JP2007262435A - Method for manufacturing low carbon sulfur free cutting steel - Google Patents

Method for manufacturing low carbon sulfur free cutting steel Download PDF

Info

Publication number
JP2007262435A
JP2007262435A JP2006085221A JP2006085221A JP2007262435A JP 2007262435 A JP2007262435 A JP 2007262435A JP 2006085221 A JP2006085221 A JP 2006085221A JP 2006085221 A JP2006085221 A JP 2006085221A JP 2007262435 A JP2007262435 A JP 2007262435A
Authority
JP
Japan
Prior art keywords
steel
content
molten steel
ladle
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006085221A
Other languages
Japanese (ja)
Other versions
JP4728155B2 (en
Inventor
Atsuhiko Yoshida
敦彦 吉田
Takeshi Inoue
健 井上
Koichi Sakamoto
浩一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006085221A priority Critical patent/JP4728155B2/en
Publication of JP2007262435A publication Critical patent/JP2007262435A/en
Application granted granted Critical
Publication of JP4728155B2 publication Critical patent/JP4728155B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide low-carbon sulfur free-cutting steel which has superior machinability (finished surface roughness, in particular) despite its Pb-free state and can be manufactured with high productivity by a continuous casting process. <P>SOLUTION: At the time of tapping the low-carbon sulfur free cutting steel from a converter to a ladle and subjecting the steel to molten steel treatment in manufacturing the low-carbon sulfur free cutting steel, ≥70% of the FeMn alloy and FeS alloy to be added to the steel for the purpose of component adjustment are added to the steel during converter tapping and the ladle of ≤0.20% in the Si content and ≤0.30% in the Al content in the molten steel previously received therein or the ladle not subjected to the molten steel treatment at all after the execution of ladling is used, and the Si content in the molten steel after the molten steel treatment is controlled to ≤0.020% and the Al content to ≤0.0015%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、人体に有害であるPbを使用することなく、良好な切削仕上げ面粗さを発揮する低炭素硫黄快削鋼を製造するための有用な方法に関するものである。   The present invention relates to a useful method for producing a low-carbon sulfur free-cutting steel that exhibits good cutting finish surface roughness without using Pb, which is harmful to the human body.

低炭素硫黄快削鋼は、自動車のトランスミッションの油圧部品の他、特に強度をそれほど必要としないネジやプリンターシャフト等の小物部品用鋼として、汎用されている。また、更なる切削仕上げ面粗さ、切屑処理性が要求される場合には、上記低炭素硫黄快削鋼に鉛(Pb)を添加した鉛−硫黄快削鋼が用いられている。   Low-carbon sulfur free-cutting steel is widely used as a steel for small parts such as screws and printer shafts that do not require so much strength, in addition to hydraulic parts for automobile transmissions. Further, when further cutting finish surface roughness and chip disposal are required, lead-sulfur free-cutting steel obtained by adding lead (Pb) to the low-carbon sulfur free-cutting steel is used.

快削鋼に含まれるPbは、被削性改善に極めて有効な元素であるが、人体への有害性が指摘され、また溶製時の鉛のヒュームや切削屑等の処理の点で問題も多く、Pbを添加することなく(Pbフリー)、良好な被削性を発揮することが求められている。   Pb contained in free-cutting steel is an extremely effective element for improving machinability, but it has been pointed out to be harmful to the human body, and there are also problems in the treatment of lead fumes and cutting scraps during melting. In many cases, it is required to exhibit good machinability without adding Pb (Pb-free).

低炭素硫黄快削鋼において、Pbフリーで被削性を改善するために、これまでにも様々な技術が提案されている。例えば特許文献1では、硫化物系介在物の大きさを制御することによって被削性(仕上げ面粗さおよび切屑処理性)を改善した技術が提案されている。また特許文献2には、硫化物系介在物のサイズを制御するには、鋼中酸素を適切に制御することが重要であることが示されている。更に、鋼中の酸化物系介在物を規定することによって、被削性を改善した技術も提案されている(例えば、特許文献3〜5)。   Various techniques have been proposed so far in order to improve machinability with Pb-free in low-carbon sulfur free-cutting steel. For example, Patent Document 1 proposes a technique that improves machinability (finished surface roughness and chip disposal) by controlling the size of sulfide inclusions. Patent Document 2 shows that it is important to appropriately control oxygen in steel in order to control the size of sulfide inclusions. Furthermore, the technique which improved the machinability by prescribing the oxide type inclusion in steel is also proposed (for example, patent documents 3-5).

一方、鋼材の化学成分組成を適切に規定することによって、被削性を改善した技術も提案されている(例えば、特許文献6〜9)。   On the other hand, techniques for improving machinability by appropriately defining the chemical composition of steel materials have also been proposed (for example, Patent Documents 6 to 9).

これまで提案されている技術は、いずれも快削鋼の被削性の向上という観点では有用なものといえるが、特にフォーミング加工における仕上げ面粗さの点で、Pb含有鋼並みの良好な被削性が得られていないのが実情である。   All of the technologies proposed so far are useful from the viewpoint of improving the machinability of free-cutting steel, but in particular in terms of finished surface roughness in forming, the workability is as good as that of Pb-containing steel. The reality is that machinability has not been achieved.

