JP2006213940A - Lance used for both blowing and in-furnace skull melting, and operation method of top-bottom-blown converter type refining furnace - Google Patents

Lance used for both blowing and in-furnace skull melting, and operation method of top-bottom-blown converter type refining furnace Download PDF

Info

Publication number
JP2006213940A
JP2006213940A JP2005025362A JP2005025362A JP2006213940A JP 2006213940 A JP2006213940 A JP 2006213940A JP 2005025362 A JP2005025362 A JP 2005025362A JP 2005025362 A JP2005025362 A JP 2005025362A JP 2006213940 A JP2006213940 A JP 2006213940A
Authority
JP
Japan
Prior art keywords
furnace
melting
blowing
lance
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005025362A
Other languages
Japanese (ja)
Inventor
Akira Kato
亮 加藤
Kenji Saka
健司 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005025362A priority Critical patent/JP2006213940A/en
Publication of JP2006213940A publication Critical patent/JP2006213940A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently remove a skull while avoiding the care of securing the time needed for melting the skull, suppressing the erosion of refractory in a converter and reducing the frequency of water leakage from a lance. <P>SOLUTION: In the top/bottom-blown converter type refining furnace 8, the lance 7 which is used for the blowing and also the in-furnace skull melting, is provided with a tip part injecting hole 1 arranged at the tip part and injecting oxygen for blowing, and a side surface injecting holes 2 arranged on the side surface upward the tip part injecting hole 1 and injecting the oxygen for melting the skull, and is rotatable around the axis, is used to perform the blowing while melting the in-furnace skull 10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、吹錬及び炉内地金溶解兼用ランス、及び上底吹き転炉型精錬炉の操業方法に関し、例えば、上底吹き転炉型精錬炉において吹錬及び炉内地金溶解をいずれも行うことができる吹錬及び炉内地金溶解兼用ランスと、この吹錬及び炉内地金溶解兼用ランスを用いた上底吹き転炉型精錬炉の操業方法とに関する。   The present invention relates to a method for operating a smelting lance and melting ingot in a furnace, and an operation method of an upper bottom blowing converter type smelting furnace. The present invention relates to a lance that can be used for both blowing and in-furnace metal melting, and a method for operating an upper-bottom converter type refining furnace that uses this smelting and lance for melting metal in the furnace.

転炉での吹錬時に飛散した地金やスラグは、転炉の内側壁の上部に付着する。付着した地金やスラグ(以下、「付着地金」という。)は吹錬を繰り返す毎に成長し、ある程度の大きさ以上になって転炉への注銑やスクラップの装入の障害になる。このため、転炉での吹錬では付着地金を効率良く除去することが必要である。   Ingots and slag scattered during blowing in the converter adhere to the upper part of the inner wall of the converter. Adhered bullion and slag (hereinafter referred to as “adhered bullion”) grows each time the blowing is repeated, and becomes larger than a certain size and becomes an obstacle to pouring into the converter and charging scrap. . For this reason, it is necessary to remove adhering metal efficiently in blowing in a converter.

付着地金、主に転炉の炉口付近の付着地金を除去する手段として、スクラップシュートを付着地金に擦り当てるか、あるいはぶつける等によって付着地金を機械的に除去することが知られている。しかし、この手段では、炉口付近の付着地金しか除去できないとともに、ある程度の大きさ以上に成長した付着地金の除去にはかなりの時間を要してしまう。特に転炉型溶銑脱燐等により炉内の付着地金が成長し易い転炉吹錬では、この方法は効率的ではない。このように、転炉炉内へ付着した付着地金を機械的に除去する方法は除去可能な付着地金の量に限界があり、また除去に要する時間も長い。   It is known to remove the adhering metal mechanically by rubbing or hitting the scrap chute against the adhering metal as a means of removing the adhering metal, mainly the vicinity of the converter furnace. ing. However, this means can remove only the adhering metal in the vicinity of the furnace opening, and it takes a considerable time to remove the adhering metal that has grown to a certain size. In particular, this method is not efficient in converter blowing, in which the deposited metal in the furnace is likely to grow due to converter-type hot metal dephosphorization or the like. As described above, the method of mechanically removing the attached metal that has adhered to the converter furnace has a limit in the amount of attached metal that can be removed, and the time required for the removal is long.

特許文献1には、吹錬終了後の非製鋼中に地金溶解専用ランスを用いて付着地金を溶解除去する発明が、特許文献2には、さらにこの地金溶解専用ランスを回転させる発明が、それぞれ開示されている。しかし、これらの発明では、非製鋼中に付着地金の溶解除去を行うものであるために付着地金を溶解するための時間を確保する必要が生じるとともに、溶銑脱燐等の温度が低い条件下では付着地金の表面温度も低下するために付着地金に酸素を吹き付けても着火(高温酸化反応)せず、付着地金の溶解効率が悪化し易い。このように、非製鋼中に地金溶解専用ランスから酸素を吹き付けて付着地金を溶解する方法は、付着地金の溶解のために時間を確保する必要があり、効率的ではない。   Patent Document 1 discloses an invention for dissolving and removing adhering ingots using non-steel melting lances during non-steeling after the completion of blowing, and Patent Document 2 further discloses an invention for rotating the bullion melting dedicated lances. Are each disclosed. However, in these inventions, it is necessary to secure time for dissolving the adhered metal because non-steel making is performed by dissolving and removing the adhered metal, and the temperature of the hot metal dephosphorization is low. Below, since the surface temperature of the adherence metal also decreases, even if oxygen is blown onto the adherence metal, it does not ignite (high temperature oxidation reaction), and the dissolution efficiency of the adherence metal tends to deteriorate. Thus, the method of spraying oxygen from a lance dedicated for melting metal during non-steeling to dissolve the deposited metal requires time for melting the deposited metal and is not efficient.

