JP5333536B2 - High cleanliness bearing steel and its melting method - Google Patents

High cleanliness bearing steel and its melting method Download PDF

Info

Publication number
JP5333536B2
JP5333536B2 JP2011160659A JP2011160659A JP5333536B2 JP 5333536 B2 JP5333536 B2 JP 5333536B2 JP 2011160659 A JP2011160659 A JP 2011160659A JP 2011160659 A JP2011160659 A JP 2011160659A JP 5333536 B2 JP5333536 B2 JP 5333536B2
Authority
JP
Japan
Prior art keywords
concentration
less
molten steel
cao
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011160659A
Other languages
Japanese (ja)
Other versions
JP2013023739A (en
Inventor
敦 岡山
隆之 西
亮輔 廣岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011160659A priority Critical patent/JP5333536B2/en
Publication of JP2013023739A publication Critical patent/JP2013023739A/en
Application granted granted Critical
Publication of JP5333536B2 publication Critical patent/JP5333536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high cleanliness steel with a long rolling fatigue life by controlling the oxide composition in the steel to CaO-Al<SB POS="POST">2</SB>O<SB POS="POST">3</SB>-MgO system, and a method for producing the same. <P>SOLUTION: The high cleanliness steel is characterized by including a nonmetallic inclusion which has, by mass%, C concentration of 0.85% or more and 1.2% or less; Sol. Al concentration of 0.020% or more and 0.035% or less; Cr concentration of 0.50% or more and 2.0% or less; S concentration of 0.0020% or less; and total O concentration of 0.0020% or less; and also has a circle equivalent diameter of 1.0 &mu;m or more and 10 m&mu; or less on a mirror polishing surface, when microscope observation is carried out on a sample cut from an iron slab after continuous casting and finished by mirror polishing. In the nonmetallic inclusion, Ca, Al, Mg, and O occupy 90 atom% or more among all the elements constituting the nonmetallic inclusion, and the number ratio of the nonmetallic inclusions having a CaO concentration of 20 to 50 mass% is 50% or more among all the number of the nonmetallic inclusions having a Ca concentration of 5 atom% or more. <P>COPYRIGHT: (C)2013,JPO&amp;INPIT

Description

本発明は、高清浄度軸受鋼およびその溶製方法に関し、具体的には、転動疲労寿命の長い高清浄度軸受鋼と、転動疲労の高寿命化に必要な酸化物組成の制御技術に関する。   TECHNICAL FIELD The present invention relates to a high cleanliness bearing steel and a melting method thereof, specifically, a high cleanliness bearing steel having a long rolling fatigue life and a technology for controlling an oxide composition necessary for extending the life of rolling fatigue. About.

自動車や産業機械に適用される「玉軸受け」や「コロ軸受け」といった部品は、繰り返し面圧の高い負荷が掛かることから、転動疲労寿命の向上が求められている。これらの部品では、酸化物もしくは硫化物といった、いわゆる鋼中介在物が問題になる場合があり、転動疲労試験で破壊した試験片破面にもこれら介在物が破壊基点として発見される場合が多い。このため、軸受鋼といった高清浄度鋼の製品性能を向上させるため、従来から徹底した脱酸脱硫が行われてきた。   Parts such as “ball bearings” and “roller bearings” that are applied to automobiles and industrial machines are subjected to repeated high surface pressure loads, and therefore are required to have an improved rolling fatigue life. In these parts, so-called inclusions in steel, such as oxides or sulfides, may become a problem, and these inclusions may be found as fracture base points on the fractured surface of a specimen that was destroyed in a rolling fatigue test. Many. For this reason, in order to improve the product performance of high cleanliness steel such as bearing steel, thorough deoxidation and desulfurization has been conventionally performed.

鋼中のOは、溶鋼中で酸化物を形成し、破壊の基点として問題になることが多い。このため、転動疲労寿命を向上させるために、鋼中酸化物の低減が求められてきた。具体的には、スラグメタル反応を利用した溶存酸素の極低化、真空脱ガス装置による環流操作に伴う介在物の凝集と浮上除去、連続鋳造時に垂直部を長く取ることによる鋳型内の介在物浮上除去促進などが挙げられる。その結果、最近では酸化物系介在物の指標として広く使われる鋼中の全酸素濃度は10ppmを下回るようになっている。このため、これまで破壊の起点で多く発見されてきた酸化物系介在物の代わりに、硫化物系介在物が発見されるようなことも起こっている。   O in steel often forms an oxide in molten steel and often becomes a problem as a starting point for fracture. For this reason, in order to improve a rolling fatigue life, reduction of the oxide in steel has been calculated | required. Specifically, extremely low dissolved oxygen using slag metal reaction, aggregation and levitation removal of inclusions due to reflux operation by vacuum degassing equipment, inclusions in the mold by taking a long vertical part during continuous casting For example, levitation removal promotion. As a result, the total oxygen concentration in steel, which is widely used as an index of oxide inclusions, has recently become less than 10 ppm. For this reason, in some cases, sulfide-based inclusions are discovered instead of oxide-based inclusions that have been widely discovered at the origin of destruction.

鋼中のSは、熱間脆性を起こす有害元素であることから、従来から様々な手法で脱硫処理が行われてきた。具体的には、溶銑段階で機械式撹拌装置を用いた脱硫処理、取鍋でのスラグメタル反応の利用、真空脱ガス装置での脱硫剤吹込み、CaもしくはMg添加などが挙げられる。その結果、例えば極低硫化が求められる耐水素誘起割れ鋼においては、S濃度が5ppmを下回る鋼材が溶製可能になっている。   Since S in steel is a harmful element that causes hot brittleness, desulfurization treatment has been conventionally performed by various methods. Specifically, desulfurization treatment using a mechanical stirrer in the hot metal stage, utilization of a slag metal reaction in a ladle, blowing of a desulfurization agent in a vacuum degasser, addition of Ca or Mg, and the like can be mentioned. As a result, for example, in hydrogen-resistant cracked steel that requires extremely low sulfidation, a steel material having an S concentration of less than 5 ppm can be melted.

このような状況では、硫化物よりも硬質な酸化物が破壊の基点として作用することになると考えられ、圧延時に分断され、破壊の基点として作用しないように酸化物を低融点化、軟質化させることも必要である。   In such a situation, it is considered that an oxide harder than sulfides will act as a starting point for fracture, and it is divided during rolling, and the oxide is lowered and softened so that it does not act as a starting point for fracture. It is also necessary.

ここで、高清浄鋼中の酸化物に着目すると、多くの高清浄度鋼はAl脱酸鋼であり、溶鋼中にはAl系酸化物が存在することになる。また、耐火物にMgOが含まれている取鍋を用いて溶製する場合、酸化物はMgO・Al系となる。これらは硬質であることから、製品段階まで残存した場合、破壊の起点として作用することが知られている。 Here, paying attention to oxides in high clean steel, many high cleanliness steels are Al deoxidized steel, and Al 2 O 3 based oxides exist in the molten steel. In addition, when the refractory is melted using a ladle containing MgO, the oxide is MgO · Al 2 O 3 . Since these are hard, when they remain in the product stage, they are known to act as a starting point for destruction.

例えば、特許文献1には、JIS G4805を満足すると共に、O:0.0009質量%以下、Al:0.005質量%以下およびS:0.005質量%以下にそれぞれ制限した鋼からなり、圧延方向に平行な検鏡断面積160mm中に存在する大きさ3μm以上の酸化物個数が100個以下、そのうち大きさ10μm以上のものが2個以下であり、更にそれらの組成別構成比率として、アルミナ系:(MgO)も(SiO)も3%未満で且つ(CaO)も(CaO)/((CaO)+(Al))の比で0.08以下であるもの。スピネル系:3%〜20%の範囲の(MgO)に残部が(Al)である2元系に、15%以内の(CaO)および/または15%以内の(SiO)が混入する場合があるスピネル型結晶構造のものとして定義されるアルミナ系とスピネル系との合計個数が全酸化物個数の60%未満である高炭素クロム軸受鋼に関する技術が開示されている。 For example, Patent Document 1 is made of steel that satisfies JIS G4805 and is limited to O: 0.0009 mass% or less, Al: 0.005 mass% or less, and S: 0.005 mass% or less, and is rolled. The number of oxides having a size of 3 μm or more present in a cross-sectional area 160 mm 2 parallel to the direction is 100 or less, of which 10 μm or more is 2 or less, and the composition ratio by composition is as follows: Alumina system: (MgO) and (SiO 2 ) are less than 3%, and (CaO) and (CaO) / ((CaO) + (Al 2 O 3 )) are not more than 0.08. Spinel system: (MgO) in the range of 3% to 20%, binary system with the balance being (Al 2 O 3 ), 15% (CaO) and / or 15% (SiO 2 ) mixed There is disclosed a technique relating to a high carbon chromium bearing steel in which the total number of alumina and spinel defined as having a spinel crystal structure is less than 60% of the total number of oxides.

この技術は、硬質なAl系およびMgO・Al系酸化物が極力少量となるように、取鍋精錬時のスラグ組成を適正に選んで、硬質なスピネル系でないものに誘導するものである。しかしながら、この技術は脱酸剤としてAlを使用しないことを前提としているため、Al脱酸鋼には適用できない。 This technology leads to a non-hard spinel system by properly selecting the slag composition during ladle refining so that hard Al 2 O 3 and MgO · Al 2 O 3 oxides are as small as possible. To do. However, since this technique is based on the premise that Al is not used as a deoxidizer, it cannot be applied to Al deoxidized steel.

また、特許文献2には、転炉での脱炭精錬によって得た溶鋼の転炉から取鍋への出鋼中に金属Alを添加して取鍋内の溶鋼を脱酸し、出鋼後、取鍋内の溶鋼上に存在する転炉スラグを排出し、転炉スラグの排出後、取鍋内にフラックスを添加して塩基度(CaO/SiO)が質量比で1.5〜3.0の取鍋スラグを取鍋内に生成させ、次いで、希ガスを溶鋼中に吹き込んで前記取鍋スラグと溶鋼とを攪拌し、その後、RH真空脱ガス装置で溶鋼の真空脱ガス精錬を実施する軸受鋼の溶製方法が開示されている。この文献では、軸受鋼の転動疲労寿命を悪くする原因は、AlとともにCaOやMgOを含む酸化物系非金属介在物であるとし、これらを減少させることで転動疲労寿命が改善されるとしている。 In addition, Patent Document 2 describes that after adding steel to the ladle from the converter of the molten steel obtained by decarburization and refining in the converter, metal Al is added to deoxidize the molten steel in the ladle. The converter slag present on the molten steel in the ladle is discharged, and after the converter slag is discharged, the flux is added to the ladle and the basicity (CaO / SiO 2 ) is 1.5-3 by mass ratio. 0.0 ladle slag is generated in the ladle, and then the rare gas is blown into the molten steel to stir the ladle slag and the molten steel, and then the vacuum degassing of the molten steel is performed with an RH vacuum degasser. A bearing steel melting method to be carried out is disclosed. In this document, the cause of poor rolling fatigue life of bearing steel is assumed to be non-metallic inclusions containing CaO and MgO together with Al 2 O 3 , and rolling fatigue life is improved by reducing these. It is going to be done.

しかしながら、これらのAlとともにCaOやMgOを含む酸化物系非金属介在物が転動疲労寿命を低化させるメカニズムは明らかにされていない。また、開示されている溶製方法は、従来の技術範囲の範疇であり、酸化物組成を意図的に操作する技術ではない。 However, the mechanism by which oxide-based nonmetallic inclusions containing CaO and MgO together with these Al 2 O 3 lower the rolling fatigue life has not been clarified. The disclosed melting method is within the scope of the conventional technical range, and is not a technique for intentionally manipulating the oxide composition.