また、Pbフリー鋼に望まれる特性としては、上記のような被削性に加えて、生産性が良好なことも重要である。こうした観点からすれば、連続鋳造方法によって製造が可能であり、表面疵などが発生せず、しかも圧延が容易に実施できることも必要な要件となる。しかしながら、連続鋳造プロセスは鋼材の被削性を良好にする上で不利であるといわれており、連続鋳造プロセスで被削性に優れた快削鋼を生産性良く製造できることも重要な課題である。
特開2003−253390号公報 特開平9−31522号公報 特開平7−173574号公報 特開平9−71838号公報 特開平10−158781号公報 特開2000−319753号公報 特開2001−152281号公報 特開2001−152282号公報 特開2001−152283号公報
In addition to the machinability as described above, it is also important that the productivity is good as a characteristic desired for Pb-free steel. From this point of view, it is also a necessary requirement that it can be manufactured by a continuous casting method, no surface flaws are generated, and that rolling can be easily performed. However, the continuous casting process is said to be disadvantageous for improving the machinability of steel materials, and it is also an important issue to be able to produce free-cutting steel excellent in machinability with a continuous casting process with high productivity. .
JP 2003-253390 A JP-A-9-31522 JP 7-173574 A JP-A-9-71838 Japanese Patent Laid-Open No. 10-158781 JP 2000-319753 A JP 2001-152281 A JP 2001-152282 A JP 2001-152283 A

本発明は上記の様な事情に着目してなされたものであって、その目的は、Pbフリーであっても良好な被削性(特に仕上げ面粗さ)を発揮すると共に、連続鋳造方法によって生産性良く製造することのできる低炭素硫黄快削鋼を製造するための方法を提供することにある。   The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is to exhibit good machinability (particularly finished surface roughness) even when Pb-free, and by a continuous casting method. An object of the present invention is to provide a method for producing a low-carbon sulfur free-cutting steel that can be produced with high productivity.

上記目的を達成することのできた本発明の製造方法とは、低炭素硫黄快削鋼を製造するに当り、転炉から取鍋へ出鋼して溶鋼処理するに際して、成分調整のため添加するFe−Mn合金およびFeS合金の70%以上(質量%の意味、以下同じ)を転炉出鋼時に添加すると共に、前記取鍋は前回受鋼した溶鋼中のSi含有量が0.20%以下およびAl含有量が0.030%以下の取鍋を使用するか、或は取鍋を施工してから溶鋼処理を全く行なっていない取鍋を使用し、溶鋼処理後の溶鋼中のSi含有量を0.0020%以下、Al含有量を0.0015%以下に制御する点に要旨を有するものである。   The production method of the present invention that has been able to achieve the above-mentioned object is to add Fe for adjusting the components when producing low-carbon sulfur free-cutting steel by removing the steel from the converter to the ladle and processing the molten steel. -70% or more of Mn alloy and FeS alloy (meaning of mass%, the same applies hereinafter) is added at the time of steelmaking from the converter, and the ladle has a Si content of 0.20% or less in the molten steel previously received and Use a ladle with an Al content of 0.030% or less, or use a ladle that has not been subjected to any molten steel treatment since the construction of the ladle, and determine the Si content in the molten steel after the molten steel treatment. It has a gist in that it is controlled to 0.0020% or less and the Al content to 0.0015% or less.

本発明によれば、成分調整のため添加するFeMn合金およびFeS合金の添加時期および割合を適切に制御して鋼中のSi含有量およびAl含有量を極力低減することによって、必ずしも溶鋼中のフリー酸素を高めなくても(即ち、高S濃度であっても)、全酸素濃度を高めることができ、微小クラックの生成サイトとなる有用な大型・球状MnSを多数存在させることができて、仕上げ面粗さの良好な低炭素硫黄快削鋼が製造できた。   According to the present invention, the amount of SiMn and Al content in steel is reduced as much as possible by appropriately controlling the addition time and ratio of FeMn alloy and FeS alloy to be added for component adjustment. Even if oxygen is not increased (that is, even if the S concentration is high), the total oxygen concentration can be increased, and a large number of useful large-sized and spherical MnS that can form microcracks can be present. A low-carbon sulfur free-cutting steel with good surface roughness could be produced.

快削鋼の仕上げ面粗さは、構成刃先の生成、大きさ、形状および均一性に大きく依存する。構成刃先とは、工具の刃先に被削材の一部が堆積し、それが事実上工具の一部(切れ刃)として振舞う現象であり、この生成挙動によっては仕上げ面粗さを低下させる。この構成刃先は、或る一定の条件の下でのみ生成するものであるが、通常実施されている切削条件は構成刃先が生成しやすい条件となっている。   The finished surface roughness of free-cutting steel is highly dependent on the generation, size, shape and uniformity of the constituent cutting edges. The component cutting edge is a phenomenon in which a part of the work material is deposited on the cutting edge of the tool, and in effect acts as a part of the tool (cutting edge). Depending on this generation behavior, the finished surface roughness is reduced. This constituent cutting edge is generated only under a certain condition, but the cutting conditions that are usually implemented are conditions that the constituent cutting edge can easily generate.

こうした構成刃先は、この大きさの変動が致命的な欠陥を与えるものとされているのであるが、その一方で工具刃先を保護して工具寿命を向上させる効果もある。従って、構成刃先を完全になくすことは得策とはいえず、構成刃先を安定的に生成させ、その大きさや形状を均一化させることが必要になる。   Such a component cutting edge is supposed to cause a fatal defect due to the change in size, but it also has an effect of protecting the tool cutting edge and improving the tool life. Therefore, it is not a good idea to eliminate the constituent cutting edges completely, and it is necessary to stably generate the constituent cutting edges and make the size and shape uniform.

構成刃先を安定的に生成させ、その大きさや形状を均一化させるためには、切削される部分における一次せん断域・二次せん断域において、微小クラックを多数生成させることが重要となる。こうした微小クラックを多数生成させるためには、クラック生成サイトを多数導入する必要がある。そして、微小クラックの生成サイトとなり得るものとして、MnS系介在物が有用であることは知られている。但し、全てのMnS系介在物が微小クラック生成サイトとして作用するものではなく、大型で球状の(即ち、幅の大きい)MnSが有効に働くことになる。前記の一次せん断域・二次せん断域でMnSが延伸することになるのであるが、延伸されて細くなり過ぎると、その殆どがマトリクスと同様になり、微小クラックの導入サイトとならないことになる。こうしたことから、被削材のMnS系介在物を予め大型・球状に制御しておく必要がある。   In order to stably generate the constituent cutting edges and make the size and shape uniform, it is important to generate a large number of microcracks in the primary shear region and the secondary shear region in the portion to be cut. In order to generate a large number of such microcracks, it is necessary to introduce a large number of crack generation sites. And it is known that a MnS inclusion is useful as a micro crack generation site. However, not all MnS-based inclusions act as microcrack generation sites, and large, spherical (that is, wide) MnS works effectively. MnS is stretched in the primary shear region and the secondary shear region, but when it is stretched and becomes too thin, most of it becomes the same as the matrix and does not become a site for introducing microcracks. For these reasons, it is necessary to control the MnS-based inclusions of the work material to be large and spherical in advance.

