JP2006200032A - Low-carbon sulfur free-cutting steel - Google Patents

Low-carbon sulfur free-cutting steel Download PDF

Info

Publication number
JP2006200032A
JP2006200032A JP2005015782A JP2005015782A JP2006200032A JP 2006200032 A JP2006200032 A JP 2006200032A JP 2005015782 A JP2005015782 A JP 2005015782A JP 2005015782 A JP2005015782 A JP 2005015782A JP 2006200032 A JP2006200032 A JP 2006200032A
Authority
JP
Japan
Prior art keywords
steel
cutting
low
free
cutting steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005015782A
Other languages
Japanese (ja)
Inventor
Koichi Sakamoto
浩一 坂本
Atsuhiko Yoshida
敦彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005015782A priority Critical patent/JP2006200032A/en
Publication of JP2006200032A publication Critical patent/JP2006200032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-carbon sulfur free-cutting steel which can reliably acquire machinability and the roughness of a machined surface equal to those of low-carbon lead sulfur free-cutting steel, even though containing no lead. <P>SOLUTION: The low-carbon sulfur free-cutting steel includes fundamental components comprising, by wt.%, 0.02-0.15% C, 0.01% or less Si, 0.6-3.0% Mn, 0.2% or less P, 0.2-1.0% S, 0.005% or less Al and 20-500 ppm O; includes MnS particles having a thickness of 1 μm or larger and being extended in a rolling direction, of which the average thickness is 2.5 μm or larger, the total area is 1.5% or larger of the measured area, and the ratio Mn/S is 3 to 4.5; and includes oxides having sizes of 10 μm or larger in an amount of 30 pieces/g or less among oxides consisting of one or more oxides of Al<SB>2</SB>O<SB>3</SB>, SiO<SB>2</SB>, MgO and MnO; and further includes dissolved N of 0.0060 to 0.0200 wt.%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、切削仕上げ面あらさのよい、鉛を含有しない低炭素硫黄快削鋼に関する。   The present invention relates to a low-carbon sulfur free-cutting steel that does not contain lead and has good surface finish.

低炭素硫黄鋼は、自動車トランスミッションの油圧部品や、とくに強度を必要としないねじやプリンターシャフトなどの小物部品等を、切削加工により製作するための鋼材として多用されている。そして、切削仕上面あらさをよりよくしたい場合は、鉛硫黄快削鋼が使用される。   Low-carbon sulfur steel is widely used as a steel material for manufacturing hydraulic parts of automobile transmissions and small parts such as screws and printer shafts that do not particularly require strength by cutting. And when it is desired to improve the roughness of the cut surface, lead sulfur free cutting steel is used.

しかし、近年、鉛の人体への有害性が指摘され、鋼溶製時の鉛ヒュームや、切削屑処理等の問題が多く、無鉛快削鋼(所謂鉛フリー快削鋼)で品質のよい鋼材の要望がますます高くなっている。   However, in recent years, the harmfulness of lead to the human body has been pointed out, and there are many problems such as lead fume and cutting scrap disposal when melting steel. Lead-free free-cutting steel (so-called lead-free free-cutting steel) is a high-quality steel material. The demand for is getting higher.

このような要求に対して、鉛硫黄快削鋼と同等の被削性を有する無鉛の快削鋼がいくつか開発されている。代表的な発明(特許文献1〜6)を下記する。   In response to such demands, several lead-free free-cutting steels having machinability equivalent to that of lead-sulfur free-cutting steel have been developed. Representative inventions (Patent Documents 1 to 6) will be described below.

これらは、鉛を排除しようとする点では共通するものの、特許文献1〜3の発明は依然として鉛の含有を許容しており、つまり鋼の被削性を追求するのみで、あるいは特許文献2のように溶製上の改良をも考慮するも、切削時の仕上面あらさについてまで配慮されていない。また、特許文献4〜6は、製造時の環境面をよくするために無鉛とした圧延ままの快削鋼であるが、やはり仕上面あらさの改善は残されている。   Although these are common in the point of trying to exclude lead, the inventions of Patent Documents 1 to 3 still allow the inclusion of lead, that is, only pursuing the machinability of steel, or of Patent Document 2 As described above, even though the improvement in melting is taken into consideration, the finished surface roughness at the time of cutting is not considered. Moreover, although patent documents 4-6 are the free-cutting steel as-rolled made into lead-free in order to improve the environmental surface at the time of manufacture, the improvement of a finished surface roughness is still left.

