直方向に対して15°としたが、これに限定されるものではなく、10〜20°であればよい。
また、図4(a)に示すように、本実施の形態の精錬用ランスは、上部に回転ジョイント1を備えており、この回転ジョイント1を介して、酸素供給管2及び内筒3の内部、冷却水供給管4及び内筒から中間筒5の間の空間、更には、冷却水排水管6及び中間筒5から外筒7の間の空間が、連通されている。また、ランス昇降台車8とランスが接するランス預け部分9は、ランスに接続された上部10と、自由に回転が可能な下部11に分かれている。これにより、酸素供給管2及び内筒3の内部、冷却水供給管4及び内筒から中間筒5の間の空間、更には、冷却水排水管6及び中間筒5から外筒7の間の空間が、連通された状態で、酸素供給管2、冷却水給水管4及び中間筒5から外筒7の間の空間が、回転することができる。すなわち、ランス昇降台車8に上架した状態で、回転ジョイント1より下方に存在する部分を、ランス中心を軸として回転可能な構造となっている。
In this embodiment, the tilt angle of the oxygen injection port of the refining nozzle is 15 ° with respect to the vertical direction of the lance center axis, but is not limited to this and may be 10 to 20 °.
Further, as shown in FIG. 4 (a), the refining lance of the present embodiment is provided with a rotary joint 1 at the upper part, and the oxygen supply pipe 2 and the inner cylinder 3 are connected through the rotary joint 1. The space between the cooling water supply pipe 4 and the inner cylinder and the intermediate cylinder 5 and the space between the cooling water drain pipe 6 and the intermediate cylinder 5 and the outer cylinder 7 communicate with each other. A lance depositing portion 9 where the lance lifting carriage 8 and the lance contact is divided into an upper portion 10 connected to the lance and a lower portion 11 that can freely rotate. Thereby, the space between the oxygen supply pipe 2 and the inner cylinder 3, the space between the cooling water supply pipe 4 and the inner cylinder and the intermediate cylinder 5, and further between the cooling water drain pipe 6 and the intermediate cylinder 5 and the outer cylinder 7 The space between the oxygen supply pipe 2, the cooling water supply pipe 4, and the intermediate cylinder 5 to the outer cylinder 7 can rotate in a state where the spaces are communicated. In other words, in a state of being overlaid on the lance lifting carriage 8, a portion existing below the rotary joint 1 can be rotated around the lance center.

精錬用ランスを回転させる手段としては、ランス台車8上に駆動装置を設置し、ランス外筒7を回転させることが望ましいが、ランス整備場などで、回転ジョイント部1を回転させても良い。   As a means for rotating the refining lance, it is desirable to install a driving device on the lance carriage 8 and rotate the lance outer cylinder 7. However, the rotary joint portion 1 may be rotated at a lance maintenance site or the like.

本実施の形態の精錬用ランスは、以上のように構成される。次に、この精錬用ランスを用いて、精錬炉の局部溶損を均一化する状況を説明する。   The refining lance of the present embodiment is configured as described above. Next, the situation where the local melting damage of the refining furnace is made uniform using the refining lance will be described.

図5は、本実施の形態の精錬用ランスを、上底吹き転炉型精錬炉の内部に配置して、精錬を行う状況を示す説明図である。   FIG. 5 is an explanatory diagram showing a situation in which refining lances according to the present embodiment are arranged inside an upper bottom blown converter type refining furnace and refining is performed.

まず、上底吹き転炉型精錬炉の内部に精錬用ランスを挿入した後、精錬を行う。精錬は大酸素流量(2.5〜5.0Nm3/min・t)で実施するが、特別な場合を除けば、通常操業では酸素流量2.5〜4.0Nm3/min・tで行われる場合が多い。このとき、精錬用ランスのノズルからは、溶銑へ向けて酸素が噴射され、精錬が行われる。また、酸素噴射によって発生したスピッティングが、酸素噴射口方向の炉壁に対してダメージを与える。 First, a refining lance is inserted into the top-bottom blowing converter type refining furnace, and then refining is performed. Refining is carried out at a large oxygen flow rate (2.5 to 5.0 Nm 3 / min · t). Except in special cases, the refining is performed at an oxygen flow rate of 2.5 to 4.0 Nm 3 / min · t in normal operation. Often. At this time, oxygen is injected from the nozzle of the smelting lance toward the hot metal, and refining is performed. Moreover, spitting generated by oxygen injection damages the furnace wall in the direction of the oxygen injection port.