ところで、MnS系介在物を大型・球状化するには、一般に鋼中の酸素(全酸素)が影響を及ぼすことが知られており(例えば、前記特許文献2)、鋼中の酸素が多くなるほど、硫化物径が大きくなるとされている。従って、MnS系介在物を大型・球状化するには、鋼中の酸素濃度をある程度増加させる必要がある。また、同時に微小クラック生成サイトとなるMnS系介在物を増加させるためには、従来の快削鋼(例えば、JIS SUM23,SUM24L)よりもMn濃度、S濃度を高める必要がある。しかしながら、Mn濃度やS濃度を高めると、これらは脱酸剤として働くことから、フリー酸素が減少し、全酸素濃度が減少してしまうことになる。即ち、鋼中の全酸素を上げることと、Mn濃度やS濃度を上げることとは、二律背反の関係になっており、これらを両立させることは原理的に困難である。   By the way, it is known that oxygen (total oxygen) in steel generally affects the size and spheroidization of MnS inclusions (for example, Patent Document 2), and the oxygen in steel increases. The sulfide diameter is said to increase. Therefore, in order to increase the size and spheroidization of MnS inclusions, it is necessary to increase the oxygen concentration in the steel to some extent. At the same time, in order to increase MnS inclusions that become microcrack generation sites, it is necessary to increase the Mn concentration and the S concentration as compared with conventional free-cutting steel (for example, JIS SUM23, SUM24L). However, when the Mn concentration and the S concentration are increased, these act as a deoxidizer, so that free oxygen is reduced and the total oxygen concentration is reduced. That is, raising the total oxygen in the steel and raising the Mn concentration and the S concentration are in a trade-off relationship, and it is difficult in principle to achieve both.

本発明者らは、こうした状況の下で、MnS系介在物の大型・球状化するための有効な手段について様々な角度から検討した。その結果、鋼中のSi含有量を0.0020%以下(20ppm以下)、およびAl含有量を0.0015%以下(15ppm以下)に制御し、鋳片の介在物組成をMnO−SiO2―MnS系三元系で規格化したとき(即ち、MnO、SiO2およびMnSの合計で100%としたとき)の平均組成がMnS:60%以下、SiO2:4%以下、MnO:36%以上となるように制御すれば、フリー酸素を高めなくても(即ち、高Mn、高S濃度であっても)、全酸濃度が高められることが判明し、その技術的意義が認められたので先に出願している(特願2005−301552号)。 Under these circumstances, the present inventors examined effective means for making MnS inclusions large and spheroidized from various angles. As a result, the Si content in the steel was controlled to 0.0020% or less (20 ppm or less), and the Al content was controlled to 0.0015% or less (15 ppm or less), and the inclusion composition of the slab was MnO—SiO 2 — The average composition when normalized with the MnS ternary system (that is, when the total of MnO, SiO 2 and MnS is 100%) is MnS: 60% or less, SiO 2 : 4% or less, MnO: 36% or more Since it was found that the total acid concentration can be increased without increasing free oxygen (that is, high Mn, high S concentration), and its technical significance was recognized. The application has been filed earlier (Japanese Patent Application No. 2005-301552).

上記のように、MnS系介在物の大型・球状化によって構成刃先を安定的に生成させることが可能となり、その大きさや形状を均一化させることを見出し、その結果として鋼材のフォーミング加工における仕上げ面粗さが画期的に向上するものとなり、Pb快削鋼並の特性を発揮できたのである。   As described above, it is possible to stably generate the constituent cutting edges by making the MnS inclusions large and spheroidized, and it is found that the size and shape are made uniform, and as a result, the finished surface in the steel forming process The roughness was improved dramatically, and the same characteristics as Pb free-cutting steel could be exhibited.

上記のように、本発明方法で対象とする低炭素硫黄快削鋼は、SiおよびAlの含有量を適切な範囲に制御することが重要になるのであるが、これらの範囲限定理由は以下の通りである。   As described above, the low-carbon sulfur free-cutting steel targeted by the method of the present invention is important to control the contents of Si and Al to an appropriate range. The reasons for limiting these ranges are as follows. Street.

[Si:0.0020%以下(0%を含まない)]
Siは、固溶強化による強度確保に有効な元素であるが、基本的には脱酸剤として作用してSiO2を生成する。そしてこのSiO2によって、介在物組成がMnO−SiO2−MnS系になるのであるが、Siが0.0020%を超えると、この介在物中のSiO2濃度が高くなって、仕上げ面粗さが劣化することになる。こうした観点から、Si含有量は0.0020%以下にする必要があり、好ましくは0.0010%以下にするのが良い。
[Si: 0.0020% or less (excluding 0%)]
Si is an element effective for securing strength by solid solution strengthening, but basically acts as a deoxidizer to generate SiO 2 . The inclusion composition becomes MnO—SiO 2 —MnS based on this SiO 2 , but when Si exceeds 0.0020%, the SiO 2 concentration in the inclusion increases and the finished surface roughness Will deteriorate. From such a viewpoint, the Si content needs to be 0.0020% or less, and preferably 0.0010% or less.

[Al:0.0015%以下(0%を含まない)]
Alは固溶強化による強度の確保および脱酸に有用な元素であるが、強力な脱酸剤として働いて酸化物(Al23)を形成することになる。このAl23によって、介在物がMnO−Al23−MnS系になるのであるが、Al含有量が0.005%を超えると、この介在物中のAl23濃度が高くなり、仕上げ面粗さが悪化することになる。尚、好ましい上限は0.0010%であり、より好ましくは0.0005%以下とするのが良い。
[Al: 0.0015% or less (excluding 0%)]
Al is an element useful for securing the strength by solid solution strengthening and deoxidation, but acts as a strong deoxidizer to form an oxide (Al 2 O 3 ). With this Al 2 O 3 , inclusions become MnO—Al 2 O 3 —MnS, but when the Al content exceeds 0.005%, the concentration of Al 2 O 3 in the inclusions increases. The finished surface roughness will deteriorate. The preferable upper limit is 0.0010%, and more preferably 0.0005% or less.