介在物組成および形態制御した清浄鋼としては、耐水素誘起割れ鋼を溶製する技術が数多く開示されている。例えば、特許文献3には、取鍋内溶鋼にAl添加による脱酸およびCaO添加による脱酸および脱硫を行い、次いで取鍋内溶鋼上面スラグの組成を(CaO)/(Al)が0.9ないし1.5になるように調整した状態で、溶鋼のガス攪拌を行い、次いでRH真空脱ガス処理を行って、脱水素、介在物除去を実施した後、またはRH真空脱ガス処理を行わずにそのまま、取鍋内溶鋼へCaSi粉含有ワイヤーを添加して介在物形態を制御する、耐水素誘起割れ性に優れた清浄鋼の製造法が開示されている。この文献に示されるように、清浄鋼を溶製するためにパウダーインジェクション脱硫を活用し、低硫低酸素鋼を溶製した上で、Ca処理によって酸化物組成をCa系に制御する技術は一般的である。 Many techniques for producing hydrogen-resistant cracked steel are disclosed as clean steels with controlled inclusion composition and morphology. For example, in Patent Document 3, deoxidation by addition of Al and deoxidization and desulfurization by addition of CaO are performed on molten steel in a ladle, and then the composition of the upper surface slag in the ladle is (CaO) / (Al 2 O 3 ). In a state adjusted to 0.9 to 1.5, the molten steel gas is stirred, and then RH vacuum degassing is performed, and after dehydrogenation and inclusion removal, or RH vacuum degassing The manufacturing method of the clean steel excellent in the hydrogen-induced cracking-proof property which adds a CaSi powder containing wire to the molten steel in a ladle as it is and controls an inclusion form is disclosed. As shown in this document, the technology for controlling the oxide composition to Ca-based by Ca treatment after utilizing low-sulfur low-oxygen steel by utilizing powder injection desulfurization to melt clean steel is common. Is.

合金を添加することなく酸化物組成を制御する技術としては、特許文献4として、溶鋼に減圧処理を施すに際し、減圧容器内耐火物をMgO:40%以上のマグネシア系とし、処理中の真空度を5torr以下とし、かつ特定の式を満足する処理時間を確保する技術が開示されている。この技術は、減圧処理によりMgO系耐火物中のMgOを分解し、溶鋼中のAl系酸化物をMgO・Al系酸化物もしくはMgO系酸化物に変化させるものである。 As a technique for controlling the oxide composition without adding an alloy, as disclosed in Patent Document 4, when the molten steel is subjected to a decompression treatment, the refractory in the decompression vessel is made of magnesia based on MgO: 40% or more, and the degree of vacuum during the treatment Has been disclosed that secures a processing time that satisfies a specific formula. In this technique, MgO in the MgO refractory is decomposed by a reduced pressure treatment, and the Al 2 O 3 oxide in the molten steel is changed to MgO · Al 2 O 3 oxide or MgO oxide.

しかしながら、この技術はMgOを用いてAl改質を行う技術であり、生成した硬質なMgO・Al系酸化物が製品段階で破壊の基点となる点までは考慮されていない。 However, this technique is a technique for modifying Al 2 O 3 using MgO, and does not take into account the point that the generated hard MgO · Al 2 O 3 -based oxide becomes the starting point of destruction at the product stage. .

特許第4630075号明細書Patent No. 4630075 specification 特開2008−163389号公報JP 2008-163389 A 特開平8−73923号公報JP-A-8-73923 特許第3033000号明細書Japanese Patent No. 3033000

近年の製鋼技術の進歩に伴い、軸受鋼を始めとする高清浄度鋼の清浄度は大幅に向上した。しかしながら、製品性能を向上させるには、脱酸、脱硫に加え、酸化物組成制御が必要であり、従来技術では、酸化物組成をMgO・Al系に制御する手法が主流であった。一方、硬質なMgO・Al系酸化物の問題点が指摘されていたものの、その解決策としては、低酸素化に伴う酸化物個数密度および大きさの低減が殆どであり、明確な酸化物の組成制御方法が示されるには至っていなかった。 With the recent progress in steelmaking technology, the cleanliness of high cleanliness steel including bearing steel has been greatly improved. However, in order to improve the product performance, it is necessary to control the oxide composition in addition to deoxidation and desulfurization, and in the prior art, the method of controlling the oxide composition to the MgO.Al 2 O 3 system has been the mainstream. . On the other hand, although problems with hard MgO.Al 2 O 3 -based oxides have been pointed out, the solution is mostly a reduction in oxide number density and size due to low oxygenation, which is clearly An oxide composition control method has not been shown yet.

MgO・Al系酸化物にCaOが含まれると、低融点化して無害化できると考えられるが、スラグから巻き込まれた酸化物と混同されることがあった。すなわち、同じCaOが含まれる軟質な酸化物であったとしても、スラグ起因の酸化物は粗大であり、破壊の基点として発見される場合が多かったことから、その有効性に対しては疑問視されてきた。また、CaO−Al−MgO系酸化物への制御手法として、最も簡便なのは溶鋼にCaを直接添加する手法であるが、SUJ2といった鋼種ではJIS G4805に記載されている通り、金属CaもしくはCa合金を直接添加することはできないことが、これらの技術開発の課題であった。 When CaO is contained in the MgO.Al 2 O 3 -based oxide, it is considered that the melting point can be lowered and detoxified. However, it is sometimes confused with the oxide entrapped from the slag. That is, even if it is a soft oxide containing the same CaO, the slag-derived oxide is coarse and often found as a starting point of destruction. It has been. As the control method for CaO—Al 2 O 3 —MgO-based oxide, the simplest method is to add Ca directly to the molten steel. However, in steel types such as SUJ2, as described in JIS G4805, metal Ca or It was an issue of these technological developments that the Ca alloy cannot be added directly.

本発明は、上記した課題に鑑みてなされたものであり、その目的は、鋼中の酸化物組成をCaO−Al−MgO系に制御することで転動疲労寿命の長い高清浄度鋼を提供することに加え、その溶製方法を提供することである。 The present invention has been made in view of the above-mentioned problems, and its purpose is to achieve a high cleanliness with a long rolling fatigue life by controlling the oxide composition in the steel to a CaO—Al 2 O 3 —MgO system. In addition to providing steel, it is to provide a method for its melting.

製品寿命を向上させることを考えた場合、鋼材の低酸素化、低硫化はもちろん、重要なのは、酸化物組成を硬質なMgO・Al系酸化物から変更して破壊の基点となる蓋然性を低下させることである。 When considering the improvement of product life, it is important to change the oxide composition from a hard MgO / Al 2 O 3 oxide to the basis of destruction, not to mention low oxygen and low sulfidation of steel materials. It is to reduce.

また、介在物組成制御を考えた場合、重要なのは溶鋼中にCa源を供給し、環流工程において、Al脱酸よりも強いC脱酸が支配するように溶鋼中のAl濃度、C濃度を適正化するとともに、真空度を高めることである。すなわち、酸化物にCaOが含まれる組成に制御することができれば、酸化物の融点が下がるとともに、軟質化することから、製品段階で破壊の基点として作用する蓋然性が低下することが期待される。   In addition, when considering inclusion composition control, it is important to supply the Ca source into the molten steel, and in the reflux process, the Al concentration and C concentration in the molten steel are appropriate so that C deoxidation stronger than Al deoxidation dominates. And increase the degree of vacuum. That is, if the oxide can be controlled to have a composition containing CaO, the melting point of the oxide is lowered and the oxide is softened. Therefore, it is expected that the probability of acting as a starting point of destruction at the product stage is lowered.

C脱酸が起こる条件では溶鋼と接する酸化物は還元されることになる。溶鋼中に添加したCa源はCaOとして存在し、大部分はスラグに吸収されると考えられる。しかし、微細なCaOは溶鋼内に存在しており、C脱酸が起こるとこれらはCaとOに分解されることになる。この時、C脱酸は真空槽内の溶鋼中で生じるものであることから、スラグ中のCaOの影響は限定的であると考えられる。分解して溶鋼中に溶解したCaは溶鋼中のMgO・Al系酸化物を核に再晶出すると考えられることから、CaO−Al−MgO系酸化物が生成すると考えられる。このように生成した酸化物は、スラグ起因の酸化物とは異なり、微細であると考えられることから、製品性能を低化させる蓋然性は低い。また、C脱酸が起こると、CaOだけでなくMgO・Al系酸化物の還元反応が進むことになることから、酸化物の大きさが減少すると考えられる。 Under the condition where C deoxidation occurs, the oxide in contact with the molten steel is reduced. The Ca source added to the molten steel exists as CaO, and most of it is considered to be absorbed by the slag. However, fine CaO exists in the molten steel, and when C deoxidation occurs, these are decomposed into Ca and O. At this time, since C deoxidation occurs in the molten steel in the vacuum chamber, the influence of CaO in the slag is considered to be limited. Believed Ca dissolved decompose in the molten steel is a MgO · Al 2 O 3 based oxide in the molten steel since it is believed that the recrystallization in the nucleus, CaO-Al 2 O 3 -MgO based oxide is generated . The oxide generated in this way is considered to be fine unlike the oxide derived from slag, and therefore the probability of reducing the product performance is low. Further, when C deoxidation occurs, the reduction reaction of not only CaO but also MgO.Al 2 O 3 -based oxide proceeds, so that the size of the oxide is considered to decrease.

この時、環流工程においてAl濃度が高すぎる場合、C濃度が低すぎる場合、真空度が低い場合だと、溶鋼中ではC脱酸よりもAl脱酸が支配的になることから、上記した酸化物組成変化や酸化物の大きさの変化は見られないと考えられる。   At this time, if the Al concentration is too high in the reflux process, if the C concentration is too low, or if the degree of vacuum is low, in the molten steel, Al deoxidation becomes dominant over C deoxidation. It is considered that there is no change in the composition of the material or the change in the size of the oxide.

このような状況を踏まえて本発明者らが検討した結果、鋼材中の酸化物組成をCaO−Al−MgO系に制御することで、製品寿命が大幅に向上することが判明した。また、製鋼炉から出鋼した溶鋼にAlを添加した後、バブリングランスを介して溶鋼中に撹拌ガスと脱硫剤を吹込む工程を行い、続けてスラグ精錬を行う工程、環流型脱ガス装置で取鍋精錬を行う工程を順次行い、環流工程での溶鋼中Al濃度を最適化した上で、高真空で脱ガス処理を行うことで、低酸素化、低硫化、さらに酸化物組成制御された高清浄鋼を、実現可能な生産性を確保した上で、確実に得られることを知見した。本発明者らは、酸化物組成を制御するための溶製プロセスと環流工程での溶鋼中Al濃度、C濃度と真空度の条件を明確化することで、本発明を完成するに至った。 As a result of the study by the present inventors based on such a situation, it has been found that the product life is significantly improved by controlling the oxide composition in the steel material to CaO—Al 2 O 3 —MgO system. In addition, after adding Al to the molten steel produced from the steelmaking furnace, a step of blowing a stirring gas and a desulfurizing agent into the molten steel through a bubbling lance, followed by a step of slag refining, a recirculation type degassing device The ladle refining process was sequentially performed, and the Al concentration in the molten steel in the recirculation process was optimized, and then degassing was performed under high vacuum, thereby reducing oxygen and sulfiding and controlling the oxide composition. It has been found that high-clean steel can be obtained with certainty while ensuring feasible productivity. The inventors of the present invention have completed the present invention by clarifying the conditions of Al concentration, C concentration and degree of vacuum in molten steel in the melting process and the recirculation process for controlling the oxide composition.