そこで、特許文献3には、吹錬用ノズル及び炉口地金溶解用ノズルをいずれも備える吹錬及び炉口地金溶解兼用ランスを用いて、吹錬を行いながら同時に付着地金を溶解除去する発明が開示されている。この発明によれば、付着地金を溶解するための時間を確保する必要がないために効率的であるとともに、溶銑脱燐等の温度が低い場合においても付着地金の溶解除去を効率的に行うことができる。
特開平1−136923号公報 特開平6−25729号公報 特開平8−127812号公報
Therefore, in Patent Document 3, using a blowing lance and a furnace port metal melting lance equipped with both a nozzle for blowing and a furnace port metal melting, the adhesion metal is dissolved and removed simultaneously with blowing. The invention is disclosed. According to the present invention, it is efficient because it is not necessary to secure time for dissolving the adhered metal, and even when the temperature of the hot metal dephosphorization is low, the dissolved metal is efficiently dissolved and removed. It can be carried out.
Japanese Patent Laid-Open No. 1-136923 JP-A-6-25729 JP-A-8-127812

特許文献3により開示された発明では、炉口地金溶解用ノズルは固定されておりその位置は不変である。このため、炉口地金溶解用ノズルが指向する方位に存在する付着地金が、他の方位に存在する付着地金よりも優先して溶解される。このため、他の方位に存在する付着地金も含めて炉内全域の付着地金が溶解するまでこのランスを使用し続けると、炉口地金溶解用ノズルが指向する方位に存在する耐火物を損傷させてしまう。また、炉内周方向へ不均一に付着地金が成長した場合も事情は同じであり、付着地金が少ない方位の耐火物を損傷させてしまう。   In the invention disclosed in Patent Document 3, the nozzle for melting the furnace mouth metal is fixed and its position is unchanged. For this reason, the adhesion metal which exists in the direction to which the nozzle for melting the furnace mouth metal is directed is preferentially melted over the adhesion metal which exists in other directions. Therefore, if you continue to use this lance until the adherent metal in the whole furnace, including the attached metal in other orientations, melts, the refractory in the orientation that the nozzle for melting the furnace mouth metal points to Will damage it. In addition, the situation is the same when the adhered metal grows unevenly in the inner circumferential direction of the furnace, and the refractory with the less adhered metal is damaged.

なお、炉口地金溶解用ノズルが指向する方位を除いた他の方位に存在する付着地金も含めて炉内全域の付着地金を溶解するには、特許文献3により開示された吹錬及び炉口地金溶解兼用ランスにおける炉口地金溶解用ノズルを、ランス横断面(水平面)の同心円上に多数配置すればいいのでは、と一見考えられる。しかし、炉口地金溶解用ノズルを同心円上に多数配置すると、ランス内部のランス冷却水の水路が不可避的に減少して冷却能力が不足するために、ランスからの水漏れが誘発される。一方、炉口地金溶解用ノズルを同心円状に疎らに配置したのでは、ランスからの水漏れを防止することはできるものの、付着地金を溶解できる範囲が狭まってしまう。   In addition, in order to melt | dissolve the adhesion | attachment metal in the whole furnace inside also including the adhesion | attachment metal | metal existing in the other direction except the direction which the nozzle for melting | dissolving a furnace mouth metal | bulb directs, the blowing disclosed by patent document 3 is carried out. In addition, it may be considered that a large number of nozzles for melting the furnace mouth metal in the lance for melting and melting the furnace mouth metal should be arranged on a concentric circle of the lance cross section (horizontal plane). However, if a large number of nozzles for melting the furnace mouth metal are arranged concentrically, the lance cooling water channel inside the lance inevitably decreases and the cooling capacity is insufficient, so that water leakage from the lance is induced. On the other hand, if the nozzles for melting the furnace mouth metal are arranged sparsely in a concentric manner, water leakage from the lance can be prevented, but the range in which the attached metal can be dissolved is narrowed.

本発明は、先端に配置されて吹錬のための酸素を噴射する先端噴射口と、この先端噴射口よりも上方の側面に配置されて炉内地金溶解のための酸素を噴射する側面噴射口とを備え、軸回りに回転可能であることを特徴とする吹錬及び炉内地金溶解兼用ランスである。   The present invention has a tip injection port arranged at the tip for injecting oxygen for blowing, and a side injection port arranged on the side surface above the tip injection port for injecting oxygen for melting ingot in the furnace. And a lance for both melting and ingot melting in the furnace, characterized in that it can rotate around its axis.

また、本発明は、先端に配置されて吹錬のための酸素を噴射する先端噴射口と、この先端噴射口よりも上方の側面に配置されて炉内地金溶解のための酸素を噴射する側面噴射口とを備え、側面噴射口がランス横断面の同心円状に並設された12方向以下の噴射口を有し、軸回りに回転可能であることを特徴とする吹錬及び炉内地金溶解兼用ランスである。   Further, the present invention provides a tip injection port that is arranged at the tip and injects oxygen for blowing, and a side surface that is arranged on a side surface above the tip injection port and injects oxygen for melting the ingot in the furnace. Blasting and melting of in-furnace ingots, characterized in that the side injection port has 12 or less injection ports arranged concentrically in a lance cross section and is rotatable about its axis. It is a combined lance.