本発明で対象とする低炭硫黄快削鋼においては、SiおよびAl以外の成分(C、Mn、P、S等)については、通常の低炭硫黄快削鋼(例えばJIS SUM12,SUM22)における化学成分組成であればよいが、好ましい化学成分組成としてはC:0.02〜0.15%、Mn:0.6〜3%、P:0.02〜0.2%、S:0.2〜1%を夫々含有するものが挙げられる。これらの成分(SiおよびAlも含む)の他(残部)は、基本的に鉄からなるものであるが、これら以外にも微量成分を含み得るものである。また、本発明の低炭硫黄快削鋼には、不可避的に不純物(例えば、Cu,Sn,Ni,O,N等)が含まれることになるが、それらは本発明の効果を損なわない程度で許容される。   In the low-carbon sulfur free-cutting steel targeted by the present invention, components other than Si and Al (C, Mn, P, S, etc.) are the same as those in ordinary low-carbon sulfur free-cutting steel (for example, JIS SUM12, SUM22). Although it may be a chemical component composition, preferred chemical component compositions are C: 0.02 to 0.15%, Mn: 0.6 to 3%, P: 0.02 to 0.2%, S: 0.00. What contains 2-1% of each is mentioned. Other than these components (including Si and Al) (remainder) is basically made of iron, but may contain trace components other than these. Further, the low-carbon sulfur free-cutting steel of the present invention inevitably contains impurities (for example, Cu, Sn, Ni, O, N, etc.), but they do not impair the effects of the present invention. Is acceptable.

本発明者らは上記のような低炭硫黄快削を製造するための最適な条件について検討した。その結果、成分調整のため添加するFeMn合金およびFeS合金の添加時期および割合を適切に制御すれば、鋼中のSi含有量およびAl含有量を極力低減することができることを見出し、本発明を完成した。   The present inventors examined the optimum conditions for producing the low-carbon sulfur free-cutting as described above. As a result, it was found that the Si content and Al content in the steel can be reduced as much as possible by appropriately controlling the addition timing and ratio of the FeMn alloy and the FeS alloy to be added for component adjustment, and the present invention was completed. did.

次に、本発明方法の各要件を規定した理由について説明する。低炭素硫黄快削鋼を製造するに当り、転炉から取鍋へ出鋼して溶鋼処理するに際しては成分調整のため様々な合金が添加されることになる。低炭素硫黄快削鋼中のSi含有量およびAl含有量を上記のように制御するには、処理前のそれらの含有量を低い濃度に制限しておくことは当然であるが、上記添加合金中に含まれるSiやAlの含有量も考慮する必要がある。   Next, the reason why each requirement of the method of the present invention is specified will be described. In producing low-carbon sulfur free-cutting steel, various alloys are added to adjust the components when the steel is discharged from the converter to the ladle and processed with molten steel. In order to control the Si content and the Al content in the low-carbon sulfur free-cutting steel as described above, it is natural to limit their contents before treatment to a low concentration. It is also necessary to consider the contents of Si and Al contained therein.

溶鋼処理段階も含めた添加元素については、加炭材(カーボン粉)、FeMn合金(フェロマンガン)、FeP合金(フェロ燐)、FeS(フェロサルファ)、SiMn合金(シリコンマンガン)、および窒素添加源としてのMnN(窒化マンガン)等がある。これらの合金中には、不純物としてのSiやAlが含まれるが、これらの含有量は下記表1に示す通りである。   For additive elements including the molten steel processing stage, carburized material (carbon powder), FeMn alloy (ferromanganese), FeP alloy (ferrophosphorus), FeS (ferrosulfur), SiMn alloy (silicon manganese), and nitrogen addition source MnN (manganese nitride) and the like. These alloys contain Si and Al as impurities, and their contents are as shown in Table 1 below.

Figure 2007262435
Figure 2007262435

本発明方法では、上記した各種添加合金からSiおよびAlが溶鋼中に導入(インプット)されるのを防止することが重要である。上記添加元素のうち、少なくともFeMn合金およびFeS合金は、本発明の低炭素硫黄快削鋼における成分調整のために必要なものである。   In the method of the present invention, it is important to prevent Si and Al from being introduced (input) into the molten steel from the various additive alloys described above. Among the additive elements, at least the FeMn alloy and the FeS alloy are necessary for adjusting the components in the low carbon sulfur free-cutting steel of the present invention.

本発明方法では、低炭素硫黄快削鋼中のSi含有量およびAl含有量を上記のように制御するために、Fe−Mn合金およびFeS合金の必要添加量の70%以上を転炉出鋼時に添加することが必要である。これらの合金は、上記のように不純物としてSiやAlを含有するが、転炉出鋼時の高酸素溶鋼にこれらを添加することによって、SiやAlが酸化され、SiO2やAl23となり、またその後の溶鋼処理時にこれらが浮上分離し、スラグ中に入ることで、鋼中に残留するSiやAlは低減して目標とする濃度となる。また上記の効果を発揮させるためには、転炉出鋼時の溶鋼は高酸素であることが好ましく、そのためには転炉でCを吹き下げ、C濃度を0.04%以下として溶鋼中のフリー酸素(溶存酸素)の高い状況(例えば、フリー酸素濃度:500ppm以上)を作り出しておくことが好ましい。 In the method of the present invention, in order to control the Si content and the Al content in the low-carbon sulfur free-cutting steel as described above, 70% or more of the required addition amount of the Fe-Mn alloy and the FeS alloy is converted into the converter steel. Sometimes it is necessary to add. These alloys contain Si and Al as impurities as described above, but by adding these to the high oxygen molten steel at the time of the steel leaving the converter, Si and Al are oxidized, and SiO 2 and Al 2 O 3 In addition, these float and separate during the subsequent molten steel treatment and enter the slag, so that Si and Al remaining in the steel are reduced to a target concentration. In order to exert the above effect, it is preferable that the molten steel at the time when the steel is discharged from the converter is high oxygen. For that purpose, C is blown down in the converter, and the C concentration is 0.04% or less. It is preferable to create a situation where free oxygen (dissolved oxygen) is high (for example, free oxygen concentration: 500 ppm or more).