本発明は、下記(1)〜(3)である。
(1)mass%で、C濃度:0.85〜1.2%、Sol.Al濃度:0.020〜0.035%、Cr濃度:0.50〜2.0%、S濃度:0.0020%以下、Total O濃度:0.0020%以下、Si濃度:0.1〜0.8%、Mn濃度:0.1〜1.5%、P:0.03%以下、Ca:0.0005%以下(0%を含まない)し、残部Feおよび不可避的介在物で構成されるとともに、連続鋳造後の鋳片から切り出したサンプルを鏡面研磨して顕微鏡観察した際に該鏡面研磨面上に存在する円相当径で1.0μm以上10μm以下の非金属介在物を有し、
該非金属介在物を構成する全元素の中でのCa、Al、MgおよびOの占める割合が90atom%以上であるとともに、そのCa濃度が5atom%以上である非金属介在物の全個数のうち、その非金属介在物のCaO濃度が20〜50mass%であるものの個数比率が50%以上であること
を特徴とする高清浄度軸受鋼。
(2)前記Feの一部に換えて、さらにTi:0.005%〜0.1%、V:0.008%〜0.3%、Mo:0.008%〜1.0%、Nb:0.008%〜0.1%、Ni:0.008%〜2.0%、Cu:1.0%以下、B:0.0050%以下、N:0.020%以下を含有することを特徴とする、上記(1)項に記載の高清浄度軸受鋼
The present invention includes the following (1) to (3).
(1) Mass%, C concentration: 0.85 to 1.2%, Sol. Al concentration: 0.020-0.035%, Cr concentration: 0.50-2.0%, S concentration: 0.0020% or less, Total O concentration: 0.0020% or less , Si concentration: 0.1 0.8%, Mn concentration: 0.1~1.5%, P: 0.03% or less, Ca: 0.0005% or less (not including 0%) and containing organic, balance Fe and incidental inclusions together consists of things, samples the mirror polishing to a circle-equivalent diameter 1.0μm or 10μm or less nonmetallic inclusions present in said mirror surface polishing plane upon microscopic observation cut from cast piece after continuous casting Have
Of the total number of nonmetallic inclusions in which the proportion of Ca, Al, Mg and O in all elements constituting the nonmetallic inclusions is 90 atom% or more and the Ca concentration is 5 atom% or more, A high cleanliness bearing steel, wherein the number ratio of the nonmetallic inclusions having a CaO concentration of 20 to 50 mass% is 50% or more.
(2) In place of a part of the Fe, Ti: 0.005% to 0.1%, V: 0.008% to 0.3%, Mo: 0.008% to 1.0%, Nb : 0.008% to 0.1%, Ni: 0.008% to 2.0%, Cu: 1.0% or less, B: 0.0050% or less, N: 0.020% or less and wherein, (1) high cleanliness bearing steel according to item.

(3)製鋼炉から取鍋に出鋼した溶鋼に対して、バブリングランスを介して溶鋼中に撹拌ガスと脱硫剤を吹込む工程、スラグ精錬を行う工程、環流型脱ガス装置で取鍋精錬を行う工程を順次行う高清浄度軸受鋼の溶製方法であって、前記バブリングランスを介して溶鋼中に吹込むCaO系脱硫剤中のCa量が、Ca純分として溶鋼1tあたり1.0〜2.5kgであること、および、前記環流型脱ガス装置での処理を、溶鋼中のC濃度が0.85〜1.2mass%、sol.Al濃度が0.020〜0.035mass%であって、かつ、真空度が0.3kPa以下の状態で行うことを特徴とする、上記(1)項または(2)項に記載の高清浄度軸受鋼の溶製方法。 (3) The process of injecting stirring gas and desulfurizing agent into the molten steel through a bubbling lance, the process of slag refining, and the ladle refining with a circulating degassing device In which the Ca amount in the CaO-based desulfurizing agent blown into the molten steel through the bubbling lance is 1.0% per 1 ton of molten steel as pure Ca. -2.5 kg, and the treatment with the above-mentioned reflux type degassing apparatus was conducted at a C concentration of 0.85 to 1.2 mass%, sol. The high cleanliness described in the above item (1) or (2) , wherein the Al concentration is 0.020 to 0.035 mass%, and the degree of vacuum is 0.3 kPa or less. Method for melting bearing steel.

本発明によれば、硬質なMgO・Al系酸化物が破壊の起点となる蓋然性を低下できることから、転動疲労寿命を延ばすことができる。自動車や産業機械にとって重要な「玉軸受け」や「コロ軸受け」といった部品の素材として利用した場合、安全性の向上およびコスト削減が可能である。また、既存の製鋼プロセスを大きく変更することなく高清浄鋼を溶製可能であることから、製造コストの増大を抑制可能であり、本発明の社会的貢献度は非常に大きい。 According to the present invention, since the probability that a hard MgO.Al 2 O 3 -based oxide is a starting point of fracture can be reduced, the rolling fatigue life can be extended. When used as a material for parts such as “ball bearings” and “roller bearings” that are important for automobiles and industrial machinery, safety can be improved and costs can be reduced. Moreover, since highly clean steel can be melted without significantly changing the existing steel making process, an increase in manufacturing cost can be suppressed, and the social contribution of the present invention is very large.

図1は、CaO濃度が20〜50mass%のCaO−Al−MgO系酸化物の個数比率と転動疲労寿命との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the number ratio of CaO—Al 2 O 3 —MgO-based oxide having a CaO concentration of 20 to 50 mass% and the rolling fatigue life. 図2は、酸化物性状と環流工程でのAl濃度とC濃度の関係を示すグラフである。FIG. 2 is a graph showing the relationship between oxide properties and Al concentration and C concentration in the reflux process.

1.本発明における用語の説明
「CaO−Al−MgO系酸化物」とは、主要構成元素がCa、Al、MgおよびOで構成される非金属介在物であって、走査電子顕微鏡付属のエネルギー分散型X線分析装置等で測定した場合、上記元素の占める割合が90atom%以上である介在物を指す。一方、「MgO・Al系酸化物」とは、主要構成元素がAl、MgおよびOで構成され、左記元素の占める割合が90atom%以上である介在物を指す。両者の違いは、酸化物中のCaの存在であり、Ca濃度が5atom%以上であるものを「CaO−Al−MgO系酸化物」、Ca濃度が5atom%より低いものを「MgO・Al系酸化物」とする。この時、酸化物には、上記元素の他、Si、Mn、やTi等の精錬段階で不可避的に混入する元素が10atom%以下で含まれていても良い。また、主要構成元素としてSもしくはNが45atom%以上含まれた、いわゆる硫化物もしくは窒化物は酸化物とは別に取り扱う。これら介在物は、鋳片1/2W、1/4T部(Wは幅、Tは厚さ方向を示す。)から切り出したサンプルを鏡面研磨した上で光学顕微鏡や走査電子顕微鏡等の観察器具を用いることで観察できる。顕微鏡観察では、測定視野面積40mm以上観察し、鏡面研磨面上に存在する円相当径で1.0μm以上10μm以下の介在物を1サンプル当たり20個以上調査する。円相当径で10.0μmを超えるものは、スラグやモールドフラックスの巻き込み等による外来性の介在物である可能性が高いことから、検査対象からは除外する。この時、酸化物の全領域が含まれるように面分析を行い、得られた結果から、酸化物の組成をAl、MgO、CaO、SiOおよびMnOといった酸化物の含有率(mass%)に換算できる。
1. Explanation of Terms in the Present Invention “CaO—Al 2 O 3 —MgO-based oxide” is a nonmetallic inclusion composed of Ca, Al, Mg, and O as main constituent elements, and is attached to a scanning electron microscope. When measured with an energy dispersive X-ray analyzer or the like, it refers to an inclusion in which the proportion of the element is 90 atom% or more. On the other hand, the “MgO.Al 2 O 3 -based oxide” refers to an inclusion in which main constituent elements are composed of Al, Mg, and O, and the proportion of the left element is 90 atom% or more. The difference between the two is the presence of Ca in the oxide, the “CaO—Al 2 O 3 —MgO-based oxide” having a Ca concentration of 5 atom% or more, and the “MgO” having a Ca concentration lower than 5 atom%. “Al 2 O 3 oxide”. At this time, the oxide may contain 10 atom% or less of elements inevitably mixed in the refining stage such as Si, Mn, and Ti in addition to the above elements. Also, so-called sulfides or nitrides containing 45 atom% or more of S or N as a main constituent element are handled separately from oxides. These inclusions are mirror-polished samples cut from slabs 1 / 2W and 1 / 4T (W is the width and T is the thickness direction), and an observation instrument such as an optical microscope or a scanning electron microscope is used. It can be observed by using it. In the microscopic observation, a measurement visual field area of 40 mm 2 or more is observed, and 20 or more inclusions having an equivalent circle diameter of 1.0 μm or more and 10 μm or less present on the mirror-polished surface are examined per sample. Since the equivalent circle diameter of more than 10.0 μm is highly likely to be an extraneous inclusion caused by slag or mold flux entrainment, it is excluded from the inspection target. At this time, a surface analysis was performed so that the entire region of the oxide was included, and from the obtained result, the composition of the oxide was changed to the content of oxides such as Al 2 O 3 , MgO, CaO, SiO 2 and MnO (mass. %).

「製鋼炉」とは、転炉または電気炉を指し、製鋼炉から出鋼された「溶鋼」とは、脱硫、脱りんもしくは脱炭といった一次精錬処理が実施された状態であるものとする。
本発明で「取鍋」とは、金属精錬に用いられる、金属鉄皮の内側を耐火物からなるレンガで内張した容器を指す。取鍋底部には溶鋼撹拌用のポーラス部が設けられており、スラグ精錬工程においては、ガスを吹き込んで溶鋼およびスラグを撹拌することができる。
The “steel making furnace” refers to a converter or an electric furnace, and the “molten steel” produced from the steel making furnace is in a state where a primary refining process such as desulfurization, dephosphorization, or decarburization has been performed.
In the present invention, the “ladder” refers to a container used for metal refining, in which the inside of the metal iron skin is lined with bricks made of refractory. The ladle bottom is provided with a porous portion for stirring molten steel, and in the slag refining process, the molten steel and slag can be stirred by blowing gas.

「バブリングランス」とは、一般的には鋼骨芯にキャスタブル耐火物を被覆させた筒であり、溶鋼中に撹拌用ガスおよび脱硫剤を吹き込むことができる。この時、吹込むガス流量および脱硫剤添加量は任意に設定可能である。   “Bubbling lance” is generally a tube in which a steel frame core is covered with a castable refractory, and a stirring gas and a desulfurizing agent can be blown into molten steel. At this time, the flow rate of the gas to be blown and the addition amount of the desulfurizing agent can be arbitrarily set.

「撹拌ガス」とは、溶鋼成分および温度の均一化、介在物の凝集、浮上除去促進、取鍋スラグの滓化、および溶鋼と取鍋スラグの精錬反応促進を目的として吹込む、Ar等の不活性ガスを指す。この時、Ar以外にもNガス、COガス等が使用できる。 “Stirring gas” is used for the purpose of homogenizing molten steel components and temperature, agglomeration of inclusions, promoting floating removal, hatching of ladle slag, and promoting refining reaction of molten steel and ladle slag, such as Ar Refers to inert gas. At this time, N 2 gas, CO gas, or the like can be used in addition to Ar.

本発明において、撹拌ガスを用いた撹拌操作は、バブリング工程での撹拌操作と、スラグ精錬工程での撹拌操作がある。後者における撹拌操作は、取鍋底部に設けた溶鋼撹拌用ポーラス部を介した撹拌操作が基本となるが、撹拌の方法を限定するものではなく、スラグ精錬時にバブリングランスを用いて撹拌操作を行うことも可能である。   In the present invention, the stirring operation using the stirring gas includes a stirring operation in the bubbling process and a stirring operation in the slag refining process. The stirring operation in the latter is basically a stirring operation via a molten steel stirring porous portion provided at the bottom of the ladle, but the stirring method is not limited, and the stirring operation is performed using a bubbling lance during slag refining. It is also possible.

「撹拌ガスと脱硫剤を吹き込む工程」とは、製鋼炉から出鋼された溶鋼を取鍋で受鋼した後、次工程であるスラグ精錬工程までの期間およびそこで実施する精錬操作を指す。この精錬操作においては、撹拌用ガスと脱硫剤を、バブリングランスを介して溶鋼中に吹込む操作が行われる。   The “step of blowing a stirring gas and a desulfurizing agent” refers to the period from the time when the molten steel produced from the steelmaking furnace is received in a ladle to the next slag refining step and the refining operation performed there. In this refining operation, an operation of blowing a stirring gas and a desulfurizing agent into molten steel through a bubbling lance is performed.