別の観点からは、本発明は、上底吹き転炉型精錬炉において、上記の本発明に係る吹錬及び炉内地金溶解兼用ランスを用いて、炉内地金を溶解しながら吹錬を行うことを特徴とする上底吹き転炉型精錬炉の操業方法である。   From another point of view, the present invention is a top bottom blowing converter type smelting furnace, which performs blowing while melting the ingot in the furnace using the above-described lance for both melting and ingot melting in the furnace. It is the operating method of the top bottom blowing converter type refining furnace characterized by this.

この本発明に係る上底吹き転炉型精錬炉の操業方法では、炉内地金の溶解が吹錬及び炉内地金溶解兼用ランスを非吹錬中に回転させながら行われるとともに、吹錬が吹錬及び炉内地金溶解兼用ランスを回転させずに行われることが望ましい。   In the operation method of the top bottom blowing converter type smelting furnace according to the present invention, melting of the ingot in the furnace is performed while the blowing and lance for melting ingot in the furnace are rotated during non-blowing and the blowing is performed. It is desirable to carry out the smelting and melting of the ingot in the furnace without rotating the lance.

これらの本発明に係る上底吹き転炉型精錬炉の操業方法では、上底吹き転炉型精錬炉が溶銑脱燐を行うことが望ましい。   In the operation method of the top bottom blowing converter type refining furnace according to the present invention, it is desirable that the top bottom blowing converter type refining furnace performs hot metal dephosphorization.

本発明によれば、上底吹き転炉型精錬炉において回転機能を有する吹錬及び炉内地金溶解兼用ランスを使用するため、付着地金の溶解時間の確保を避けて炉内の付着地金を効率よく除去することが可能である。また、転炉の耐火物の溶損を抑制し、ランスからの水漏れの発生頻度を減少させながら付着地金を除去することができる。   According to the present invention, in the top bottom blowing converter type smelting furnace, the smelting lance having a rotating function and the in-furnace metal melting lance are used. Can be efficiently removed. Moreover, the molten metal of the refractory of a converter can be suppressed, and adhesion metal can be removed, reducing the frequency of occurrence of water leakage from the lance.

以下、本発明を実施するための最良の形態を、添付図面を参照しながら詳細に説明する。
図1は、本実施の形態の吹錬及び炉内地金溶解兼用ランス7の構造を示す説明図であり、図1(a)は全体図であり、図1(b)は地金溶解用ノズル部の横断面図であり、図1(a)におけるA−A断面図である。
The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is an explanatory view showing the structure of the lance 7 for both blowing and melting in-furnace of the present embodiment, FIG. 1 (a) is an overall view, and FIG. It is a cross-sectional view of a part, and is an AA cross-sectional view in FIG.

図1(a)及び図1(b)に示すように、吹錬及び炉内地金溶解兼用ランス7は3重管からなり、一番内側の内筒5aを酸素供給管3として、その先端に吹錬のための酸素を噴出するための吹錬用ノズル1を有している。   As shown in FIG. 1 (a) and FIG. 1 (b), the lance 7 for both blowing and ingot melting is composed of a triple pipe, and the innermost inner cylinder 5a is used as the oxygen supply pipe 3 at the tip thereof. There is a nozzle 1 for blowing out oxygen for blowing.

吹錬及び炉内地金溶解兼用ランス7では,酸素供給管3を覆うように冷却水給水管4aと、さらに冷却水給水管4aを覆うように冷却水排水管4bとが配置されており、冷却水が中間筒5bの最下部で内筒5a側から外筒5c側へ折り返す構造となっている。   In the blow lance and in-furnace metal melting lance 7, a cooling water supply pipe 4 a is disposed so as to cover the oxygen supply pipe 3, and a cooling water drain pipe 4 b is further disposed so as to cover the cooling water supply pipe 4 a. The water is folded from the inner cylinder 5a side to the outer cylinder 5c side at the lowermost part of the intermediate cylinder 5b.

さらに、吹錬用ノズル1から上下方向に所定の距離だけ離れたランス側面上方位置に、地金溶解用の酸素を噴出するための地金溶解用ノズル2が配置されている。この地金溶解用ノズル2は、酸素供給管3と連通した酸素通路2aを有しており、この酸素通路2aは冷却水給水管4a及び冷却水排水管4bを貫通して設けられている。   Further, a metal melting nozzle 2 for ejecting oxygen for melting metal is arranged at a position above the lance side surface that is separated from the blowing nozzle 1 by a predetermined distance in the vertical direction. The metal melting nozzle 2 has an oxygen passage 2a communicating with the oxygen supply pipe 3, and the oxygen passage 2a is provided through the cooling water supply pipe 4a and the cooling water drain pipe 4b.

本実施の形態では、この地金溶解用ノズル2の設置数は、ランス横断面において4個としたが、これに限定されるものではなく、ランス横断面の同心円上に12個以下であればよい。   In the present embodiment, the number of the metal melting nozzles 2 is four in the lance cross section, but is not limited to this, and if it is 12 or less on the concentric circle of the lance cross section, Good.