このように、鉛を添加しないで、鉛硫黄快削鋼と同等の被削性および仕上面あらさにすぐれた低炭素硫黄快削鋼はまだ提供されるに至っていない。
特開平7−173574号公報 特開平9−31522号公報 特開2000−319753号公報 特開2001−152281号公報 特開2001−152282号公報 特開2001−152283号公報
Thus, a low-carbon sulfur free-cutting steel excellent in machinability and finished surface roughness equivalent to that of lead-sulfur free-cutting steel without adding lead has not yet been provided.
JP 7-173574 A JP-A-9-31522 JP 2000-319753 A JP 2001-152281 A JP 2001-152282 A JP 2001-152283 A

本発明は、鉛を添加することなく、鉛硫黄低炭素快削鋼と同程度の被削性およびすぐれた仕上面あらさを確保することができる低炭素硫黄快削鋼を提供することを課題とする。   It is an object of the present invention to provide a low-carbon sulfur free-cutting steel that can ensure the same machinability and excellent finish surface roughness as lead-sulfur low-carbon free-cutting steel without adding lead. To do.

本発明は、上記課題を達成するために、重量%で、C:0.02〜0.15%、Si:≦0.01%、Mn:0.6〜3.0%、P:≦0.2%、S:0.2〜1.0%、Al:≦0.005%(好ましくは<0.002%)、およびO:20〜500ppmを基本成分として含有する鋼であって、圧延方向に延伸された厚み1μm以上のMnSの平均厚みが2.5μm以上であるとともに、同MnSの総面積が測定面積の1.5%以上であり、またMn/Sが3〜4.5であり、またAl23、SiO2、MnOおよびMgOの1種および2種以上から成る酸化物のうち、10μm以上の酸化物が30個/g以上であり、さらに固溶Nが重量%で0.0060〜0.0200%であることを特徴とする低炭素硫黄快削鋼である。 In order to achieve the above object, the present invention provides C: 0.02-0.15%, Si: ≦ 0.01%, Mn: 0.6-3.0%, P: ≦ 0 by weight%. .2%, S: 0.2 to 1.0%, Al: ≦ 0.005% (preferably <0.002%), and O: 20 to 500 ppm as a basic component, The average thickness of MnS stretched in the direction of 1 μm or more is 2.5 μm or more, the total area of MnS is 1.5% or more of the measurement area, and Mn / S is 3 to 4.5. In addition, among oxides composed of one or more of Al 2 O 3 , SiO 2 , MnO and MgO, the number of oxides of 10 μm or more is 30 pieces / g or more, and the solid solution N is 0% by weight. It is a low carbon sulfur free-cutting steel characterized by being .0060-0.0200%.

本発明は、低炭素硫黄快削鋼として要求される鋼の基本成分を上記のように所定配合とすることに加えて、MnSの特性およびMn/S比、ならびにAl2O3等酸化物の個数、さらに固溶N量の諸元を相互に所定の数値範囲に規定することにより、単に被削性の確保だけではなしに、仕上面あらさを鉛含有快削鋼と同等程度に確保できることを可能にすることができる。   In addition to the basic composition of steel required as a low carbon sulfur free-cutting steel as described above, the present invention includes the characteristics of MnS and Mn / S ratio, the number of oxides such as Al2O3, By defining the specifications of the solute N amount within a predetermined numerical range, it is possible not only to ensure the machinability but also to ensure the finished surface roughness equivalent to that of lead-containing free-cutting steel. be able to.

本発明は、無鉛の低炭素硫黄快削鋼として以下の基本成分からなる(重量%表示)。   The present invention comprises the following basic components as a lead-free low carbon sulfur free-cutting steel (expressed in% by weight).