「スラグ精錬を行う工程」とは、生石灰や珪砂等の酸化物を添加して、いわゆる鉱滓を作り、溶鋼との精錬反応や保温等の精錬作用を狙った操作およびその操作を行っている期間を指す。一般的には取鍋にこれら媒溶剤を添加して造滓するが、スラグには滓化促進のために添加するCaF、溶鋼成分が酸化して生成するAlやMgO、FeOが含まれることがある。また、耐火物から溶出したMgOや脱硫反応によって吸収されたS、さらに、受鋼時にすでに取鍋に付着していた、前回溶製時のスラグの残存物が含まれていることがある。スラグ精錬では、これらスラグとの反応の他、各種合金鉄を添加することで、溶鋼成分を調整する。また、アーク加熱装置を備えた設備であれば、溶鋼を加熱することもできる。さらに、スラグ精錬は大気圧下の他、減圧下で行っても良い。 The "slag refining process" means the period during which the so-called slag is added by adding oxides such as quick lime and silica sand, and the operation aimed at the refining reaction such as refining reaction with molten steel and heat retention Point to. In general, these medium solvents are added to the ladle to make the slag, but the slag contains CaF 2 added to promote hatching, Al 2 O 3 , MgO, and FeO generated by oxidizing the molten steel components. May be included. In addition, MgO eluted from the refractory, S absorbed by the desulfurization reaction, and the residual slag from the previous smelting that has already adhered to the ladle at the time of receiving steel may be included. In slag refining, the molten steel components are adjusted by adding various alloy irons in addition to the reaction with these slags. Moreover, if it is the installation provided with the arc heating apparatus, molten steel can also be heated. Furthermore, slag refining may be performed under reduced pressure in addition to atmospheric pressure.

「環流型脱ガス装置で取鍋精錬を行う工程」とは、取鍋に溶鋼を受鋼している状態で、真空脱ガス装置によって溶鋼を真空槽に吸い上げ、環流ガスを流すことで、溶鋼を取鍋と真空槽管で環流させる操作およびその操作を行っている期間を指す。環流中の溶鋼では、溶鋼が減圧雰囲気にさらされることから脱ガス反応が促進されるとともに、介在物の凝集、浮上除去が促進される。   The process of ladle refining with a recirculation type degassing device means that the molten steel is received in the ladle, the molten steel is sucked up into the vacuum tank by the vacuum degassing device, and the recirculating gas is flowed. This refers to the operation of recirculating the ladle and vacuum vessel and the period during which the operation is being performed. In the molten steel in the reflux, the molten steel is exposed to a reduced-pressure atmosphere, so that the degassing reaction is promoted and the inclusions are flocculated and lifted.

「CaO系脱硫剤」とは、脱硫剤の主要構成成分がCaO、CaF、Alであり、Ca純分が40mass%以上70mass%以下含まれているものを指す。TiO、SiO、MgOやMnO等の不可避的不純物が5mass%以下で含まれている場合もある。また、不可避的に混入しているものを除き、Caを始めとした金属元素は含まれないものとする。 The “CaO-based desulfurization agent” refers to one in which main constituents of the desulfurization agent are CaO, CaF 2 , and Al 2 O 3 , and pure Ca is contained in an amount of 40 mass% to 70 mass%. Inevitable impurities such as TiO 2 , SiO 2 , MgO and MnO may be contained at 5 mass% or less. Further, except for elements inevitably mixed in, metal elements such as Ca are not included.

2.酸化物組成およびその個数比率
製品寿命を向上させるためには、非金属介在物がCaO−Al−MgO系酸化物であることが必要である。これは、硬質なMgO・Al系酸化物を回避することを意味する。また、対象のCaO−Al−MgO系酸化物は、その生成プロセスがスラグ起因でないことが必要であり、調査酸化物の粒径範囲を限定した上で、その個数比率を調査することで判別することができる。具体的には、調査面積内に存在する、円相当径で1.0μm以上10μm以下の非金属介在物の全個数に対し、その非金属介在物を構成する全元素の中でのCa、Al、MgおよびOの占める割合が90atom%以上であると共に、そのCa濃度が5atom%以上である非金属介在物の全個数の内、その非金属介在物のCaO濃度が20〜50mass%であるものの個数比率が50%以上であることが必要である。
2. Oxide composition and number ratio thereof In order to improve the product life, it is necessary that the nonmetallic inclusion is a CaO—Al 2 O 3 —MgO-based oxide. This means avoiding hard MgO.Al 2 O 3 -based oxides. In addition, the target CaO—Al 2 O 3 —MgO-based oxide requires that the production process is not caused by slag, and the number ratio of the investigation oxide should be investigated after limiting the particle size range of the investigation oxide. Can be determined. Specifically, Ca, Al among all the elements constituting the nonmetallic inclusions with respect to the total number of nonmetallic inclusions having an equivalent circle diameter of 1.0 μm or more and 10 μm or less existing within the survey area. The ratio of Mg and O is 90 atom% or more, and the CaO concentration of the non-metallic inclusions is 20 to 50 mass% out of the total number of non-metallic inclusions whose Ca concentration is 5 atom% or more. The number ratio needs to be 50% or more.

鋼中酸化物の生成プロセスを考えた場合、脱酸元素を添加した際に生成し、もともと溶鋼中に懸濁していた酸化物と、スラグを巻き込む等によって生成した酸化物に大別できる。このうち、スラグ起因の酸化物組成は、取鍋スラグ組成に近いと考えられる。本発明は、もともと溶鋼中に存在していた硬質なMgO・Al系酸化物を軟質なCaO−Al−MgO系酸化物に制御するものであることから、まずはスラグ起因の酸化物と区別するため、全構成元素の中でのCa、Al、MgおよびOの占める割合が90atom%以上、かつ、Ca濃度が5atom%以上のCaO−Al−MgO系酸化物であることが必要である。また、左記を満たした酸化物の中においても、CaO濃度が50mass%を超える酸化物に関しては、スラグ起因で生成した可能性が高い。このため、CaO−Al−MgO系酸化物中のCaO濃度は50mass%以下であることが必要である。一方、酸化物中のCaO濃度が50mass%以下である場合、その酸化物はもともと存在していた酸化物と溶存Caが反応して生成したと考えられる。しかしながら、酸化物中のCaO濃度が20mass%よりも低い場合、酸化物の軟質化は不十分であり、すなわち破壊基点として作用する蓋然性を低下させることはできない。酸化物中のCaO濃度が20〜50mass%である場合、酸化物中のCaOにより酸化物の軟質化が期待でき、製品段階で破壊の基点として作用する蓋然性が低下することで、製品寿命を向上できる。このため、CaO−Al−MgO系酸化物中のCaO濃度は20〜50mass%とした。 Considering the production process of oxides in steel, it can be roughly divided into oxides that are generated when deoxidizing elements are added and originally suspended in molten steel, and oxides that are generated by entraining slag and the like. Of these, the slag-derived oxide composition is considered to be close to the ladle slag composition. The present invention controls the hard MgO · Al 2 O 3 -based oxide originally present in the molten steel into a soft CaO-Al 2 O 3 -MgO-based oxide. In order to distinguish it from oxides, it is a CaO—Al 2 O 3 —MgO-based oxide in which the proportion of Ca, Al, Mg and O in all the constituent elements is 90 atom% or more and the Ca concentration is 5 atom% or more. It is necessary to be. In addition, among oxides satisfying the left, oxides having a CaO concentration exceeding 50 mass% are highly likely to be generated due to slag. Therefore, CaO-Al 2 O 3 CaO concentration -MgO based oxide is required to be less 50 mass%. On the other hand, when the CaO concentration in the oxide is 50 mass% or less, it is considered that the oxide was formed by a reaction between the oxide that was originally present and dissolved Ca. However, when the CaO concentration in the oxide is lower than 20 mass%, the oxide is not sufficiently softened, that is, the probability of acting as a fracture base point cannot be reduced. When the CaO concentration in the oxide is 20 to 50 mass%, the oxide can be expected to be softened by the CaO in the oxide, and the probability of acting as a starting point of destruction at the product stage is reduced, thereby improving the product life. it can. For this reason, the CaO concentration in the CaO—Al 2 O 3 —MgO-based oxide was set to 20 to 50 mass%.

また、本発明における介在物の組成制御は、もともと溶鋼中に存在していた介在物に対して発揮される必要がある。このとき、円相当径で10μmを超える介在物には、スラグ起因の介在物が混入する蓋然性が高まることから、調査対象の介在物は10μm以下である必要がある。一方、円相当径で1.0μm未満の介在物を調査したのでは定量性が不十分である。このため、調査対象の介在物の円相当径は1.0μm以上10μm以下とした。   In addition, the composition control of inclusions in the present invention needs to be exerted on inclusions originally present in the molten steel. At this time, inclusions exceeding 10 μm in equivalent circle diameter increase the probability of inclusion of inclusions due to slag, so the inclusions to be investigated need to be 10 μm or less. On the other hand, if an inclusion having an equivalent circle diameter of less than 1.0 μm is investigated, the quantitativeness is insufficient. For this reason, the equivalent circle diameter of the inclusions to be investigated was set to 1.0 μm or more and 10 μm or less.

さらに、酸化物の軟質化に伴う製品性能向上効果を得るには、上記した大きさ、組成の酸化物の個数比率が50%以上であることが必要である。すなわち、上記した酸化物の個数比率が50%未満である場合、軟質化の効果は限定的であり、製品性能向上効果は得られない。なお、個数比率と酸化物中のCaO濃度には相関があり、還元性雰囲気が強いほど個数比率、CaO濃度ともに上昇すると考えられる。酸化物の個数比率が50%以上であれば、その後、効果は飽和することから、上限は不要である。   Furthermore, in order to obtain the product performance improvement effect accompanying the softening of the oxide, it is necessary that the number ratio of the oxide having the above-mentioned size and composition is 50% or more. That is, when the number ratio of the oxides is less than 50%, the softening effect is limited and the product performance improvement effect cannot be obtained. Note that there is a correlation between the number ratio and the CaO concentration in the oxide, and it is considered that both the number ratio and the CaO concentration increase as the reducing atmosphere is stronger. If the number ratio of the oxide is 50% or more, the effect is then saturated, and therefore no upper limit is necessary.

3.本発明鋼の溶製方法
本発明の高清浄度鋼の溶製方法は、製鋼炉から取鍋に出鋼した溶鋼に対して、バブリングランスを介して溶鋼中に撹拌ガスと脱硫剤を吹込む工程、スラグ精錬を行う工程、環流型脱ガス装置で取鍋精錬を行う工程を順次行う。なお、以下の説明では上記した工程を、バブリング工程、スラグ精錬工程、環流工程と呼ぶ。
3. Method of Melting the Steel of the Invention The method of melting the high cleanliness steel of the present invention is to blow a stirring gas and a desulfurizing agent into the molten steel through a bubbling lance with respect to the molten steel discharged from the steelmaking furnace to the ladle. The process, the process of performing slag refining, and the process of performing ladle refining with a recirculation type degassing apparatus are sequentially performed. In the following description, the above-described processes are referred to as a bubbling process, a slag refining process, and a reflux process.

本発明者らは、高清浄度鋼の溶製プロセスを詳細に検討し、以下の課題と解決策を見出した。
高清浄度鋼は低酸素化、低硫化が必須であり、溶鋼炉から出鋼された溶鋼は、スラグメタル反応を伴うスラグ精錬工程、脱ガスと介在物の凝集、浮上除去促進を行う環流工程が適用されることが多い。
The present inventors have studied in detail the melting process of high cleanliness steel, and have found the following problems and solutions.
High cleanliness steel must have low oxygen and low sulfidation, and the molten steel produced from the steel furnace is a slag refining process with slag metal reaction, degassing and inclusion agglomeration, and recirculation process that promotes floating removal. Is often applied.

スラグ精錬工程では、高塩基度の媒溶剤で造滓し、スラグメタル反応を利用して脱酸、脱硫が行われるとともに、溶鋼温度と成分調整が行われる。ただし、スラグ精錬工程だけでは、脱酸や介在物除去が不十分な場合もあることから、環流工程を適用することで、溶鋼の清浄化が行われている。ただし、このプロセスで高清浄度鋼を溶製した場合、溶鋼中に存在する酸化物組成はAl系もしくはMgO・Al系となる。まれにCaO濃度が高い酸化物が散見される場合もあるが、殆どの場合、この酸化物は精錬中にスラグが不可避的に巻き込まれたものであると考えられる。 In the slag refining process, slag is formed with a medium solvent having a high basicity, deoxidation and desulfurization are performed using a slag metal reaction, and the molten steel temperature and components are adjusted. However, since deoxidation and inclusion removal may be insufficient only with the slag refining process, the molten steel is cleaned by applying the recirculation process. However, when high cleanliness steel is melted by this process, the oxide composition present in the molten steel is Al 2 O 3 or MgO · Al 2 O 3 . Occasionally, an oxide with a high CaO concentration is occasionally found, but in most cases, this oxide is considered to be inevitably involved with slag during refining.