図6は、図5におけるA-A断面を示す説明図であり、図6(a)は精錬用ランスを回転させない場合を示し、図6(b)は精錬用ランスを回転させた場合を示す。
図6(a)に示すように、精錬用ランスを回転させない場合には、精錬炉における炉壁の耐火物が、酸素噴射口方位から優先的に溶損し、本実施の形態のように酸素噴射口が6個であると、この6方位から優先的に溶損が進行する。大酸素流量(2.5〜5.0Nm3/min・t)で、精錬用ノズルの酸素噴射口の設置数が同心円状に3〜6個、酸素噴射口傾角が10〜20°であるランスを用いた場合、図1において説明したように炉壁溶損傾角は12°〜48°の範囲である。
6A and 6B are explanatory views showing the AA cross section in FIG. 5. FIG. 6A shows a case where the refining lance is not rotated, and FIG. 6B shows a case where the refining lance is rotated.
As shown in FIG. 6 (a), when the refining lance is not rotated, the refractory on the furnace wall in the refining furnace melts preferentially from the direction of the oxygen injection port, and oxygen injection is performed as in the present embodiment. If the number of mouths is six, melting damage proceeds preferentially from these six directions. Lance with a large oxygen flow rate (2.5 to 5.0 Nm 3 / min · t), 3 to 6 concentric oxygen injection ports installed, and an oxygen injection port tilt angle of 10 to 20 ° As described with reference to FIG. 1, the furnace wall melting inclination angle is in the range of 12 ° to 48 °.

これに対し、精錬用ランスを式(1)で示されるθだけ回転させる場合には、これまで酸素噴射口に対向していた局部溶損部位と酸素噴射口方向がずれるため、精錬炉における炉壁耐火物の溶損が図6(b)に示すように均一化される。   On the other hand, when the smelting lance is rotated by the angle θ shown in the equation (1), the local erosion site facing the oxygen injection port and the direction of the oxygen injection port are shifted from each other. The melting damage of the wall refractory is made uniform as shown in FIG.

{m×(360°/n)+10°<θ<(m+1)×(360°/n)−10°}・・・(1)
m:任意の整数
n:ランス先端にランス中心軸から10°以上の角度αで設けられた酸素噴射口の数(非等間隔を含む)であって、3〜6の整数
さらに、精錬用ランスを酸素噴射口方向の実際の精錬炉炉壁溶損角度以上に回転させて局部溶損部位と酸素噴射口方向から完全に外したり、回転前の局部溶損部位と回転後の酸素噴射口方向とを互い違いにしたりすれば、精錬炉における炉壁耐火物の溶損がより均一化されるため望ましい。
{M × (360 ° / n) + 10 ° <θ <(m + 1) × (360 ° / n) −10 °} (1)
m: Arbitrary integer n: Number of oxygen injection ports (including non-uniform intervals) provided at an angle α of 10 ° or more from the center axis of the lance at the tip of the lance, and an integer of 3-6. Is rotated more than the actual smelting furnace furnace wall erosion angle in the direction of the oxygen injection port and completely removed from the local erosion site and the direction of the oxygen injection port, or the local erosion site before the rotation and the direction of the oxygen injection port after the rotation. Is preferable because the melting loss of the furnace wall refractory in the refining furnace becomes more uniform.

精錬用ランスの回転は、吹錬中又は非製鋼中のいずれであってもよい。しかし、非製鋼中に回転させる方が、回転ジョイント部の密閉性への要求が低くなるため、比較的簡単な設備で済み、望ましい。   The refining lance may be rotated during blowing or during non-steel making. However, it is desirable to rotate during non-steel making because the requirement for the sealing performance of the rotary joint portion is low, and relatively simple equipment is sufficient.