図2は、吹錬及び炉内地金溶解兼用ランス7の横断面における同心円上に設けた地金溶解用ノズル2の個数(方位数)と、ランス水漏れトラブル頻度(吹錬用ノズル1の寿命以前に地金溶解用ノズル2が水漏れする頻度)(%)との関係の一例を示すグラフである。   FIG. 2 shows the number of bullion melting nozzles 2 provided on concentric circles in the cross section of the lance 7 for both blowing and melting in-furnace (the number of azimuths), and the frequency of lance water leakage troubles (life of the squirting nozzle 1). It is a graph which shows an example of the relationship with the frequency (%) which the nozzle 2 for metal melt | dissolution previously leaks.

例えば図1(b)及び図2に示すように、地金溶解用ノズル2を、ランス横断面の同心円上に4方位程度の疎らに配置すれば、ランス水漏れトラブルは事実上発生しない。
しかし、図2にグラフで示すように、地金溶解用ノズル2の個数が14個以上になると、冷却水給水管4a及び冷却水排水管4bの内径を十分に確保できなくなることに伴って冷却水の水路が不可避的に減少して冷却能力が不足するために、ランスの水漏れトラブルが頻発されて操業上の大きな問題となることから、地金溶解用ノズル2の個数は12方位以下とすることが望ましい。地金溶解用ノズル2の個数は12方位以下とすることにより、水漏れトラブルを発生させることなく、炉内全域の付着地金を溶解することが可能となる。
For example, as shown in FIGS. 1B and 2, if the metal melting nozzles 2 are arranged sparsely in about four directions on the concentric circle of the lance cross section, the lance water leakage trouble does not actually occur.
However, as shown in the graph of FIG. 2, when the number of the metal melting nozzles 2 is 14 or more, the cooling water supply pipe 4a and the cooling water drain pipe 4b cannot be secured with sufficient inner diameter. Since the water channels are inevitably reduced and the cooling capacity is insufficient, water leakage troubles of the lance occur frequently and become a major operational problem. It is desirable to do. By setting the number of the metal melting nozzles 2 to 12 orientations or less, it is possible to melt the adhered metal in the entire furnace area without causing a water leakage trouble.

また、図1(a)に示すように、本実施の形態の吹錬及び炉内地金溶解兼用ランス7は、上部に公知のスイベル管継手6a及びランス回転用モーター6bを備えており、このスイベル管継手6aを介して、酸素供給管3及び内筒5aの内部、冷却水給水管4a及び内筒5a〜中間筒5bの間の空間、さらには、冷却水排水管4b及び中間筒5b〜外筒5cの間の空間が、連通されている。これにより、酸素供給管3及び内筒5aの内部、冷却水給水管4a及び内筒5a〜中間筒5bの間の空間、さらには、冷却水排水管4b及び中間筒5b〜外筒5cの間の空間が、連通された状態で、酸素供給管3、冷却水給水管4a及び冷却水排水管4bに対して、内筒5aの内部、内筒5a〜中間筒5bの間の空間、及び中間筒5b〜外筒5cの間の空間が、回転することができる。すなわち、スイベル管継手6aより下方に存在する部分を、ランス中心(鉛直方向)を軸として回転可能な構造となっている。   Further, as shown in FIG. 1 (a), the lance 7 for both blowing and ingot melting in the present embodiment is provided with a known swivel pipe joint 6a and a lance rotation motor 6b at the upper portion. Via the pipe joint 6a, the interior of the oxygen supply pipe 3 and the inner cylinder 5a, the space between the cooling water supply pipe 4a and the inner cylinder 5a to the intermediate cylinder 5b, and further the cooling water drain pipe 4b and the intermediate cylinder 5b to the outside A space between the cylinders 5c is communicated. Thereby, the inside of the oxygen supply pipe 3 and the inner cylinder 5a, the space between the cooling water supply pipe 4a and the inner cylinder 5a to the intermediate cylinder 5b, and further between the cooling water drain pipe 4b and the intermediate cylinder 5b to the outer cylinder 5c. Are connected to the oxygen supply pipe 3, the cooling water supply pipe 4a and the cooling water drain pipe 4b in the inner cylinder 5a, the space between the inner cylinder 5a and the intermediate cylinder 5b, and the middle. The space between the cylinder 5b and the outer cylinder 5c can rotate. In other words, the portion below the swivel pipe joint 6a can be rotated about the lance center (vertical direction) as an axis.

本実施の形態の吹錬及び炉内地金溶解兼用ランス7は、以上のように構成される。次に、この吹錬及び炉内地金溶解兼用ランス7を用いて、炉内に付着した地金を溶解除去しながら吹錬を行う状況を説明する。   The blow lance and in-furnace metal melt melting lance 7 of the present embodiment is configured as described above. Next, a situation in which blowing is performed while melting and removing the metal attached to the inside of the furnace using the blowing and melting metal lance 7 will be described.

図3は、本実施の形態の吹錬及び炉内地金溶解兼用ランス7を、上底吹き転炉型精錬炉8の内部に配置して、炉内に付着した地金10を溶解除去しながら吹錬を行う状況を示す説明図である。なお、本実施の形態は、上底吹き転炉型精錬炉8は、溶銑脱燐を行うものである。   FIG. 3 shows that the lance 7 for blowing and melting in-furnace metal of the present embodiment is disposed inside the top bottom blowing converter type refining furnace 8 to dissolve and remove the ingot 10 adhering to the furnace. It is explanatory drawing which shows the condition which blows. In the present embodiment, the top bottom blowing converter type refining furnace 8 performs hot metal dephosphorization.