酸化物をCaO−Al−MgO系に制御することを考えた場合、不可避的に巻き込まれるスラグ起因のCaO濃度が高い酸化物に期待するのは困難であり、再現性も期待できない。耐水素誘起割れ鋼では酸化物の形態制御のために金属Caを含む合金を溶鋼に添加する操作を行っているが、JIS G4805に記載されている通り、SUJ2といった鋼種では金属CaもしくはCa合金を直接添加することはできない。このため、再現性のある別の手法として、系内のCaOを還元することで一度溶存Caの形態とし、それ以前に存在していたMgO・Al系酸化物と反応させることを考えた。ここで、CaOを還元する方法として、環流工程におけるC脱酸を利用することを考えた。また、Ca源を考える必要があるが、環流中は一般的に溶鋼とスラグとの反応がほとんど起こらないと考えられることから、スラグ中のCaOとは別のCa源を考える必要があると考えた。 In consideration of controlling the oxide to CaO—Al 2 O 3 —MgO system, it is difficult to expect an oxide having a high CaO concentration due to slag that is inevitably involved, and reproducibility cannot be expected. In hydrogen-resistant cracked steel, an operation of adding an alloy containing metallic Ca to molten steel is performed to control the form of oxides. However, as described in JIS G4805, in steel types such as SUJ2, metallic Ca or Ca alloy is used. It cannot be added directly. For this reason, as another method with reproducibility, it is considered to reduce the CaO in the system to a form of dissolved Ca once and react with the MgO.Al 2 O 3 -based oxide that existed before that. It was. Here, as a method for reducing CaO, it was considered to use C deoxidation in the reflux step. In addition, it is necessary to consider the Ca source, but generally it is considered that the reaction between the molten steel and the slag hardly occurs during the recirculation, so it is necessary to consider a Ca source different from the CaO in the slag. It was.

この課題に対し、バブリングランスからCaO系脱硫剤を吹込む、いわゆるパウダーインジェクションに着目した。従来、耐水素誘起割れ鋼を代表とする清浄鋼の脱酸脱硫手法としてパウダーインジェクションは一般的な手法であり、単純にスラグ精錬工程、環流工程の前にこのプロセスを適用して、溶鋼を脱酸脱硫するだけに留まるのでは、従来技術の範疇から脱しない。   In response to this problem, attention was focused on so-called powder injection in which a CaO-based desulfurization agent is blown from a bubbling lance. Conventionally, powder injection has been a common method for deoxidation and desulfurization of clean steel, typically hydrogen-resistant cracked steel, and this process is simply applied before the slag refining and recirculation processes to remove the molten steel. If only the acid desulfurization is performed, it does not deviate from the category of the prior art.

ここで、パウダーインジェクションは溶鋼中に直接CaO粉を添加するプロセスであることから、精錬初期段階でCaOを添加しておけば、精錬後半の環流工程に至るまでの間に粗大なCaOは系内から排出され、溶鋼中にはスラグ精錬プロセスでも除去されない微細なCaOが存在することに着目した。すなわち、単純にパウダーインジェクションを適用するだけでなく、環流工程におけるC脱酸を想定した場合、パウダーインジェクションには脱酸脱硫の効果に加えて、Ca源を供給するプロセスとしての効果を期待できるようになる。   Here, since powder injection is a process in which CaO powder is directly added to molten steel, if CaO is added in the initial stage of refining, coarse CaO will not be contained in the system until the recirculation process in the second half of refining. We focused on the presence of fine CaO in the molten steel that is not removed by the slag refining process. That is, in addition to simply applying powder injection, when assuming C deoxidation in the reflux step, in addition to the effect of deoxidation and desulfurization, powder injection can be expected to have an effect as a process of supplying a Ca source. become.

仮に、RHなどの真空脱ガス装置でCaO粉を添加した場合、系内にはCa源が導入されることになる。しかしながら、このプロセスでは、添加されてから減圧処理が行われるまでの時間が短いことから、粗大なCaOが反応することになり、生成するCaO−Al−MgO系酸化物も粗大になることが予想される。このため、系内にCa源を導入するものの、粗大なCaOがある程度除去されている状況を作り出す必要があると考えた。 If CaO powder is added by a vacuum degassing apparatus such as RH, a Ca source is introduced into the system. However, in this process, since the time from the addition to the pressure reduction treatment is short, coarse CaO reacts and the resulting CaO—Al 2 O 3 —MgO-based oxide also becomes coarse. It is expected that. For this reason, although the Ca source was introduced into the system, it was considered necessary to create a situation in which coarse CaO was removed to some extent.

これらを鑑み、脱酸、脱硫を行いつつ、酸化物をCaO−Al−MgO系に制御する最も合理的なプロセスを考えると、二次精錬初期にバブリング工程において、パウダーインジェクションにより脱酸脱硫を行うとともに、溶鋼内にCa源を導入し、次いでスラグ精錬により、溶鋼温度と成分調整を行い、環流工程において、介在物の浮上除去と脱ガスを行うとともに、C脱酸を利用して酸化物組成制御を行うことが最良であることが分かる。このプロセスであれば、金属CaもしくはCa合金を使用することなく、系内にCa源を導入出来ることから、SUJ2といった鋼種に適用可能である。 In view of these, considering the most rational process for controlling the oxide to the CaO—Al 2 O 3 —MgO system while performing deoxidation and desulfurization, deoxidation is performed by powder injection in the bubbling process at the initial stage of secondary refining. In addition to desulfurization, the Ca source is introduced into the molten steel, and then the molten steel temperature and components are adjusted by slag refining. In the recirculation process, floating and removal of inclusions are performed, and C deoxidation is used. It can be seen that it is best to control the oxide composition. This process can be applied to a steel type such as SUJ2 because a Ca source can be introduced into the system without using metallic Ca or a Ca alloy.

4.環流工程におけるC脱酸についての検討
本発明では、環流工程においてC脱酸を活用することが重要である。従来、Al脱酸の高清浄度鋼ではAl添加に伴う脱酸およびスラグ精錬時のスラグメタル反応に伴う脱酸を活用していた。環流工程においては、Al脱酸が支配的である場合が多いが、条件によってはC脱酸が起こっていた場合もあった。
4). Examination of C deoxidation in the reflux process In the present invention, it is important to utilize C deoxidation in the reflux process. Conventionally, Al deoxidation high cleanliness steel has utilized deoxidation accompanying Al addition and deoxidation accompanying slag metal reaction during slag refining. In the reflux process, Al deoxidation is often dominant, but C deoxidation may occur depending on the conditions.

しかし、C脱酸が生じるのは、溶鋼中C濃度、Al濃度および真空度の条件が整った場合であり、溶鋼中にCa源が無い場合、酸化物はMgO・Al系のままであるか、CaO−Al−MgO系に変化していたとしてもその変化幅は小さかったことから、C脱酸は十分には活用されていなかった。本発明はこの部分に着目したものである。 However, C deoxidation occurs when the conditions of C concentration, Al concentration and vacuum degree in molten steel are satisfied. When there is no Ca source in molten steel, the oxide remains MgO.Al 2 O 3 system. Even if it was changed to the CaO—Al 2 O 3 —MgO system, the range of change was small, so C deoxidation was not fully utilized. The present invention focuses on this part.

環流工程において、溶鋼中のC濃度が0.85mass%より低い場合、C脱酸を生じさせるには真空度を極度に低下させる必要があり、工業的な生産を考えた場合、実現は困難である。一方、C濃度が1.2mass%を超える場合、C脱酸は生じやすくなるものの、後述するように製品が硬くなり過ぎることに加え、環流工程後に脱炭するのが困難である。このため、環流工程での溶鋼中C濃度は0.85〜1.2mass%とした。   In the recirculation process, when the C concentration in the molten steel is lower than 0.85 mass%, it is necessary to extremely reduce the degree of vacuum in order to cause C deoxidation. is there. On the other hand, when the C concentration exceeds 1.2 mass%, C deoxidation tends to occur, but in addition to the product becoming too hard as will be described later, it is difficult to decarburize after the reflux step. For this reason, the C concentration in the molten steel in the reflux process was set to 0.85 to 1.2 mass%.

また、環流工程において、溶鋼中のAl濃度が0.035mass%より高い場合、C濃度や真空度を操作したとしても、Al脱酸の影響が強くなりすぎてしまい、C脱酸反応を生じさせることが困難である。一方、溶鋼中のAl濃度が0.020mass%より低い場合、溶鋼の脱酸が不十分となり、C脱酸が生じたとしても、溶鋼中のOと反応する割合が多く、工業的な生産規模を維持したままの脱ガス時間を想定した場合、CaOの分解反応が起こる頻度は小さい。このため、環流工程での溶鋼中Al濃度は0.020〜0.035mass%とした。   Also, in the reflux process, when the Al concentration in the molten steel is higher than 0.035 mass%, even if the C concentration and the degree of vacuum are manipulated, the influence of Al deoxidation becomes too strong, causing a C deoxidation reaction. Is difficult. On the other hand, when the Al concentration in the molten steel is lower than 0.020 mass%, the deoxidation of the molten steel becomes insufficient, and even if C deoxidation occurs, the ratio of reacting with O in the molten steel is large, and the industrial production scale. Assuming the degassing time while maintaining the above, the frequency of the CaO decomposition reaction is small. For this reason, the Al concentration in the molten steel in the recirculation process was set to 0.020 to 0.035 mass%.

さらに、環流工程において、処理時の真空度は0.3kPa以下であることが必要である。真空度が0.3kPaを超える場合、C脱酸よりもAl脱酸のほうが支配的となるため、CaOの分解反応が生じない。真空度に関しては、低位であるほど好ましい。   Furthermore, in the reflux step, the degree of vacuum during processing needs to be 0.3 kPa or less. When the degree of vacuum exceeds 0.3 kPa, Al deoxidation is more dominant than C deoxidation, so that no decomposition reaction of CaO occurs. Regarding the degree of vacuum, the lower the level, the better.

5.バブリング工程で吹込む脱硫剤組成および添加量についての検討
本発明における脱硫剤としては、CaO系脱硫剤であることが必要である。脱硫効率と反応性を考えると、CaO−CaF系であることが望ましいが、CaO−Al系もしくはCaO−CaF−Al系であっても良い。ここで、左記脱硫剤は主要構成成分の違いを示しており、CaO−CaF系とは、主要構成成分であるCaO濃度とCaF濃度の合計が90mass%以上であり、CaFが最低10mass%以上含まれるものを指す。また、同様に、CaO−Al系とは、主要構成成分であるCaO濃度とAl濃度の合計が90mass%以上であり、Alが最低10mass%以上含まれるものを指す。さらに、CaO−CaF−Al系とは、主要構成成分であるCaO濃度とCaF濃度とAl濃度の合計が90mass%以上であり、CaFとAlがそれぞれ最低10mass%以上含まれるものを指す。
5. Study on Desulfurizing Agent Composition and Addition Amount Injected in Bubbling Process The desulfurizing agent in the present invention needs to be a CaO-based desulfurizing agent. Considering desulfurization efficiency and reactivity, the CaO—CaF 2 system is desirable, but a CaO—Al 2 O 3 system or a CaO—CaF 2 —Al 2 O 3 system may be used. Here, the desulfurization agent shown on the left shows a difference in main constituents. In the CaO-CaF 2 system, the total of CaO concentration and CaF 2 concentration as main constituents is 90 mass% or more, and CaF 2 is at least 10 mass. % Refers to those included. Similarly, the CaO—Al 2 O 3 system is one in which the total of CaO concentration and Al 2 O 3 concentration, which are main components, is 90 mass% or more, and Al 2 O 3 is contained at least 10 mass% or more. Point to. Further, the CaO—CaF 2 —Al 2 O 3 system means that the total of CaO concentration, CaF 2 concentration, and Al 2 O 3 concentration, which are main components, is 90 mass% or more, and CaF 2 and Al 2 O 3 are respectively It refers to those contained at least 10 mass%.