なお、ランスの回転頻度は、上記のように、大酸素流量(2.5〜5.0Nm3/min・t)で、精錬用ノズルの酸素噴射口の設置数が同心円状に3〜6個、酸素噴射口傾角が10〜20°であるランスを用いた場合には、150ヒートを上限とする。ランス回転角を同一にして150ヒートを超えると、酸素噴射口方向の炉壁の溶損が大きくなり、その後回転させても炉壁の均一な溶損を実現することが困難となるおそれがある。また、現状ではランスの寿命が400ヒート程度であるから、150ヒートを超えて回転させる場合にはランス寿命前に1〜2回回転させるのみとなり、本発明に係る方法の利益を享受しにくくなる。一方、回転頻度の下限は特に限定されない。毎回所定角度で回転することが溶損の均一化の観点からは理想的であるが、現実には回転には所定の時間を要する。このため、毎回回転させると、むしろ回転作業時間に起因する生産性の低下が懸念される。 In addition, the rotation frequency of the lance is 3 to 6 concentrically, as described above, with a large oxygen flow rate (2.5 to 5.0 Nm 3 / min · t) and the number of oxygen injection ports installed in the refining nozzle. When a lance having an oxygen injection port tilt angle of 10 to 20 ° is used, the upper limit is 150 heat. If the lance rotation angle is the same and the heat exceeds 150 heat, the melting loss of the furnace wall in the direction of the oxygen injection port becomes large, and it may be difficult to realize uniform melting damage of the furnace wall even if it is rotated thereafter. . In addition, since the life of the lance is currently about 400 heat, when rotating over 150 heat, it is only rotated once or twice before the lance life, and it is difficult to enjoy the benefits of the method according to the present invention. . On the other hand, the lower limit of the rotation frequency is not particularly limited. Although rotating at a predetermined angle every time is ideal from the viewpoint of uniform melt damage, in reality, a predetermined time is required for rotation. For this reason, if it is rotated every time, there is a concern that the productivity is lowered due to the rotation work time.

また、脱燐、脱硫、そのほかSi,Mnなどの元素含有量の調整については、これまで説明した吹錬工程の前後または同時に、通常行われる方法に基づいて行えばよい。   Further, dephosphorization, desulfurization, and other adjustments of the content of elements such as Si and Mn may be performed based on a commonly performed method before or after the blowing process described so far.

本発明の効果を確認するため下記の試験を行い、精錬炉炉壁溶損状況の評価を行った。
1.実施例1
(1)試験条件
装入溶銑成分が、[C]:2.8〜4.9質量%、[Si]:0.50質量%以下、[P]:0.150質量%以下、[Mn]:0.35質量%以下であり、装入温度が1250〜1450℃である溶銑約290tを、上底吹き転炉に注銑を行い、吹錬して炭素濃度が0.03〜0.08質量%の溶鋼を得た。
In order to confirm the effect of the present invention, the following tests were conducted to evaluate the state of smelting furnace furnace wall erosion.
1. Example 1
(1) Test conditions The molten iron component was [C]: 2.8 to 4.9% by mass, [Si]: 0.50% by mass or less, [P]: 0.150% by mass or less, [Mn]. : About 290 t of hot metal having a charging temperature of 1250 to 1450 ° C. of 0.35% by mass or less is poured into an upper bottom blowing converter and blown to obtain a carbon concentration of 0.03 to 0.08. A mass% molten steel was obtained.

本発明に関わる精錬用ランスを、ランス前圧7.0kg/cm2、酸素流量2.9Nm3/min・tの条件で精錬を行った。その際、ランス〜湯面間距離は、下記式(4)〜(6)で定義された、鋼浴内への酸素ジェットの進入深さLを鋼浴深さL0で除した値L/L0が0.05〜0.20となる範囲で設定した。本発明の実施例を当て嵌めると、ランス〜湯面間距離が3.2〜3.4mとなる。 The refining lance according to the present invention was refined under the conditions of a pre-lance pressure of 7.0 kg / cm 2 and an oxygen flow rate of 2.9 Nm 3 / min · t. At that time, the distance between the lance and the molten metal surface is defined by the following formulas (4) to (6), which is a value L / L0 obtained by dividing the penetration depth L of the oxygen jet into the steel bath by the steel bath depth L0. Was set in a range of 0.05 to 0.20. When the embodiment of the present invention is applied, the distance between the lance and the molten metal surface is 3.2 to 3.4 m.