成分調整のための合金は、取鍋溶鋼処理時に全量添加されるのが一般的であるが、その一部は転炉出鋼時に添加されることがある。しかしながら、その添加量は、溶鋼処理前の成分粗調整という観点から、必要添加量の60〜70%未満程度であることが一般的である。尚、必要添加量とは、溶鋼成分に対し、脱酸などに使われる分も含めた歩留まりを考慮して計算された値の全量[後記表2に示す(出鋼時投入量+出鋼時以外の投入量)]である。   The alloy for adjusting the components is generally added in the whole amount during the ladle molten steel treatment, but a part of the alloy may be added at the time of steel conversion from the converter. However, the addition amount is generally about 60 to less than 70% of the required addition amount from the viewpoint of rough component adjustment before the molten steel treatment. The required addition amount is the total amount of values calculated in consideration of the yield including the amount used for deoxidation, etc. for the molten steel components [shown in Table 2 below (input amount at steel output + time at steel output) Other than the input amount)].

本発明方法においては、成分調整のために添加するFeMn合金やFeS合金等の必要合計添加量の70%以上を転炉出鋼時に添加するものであるが、本発明方法で成分調整のために添加する合金としては、溶鋼処理時も含めてSiMn合金は採用できない。何故なら、このSiMn合金では、Si含有量が基本的に多くなるので、添加時期およびその量を調整しても溶鋼中のSi含有量を低減することが困難になる。また、MnN合金については、低炭素硫黄快削鋼中にNを含有させるときには、必要によって添加しても良いが、必要添加量の70%以上を転炉出鋼時に添加する必要がある。   In the method of the present invention, 70% or more of the required total addition amount of FeMn alloy, FeS alloy, etc. to be added for component adjustment is added at the time of steel leaving the converter. As an alloy to be added, a SiMn alloy cannot be adopted including during molten steel processing. This is because, in this SiMn alloy, the Si content basically increases, so that it becomes difficult to reduce the Si content in the molten steel even if the addition time and the amount thereof are adjusted. The MnN alloy may be added as necessary when N is contained in the low-carbon sulfur free-cutting steel, but it is necessary to add 70% or more of the required addition amount at the time of steel conversion from the converter.

本発明方法を実施するに際して、溶鋼処理後の溶鋼中のSi含有量およびAl含有量を上記のように制御するには、溶鋼処理する取鍋での溶鋼処理履歴も考慮する必要がある。本発明で使用する取鍋は、前回受鋼した溶鋼中のSi含有量が0.20%以下およびAl含有量が0.030%以下のものであることも重要である。夫々の含有量が夫々の上限よりも多い溶鋼を受鋼した取鍋を使用すると、前回溶鋼処理した溶鋼中の不純物の影響を受け、溶鋼中にこれらがインプットされてしまい、希望する含有量を達成することができなくなる。但し、本発明で用いる取鍋としては、取鍋を施工してから溶鋼処理を全く行なっていない取鍋を使用しても良く、こうした取鍋では溶鋼処理時にSiやAlが溶鋼中にインプットされる恐れもない。   In carrying out the method of the present invention, in order to control the Si content and the Al content in the molten steel after the molten steel treatment as described above, it is necessary to consider the molten steel treatment history in the ladle for the molten steel treatment. It is also important that the ladle used in the present invention has a Si content of 0.20% or less and an Al content of 0.030% or less in the previously received molten steel. If a ladle that has received molten steel whose content is higher than the respective upper limit is used, it will be affected by impurities in the molten steel that was previously processed, and these will be input into the molten steel, and the desired content will be reduced. Can no longer be achieved. However, as a ladle used in the present invention, a ladle that has not been subjected to any molten steel treatment after the ladle has been installed may be used. In such a ladle, Si or Al is input into the molten steel during the molten steel treatment. There is no fear.

本発明方法においては、上記のような処理を実施して溶鋼中のSi、Al含有量を適切に制御すれば良く、この方法は基本的に連続鋳造法に適用することによって、生産性を高めることができる。但し、本発明方法は連続鋳造法に限らず、造塊法にも適用できるものである。   In the method of the present invention, it is only necessary to appropriately control the Si and Al contents in the molten steel by performing the above-described treatment, and this method is basically applied to a continuous casting method to increase productivity. be able to. However, the method of the present invention can be applied not only to the continuous casting method but also to the ingot-making method.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, but is implemented with modifications within a range that can meet the purpose described above and below. Of course, it is also possible and they are all included in the technical scope of the present invention.

100tの転炉および取鍋による溶鋼処理設備を使用して、転炉吹錬終了時の目標C濃度(吹止C量)を0.04%、吹止時の溶存酸素(フリー酸素)濃度を485〜600ppmとして、出鋼時におけるFeMn合金およびFeS合金添加量、取鍋の受鋼方法等について条件を変化させて溶製を行なった。   Using molten steel processing equipment with 100t converter and ladle, the target C concentration (blown C amount) at the end of converter blowing is 0.04%, and dissolved oxygen (free oxygen) concentration at blowing is Melting was carried out at 485 to 600 ppm with varying conditions for the amount of FeMn alloy and FeS alloy added at the time of steel output, the steel receiving method of the ladle, and the like.

吹止時におけるフリー酸素については、フリー酸素プローブ(商品名「HYOP10A−C150」ヘレウスエレクトロナイト社製)を用いて測定し、C濃度については転炉吹錬終了後に炉を傾動させてディスクサンプラーにてサンプリングを行ない、化学分析に供した。   Free oxygen at the time of blowing is measured using a free oxygen probe (trade name “HYOP10A-C150” manufactured by Heraeus Electro Knight Co., Ltd.). Sampling was performed for chemical analysis.