脱硫剤の混合比に特に制約は無いが、脱硫剤中のCa純分が重量%で40mass%以上70mass%以下であり、好ましくは55mass%以上65mass%以下であるのが良い。なお、溶鋼中にCaFを吹き込んだ場合、CaOと同様にCaSを形成して脱硫に寄与するとともに、微細なCaOを形成すると考えられる。本発明における酸化物組成制御という観点において、CaOとCaFを環流工程まで残存するCa源として考えた場合、両者は同様に取り扱うことが出来る。このため、Ca純分は、CaOおよびCaFに含まれるCa重量を全脱硫剤重量で除すことで算出した。 Although there is no restriction | limiting in particular in the mixing ratio of a desulfurization agent, Ca pure content in a desulfurization agent is 40 mass% or more and 70 mass% or less by weight%, Preferably it is 55 mass% or more and 65 mass% or less. In the case where blown into the CaF 2 in the molten steel, contributes to desulfurization to form CaS as with CaO, is believed to form fine CaO. From the viewpoint of controlling the oxide composition in the present invention, when CaO and CaF 2 are considered as remaining Ca sources until the reflux step, both can be handled in the same manner. For this reason, the pure Ca content was calculated by dividing the Ca weight contained in CaO and CaF 2 by the total desulfurizing agent weight.

脱硫剤添加量に関しては、溶鋼に脱硫剤として添加されるCa量、すなわち脱硫剤のCa純分を考慮する必要がある。本発明においては、脱硫剤中のCaが純分として溶鋼1tあたり1.0kg以上添加する必要がある。脱硫速度は溶鋼に添加する脱硫剤量と撹拌強度並びに処理時間で決まるが、バブリング工程の処理時間を短縮することを考えた場合、脱硫剤中のCa純分量が1.0kg/t以下の脱硫剤添加量では、十分な脱硫速度が得られないことに加え、酸化物組成をCaO−Al−MgO系に制御できない。一方、Ca純分量が2.5kg以上の脱硫剤を添加しても、効果が飽和してしまっているため、これ以上の脱硫剤添加量の増大はコスト増に繋がってしまう。また、過度に酸化物中のCaO濃度が高くなると、酸化物の融点が低下し、酸化物が粗大化してしまう可能性が出てくる。このため、本発明におけるCaO系脱硫剤中のCa量は、Ca純分量として1.0〜2.5kg/tの範囲とした。このため、脱硫剤添加量は、溶鋼に添加するCa量および脱硫剤のCa純分を考慮して決定される。 Regarding the desulfurization agent addition amount, it is necessary to consider the amount of Ca added as a desulfurization agent to molten steel, that is, the pure Ca content of the desulfurization agent. In the present invention, it is necessary to add 1.0 kg or more per 1 t of molten steel as a pure component of Ca in the desulfurizing agent. The desulfurization rate is determined by the amount of desulfurizing agent added to the molten steel, the stirring strength and the processing time. However, when considering the shortening of the processing time of the bubbling process, the desulfurization with a pure Ca content in the desulfurizing agent of 1.0 kg / t or less. In addition to the addition amount of the agent, a sufficient desulfurization rate cannot be obtained, and the oxide composition cannot be controlled to the CaO—Al 2 O 3 —MgO system. On the other hand, even if a desulfurizing agent having a pure Ca content of 2.5 kg or more is added, the effect is saturated, so that an increase in the desulfurizing agent addition amount further leads to an increase in cost. In addition, when the CaO concentration in the oxide is excessively high, the melting point of the oxide is lowered, and the oxide may be coarsened. For this reason, the amount of Ca in the CaO-based desulfurizing agent in the present invention is set to a range of 1.0 to 2.5 kg / t as a pure Ca content. For this reason, the desulfurization agent addition amount is determined in consideration of the amount of Ca added to the molten steel and the pure Ca content of the desulfurization agent.

本発明におけるバブリング工程で吹込む撹拌ガス流量は、(1)式から求まる撹拌動力密度が180W/t以上であることが望ましい。撹拌動力密度が180W/tを下回ると、例え大量の脱硫剤を添加したとしても、十分な脱硫速度が得られない。一方、370W/tを超える撹拌動力密度でガスを吹き込んでも、効果が飽和してしまっていることに加え、取鍋から溶鋼が吹きこぼれるといった操業トラブルを引き起こすことに繋がることから、これ以上のガス流量の増加は不要である。   As for the stirring gas flow rate blown in the bubbling step in the present invention, it is desirable that the stirring power density obtained from the equation (1) is 180 W / t or more. When the stirring power density is less than 180 W / t, a sufficient desulfurization rate cannot be obtained even if a large amount of a desulfurizing agent is added. On the other hand, even if a gas is blown at a stirring power density exceeding 370 W / t, the effect is saturated, and it causes an operation trouble such as molten steel blowing from the ladle. It is not necessary to increase the flow rate.

ε=(0.006183×Q×T)/W×ln[1+(9.8×ρ×H)/P+{1−(TG/T)}]・・・(1)
ε:ガス撹拌に伴う溶鋼1t当たりの撹拌動力密度(W/t)
Q:吹込みガス流量(L(Normal)/min)
T:溶鋼温度(K)
W:溶鋼量(t)
ρ:溶鋼の密度(7000kg/m
H:ガス吹込み深さ(m)
P:雰囲気圧力(N/m
TG:吹込みガス温度(K)
ε = (0.006183 × Q × T) / W × ln [1+ (9.8 × ρ × H) / P + {1− (TG / T)}] (1)
ε: Stirring power density per ton of molten steel accompanying gas stirring (W / t)
Q: Blowing gas flow rate (L (Normal) / min)
T: Molten steel temperature (K)
W: amount of molten steel (t)
ρ: Density of molten steel (7000 kg / m 3 )
H: Gas blowing depth (m)
P: Atmospheric pressure (N / m 2 )
TG: Blowing gas temperature (K)

また、バブリング工程での処理時間は、脱硫および介在物制御の効果と、溶鋼温度低化効果とのバランスが重要である。すなわち、溶鋼温度低下の面から考えると処理時間は短いほど良いが、処理時間が短すぎると脱硫および介在物制御の効果が得られない。このため、処理時間は5分間程度であることが望ましい。なお処理時間が10分間以上となってしまう場合、出鋼温度を高くする、もしくはアーク加熱等の後処理での負荷が増大し、製造コストの悪化に繋がることになる。   Moreover, the balance between the effect of desulfurization and inclusion control and the effect of lowering the molten steel temperature is important for the processing time in the bubbling process. That is, from the viewpoint of lowering the molten steel temperature, the shorter the treatment time, the better. However, if the treatment time is too short, the effects of desulfurization and inclusion control cannot be obtained. For this reason, it is desirable that the processing time be about 5 minutes. In addition, when processing time will be 10 minutes or more, the load in post-processing, such as raising steel temperature or arc heating, will increase and it will lead to deterioration of manufacturing cost.

6.溶鋼の化学成分の範囲
次に、本発明を実施するにあたって、製品段階の鋼に含まれる元素について説明する。以下、断りが無い限り全てmass%とする。
6). Next, the elements contained in the steel in the product stage will be described in carrying out the present invention. Hereinafter, unless otherwise noted, all are mass%.

はじめに、本発明での必須元素について説明する。
C:0.85〜1.2%
Cは、母材強度の特性を支配する元素であり、強度を確保し、転動疲労寿命を向上させるために含有する。本発明では、上記4項で説明したように、C脱酸を生じさせるため、環流工程において溶鋼中のC濃度が0.85%以上必要である。同時に、本発明では製鋼炉から出鋼した時点である程度溶鋼中C濃度が高い状態でないと、脱硫反応が進行しない。一方、製品性能の面からは、1.2%を超えてCが含有されると過度に硬くなりすぎる。このため、C濃度は0.85〜1.2%以下であることが必要である。
First, the essential elements in the present invention will be described.
C: 0.85-1.2%
C is an element that governs the properties of the base metal strength, and is contained to ensure the strength and improve the rolling fatigue life. In the present invention, as described in the above item 4, in order to cause C deoxidation, the C concentration in the molten steel is required to be 0.85% or more in the reflux process. At the same time, in the present invention, the desulfurization reaction does not proceed unless the C concentration in the molten steel is high to some extent at the time of steel removal from the steelmaking furnace. On the other hand, from the viewpoint of product performance, if C exceeds 1.2%, it becomes too hard. For this reason, C concentration needs to be 0.85-1.2% or less.

Al:0.020%〜0.035%
Alは強力な脱酸元素であり、O濃度およびS濃度を低下させるために含有する。本発明では、上記4項で説明したように、環流工程において溶鋼中のsol.Al濃度が0.020〜0.035%であることが必要である。環流工程でのC脱酸後にAlを添加すると、酸化物組成がAlに戻ってしまうことから、環流工程後のAl添加が出来ないことを考慮し、製品中のsol.Al濃度は0.020〜0.035%とする。
Al: 0.020% to 0.035%
Al is a strong deoxidizing element and is contained to reduce the O concentration and the S concentration. In the present invention, as described in item 4 above, the sol. The Al concentration needs to be 0.020 to 0.035%. If Al is added after C deoxidation in the refluxing process, the oxide composition returns to Al 2 O 3 , so that Al cannot be added after the refluxing process. The Al concentration is 0.020 to 0.035%.

Cr:0.5〜2.0%
Crは焼き入れ性を高めて転動疲労寿命を向上させるのに有効な元素であり、0.5%以上含有していることが必要である。一方、2.0%を超えてCrを含有させても、焼き入れ後の表面硬さが高くなり過ぎ、加工性が低下するとともに、切削加工時の工具寿命も低化する。このため、Cr濃度は0.5〜2.0%であることが必要である。
Cr: 0.5 to 2.0%
Cr is an element effective for improving the hardenability and improving the rolling fatigue life, and it is necessary to contain 0.5% or more. On the other hand, even if the Cr content exceeds 2.0%, the surface hardness after quenching becomes too high, the workability is lowered, and the tool life at the time of cutting is also reduced. For this reason, the Cr concentration needs to be 0.5 to 2.0%.

S:0.0020%以下
Sは鋼材の製造過程において不可避的に含有される元素である。鋼材にとって強度を低下させる有害な元素であり、含有量は少ないほど望ましい。酸化物が極端に低減された鋼においては、硫化物を基点とした破壊が起こるようになる。このため、S濃度は0.0020%以下であることが必要である。望ましいS含有量は、0.0005%以下である。
S: 0.0020% or less S is an element inevitably contained in the manufacturing process of steel materials. It is a harmful element that lowers strength for steel, and the smaller the content, the better. In steels with extremely reduced oxides, breakage based on sulfides occurs. For this reason, the S concentration needs to be 0.0020% or less. A desirable S content is 0.0005% or less.

O:0.0020%以下
Oは鋼材の製造過程において不可避的に含有される元素であり、溶存して、もしくは酸化物として存在する。両者を分離することは困難であることから、本発明でのO濃度は、両者を併せた全酸素濃度とする。鋼材中のO濃度が高くなると、酸化物量も多くなることから、鋼材の破壊の基点となる蓋然性が高くなる。このため、Total.O濃度は0.0020%以下であることが必要である。望ましいTotal.O含有量は、0.0005%以下である。
O: 0.0020% or less O is an element that is inevitably contained in the manufacturing process of the steel material, and is dissolved or present as an oxide. Since it is difficult to separate the two, the O concentration in the present invention is the total oxygen concentration combining both. When the O concentration in the steel material is increased, the amount of oxide is increased, so that the probability that the steel material is broken is increased. For this reason, Total. The O concentration needs to be 0.0020% or less. Desirable Total. The O content is 0.0005% or less.

続いて、高清浄鋼を構成する上記以外の元素について説明する。
Si:0.1〜0.8%
Siは溶鋼中で脱酸元素として働き、鋼材中では焼き入れ性を高め、転動疲労寿命を向上させるのに有用であり、0.1%以上含有していることが望ましい。一方、0.8%を超えてSiを含有させても焼き入れ向上効果が飽和することに加え、母材が硬くなり切削時の工具寿命を低化させる。このため、Si濃度は0.1〜0.8%であることが望ましい。
Subsequently, elements other than the above that constitute the highly clean steel will be described.
Si: 0.1 to 0.8%
Si acts as a deoxidizing element in molten steel, and is useful for increasing the hardenability and improving the rolling fatigue life in steel, and it is desirable to contain 0.1% or more. On the other hand, even if Si is contained in excess of 0.8%, the effect of improving quenching is saturated, and the base material becomes hard and the tool life during cutting is reduced. For this reason, the Si concentration is desirably 0.1 to 0.8%.