まず、上底吹き転炉型精錬炉8の内部に吹錬及び炉内地金溶解兼用ランス7を挿入した後、吹錬を行う。この時、吹錬及び炉内地金溶解兼用ランス7の吹錬用ノズル1からは溶銑9へ向けて精錬用の酸素が噴射され、吹錬が行われる。一方、地金溶解用ノズル2からは、付着地金10へ向けて地金溶解用の酸素が噴射され、付着地金が溶解される。   First, after inserting the lance 7 for both melting and ingot melting into the inside of the upper bottom blowing converter type refining furnace 8, the blowing is performed. At this time, oxygen for refining is injected from the blowing nozzle 1 of the lance 7 for both blowing and melting in-furnace metal to the hot metal 9 to perform blowing. On the other hand, from the nozzle 2 for melting the bullion, oxygen for melting the bullion is jetted toward the deposited metal 10 to melt the adhered metal.

図4は、図3におけるB−B断面を示す説明図であり、図4(a)は吹錬及び炉内地金溶解兼用ランス7を回転させない場合を示し、図4(b)は吹錬及び炉内地金溶解兼用ランス7を回転させた場合を示す。   4 is an explanatory view showing a BB cross section in FIG. 3, FIG. 4 (a) shows a case where the lance 7 combined with blowing and ingot melting is not rotated, and FIG. 4 (b) shows blowing and A case where the in-furnace metal melting and lance 7 is rotated is shown.

図4(a)に示すように、吹錬及び炉内地金溶解兼用ランス7を回転させない場合には、付着地金10の溶解は地金溶解用ノズル2が指向する方位から優先的に進行し、本実施の形態のように地金溶解用ノズル2が4個であると、この4方位から付着地金10の溶解が進行する。   As shown in FIG. 4A, when the lance 7 for blowing and melting the ingot in the furnace is not rotated, the adhesion of the ingot 10 is preferentially proceeded from the direction in which the nozzle 2 for melting the ingot is directed. When there are four metal melting nozzles 2 as in this embodiment, the dissolution of the attached metal 10 proceeds from these four directions.

これに対し、吹錬及び炉内地金溶解兼用ランス7を回転させると、図4(b)に示すように、炉内全域の付着地金10を均一に溶解除去することができる。吹錬及び炉内地金溶解兼用ランス7の回転は、吹錬中又は非製鋼中のいずれであってもよい。しかし、吹錬中に吹錬及び炉内地金溶解兼用ランス7を回転させるには、ランス架台等への応力やスイベル管継手6の密閉性への要求が高まり、設備負荷が大きくなる。これに対し、吹錬及び炉内地金溶解兼用ランス7を非製鋼中に回転させることとすれば、比較的簡単な設備で済むために設備負荷の上昇を抑制できる。このような観点から、吹錬及び炉内地金溶解兼用ランス7は、非製鋼中に回転させながら付着地金10の除去を行うことが望ましい。   On the other hand, when the blow lance and the in-furnace ingot melting lance 7 are rotated, as shown in FIG. 4 (b), the adhering ingot 10 in the entire furnace can be uniformly dissolved and removed. The rotation of the lance 7 for both blowing and in-furnace melting may be during blowing or during non-steel making. However, in order to rotate the lance 7 for both blowing and melting in-furnace during blowing, there is an increasing demand for stress on the lance base and the sealing performance of the swivel pipe joint 6 and the equipment load increases. On the other hand, if the blow lance and the in-furnace ingot melting lance 7 are rotated during non-steel making, a relatively simple facility can be used, so that an increase in facility load can be suppressed. From this point of view, it is desirable to remove the adhering ingot 10 while rotating the lance 7 for melting and melting in-furnace in-furnace during non-steel making.

また、1ヒート毎に間欠的に吹錬及び炉内地金溶解兼用ランス7を回転させることとすれば、転炉耐火物の損傷をいっそう抑制して、炉内全域の付着地金10を溶解除去することができる。   Also, if the lance 7 for both blowing and melting the ingot in the furnace is rotated intermittently for each heat, the damage to the converter refractory is further suppressed, and the adhered ingot 10 in the entire furnace area is dissolved and removed. can do.

このように、本実施の形態によれば、吹錬及び炉内地金溶解兼用ランス7を用いるため、付着地金10の溶解のために時間を確保する必要がなくなり、効率的に付着地金10を溶解除去することができる。   As described above, according to the present embodiment, since the lance 7 for both blowing and melting the ingot in the furnace is used, it is not necessary to secure time for melting the adhering ingot 10, and the adhering ingot 10 efficiently Can be dissolved and removed.