出鋼時における添加合金については、基本的にFeMn合金およびFeS合金であるが、溶鋼処理段階も含めた添加合金の種類を列挙すると、上記の他、加炭材、FeP、および窒素添加源としてのMnNである(Si含有量およびAl含有量については、前記表1参照)。これらの添加合金を適宜含有させ、溶鋼の成分調整を行なった。また、比較鋼においては、更にSiMn合金(シリコンマンガン)をMn源として添加した(試験No.9〜33)が、本発明(試験No.1〜8)ではSiMnはMn源として使用せずに、FeMnを使用している。   The additive alloys at the time of steel production are basically FeMn alloys and FeS alloys, but the types of additive alloys including the molten steel processing stage are enumerated in addition to the above, as carburizing materials, FeP, and nitrogen addition sources. (For the Si content and the Al content, see Table 1 above). These additive alloys were appropriately contained to adjust the components of the molten steel. Further, in the comparative steel, a SiMn alloy (silicon manganese) was further added as a Mn source (Test Nos. 9 to 33), but SiMn was not used as a Mn source in the present invention (Test Nos. 1 to 8). FeMn is used.

取鍋での受鋼方法においては、取鍋受鋼を繰り返し行ない、連続的に生産活動を行なう設備において、その取鍋が前回に受けた溶鋼中のSi含有量およびAl含有量がどの程度のものであるかを測定、記録した。これらの結果を、操業条件と共に、下記表2に示す。   In the ladle receiving method, the ladle receiving steel is repeated, and in the facility that continuously performs production activities, what is the Si content and Al content in the molten steel that the ladle received last time? It was measured and recorded whether it was a thing. These results are shown in Table 2 below together with the operating conditions.

Figure 2007262435
Figure 2007262435

このようにして得られた溶鋼について、溶鋼処理設備にて成分調整・温度調整を施し、その後断面が300mm×430mmのブルーム型連続鋳造機において鋳造を行なった。得られた鋳片について、サンプリングを行い、化学分析を実施し、成分組成を測定した。その結果を、添加合金からインプットされたSi含有量およびAl含有量と共に下記表3に示す。   The molten steel thus obtained was subjected to component adjustment and temperature adjustment in a molten steel processing facility, and then cast in a Bloom continuous casting machine having a cross section of 300 mm × 430 mm. About the obtained slab, it sampled, the chemical analysis was implemented, and the component composition was measured. The results are shown in Table 3 below together with the Si content and Al content input from the additive alloy.

Figure 2007262435
Figure 2007262435

得られた鋳片について、1250℃で1時間加熱後分塊圧延(断面サイズ:155mm×155mm)し、その後25mmφまで圧延、酸洗して、22mmφの磨棒とし、切削試験に供した。このとき、圧延は1000℃で実施し、強制冷却により800℃から500℃までの平均冷却速度を約1.5℃/秒とした。また鋼材温度の測定は放射温度計により行った。   The obtained slab was heated at 1250 ° C. for 1 hour and then subjected to block rolling (cross-sectional size: 155 mm × 155 mm), then rolled to 25 mmφ and pickled to obtain a 22 mmφ polishing rod, which was subjected to a cutting test. At this time, the rolling was performed at 1000 ° C., and the average cooling rate from 800 ° C. to 500 ° C. was set to about 1.5 ° C./second by forced cooling. The steel material temperature was measured with a radiation thermometer.

各鋼材について、切削試験をおこなった。切削試験条件は、下記の通りである。また、切削試験後の仕上げ面の評価基準は下記の通りである。
[切削試験条件]
工具 :高速度工具鋼SKH4A
切削速度:100m/分
送り :0.01mm/rev
切込み :0.5mm
切削油 :塩素系の不水溶性切削油剤
切削長さ:500m
[評価基準]
仕上げ面評価:JIS B 0601(2001)に基づく、最大高さRzによって、表面粗さを評価した。
A cutting test was performed on each steel material. The cutting test conditions are as follows. Moreover, the evaluation criteria of the finished surface after the cutting test are as follows.
[Cutting test conditions]
Tool: High-speed tool steel SKH4A
Cutting speed: 100 m / min Feed: 0.01 mm / rev
Cutting depth: 0.5mm
Cutting oil: Chlorine-based water-insoluble cutting fluid Cutting length: 500 m
[Evaluation criteria]
Finished surface evaluation: The surface roughness was evaluated by the maximum height Rz based on JIS B 0601 (2001).

切削試験結果を、SiおよびAlの溶鋼中最終成分含有量と対比して、下記表4に示す。尚、表4において、その基本的分類は下記の通りである。
[試験No.1〜8]
本発明で規定する要件を満足する発明例
[試験No.9〜14]
「出鋼時におけるFeMn合金およびFeS合金の添加量が70%以上」の要件を満足しない比較例(比較例I:このうち試験No.9,12,14は吹止時のフリー酸素濃度が500ppm未満のもの)
[実験No.15〜21]
「出鋼時におけるFeMn合金およびFeS合金の添加量が70%以上」の要
件は満足するが、「前回受鋼した溶鋼中のAl含有量が0.030%以下であり、Si含有量が0.20%以下でない取鍋」を使用した比較例(比較例II)
[実験No.22〜24]
「出鋼時におけるFeMn合金およびFeS合金の添加量が70%以上」の要
件は満足するが、「前回受鋼した溶鋼中のAl含有量が0.030%以下でなく、Si含有量が0.20%以下でない取鍋」を使用した比較例(比較例III)
[実験No.25〜33]
「出鋼時におけるFeMn合金およびFeS合金の添加量が70%未満」であり、且つ「前回受鋼した溶鋼中のAl含有量が0.030%以下でなく、Si含有量が0.20%以下でない取鍋」を使用した比較例(比較例IV)
The cutting test results are shown in Table 4 below in comparison with the final component content in the molten steel of Si and Al. In Table 4, the basic classification is as follows.
[Test No. 1-8]
Invention examples satisfying the requirements specified in the present invention [Test No. 9-14]
Comparative example that does not satisfy the requirement of “addition amount of FeMn alloy and FeS alloy at 70% or more when steel is released” (Comparative Example I: Test Nos. 9, 12, and 14 have a free oxygen concentration of 500 ppm at the time of blowing) Less than)
[Experiment No. 15-21]
Although the requirement “addition amount of FeMn alloy and FeS alloy at the time of steel production is 70% or more” is satisfied, “the Al content in the molten steel received last time is 0.030% or less and the Si content is 0%. Comparative Example (Comparative Example II) using ". Ladle not less than 20%"
[Experiment No. 22-24]
Although the requirement “addition amount of FeMn alloy and FeS alloy at the time of steel production is 70% or more” is satisfied, “Al content in molten steel received last time is not 0.030% or less, and Si content is 0 .. Comparative Example (Comparative Example III) using a ladle not less than 20%
[Experiment No. 25-33]
“The amount of FeMn alloy and FeS alloy added at the time of steel production is less than 70%”, and “the Al content in the molten steel received last time is not 0.030% or less, and the Si content is 0.20%. Comparative example using "Ladle not below" (Comparative Example IV)