Figure 2009149956
Figure 2009149956

本発明例1は中心軸方向の噴射口を除き6個の酸素噴射口を、酸素噴射口傾角15°の同心円状に有した精錬用ランスを用いて、1孔あたりの平均酸素流量が0.47Nm3/min・tの吹錬を行った。また、精錬用ランスは同一ランスの継続使用中に130〜150ヒートの間隔で、12°ずつ同方向に(3回)回転させた。 In Example 1 of the present invention, a refining lance having six oxygen injection ports concentrically with an oxygen injection port tilt angle of 15 ° except for the injection port in the central axis direction has an average oxygen flow rate of 0.1. 47 Nm 3 / min · t was blown. Further, the refining lance was rotated in the same direction (3 times) by 12 ° at intervals of 130 to 150 heat during continuous use of the same lance.

本発明例2は、本発明例1と同じ精錬用ランスを用いて、同じ平均酸素流量で吹錬を行った。また、上記式(2)を用いての炉壁溶損傾角の計算値が16.5°であるから、130〜150ヒートの間隔で、その上記式(2)の要件を満たす17°ずつ同方向に(3回)回転させた。   Invention Example 2 was blown at the same average oxygen flow rate using the same refining lance as that of Invention Example 1. In addition, since the calculated value of the furnace wall melting inclination angle using the above formula (2) is 16.5 °, the same 17 ° which satisfies the requirement of the above formula (2) at intervals of 130 to 150 heats. Rotated in direction (3 times).

併せて比較例1、2として、以下の条件で操業を行った。
比較例1は回転機能を有さない本発明例1と同じ精錬用ランスを用いて、同じ平均酸素流量で吹錬を行った。
In addition, as Comparative Examples 1 and 2, operation was performed under the following conditions.
Comparative Example 1 was blown at the same average oxygen flow rate using the same refining lance as that of Invention Example 1 having no rotating function.

比較例2は本発明例1と同じ精錬用ランスを用いて、同じ平均酸素流量で吹錬を行った。また、精錬用ランスは130〜150ヒートの間隔で、8°ずつ同方向に(3回)回転させた。   Comparative Example 2 was blown at the same average oxygen flow rate using the same refining lance as that of Invention Example 1. The refining lance was rotated in the same direction (3 times) by 8 ° at intervals of 130 to 150 heat.

(2)評価結果
各発明例・比較例の方法について、いずれも転炉を1000ヒート以上使用した段階における炉壁の溶損状況を実測し、その溶損進行が最も大きかった部位の溶損進行速度(mm/ヒート)を比較して実施効果を確認した。
(2) Evaluation results For each of the invention examples and comparative examples, the melt damage state of the furnace wall was measured at the stage where the converter was used for 1000 heats or more, and the progress of the melt damage at the site where the progress of the melt damage was the greatest. The implementation effect was confirmed by comparing the speed (mm / heat).