また、本実施の形態では、例えばスイベル管継手6を用いて酸素供給管3及び内筒5aの内部、冷却水給水管4a及び内筒5a〜中間筒5bの間の空間、さらには、冷却水排水管4b及び中間筒5b〜外筒5cの間の空間が、連通された状態で、酸素供給管3、冷却水給水管4a及び冷却水排水管4bに対して、内筒5aの内部、内筒5a〜中間筒5bの間の空間、及び中間筒5b〜外筒5cの間の空間が、回転することができるように構成することによって、吹錬及び炉内地金溶解兼用ランス7をその中心軸(鉛直軸)を軸として回転させるため、地金溶解用ノズル2から任意の方位へ吹酸できるようになり、これにより、炉内全域の付着地金10を均一に溶解除去することができ、転炉耐火物の部分的な損傷を抑制できる。   Moreover, in this Embodiment, the space between the inside of the oxygen supply pipe 3 and the inner cylinder 5a, the cooling water supply pipe 4a and the inner cylinder 5a to the intermediate cylinder 5b using, for example, the swivel pipe joint 6, and the cooling water In the state where the space between the drain pipe 4b and the intermediate cylinder 5b to the outer cylinder 5c is in communication, the inside of the inner cylinder 5a, the inside of the inner cylinder 5a with respect to the oxygen supply pipe 3, the cooling water supply pipe 4a, and the cooling water drain pipe 4b. By configuring the space between the cylinder 5a to the intermediate cylinder 5b and the space between the intermediate cylinder 5b to the outer cylinder 5c to be able to rotate, the lance 7 for blowing and melting the ingot in the furnace is centered. Since it rotates about the axis (vertical axis), it becomes possible to blow acid from the metal melting nozzle 2 in any direction, so that the adhering metal 10 can be uniformly dissolved and removed throughout the furnace. In addition, partial damage to the converter refractory can be suppressed.

さらに、本実施の形態の上底吹き転炉型精錬炉8は、溶銑脱燐を行うものである。上述したように、転炉型溶銑脱燐の出湯温度は、脱炭吹錬の出湯温度よりも低い。これに起因して、転炉型溶銑脱燐炉内に付着する地金の量は大きく、付着するスピードも速い。さらに、転炉型溶銑脱燐では出湯温度が低いために出湯終了後に短時間で付着地金の表面温度が低下し、非製鋼中に酸素で付着地金を溶解することが難しい。   Furthermore, the upper bottom blowing converter type refining furnace 8 of the present embodiment performs hot metal dephosphorization. As described above, the tapping temperature of the converter type hot metal dephosphorization is lower than the tapping temperature of decarburization blowing. Due to this, the amount of metal that adheres in the converter-type hot metal dephosphorization furnace is large, and the speed of deposition is fast. Furthermore, in the converter type hot metal dephosphorization, the temperature of the molten metal is low, so that the surface temperature of the adhered metal falls in a short time after the completion of the molten metal, and it is difficult to dissolve the adhered metal with oxygen during non-steel making.

これに対し、本実施の形態では、吹錬及び炉内地金溶解兼用ランス7に回転機能を付与しているため、転炉型溶銑脱燐炉8内であっても、効率良く付着地金10を溶解することができる。   On the other hand, in the present embodiment, since the rotating function is imparted to the lance 7 for both blowing and melting in-furnace metal, even in the converter type hot metal dephosphorization furnace 8, the adhering ingot 10 Can be dissolved.

このように、本実施の形態により、付着地金10の溶解時間の確保を避けて炉内の付着地金10を効率よく除去可能することが可能である。また、転炉8の耐火物の溶損を抑制し、吹錬及び炉内地金溶解兼用ランス7からの水漏れの発生頻度を減少させながら付着地金10を除去することができる。   Thus, according to the present embodiment, it is possible to efficiently remove the adhering metal 10 in the furnace while avoiding securing the melting time of the adhering metal 10. Moreover, the adhesion metal 10 can be removed while suppressing the melting loss of the refractory in the converter 8 and reducing the occurrence frequency of water leakage from the lance 7 for both melting and melting in the furnace.

さらに、本発明を、実施例を参照しながら具体的に説明する。
本実施例は、本発明を転炉型溶銑脱燐に適用したものである。この転炉型溶銑脱燐の条件は、出湯後の鍋中温度が1250〜1400℃であり、出湯後の[C]含有量が3.0〜4.0質量%の場合である。
Furthermore, the present invention will be specifically described with reference to examples.
In this embodiment, the present invention is applied to converter type hot metal dephosphorization. The conditions of this converter type hot metal dephosphorization are the case where the temperature in the pan after pouring is 1250 to 1400 ° C., and the [C] content after pouring is 3.0 to 4.0 mass%.

図1に示す本発明に係る吹錬及び炉内地金溶解兼用ランス7には、吹錬用ノズル1として直径46mm、傾角15°のラバールノズルを4個形成し、地金溶解用ノズル2として直径7mmのストレートノズルを吹錬用ノズル1の上方位置に500mmピッチで3段、各々の高さの同心円上に4箇所形成した。   In the lance 7 for blowing and melting in-furnace metal according to the present invention shown in FIG. 1, four laval nozzles having a diameter of 46 mm and an inclination angle of 15 ° are formed as the nozzle 1 for blowing, and the diameter 2 mm as the nozzle 2 for melting metal. The straight nozzles were formed in three positions at a pitch of 500 mm above the blowing nozzle 1 and at four locations on concentric circles of each height.

この本発明に係る吹錬及び炉内地金溶解兼用ランス7を、吹錬用ノズル1と溶銑9との間隔が2.0mとなるように転炉8の内部に挿入し、ランス前圧7.0kg/cm、酸素流量30000NM/hrの条件で吹錬を行った。そして、毎ヒート吹錬後、非製鋼中にランスを10°毎に回転させた。 The lance 7 for blowing and melting in-furnace metal according to the present invention is inserted into the converter 8 so that the distance between the nozzle 1 for blowing and the hot metal 9 is 2.0 m. Blowing was performed under the conditions of 0 kg / cm 2 and an oxygen flow rate of 30000 NM 3 / hr. And after every heat blowing, the lance was rotated every 10 degrees during non-steel making.