Figure 2007262435
Figure 2007262435

これらの結果から明らかなように、本発明で規定する要件を満足するもの〈試験No.1〜8〉では、切削仕上げ面粗さ(最大高さRz)が微細になっており、良好な被削性が発揮できていることが分かる。   As is apparent from these results, those satisfying the requirements defined in the present invention <Test No. 1-8> shows that the finished surface roughness (maximum height Rz) is fine, and good machinability can be exhibited.

これに対して、本発明で規定する要件のいずれかを欠くもの(試験No.9〜33では、いずれかの特性が劣化していることが分かる。   On the other hand, one lacking any of the requirements defined in the present invention (in Test Nos. 9 to 33, it can be seen that any of the characteristics is degraded.

また、上記結果に基づき、出鋼時FeMn添加率と溶鋼中Al含有量の関係を図1に、出鋼時FeMn添加率と溶鋼中Si含有量の関係を図2に、出鋼時FeS添加率と溶鋼中Al含有量の関係を図3に、出鋼時FeS添加率と溶鋼中Si含有量の関係を図4に、前回受鋼溶鋼中Si含有量と溶鋼中最終成分Si含有量の関係を図5に、前回受鋼溶鋼中Al含有量と溶鋼中最終成分Al含有量の関係を図6に、溶鋼中最終成分Si含有量と切削仕上げ面粗さ(最大高さRz)の関係を図7に、溶鋼中最終成分Al含有量と切削仕上げ面粗さ(最大高さRz)の関係を図8に、吹止時のフリー酸濃度と切削仕上げ面粗さ(最大高さRz)の関係(試験No.1〜3および試験No.9,12,14)を図9に夫々示す。   Also, based on the above results, the relationship between the FeMn addition rate during steel output and the Al content in the molten steel is shown in FIG. 1, the relationship between the FeMn addition rate during steel output and the Si content in the molten steel is shown in FIG. Fig. 3 shows the relationship between the Al content in molten steel and the Al content in molten steel, Fig. 4 shows the relationship between the FeS addition rate during steelmaking and the Si content in molten steel, and the relationship between the previous Si content in the molten steel and the final component Si content in the molten steel. Fig. 5 shows the relationship between the previous Al content in the molten steel and the final component Al content in the molten steel. Fig. 6 shows the relationship between the final component Si content in the molten steel and the finished surface roughness (maximum height Rz). Fig. 7 shows the relationship between the final component Al content in the molten steel and the finished surface roughness (maximum height Rz). Fig. 8 shows the free acid concentration at the time of blowing and the finished surface roughness (maximum height Rz). 9 (Test Nos. 1 to 3 and Test Nos. 9, 12, and 14) are shown in FIG.

出鋼時FeMn添加率と溶鋼中Al含有量の関係を示すグラフである。It is a graph which shows the relationship between the FeMn addition rate at the time of steel extraction, and Al content in molten steel. 出鋼時FeMn添加率と溶鋼中Si含有量の関係を示すグラフである。It is a graph which shows the relationship between the FeMn addition rate at the time of steel extraction, and Si content in molten steel. 出鋼時FeS添加率と溶鋼中Al含有量の関係を示すグラフである。It is a graph which shows the relationship between the FeS addition rate at the time of steel extraction, and Al content in molten steel. 出鋼時FeS添加率と溶鋼中Si含有量の関係を示すグラフである。It is a graph which shows the relationship between the FeS addition rate at the time of steel extraction, and Si content in molten steel. 前回受鋼溶鋼中Si含有量と溶鋼中最終成分Si含有量の関係を示すグラフである。It is a graph which shows the relationship between Si content in last time steel receiving molten steel, and final component Si content in molten steel. 前回受鋼溶鋼中Al含有量と溶鋼中最終成分Al含有量の関係を示すグラフである。It is a graph which shows the relationship between Al content in molten steel last time, and final component Al content in molten steel. 溶鋼中最終成分Si含有量と切削仕上げ面粗さ(最大高さRz)の関係を示すグラフである。It is a graph which shows the relationship between final component Si content in molten steel, and a cutting finish surface roughness (maximum height Rz). 溶鋼中最終Al含有量と切削仕上げ面粗さ(最大高さRz)の関係を示すグラフである。It is a graph which shows the relationship between final Al content in molten steel, and a cutting finish surface roughness (maximum height Rz). 吹止時のフリー酸濃度と切削仕上げ面粗さ(最大高さRz)の関係を示すグラフである。It is a graph which shows the relationship between the free acid density | concentration at the time of blowing, and the cutting finish surface roughness (maximum height Rz).