その結果、発明例1では、0.23、発明例2では0.20、比較例1では0.35、比較例2では0.30であり、本発明例の効果が確認された。
また、各例について、平均酸素流量および酸素噴射口傾角を含む吹錬条件、回転間隔、回転角度を同一にしたまま、最も溶損が進行した部分の炉壁残厚が100mmとなるまで吹
練を行い、このときのヒート数を炉の寿命として比較した。その結果、発明例1では、精錬炉の炉壁を均一に溶損することが可能であり、炉壁耐火物の残厚が多いため、炉寿命延命が可能となり、炉寿命は3050回となった。また、発明例2では炉壁がさらに均一に溶損し、溶損の進行が遅く本発明例1よりも炉寿延命化し、3550回となった。これに対し、比較例1では精錬用ランスを回転させることができないため、酸素噴射口方向の炉壁耐火物溶損の進行が早く、結果として炉寿命が短命となり、2030回となった。また、比較例2では精錬用ランスを、一炉代を通して炉壁溶損角度未満で回転させて操業を行った。この場合には、酸素噴射口方向の炉壁耐火物溶損の進行が比較例1に比べ遅いが有意差は見られず、さらに、均一な溶損状況でないため、本発明例と比較すると炉寿命が短く、2370回であった。
As a result, it was 0.23 in Invention Example 1, 0.20 in Invention Example 2, 0.35 in Comparative Example 1, and 0.30 in Comparative Example 2, confirming the effects of the Example of the present invention.
Further, for each example, the blowing conditions including the average oxygen flow rate and the oxygen injection nozzle tilt angle, the rotation interval, and the rotation angle were kept the same until the furnace wall remaining thickness of the portion where the most erosion progressed was 100 mm. The number of heats at this time was compared as the life of the furnace. As a result, in Invention Example 1, the furnace wall of the smelting furnace can be melted uniformly, and the remaining thickness of the furnace wall refractory is large. Therefore, it is possible to extend the life of the furnace, and the furnace life is 3050 times. . Further, in Invention Example 2, the furnace wall melted more uniformly, the progress of the melting damage was slow, and the life of the furnace was prolonged as compared with Invention Example 1, resulting in 3550 times. On the other hand, in the comparative example 1, since the lance for refining cannot be rotated, the progress of the furnace wall refractory erosion in the direction of the oxygen injection port is rapid, resulting in a short life of the furnace, which is 2030 times. In Comparative Example 2, the refining lance was operated by rotating it at a temperature less than the furnace wall melting angle through one furnace. In this case, the progress of the furnace wall refractory erosion in the direction of the oxygen injection port is slower than that in Comparative Example 1, but no significant difference is observed. The lifetime was short, 2370 times.

Figure 2009149956
Figure 2009149956

2.実施例2
中心軸方向の噴射口を除いた酸素噴射口を3個のランスを用い、1孔あたりの平均酸素流量が0.95Nm3/min・tとした以外は実施例1と同様の条件で吹錬を行った。この場合には上記式(2)に基づく炉壁溶損傾角の計算値が31.6°であるため、本発明例3では、130〜150ヒートの間隔での回転角度は同方向に14°ずつとし、本発明例4では32°ずつとし、比較例3では0°、比較例4では8°ずつとした。
2. Example 2
Blowing under the same conditions as in Example 1 except that the oxygen injection port excluding the central axis injection port uses three lances and the average oxygen flow rate per hole is 0.95 Nm 3 / min · t. Went. In this case, since the calculated value of the furnace wall melting inclination angle based on the above formula (2) is 31.6 °, in Example 3 of the present invention, the rotation angle at intervals of 130 to 150 heat is 14 ° in the same direction. In Example 4 of the present invention, the angle was 32 °, in Comparative Example 3 was 0 °, and in Comparative Example 4 was 8 °.

この場合には、1000ヒート経過時の最大溶損進行速度(mm/ヒート)は、それぞれ、本発明例3では0.34、本発明例4では0.27、比較例3では0.4、比較例4では0.38となった。   In this case, the maximum erosion rate (mm / heat) at the time of 1000 heats is 0.34 in Invention Example 3, 0.27 in Invention Example 4, and 0.4 in Comparative Example 3, respectively. In Comparative Example 4, it was 0.38.

この結果から、1孔あたりの平均酸素流量が大きい場合でも、おおむね10°以上ランスを回転させることで局所的な溶損量を減らすことが可能であり、上記式(2)に基づいて角度を設定すれば、溶損量を大きく減らすことが可能であることが確認された。   From this result, even when the average oxygen flow rate per hole is large, it is possible to reduce the amount of local erosion by rotating the lance approximately 10 ° or more, and the angle can be determined based on the above equation (2). It was confirmed that the amount of erosion loss can be greatly reduced if set.