Mn:0.1〜1.5%
Mnは脱酸剤として有用であり、鋼材の焼き入れ性を高めるとともに、鋼材中でMnSを形成して鋼材の被削性を増加させるのに有用であり、0.1%以上含有していることが望ましい。一方、1.5%を超えてMnを含有させても上記効果が飽和する。このため、Mn濃度は0.1〜2.5%であることが望ましい。
Mn: 0.1 to 1.5%
Mn is useful as a deoxidizing agent, and is useful for increasing the hardenability of the steel material and increasing the machinability of the steel material by forming MnS in the steel material, and contains 0.1% or more. It is desirable. On the other hand, even if it contains Mn exceeding 1.5%, the above effect is saturated. For this reason, it is desirable that the Mn concentration is 0.1 to 2.5%.

P:0.03%以下
Pは結晶粒界に析出して鋼材の靱性や延性を低化させてしまう。Pの含有量が0.03%を超えると転動疲労寿命の低化が顕著に表れるようになることから、P濃度は0.03%以下であることが望ましい。
P: 0.03% or less P precipitates at grain boundaries and lowers the toughness and ductility of the steel material. If the P content exceeds 0.03%, the rolling fatigue life is significantly reduced. Therefore, the P concentration is preferably 0.03% or less.

Ca:0.0005%以下(0%を含まない)
Caは鋼材の製造過程において媒溶剤等から不可避的に含有される元素であり、酸化物、硫化物中に含有される場合がある。Caが酸化物に含有されることで、酸化物は低融点化し、鋼材の破壊の基点となる蓋然性を低下させる。また、Caが硫化物に含有される場合も同様に、鋼材の破壊の基点となる蓋然性が低下する。本発明において、酸化物はCaO−Al−MgO系であることが必要であるため、O%であってはならない。介在物中のCa量は微量であり、0.0005%以下であれば大きな問題とはならない。しかしながら、Caの含有量が0.0005%を超える場合、酸化物の粗大化を招き、転動疲労寿命の低化に繋がる。このため、Ca濃度は0.0005%以下(0%を含まない)であることが望ましい。
Ca: 0.0005% or less (excluding 0%)
Ca is an element that is inevitably contained from a solvent medium or the like in the production process of steel, and may be contained in oxides and sulfides. When Ca is contained in the oxide, the oxide has a low melting point, and the probability that becomes the starting point of destruction of the steel material is lowered. Similarly, when Ca is contained in the sulfide, the probability that the base material for the destruction of the steel material is reduced. In the present invention, the oxide must be CaO—Al 2 O 3 —MgO, and therefore should not be O%. The amount of Ca in the inclusion is very small, and if it is 0.0005% or less, it will not be a big problem. However, when the Ca content exceeds 0.0005%, the oxide becomes coarse, leading to a reduction in rolling fatigue life. For this reason, it is desirable that the Ca concentration is 0.0005% or less (not including 0%).

本発明に係る高清浄度軸受鋼は、上記したC、Si、Mn、P、S、Cr、Al、S、Ca、Oを含有し、残部Feおよび不可避的介在物で構成される。また、上記以外に、製品に必要な機能を追加する目的で、前記Feの一部に換えて、さらにTi:0.005%〜0.1%、V:0.008%〜0.3%、Mo:0.008%〜1.0%、Nb:0.008%〜0.1%、Ni:0.008%〜2.0%、Cu:1.0%以下、B:0.0050%以下、N:0.020%以下を含有させても良い。   The high cleanliness bearing steel according to the present invention contains the above-described C, Si, Mn, P, S, Cr, Al, S, Ca, O, and is composed of the remaining Fe and inevitable inclusions. In addition to the above, for the purpose of adding functions necessary for the product, Ti: 0.005% to 0.1%, V: 0.008% to 0.3%, instead of a part of the Fe , Mo: 0.008% to 1.0%, Nb: 0.008% to 0.1%, Ni: 0.008% to 2.0%, Cu: 1.0% or less, B: 0.0050 % Or less, N: 0.020% or less may be included.

表1に示す組成の鋼を溶製した。溶鋼量は約80tであり、バブリング工程、スラグ精錬工程、環流工程を順次行った。このとき、比較例として、バブリング工程を省略した処理も行った。表1に、本発明と比較例の鋼成分をまとめて示す。精錬段階においては、高炉から出銑された溶銑を、溶銑予備処理で脱硫処理し、転炉型精錬容器(CV、Converter)にて脱Pおよび脱C処理した後、取鍋に受鋼した。取鍋に受鋼する際は、転炉スラグが取鍋に入らないようにするとともに、溶鋼にAlを含む合金元素を添加し、保温用のカバースラグを添加した。   Steels having the compositions shown in Table 1 were melted. The amount of molten steel was about 80 t, and a bubbling process, a slag refining process, and a reflux process were sequentially performed. At this time, as a comparative example, a process in which the bubbling process was omitted was also performed. Table 1 summarizes the steel components of the present invention and comparative examples. In the refining stage, the hot metal discharged from the blast furnace was desulfurized by hot metal pretreatment, de-P and de-C treated in a converter type refining vessel (CV, Converter), and then received in a ladle. When receiving the steel in the ladle, the converter slag was prevented from entering the ladle, an alloying element containing Al was added to the molten steel, and a cover slag for heat insulation was added.

取鍋内の溶鋼をPI(Powder Injection、粉体添加装置)まで搬送した後、溶鋼にバブリングランスを介して脱硫剤を添加しながらArガスを吹込み、溶鋼を撹拌した。この時のバブリング工程での溶鋼処理時間は約5分間であり、吹込む脱硫剤添加量を種々変更した。   After the molten steel in the ladle was transported to PI (Powder Injection, powder addition device), Ar gas was blown into the molten steel while adding a desulfurizing agent via a bubbling lance, and the molten steel was stirred. The molten steel processing time in the bubbling process at this time was about 5 minutes, and the desulfurizing agent addition amount to be blown in was varied.

その後、VAD(Vacuum Arc Degassing)にてスラグメタル反応を伴う処理を行い、溶鋼組成および溶鋼温度を調整した。この時、脱酸脱硫を促進させることを意図して、媒溶剤はCaO、CaF、Alを主要構成成分とし、CaO/Al比が3程度になるように調整したものを添加した。VADではおよそ40分間処理し、その間に溶鋼温度はおよそ1550℃から1580℃で推移した。さらに、RH(環流型真空脱ガス装置)で脱ガスおよび介在物除去を行った。RHでの処理時間はおよそ40分間であり、真空度が最も低下した状態で溶鋼を環流させる処理を25分間から30分間行った。この時、溶鋼温度はおよそ1520℃から1550℃で推移した。その後、連続鋳造法により鋳込み、300mm×400mmサイズの鋳片を得た。 Then, the process with a slag metal reaction was performed in VAD (Vacuum Arc Degassing), and the molten steel composition and molten steel temperature were adjusted. At this time, with the intention of promoting deoxidation and desulfurization, the solvent was adjusted so that CaO, CaF 2 , Al 2 O 3 were the main constituents and the CaO / Al 2 O 3 ratio was about 3. Was added. In VAD, it was processed for about 40 minutes, during which the molten steel temperature was changed from about 1550 ° C to 1580 ° C. Further, degassing and inclusion removal were performed with an RH (circulating vacuum degassing apparatus). The treatment time with RH was approximately 40 minutes, and the treatment of circulating the molten steel in a state where the degree of vacuum was the lowest was performed for 25 minutes to 30 minutes. At this time, the molten steel temperature changed from approximately 1520 ° C to 1550 ° C. Then, it cast by the continuous casting method and obtained the slab of 300 mm x 400 mm size.

バブリング工程、スラグ精錬工程、環流工程の末期で採取した溶鋼サンプル、並びに、得られた鋳片から分析用のブロックサンプルおよび切粉を採取し、化学分析に供した。また、鋳片の1/2W、1/4T部(Wは幅、Tは厚さ方向を示す。)から介在物観察用のミクロサンプルを切り出した。介在物観察用のミクロサンプルは樹脂埋めした後に鏡面研磨し、サンプル中の酸化物を走査電子顕微鏡で観察し、酸化物組成を調査した。   A molten steel sample collected at the end of the bubbling process, slag refining process, and recirculation process, and a block sample and chips for analysis were collected from the obtained slab, and subjected to chemical analysis. Further, a micro sample for observing inclusions was cut out from the ½ W and ¼ T parts (W is the width and T is the thickness direction) of the slab. The inclusion observation micro sample was filled with resin and then mirror polished, and the oxide in the sample was observed with a scanning electron microscope to investigate the oxide composition.

この時、走査型電子顕微鏡に付属するエネルギー分散型X線解析装置で測定した時、一つのサンプル中に存在する、円相当径で1.0μm以上10μm以下の介在物において、CaO濃度が質量%で20%以上含まれている酸化物個数を、観察した全酸化物個数で除すことで、鋳片サンプルの、CaOが含まれる酸化物の割合(%)を算出した。   At this time, when measured with an energy dispersive X-ray analyzer attached to the scanning electron microscope, the CaO concentration is mass% in inclusions present in one sample with an equivalent circle diameter of 1.0 μm to 10 μm. The ratio (%) of the oxide containing CaO in the slab sample was calculated by dividing the number of oxides contained by 20% or more by the total number of oxides observed.

得られた鋳片は、1200℃の均熱炉で保持した後、1020℃から1100℃の温度域で分解圧延し、160mm×160mmの鋼片とした。この鋼片を1050℃に加熱した後、800℃から930℃の温度域で棒鋼圧延して、直径70mmの棒鋼を得た。この時、全圧下比が15以上、1000℃以上の温度域での圧下比が4以上になるように圧下を加えた。この直径70mmの棒鋼に対して、球状化焼鈍処理(780℃で6時間保持した後、炉冷)を適用し、その後、長手方向が素形材の厚みとなるようにスライスして直径60mm、厚さ5.5mmの素形材を採取した。この素形材を830℃で30分加熱した後、油焼き入れし、さらに180℃で1時間加熱した後、大気中で放冷することで焼き戻しした。この素計材の表面をラッピング加工して転動疲労試験片を作成し、転動疲労試験に供した。   The obtained slab was held in a soaking furnace at 1200 ° C. and then cracked and rolled at a temperature range of 1020 ° C. to 1100 ° C. to obtain a steel slab of 160 mm × 160 mm. The steel slab was heated to 1050 ° C. and then rolled in a temperature range of 800 ° C. to 930 ° C. to obtain a steel bar having a diameter of 70 mm. At this time, the reduction was applied so that the total reduction ratio was 15 or more and the reduction ratio in the temperature range of 1000 ° C. or more was 4 or more. A spheroidizing annealing process (furnace cooling after holding at 780 ° C. for 6 hours) is applied to the steel bar having a diameter of 70 mm, and then sliced so that the longitudinal direction becomes the thickness of the shaped material, and the diameter is 60 mm. A shaped material having a thickness of 5.5 mm was collected. This shaped material was heated at 830 ° C. for 30 minutes, then quenched with oil, further heated at 180 ° C. for 1 hour, and then tempered by being allowed to cool in the air. A rolling fatigue test piece was created by lapping the surface of this raw material and subjected to a rolling fatigue test.

転動疲労試験条件を表2に示す。転動疲労試験はスラスト型の転動疲労試験機を用い、繰り返し速度1800cpm(cycle per minute)、最大接触面圧5230MPaの条件とした。転動疲労試験結果は、ワイブル分布確率紙上にプロットし、10%破損確率を示すL10寿命を転動疲労寿命として評価した。   Table 2 shows the rolling fatigue test conditions. The rolling fatigue test was performed using a thrust type rolling fatigue tester under conditions of a repetition rate of 1800 cpm (cycle per minute) and a maximum contact surface pressure of 5230 MPa. The rolling fatigue test results were plotted on the Weibull distribution probability paper, and the L10 life showing 10% failure probability was evaluated as the rolling fatigue life.