併せて比較例1〜3として、以下の条件で付着地金の除去を行った。
比較例1:スクラップシュートによる機械的除去
比較例2:非製鋼中に地金溶解専用ランスを用いた溶解除去
比較例3:回転機能を有さない吹錬及び炉内地金溶解兼用ランスを用いて溶解除去
結果を表1にまとめて示す。
In addition, as Comparative Examples 1 to 3, adhesion metal was removed under the following conditions.
Comparative example 1: Mechanical removal by scrap chute Comparative example 2: Dissolution removal using a lance dedicated for melting metal during non-steel production Comparative example 3: Using a lance for melting and melting in-furnace without a rotating function The dissolution removal results are summarized in Table 1.

Figure 2006213940
Figure 2006213940

表1に示すように、本発明例によれば、付着地金10の溶解時間の確保を避けて炉内全域の付着地金10を効率よく除去可能することが可能であった。また、転炉8の耐火物の溶損を抑制し、吹錬及び炉内地金溶解兼用ランス7からの水漏れの発生頻度を減少させながら付着地金10を除去することができた。   As shown in Table 1, according to the example of the present invention, it was possible to efficiently remove the adhering metal 10 in the entire furnace while avoiding the melting time of the adhering metal 10. Moreover, the adhesion | damaged metal 10 was able to be removed, suppressing the melting loss of the refractory of the converter 8, and reducing the occurrence frequency of the water leak from the lance 7 combined with blowing and melting | dissolving the metal in the furnace.

これに対し、比較例1では、炉口近辺の付着地金を除去することはできたが、炉口から離れた部分の付着地金を除去することはできなかった。
比較例2では、転炉型溶銑脱燐の場合に、付着地金の表面温度が低いために付着地金に着火せず、付着地金は全く除去できなかった。
On the other hand, in Comparative Example 1, it was possible to remove the attached metal near the furnace port, but it was not possible to remove the attached metal away from the furnace port.
In Comparative Example 2, in the case of converter type hot metal dephosphorization, the surface of the attached metal was low, so the attached metal was not ignited, and the attached metal could not be removed at all.

さらに、比較例3では、地金溶解用ノズル2が指向する方位の付着地金を効率良く除去することはできたが、その他の方位の付着地金を除去することはできなかった。   Furthermore, in Comparative Example 3, it was possible to efficiently remove the attached metal in the direction directed by the nozzle 2 for melting the metal, but it was not possible to remove the attached metal in the other direction.

実施の形態の吹錬及び炉内地金溶解兼用ランスの構造を示す説明図であり、図1(a)は全体図であり、図1(b)は地金溶解用ノズルの横断面図であり、図1(a)におけるA−A断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows the structure of the blow lance of embodiment and the in-furnace metal melting | dissolving lance combined, FIG. 1 (a) is a general view, FIG.1 (b) is a cross-sectional view of the nozzle for metal melting | dissolving. FIG. 2 is a cross-sectional view taken along line AA in FIG. 吹錬及び炉内地金溶解兼用ランスの横断面における同心円上に設けた地金溶解用ノズルの個数(方位数)と、ランス水漏れトラブル頻度(%)との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the number of bullion melting nozzles (azimuth number) provided on the concentric circle in the cross section of the blow lance and in-furnace metal melting lance and the lance water leakage trouble frequency (%). 実施の形態の吹錬及び炉内地金溶解兼用ランスを、上底吹き転炉型精錬炉の内部に配置して、炉内に付着した地金を溶解除去しながら吹錬を行う状況を示す説明図である。The explanation showing the situation where the blowing lance and the in-furnace ingot melting lance of the embodiment are arranged inside the upper bottom blowing converter type refining furnace and the ingot is blown while melting and removing the ingot in the furnace. FIG. 図3におけるB−B断面を示す説明図であり、図4(a)は吹錬及び炉内地金溶解兼用ランスを回転させない場合を示し、図4(b)は吹錬及び炉内地金溶解兼用ランスを回転させた場合を示す。It is explanatory drawing which shows the BB cross section in FIG. 3, FIG. 4 (a) shows the case where the lance which combines blowing and in-core metal melting | dissolving is not rotated, FIG. The case where the lance is rotated is shown.

符号の説明Explanation of symbols

1 吹錬用ノズル
2 地金溶解用ノズル
2a 酸素通路
3 酸素供給管
4a 冷却水給水管
4b 冷却水排水管
5a 内筒
5b 中間筒
5c 外筒
6a スイベル管継手
6b ランス回転用モーター
7 吹錬及び炉内地金溶解兼用ランス
8 上底吹き転炉型精錬炉
9 溶銑
10 付着地金
DESCRIPTION OF SYMBOLS 1 Blowing nozzle 2 Barrel melting nozzle 2a Oxygen passage 3 Oxygen supply pipe 4a Cooling water supply pipe 4b Cooling water drain pipe 5a Inner cylinder 5b Intermediate cylinder 5c Outer cylinder 6a Swivel pipe joint 6b Lance rotation motor 7 Blowing and In-furnace melting and melting lance 8 Top-bottom converter-type refining furnace 9 Hot metal 10 Adhering metal

Claims (5)