ランス種毎の送酸速度と炉壁溶損角度の関係を示すグラフである。It is a graph which shows the relationship between the acid feed rate for every lance type | mold, and a furnace wall melting angle. 最大溶損部位を含む精錬炉横断面を概念的に示す断面図である。It is sectional drawing which shows notionally the cross section of a smelting furnace containing the largest erosion site | part. ガス噴射口の傾斜角を説明するためのランス先端の模式的な部分断面図である。It is a typical fragmentary sectional view of the tip of a lance for explaining the angle of inclination of a gas injection mouth. 本実施の形態の精錬用回転ランス構造を示す説明図であり、図4(a)は全体図であり、図4(b)は精錬用回転ランス先端に取り付けられた精錬用ノズル形状の一例を示す図である。It is explanatory drawing which shows the rotary lance structure for refining of this Embodiment, FIG. 4 (a) is a general view, FIG.4 (b) is an example of the shape of the nozzle for refining attached to the rotation lance tip for refining. FIG. 回転ランスを用いた吹錬状況を概念的に示す断面図である。It is sectional drawing which shows notionally the blowing condition using a rotation lance. 図5におけるA-A断面を示す説明図であり、(a)は精錬用ランスを回転させない場合を示し、(b)は精錬用ランスを回転させた場合を示す。6A and 6B are explanatory views showing a cross section AA in FIG. 5, in which FIG. 5A shows a case where the refining lance is not rotated, and FIG. 5B shows a case where the refining lance is rotated.

符号の説明Explanation of symbols

1:回転ジョイント
2:酸素供給管
3:内筒
4:冷却水供給管4
5:中間筒
6:冷却水排水管
7:外筒
8:ランス昇降台車
9:ランス預け部分
10:ランス預け部分の上部
11:ランス預け部分の下部
1: Rotating joint 2: Oxygen supply pipe 3: Inner cylinder 4: Cooling water supply pipe 4
5: Intermediate cylinder 6: Cooling water drain pipe 7: Outer cylinder 8: Lance lifting cart 9: Lance deposit part 10: Upper part of lance deposit part 11: Lower part of lance deposit part

Claims (3)