Claims (1)

低炭素硫黄快削鋼を製造するに当り、転炉から取鍋へ出鋼して溶鋼処理するに際して、成分調整のため添加するFeMn合金およびFeS合金の70%以上(質量%の意味、以下同じ)を転炉出鋼時に添加すると共に、前記取鍋は前回受鋼した溶鋼中のSi含有量が0.20%以下およびAl含有量が0.030%以下の取鍋を使用するか、或は取鍋を施工してから溶鋼処理を全く行なっていない取鍋を使用し、溶鋼処理後の溶鋼中のSi含有量を0.0020%以下、Al含有量を0.0015%以下に制御することを特徴とする被削性に優れた低炭素硫黄快削鋼の製造方法。
When manufacturing low-carbon sulfur free-cutting steel, it is 70% or more of FeMn alloy and FeS alloy to be added to adjust the ingredients when the steel is processed from the converter to the ladle and processed into molten steel (meaning by mass%, the same applies hereinafter) ) Is added at the time of converter steelmaking, and the ladle uses a ladle having a Si content of 0.20% or less and an Al content of 0.030% or less in the previously received molten steel, or Uses a ladle that has not been subjected to any molten steel treatment since the ladle was constructed, and controls the Si content in the molten steel after the molten steel treatment to 0.0020% or less and the Al content to 0.0015% or less. A method for producing a low-carbon sulfur free-cutting steel excellent in machinability, characterized by that.
JP2006085221A 2006-03-27 2006-03-27 Manufacturing method of low carbon sulfur free cutting steel Active JP4728155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085221A JP4728155B2 (en) 2006-03-27 2006-03-27 Manufacturing method of low carbon sulfur free cutting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085221A JP4728155B2 (en) 2006-03-27 2006-03-27 Manufacturing method of low carbon sulfur free cutting steel

Publications (2)

Publication Number Publication Date
JP2007262435A true JP2007262435A (en) 2007-10-11
JP4728155B2 JP4728155B2 (en) 2011-07-20

Family

ID=38635702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085221A Active JP4728155B2 (en) 2006-03-27 2006-03-27 Manufacturing method of low carbon sulfur free cutting steel

Country Status (1)

Country Link
JP (1) JP4728155B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103433489A (en) * 2013-09-12 2013-12-11 北京科技大学 Method for obtaining high-density iron-based powder metallurgy part through iron powder sulfuration treatment
CN104694819A (en) * 2015-03-27 2015-06-10 山东钢铁股份有限公司 Production method for low-carbon low-silicon steel
WO2018159617A1 (en) * 2017-02-28 2018-09-07 Jfeスチール株式会社 Wire rod for cutting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191314A (en) * 1984-10-12 1986-05-09 Nippon Kokan Kk <Nkk> Refining method of molten steel by ladle refining furnace
JPH10102119A (en) * 1996-09-26 1998-04-21 Sumitomo Metal Ind Ltd Production of sulfur free-cutting steel resulfurized carbon steel
JP2005023342A (en) * 2003-06-30 2005-01-27 Kobe Steel Ltd Method for manufacturing high-s free cutting steel superior in machinability, and high-s free cutting steel
JP2007107078A (en) * 2005-10-17 2007-04-26 Kobe Steel Ltd Low-carbon sulfur free-cutting steel with excellent machinability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191314A (en) * 1984-10-12 1986-05-09 Nippon Kokan Kk <Nkk> Refining method of molten steel by ladle refining furnace
JPH10102119A (en) * 1996-09-26 1998-04-21 Sumitomo Metal Ind Ltd Production of sulfur free-cutting steel resulfurized carbon steel
JP2005023342A (en) * 2003-06-30 2005-01-27 Kobe Steel Ltd Method for manufacturing high-s free cutting steel superior in machinability, and high-s free cutting steel
JP2007107078A (en) * 2005-10-17 2007-04-26 Kobe Steel Ltd Low-carbon sulfur free-cutting steel with excellent machinability

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103433489A (en) * 2013-09-12 2013-12-11 北京科技大学 Method for obtaining high-density iron-based powder metallurgy part through iron powder sulfuration treatment
CN103433489B (en) * 2013-09-12 2015-05-20 北京科技大学 Method for obtaining high-density iron-based powder metallurgy part through iron powder sulfuration treatment
CN104694819A (en) * 2015-03-27 2015-06-10 山东钢铁股份有限公司 Production method for low-carbon low-silicon steel
WO2018159617A1 (en) * 2017-02-28 2018-09-07 Jfeスチール株式会社 Wire rod for cutting
JP6504330B2 (en) * 2017-02-28 2019-04-24 Jfeスチール株式会社 Wire for cutting
US11427901B2 (en) 2017-02-28 2022-08-30 Jfe Steel Corporation Wire rod for cutting work

Also Published As

Publication number Publication date
JP4728155B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4924422B2 (en) Low carbon sulfur free cutting steel
JP5794397B2 (en) Case-hardened steel with excellent fatigue properties
JP5803824B2 (en) Method of melting carburized bearing steel
US20090038439A1 (en) Process for producing steel for high-carbon steel wire material with excellent drawability and fatique characteristics
JP3294245B2 (en) High carbon steel wire with excellent drawability and fatigue resistance after drawing
JP4041511B2 (en) Low-carbon sulfur free-cutting steel with excellent machinability
JP5845784B2 (en) Bearing material and manufacturing method of bearing material
KR101044176B1 (en) Low-carbon resulfurized free-cutting steel material
JP5092578B2 (en) Low carbon sulfur free cutting steel
JP4728155B2 (en) Manufacturing method of low carbon sulfur free cutting steel
JP2004176176A (en) Steel superior in machinability
JP2003268488A (en) Sulfur-containing free cutting steel
JP2007162119A (en) Low carbon resulfurized free-cutting steel excellent in machinability
JP6114118B2 (en) Method for producing S-containing steel
KR20070085739A (en) Low carbon free-cutting steel
JP2003073776A (en) Steel wire with high fatigue strength for spring, and manufacturing method therefor
JP4544126B2 (en) Manufacturing method of low carbon sulfur free cutting steel
JP2009242910A (en) Steel for machine structure use having excellent machinability and strength anisotropy and component for machine structure
JP2001152279A (en) Free cutting steel
JP4034700B2 (en) Manufacturing method of high S free cutting steel with excellent machinability and high S free cutting steel
JP2004231984A (en) Austenitic sulfur-containing free-cutting stainless steel
JP5241185B2 (en) Steel manufacturing method with excellent rolling fatigue life
JP2006200032A (en) Low-carbon sulfur free-cutting steel
JP2004169054A (en) Steel having excellent machinability
JP2001214239A (en) Steel for machine structural use excellent in partibility of chip and producing method thetrfor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Effective date: 20110308

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20110412

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20110414

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3