先端に配置されて吹錬のための酸素を噴射する先端噴射口と、該先端噴射口よりも上方の側面に配置されて炉内地金溶解のための酸素を噴射する側面噴射口とを備え、軸回りに回転可能であることを特徴とする吹錬及び炉内地金溶解兼用ランス。 A tip injection port that is arranged at the tip and injects oxygen for blowing, and a side injection port that is arranged on a side surface above the tip injection port and injects oxygen for melting the ingot in the furnace, Blasting and furnace ingot melting lance, characterized in that it can rotate around its axis. 先端に配置されて吹錬のための酸素を噴射する先端噴射口と、該先端噴射口よりも上方の側面に配置されて炉内地金溶解のための酸素を噴射する側面噴射口とを備え、該側面噴射口はランス横断面の同心円状に並設された12方向以下の噴射口を有し、軸回りに回転可能であることを特徴とする吹錬及び炉内地金溶解兼用ランス。 A tip injection port that is arranged at the tip and injects oxygen for blowing, and a side injection port that is arranged on a side surface above the tip injection port and injects oxygen for melting the ingot in the furnace, The side injection port has twelve or less injection ports arranged concentrically in a cross section of the lance, and is rotatable around an axis. 上底吹き転炉型精錬炉において、請求項1又は請求項2に記載された吹錬及び炉内地金溶解兼用ランスを用いて、炉内地金を溶解しながら吹錬を行うことを特徴とする上底吹き転炉型精錬炉の操業方法。 In the top-bottom blowing converter type refining furnace, using the blowing and the in-furnace metal melting lance described in claim 1 or 2, blowing is performed while melting the in-core metal. Operation method of top-bottom converter type refining furnace. 前記炉内地金の溶解は前記吹錬及び炉内地金溶解兼用ランスを非吹錬中に回転させながら行われるとともに、前記吹錬は該吹錬及び炉内地金溶解兼用ランスを回転させずに行われる請求項3に記載された上底吹き転炉型精錬炉の操業方法。 The melting of the in-furnace ingot is performed while rotating the blowing and in-furnace ingot melting lance during non-blowing, and the blowing is performed without rotating the blowing in-furnace ingot melting lance. The operation method of the top bottom blowing converter type refining furnace according to claim 3. 前記上底吹き転炉型精錬炉は溶銑脱燐を行う請求項3又は請求項4に記載された上底吹き転炉型精錬炉の操業方法。 The operation method of the top bottom blown converter type refining furnace according to claim 3 or 4, wherein the top bottom blown converter type refining furnace performs hot metal dephosphorization.
JP2005025362A 2005-02-01 2005-02-01 Lance used for both blowing and in-furnace skull melting, and operation method of top-bottom-blown converter type refining furnace Pending JP2006213940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005025362A JP2006213940A (en) 2005-02-01 2005-02-01 Lance used for both blowing and in-furnace skull melting, and operation method of top-bottom-blown converter type refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005025362A JP2006213940A (en) 2005-02-01 2005-02-01 Lance used for both blowing and in-furnace skull melting, and operation method of top-bottom-blown converter type refining furnace

Publications (1)

Publication Number Publication Date
JP2006213940A true JP2006213940A (en) 2006-08-17

Family

ID=36977408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005025362A Pending JP2006213940A (en) 2005-02-01 2005-02-01 Lance used for both blowing and in-furnace skull melting, and operation method of top-bottom-blown converter type refining furnace

Country Status (1)

Country Link
JP (1) JP2006213940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245381A (en) * 2012-05-28 2013-12-09 Nippon Steel & Sumikin Engineering Co Ltd Lance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245381A (en) * 2012-05-28 2013-12-09 Nippon Steel & Sumikin Engineering Co Ltd Lance

Similar Documents

Publication Publication Date Title
JP5298543B2 (en) Converter operation method
JP2006213940A (en) Lance used for both blowing and in-furnace skull melting, and operation method of top-bottom-blown converter type refining furnace
JPS61139616A (en) Method for removing accretion on throat of converter
JP3297797B2 (en) Lance and method of removing ingots in furnace using the lance
JP2011202236A (en) Top-blowing lance for converter, and method for operating converter
JP2009149956A (en) Method for producing molten steel with converter
JPS60165313A (en) Top blow lance for refining molten metal
JP2995042B2 (en) Bullion removal lance
JPH11140525A (en) Converter blowing method restraining deposition of metal of furnace opening hole part and side wall in furnace and lance device for converter
JP2011208267A (en) Top-blown lance for converter, and converter refining method
JP2848010B2 (en) Top blowing lance for refining molten metal
JP2897656B2 (en) How to remove ingots in converter
JP3750624B2 (en) Removal method of bottom metal from bottom blow converter
JP3867463B2 (en) Converter metal removal nozzle
JP3584769B2 (en) Refining lance
JP5282539B2 (en) Hot phosphorus dephosphorization method
WO2004079020A1 (en) Methods of switching and changing bottom-blown tuyere in converter
JPH05179331A (en) Operating method for cutting base metal of converter throat
JP2000096119A (en) Blow-refining method for restraining sticking of metal in converter type refining furnace
JP2917848B2 (en) Converter blasting and furnace mouth metal melting lance
JP5488025B2 (en) Melting method of converter furnace deposit metal
JPH1161230A (en) Lance for refining
JP2562768B2 (en) Melting method of molten metal container
JPH11279618A (en) Lance for refining
JPH10251735A (en) Method for removing metal on furnace opening hole in converter type refining furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081023

A131 Notification of reasons for refusal

Effective date: 20081111

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331