転炉内の溶銑に2.5〜5.0Nm3/min・tの流量で上吹きランスを用いて酸素を供給しつつ精錬を行う溶鋼の製造方法であって、
前記ランスは、その先端にランスの中心軸と酸素噴射口の中心軸とが10°〜20°の角度をなす酸素噴射口を3〜6個有するとともに、そのランス中心軸回りに回転可能とする機構を備え、
前記ランスの継続使用が150ヒート以内に、その使用中のランスを下記式(1)で定義されるθの範囲内で回転させる吹錬工程を備えることを特徴とする、
転炉による溶鋼の製造方法。
{m×(360°/n)+10°<θ<(m+1)×(360°/n)−10°}・・・(1)
m:任意の整数
n:ランス先端にランス中心から10°以上の角度で設けられた酸素噴射口の数であって、3〜6の整数
A method for producing molten steel in which refining is performed while supplying oxygen to a hot metal in a converter using a top blowing lance at a flow rate of 2.5 to 5.0 Nm 3 / min · t,
The lance has 3 to 6 oxygen injection ports at the tip of which the central axis of the lance and the central axis of the oxygen injection port form an angle of 10 ° to 20 °, and is rotatable about the lance central axis. Equipped with a mechanism
The continuous use of the lance comprises a blowing step of rotating the lance in use within the range of θ defined by the following formula (1) within 150 heats,
A method for producing molten steel using a converter.
{M × (360 ° / n) + 10 ° <θ <(m + 1) × (360 ° / n) −10 °} (1)
m: Arbitrary integer n: Number of oxygen injection ports provided at the tip of the lance at an angle of 10 ° or more from the center of the lance, and an integer of 3 to 6
転炉内の溶銑に2.5〜5.0Nm3/min・tの流量で上吹きランスを用いて酸素を供給しつつ精錬を行う溶鋼の製造方法であって、
前記ランスは、その先端にランスの中心軸と酸素噴射口の中心軸とが10°〜20°の角度をなす酸素噴射口を3〜6個有するとともに、そのランス中心軸回りに回転可能とする機構を備え、
前記ランスの継続使用が150ヒート以内に、その使用中ランスを下記式(2)で定義されるθの範囲内で回転させる吹錬工程を備えることを特徴とする、
転炉による溶鋼の製造方法。
{m×(360/n)+ξ}°<θ<{(m+1)×(360/n)−ξ}°・・・(2)
ξ=0.520xα+31.73xV+k
m:任意の整数
n:ランス先端に鉛直軸から10°以上の角度で設けられた酸素噴射口の数であって、3〜6の整数
α:ランスの中心軸と酸素噴射口の中心軸とがなす角度(°)の平均値
V:噴射口1つあたりの酸素噴出速度(Nm3/min・t)の平均値
k:-6.244(定数)
A method for producing molten steel in which refining is performed while supplying oxygen to a hot metal in a converter using a top blowing lance at a flow rate of 2.5 to 5.0 Nm 3 / min · t,
The lance has 3 to 6 oxygen injection ports at the tip of which the central axis of the lance and the central axis of the oxygen injection port form an angle of 10 ° to 20 °, and is rotatable about the lance central axis. Equipped with a mechanism
The continuous use of the lance comprises a blowing step of rotating the lance during use within the range of θ defined by the following formula (2) within 150 heat,
A method for producing molten steel using a converter.
{M × (360 / n) + ξ} ° <θ <{(m + 1) × (360 / n) −ξ} ° (2)
ξ = 0.520xα + 31.73xV + k
m: Arbitrary integer n: Number of oxygen injection ports provided at the tip of the lance at an angle of 10 ° or more from the vertical axis, an integer of 3 to 6 α: The central axis of the lance and the central axis of the oxygen injection port Average value of angle (°) formed by V V: Average value of oxygen ejection speed per nozzle (Nm 3 / min · t) k: -6.244 (constant)
転炉内の溶銑に2.5〜5.0Nm3/min・tの流量で上吹きランスを用いて酸素を供給しつつ精錬を行う溶鋼の製造方法であって、
前記ランスは、その先端にランスの中心軸と酸素噴射口の中心軸とが10°〜20°の角度をなす酸素噴射口を3〜6個有するとともに、そのランス中心軸回りに回転可能とする機構を備え、
前記ランスの継続使用が150ヒート以内に、使用中転炉の最大溶損部位を含む横断面における煉瓦残厚が最大の最小溶損部煉瓦残厚X1とランス酸素噴射口方向の局部溶損煉瓦残厚X2との差が25mm以上となる範囲の角度βを測定して、
その使用中ランスを下記式(3)で定義されるθの範囲内で回転させる吹錬工程を備えることを特徴とする、
転炉による溶鋼の製造方法。
{m×(360/n)+β}°<θ<{(m+1)×(360/n)−β}°・・・(3)
m:任意の整数
n:ランス先端に鉛直軸から10°以上の角度で設けられた酸素噴射口の数であって、3〜6の整数
A method for producing molten steel in which refining is performed while supplying oxygen to a hot metal in a converter using a top blowing lance at a flow rate of 2.5 to 5.0 Nm 3 / min · t,
The lance has 3 to 6 oxygen injection ports at the tip of which the central axis of the lance and the central axis of the oxygen injection port form an angle of 10 ° to 20 °, and is rotatable about the lance central axis. Equipped with a mechanism
Within 150 heats of continuous use of the lance, the minimum remaining brick thickness X1 with the largest remaining brick thickness X1 in the cross section including the maximum damaged portion of the converter in use and the locally damaged brick in the direction of the lance oxygen injection port Measure the angle β in a range where the difference from the remaining thickness X2 is 25 mm or more,
Characterized by comprising a blowing step of rotating the lance in use within the range of θ defined by the following formula (3):
A method for producing molten steel using a converter.
{M × (360 / n) + β} ° <θ <{(m + 1) × (360 / n) −β} ° (3)
m: Arbitrary integer n: Number of oxygen injection holes provided at an angle of 10 ° or more from the vertical axis at the tip of the lance, and an integer of 3-6
JP2007330403A 2007-12-21 2007-12-21 Method for producing molten steel with converter Pending JP2009149956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007330403A JP2009149956A (en) 2007-12-21 2007-12-21 Method for producing molten steel with converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007330403A JP2009149956A (en) 2007-12-21 2007-12-21 Method for producing molten steel with converter

Publications (1)

Publication Number Publication Date
JP2009149956A true JP2009149956A (en) 2009-07-09

Family

ID=40919409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007330403A Pending JP2009149956A (en) 2007-12-21 2007-12-21 Method for producing molten steel with converter

Country Status (1)