本発明と比較例の溶製条件と環流工程におけるC濃度、Al濃度、真空度、酸化物組成の調査結果、および、疲労寿命を表3に示す。
表3に示す値のうち、CaOが20%以上含まれるCaO−Al−MgO系酸化物の個数比率と疲労寿命の関係を図1にグラフで示す。図1にグラフで示すように、本発明によって酸化物組成は軟質なCaO−Al−MgO系に変化し、その個数比率が50%以上の場合は転動疲労寿命が向上していることがわかる。
Table 3 shows the melting conditions and the investigation results of the C concentration, Al concentration, vacuum degree, oxide composition, and fatigue life of the present invention and the comparative example in the reflux process.
Of the values shown in Table 3, the relationship between the number ratio of CaO—Al 2 O 3 —MgO-based oxide containing 20% or more of CaO and the fatigue life is shown in a graph in FIG. As shown in the graph of FIG. 1, according to the present invention, the oxide composition is changed to a soft CaO—Al 2 O 3 —MgO system, and when the number ratio is 50% or more, the rolling fatigue life is improved. I understand that.

表3に示す値のうち、脱硫剤中のCa量が1.0〜2.5kg/tであり、かつ、環流工程での真空度が0.3kPa以下を満たす条件での、環流工程でのAl濃度とC濃度の関係を図2にグラフで示す。図中の白丸印はCaOが20%以上含まれるCaO−Al−MgO系酸化物の割合が50%以上であるものを示し、三角印はCaOが20%以上含まれるCaO−Al−MgO系酸化物の割合が50よりも低かったものを示している。 Among the values shown in Table 3, the amount of Ca in the desulfurizing agent is 1.0 to 2.5 kg / t, and the vacuum level in the reflux step satisfies 0.3 kPa or less. FIG. 2 is a graph showing the relationship between the Al concentration and the C concentration. The white circles in the figure indicate that the ratio of CaO—Al 2 O 3 —MgO-based oxide containing 20% or more of CaO is 50% or more, and the triangles indicate CaO—Al 2 containing 20% or more of CaO. The ratio of the O 3 —MgO-based oxide was lower than 50.

図2のグラフから分かるように、環流工程での溶鋼中Al濃度が0.020〜0.035%、環流工程でのC濃度が0.85〜1.2%の条件で、酸化物の組成制御ができていることが分かる。ここで、例えAl濃度とC濃度が本発明範囲内にあったとしても、真空度が0.3kPa以下である場合、酸化物の組成制御はできていない。また、バブリング工程を経ない、もしくは脱硫剤中のCa量が1.0kg/t未満である場合、酸化物の組成制御はできていない。このことから、酸化物の組成制御には、バブリング工程にて十分なCa源を添加した上で、C脱酸が生じるように溶鋼中Al濃度およびC濃度を調整した上で、真空度を低下させることが必要であることが分かる。   As can be seen from the graph of FIG. 2, the composition of the oxide under conditions where the Al concentration in the molten steel in the reflux process is 0.020 to 0.035% and the C concentration in the reflux process is 0.85 to 1.2%. It can be seen that control is possible. Here, even if the Al concentration and the C concentration are within the range of the present invention, when the degree of vacuum is 0.3 kPa or less, the oxide composition cannot be controlled. Further, when the bubbling process is not performed or the Ca content in the desulfurizing agent is less than 1.0 kg / t, the composition control of the oxide cannot be performed. From this, the oxide composition is controlled by adding a sufficient Ca source in the bubbling process, adjusting the Al concentration and C concentration in the molten steel so that C deoxidation occurs, and reducing the degree of vacuum. It can be seen that it is necessary to

Figure 0005333536
Figure 0005333536

Figure 0005333536
Figure 0005333536

Figure 0005333536
Figure 0005333536

Claims (3)

mass%で、C濃度:0.85〜1.2%、Sol.Al濃度:0.020〜0.035%、Cr濃度:0.50〜2.0%、S濃度:0.0020%以下、Total O濃度:0.0020%以下、Si濃度:0.1〜0.8%、Mn濃度:0.1〜1.5%、P:0.03%以下、Ca:0.0005%以下(0%を含まない)を含有し、残部Feおよび不可避的介在物で構成されるとともに、連続鋳造後の鋳片から切り出したサンプルを鏡面研磨して顕微鏡観察した際に該鏡面研磨面上に存在する円相当径で1.0μm以上10μm以下の非金属介在物を有し、
該非金属介在物を構成する全元素の中でのCa、Al、MgおよびOの占める割合が90atom%以上であるとともに、そのCa濃度が5atom%以上である非金属介在物の全個数のうち、その非金属介在物のCaO濃度が20〜50mass%であるものの個数比率が50%以上であること
を特徴とする高清浄度軸受鋼。
mass%, C concentration: 0.85 to 1.2%, Sol. Al concentration: 0.020-0.035%, Cr concentration: 0.50-2.0%, S concentration: 0.0020% or less, Total O concentration: 0.0020% or less , Si concentration: 0.1 0.8%, Mn concentration: 0.1~1.5%, P: 0.03% or less, Ca: 0.0005% or less (not including 0%) has free and the balance Fe and incidental inclusions together consists of things, samples the mirror polishing to a circle-equivalent diameter 1.0μm or 10μm or less nonmetallic inclusions present in said mirror surface polishing plane upon microscopic observation cut from cast piece after continuous casting Have
Of the total number of nonmetallic inclusions in which the proportion of Ca, Al, Mg and O in all elements constituting the nonmetallic inclusions is 90 atom% or more and the Ca concentration is 5 atom% or more, A high cleanliness bearing steel, wherein the number ratio of the nonmetallic inclusions having a CaO concentration of 20 to 50 mass% is 50% or more.
前記Feの一部に換えて、さらにTi:0.005%〜0.1%、V:0.008%〜0.3%、Mo:0.008%〜1.0%、Nb:0.008%〜0.1%、Ni:0.008%〜2.0%、Cu:1.0%以下、B:0.0050%以下、N:0.020%以下を含有することを特徴とする請求項1に記載の高清浄度軸受鋼 In place of a part of the Fe, Ti: 0.005% to 0.1%, V: 0.008% to 0.3%, Mo: 0.008% to 1.0%, Nb: 0.0. 008% to 0.1%, Ni: 0.008% to 2.0%, Cu: 1.0% or less, B: 0.0050% or less, N: 0.020% or less The high cleanliness bearing steel according to claim 1 . 製鋼炉から取鍋に出鋼した溶鋼に対して、バブリングランスを介して溶鋼中に撹拌ガスと脱硫剤を吹込む工程、スラグ精錬を行う工程、環流型脱ガス装置で取鍋精錬を行う工程を順次行う高清浄度軸受鋼の溶製方法であって、
前記バブリングランスを介して溶鋼中に吹込むCaO系脱硫剤中のCa量が、Ca純分として溶鋼1tあたり1.0〜2.5kgであること、および、
前記環流型脱ガス装置での処理を、溶鋼中のC濃度が0.85〜1.2mass%、sol.Al濃度が0.020〜0.035mass%であって、かつ、真空度が0.3kPa以下の状態で行うこと
を特徴とする請求項1または請求項2に記載の高清浄度軸受鋼の溶製方法。
A process of blowing stirring gas and desulfurizing agent into molten steel through a bubbling lance, a process of slag refining, and a process of refining a ladle with a recirculation type degassing device for the molten steel that has been delivered to the ladle from a steelmaking furnace Is a method for melting high cleanliness bearing steel,
The amount of Ca in the CaO-based desulfurizing agent blown into the molten steel through the bubbling lance is 1.0 to 2.5 kg per 1 ton of molten steel as a pure Ca component , and
The treatment with the recirculation type degassing apparatus was carried out in such a manner that the C concentration in the molten steel was 0.85 to 1.2 mass%, sol. The high cleanliness degree according to claim 1 or 2, wherein the Al concentration is 0.020 to 0.035 mass% and the degree of vacuum is 0.3 kPa or less. Method for melting bearing steel.
JP2011160659A 2011-07-22 2011-07-22 High cleanliness bearing steel and its melting method Active JP5333536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011160659A JP5333536B2 (en) 2011-07-22 2011-07-22 High cleanliness bearing steel and its melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011160659A JP5333536B2 (en) 2011-07-22 2011-07-22 High cleanliness bearing steel and its melting method

Publications (2)

Publication Number Publication Date
JP2013023739A JP2013023739A (en) 2013-02-04
JP5333536B2 true JP5333536B2 (en) 2013-11-06

Family

ID=47782430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011160659A Active JP5333536B2 (en) 2011-07-22 2011-07-22 High cleanliness bearing steel and its melting method

Country Status (1)

Country Link
JP (1) JP5333536B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6068172B2 (en) * 2013-02-05 2017-01-25 株式会社神戸製鋼所 Soft high carbon steel sheet
JP6237343B2 (en) * 2014-02-28 2017-11-29 新日鐵住金株式会社 Melting method of high clean steel
WO2018135344A1 (en) * 2017-01-19 2018-07-26 Jfeスチール株式会社 Desulfurization treatment method for molten steel, and desulfurization agent
CN115026252B (en) * 2022-06-30 2023-09-12 江苏永钢集团有限公司 Inclusion control method of EA1N steel for railway axle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066732B2 (en) * 1988-03-31 1994-01-26 住友金属工業株式会社 Treatment method of high-grade bearing steel by RH method
JP3896709B2 (en) * 1998-10-30 2007-03-22 Jfeスチール株式会社 Method of melting high cleanliness steel
JP2004169147A (en) * 2002-11-21 2004-06-17 Jfe Steel Kk Refining process for clean steel containing extremely low amount of non-metallic inclusion
JP2005154877A (en) * 2003-11-28 2005-06-16 Jfe Steel Kk Method for melting bearing steel
JP4630075B2 (en) * 2005-01-24 2011-02-09 新日本製鐵株式会社 High carbon chromium bearing steel and manufacturing method thereof
JP2008163389A (en) * 2006-12-28 2008-07-17 Jfe Steel Kk Method for producing bearing steel
JP5845784B2 (en) * 2010-11-30 2016-01-20 Jfeスチール株式会社 Bearing material and manufacturing method of bearing material

Also Published As

Publication number Publication date
JP2013023739A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP5262075B2 (en) Method for producing steel for pipes with excellent sour resistance
JP5803824B2 (en) Method of melting carburized bearing steel
JP5803815B2 (en) Method of melting bearing steel
JP2008248323A (en) METHOD FOR MANUFACTURING HIGH Ni-Fe ALLOY STEEL CONTAINING EXTREMELY LOW Si EXTREMELY LOW C AND EXTREMELY LOW S
JP2013234379A (en) Method for melting extra-low phosphor and extra-low sulfur steel
JP5333536B2 (en) High cleanliness bearing steel and its melting method
JP5541310B2 (en) Manufacturing method of highly clean steel
JP2012241229A (en) Method of manufacturing high-fatigue strength steel cast slab
JP5616283B2 (en) Fe-Ni-Cr-Mo alloy and method for producing the same
CN110004271B (en) Production process for controlling B-type inclusions in pipeline steel
JP5137082B2 (en) Steel for machine structure and manufacturing method thereof
JP2008163389A (en) Method for producing bearing steel
JP5590056B2 (en) Manufacturing method of highly clean steel
CN115917014A (en) Method for manufacturing high-cleanliness steel
KR20130014924A (en) Manufacturing method of duplex stainless steel
JP2017145474A (en) Steel making method of low carbon steel
KR101786931B1 (en) Method for refining of molten stainless steel
JP5131827B2 (en) Method for heating molten steel and method for producing rolled steel
JP5433941B2 (en) Melting method of high cleanliness bearing steel
JPH10298631A (en) Method for melting clean steel
JP6269229B2 (en) Melting method of high clean steel
JP5387045B2 (en) Manufacturing method of bearing steel
JP5857888B2 (en) Method of melting steel for induction hardening
JP7311785B2 (en) Melting method of Al-deoxidized steel
JP5241185B2 (en) Steel manufacturing method with excellent rolling fatigue life

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5333536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350