Country Link
JP (1) JP2009149956A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8259758B2 (en) 2009-12-23 2012-09-04 Industrial Technology Research Institute Network slave node and time synchronization method in network applying the same
JP2012167364A (en) * 2011-01-26 2012-09-06 Jfe Steel Corp Refining method in converter excellent in suppression effect of dust generation
CN113065222A (en) * 2021-02-20 2021-07-02 武汉钢铁有限公司 Method and device for evaluating state of hearth

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290215A (en) * 1987-05-23 1988-11-28 Kobe Steel Ltd Lance apparatus for top blowing in converter
JP2000001714A (en) * 1998-06-18 2000-01-07 Sumitomo Metal Ind Ltd Top-blown lance for refining molten metal
JP2000017318A (en) * 1998-07-02 2000-01-18 Kawasaki Steel Corp Method for extending service life of converter type refining furnace
JP2005344130A (en) * 2004-05-31 2005-12-15 Jfe Steel Kk Converter oxygen-blowing method and top-blown lance for converter oxygen-blowing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290215A (en) * 1987-05-23 1988-11-28 Kobe Steel Ltd Lance apparatus for top blowing in converter
JP2000001714A (en) * 1998-06-18 2000-01-07 Sumitomo Metal Ind Ltd Top-blown lance for refining molten metal
JP2000017318A (en) * 1998-07-02 2000-01-18 Kawasaki Steel Corp Method for extending service life of converter type refining furnace
JP2005344130A (en) * 2004-05-31 2005-12-15 Jfe Steel Kk Converter oxygen-blowing method and top-blown lance for converter oxygen-blowing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8259758B2 (en) 2009-12-23 2012-09-04 Industrial Technology Research Institute Network slave node and time synchronization method in network applying the same
JP2012167364A (en) * 2011-01-26 2012-09-06 Jfe Steel Corp Refining method in converter excellent in suppression effect of dust generation
CN113065222A (en) * 2021-02-20 2021-07-02 武汉钢铁有限公司 Method and device for evaluating state of hearth

Similar Documents

Publication Publication Date Title
JP2013142189A (en) Method for reducing spitting in decarburize-refining in converter
JP2009149956A (en) Method for producing molten steel with converter
JP6358454B2 (en) Operation method of top-bottom blowing converter
JP4830825B2 (en) Refining method in converter type refining furnace
JPH10176212A (en) Method for preventing flow-out of slag at the time of discharging molten steel
JP5239596B2 (en) Converter operation method
CN111763833A (en) Oxygen-enriched bottom blowing converting furnace for converting liquid copper matte into copper
JP2016151375A (en) Operation method of arc type bottom-blowing electric furnace
JP2011202236A (en) Top-blowing lance for converter, and method for operating converter
JP5298543B2 (en) Converter operation method
JP5079444B2 (en) Slag coating method for converter inner wall
JP2002332513A (en) Method for removing metal on nose of melting vessel furnace
JP5181489B2 (en) Vacuum tank structure and repair method for vacuum degassing equipment
JP3876537B2 (en) How to extend the life of converter smelting furnaces
JP5488025B2 (en) Melting method of converter furnace deposit metal
JP2018024911A (en) Method for melting bullion adhered in ladle in molten iron preliminary treatment
JP2010047830A (en) Method for operating converter
JP3750624B2 (en) Removal method of bottom metal from bottom blow converter
JP5412756B2 (en) Converter operation method
JP6201971B2 (en) How to cut the bullion of the converter
JPH11140525A (en) Converter blowing method restraining deposition of metal of furnace opening hole part and side wall in furnace and lance device for converter
JP2995042B2 (en) Bullion removal lance
JP2004285475A (en) Switching method and replacing method of bottom-blown tuyere in converter
JP2006213940A (en) Lance used for both blowing and in-furnace skull melting, and operation method of top-bottom-blown converter type refining furnace
WO2004079020A1 (en) Methods of switching and changing bottom-blown tuyere in converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091217

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Effective date: 20121011

Free format text: JAPANESE INTERMEDIATE CODE: A712

A02 Decision of refusal

Effective date: 20121218

Free format text: JAPANESE INTERMEDIATE CODE: A02