C:0.02〜0.15%
Cは、鋼の強度確保および仕上面あらさ向上のために0.02%以上の添加が必要であるが、0.15%を超えると、工具磨耗が増大して被削性を低下し、また鋳造時にCOガスを発生して疵を誘発する。
C: 0.02-0.15%
C needs to be added in an amount of 0.02% or more in order to ensure the strength of the steel and improve the roughness of the finished surface, but if it exceeds 0.15%, the tool wear increases and the machinability decreases. CO gas is generated during casting to induce soot.

Si:0.01%以下
Siは、固溶強化による強度の確保および脱酸元素として必要であるが、脱酸生成物のSiO2系酸化物は工具寿命を低下させるので、0.01%以下とする。
Si: 0.01% or less Si is necessary for securing strength by solid solution strengthening and as a deoxidizing element, but the SiO2 oxide of the deoxidation product decreases the tool life, so 0.01% or less To do.

Mn:0.6〜3.0%
Mnは、焼入性を向上してベイナイト組織の生成を促進し、鋼の被削性を向上するとともに、強度を確保するためにも必要である。さらに、MnSあるいはMnO−MnS複合介在物を形成して被削性を向上する。このために0.6%以上必要であるが、3.0%を超えると強度過剰となって被削性が低下する。
Mn: 0.6 to 3.0%
Mn is necessary for improving the hardenability and promoting the formation of a bainite structure, improving the machinability of the steel, and ensuring the strength. Further, the machinability is improved by forming MnS or MnO-MnS composite inclusions. For this reason, 0.6% or more is necessary, but if it exceeds 3.0%, the strength becomes excessive and the machinability deteriorates.

S:0.2〜1.0%
Sは、鋼中でMnと結合して生成するMnSが切削加工時に応力集中源となり、切り屑の分断を容易にして被削性を向上させる有効元素として、0.2%以上が必要である。しかし、1.0%以上は、鋼の熱間加工性を低下してよくない。
S: 0.2 to 1.0%
S should be 0.2% or more as an effective element that MnS generated by combining with Mn in steel becomes a stress concentration source during cutting and facilitates chip separation to improve machinability. . However, 1.0% or more may not reduce the hot workability of steel.

P:0.2%以下
Pは、後記するNとともに仕上面あらさを向上し、また切り屑中のクラックの伝播を容易にしてその処理性を著しく向上するが、0.2%以上になると、熱間加工性を低下させる。
P: 0.2% or less
P improves the finish surface roughness with N described later, and also facilitates the propagation of cracks in the chips, and remarkably improves its processability. However, when it is 0.2% or more, it decreases the hot workability. .

Al:0.005%以下
Alは、固溶強化による強度の確保および脱酸に有効であるが、脱酸性が強いので、硬質のAl2O3が工具の磨耗を抑制するために、0.005%以下とし、0.002%以下が好ましい。
Al: 0.005% or less Al is effective in securing strength by solid solution strengthening and deoxidation, but since deacidification is strong, hard Al2O3 suppresses tool wear, so 0.005% or less And 0.002% or less is preferable.

O:20〜500ppm
Oは、Mnと結合してMnOを生成し、その上にMnSができて、MnO−MnS複合介在物を形成するが、これらは鋼の圧延時に延伸し難く、比較的球状に近い形状で存在し、切削加工時に応力集中源として作用する。このため、Oは積極的に添加するが、20ppm未満の量ではその効果が小さく、また500ppmを超える添加は、鋼塊にCOガス起因の内部欠陥を生じさせるのでよくない。
O: 20 to 500 ppm
O combines with Mn to form MnO, and MnS is formed on it, forming MnO-MnS composite inclusions, which are difficult to stretch during rolling of steel and exist in a relatively spherical shape. It acts as a stress concentration source during cutting. For this reason, O is positively added, but the effect is small if the amount is less than 20 ppm, and addition exceeding 500 ppm is not good because it causes internal defects due to CO gas in the steel ingot.

固溶N:0.0060〜0.0200%
固溶Nは、構成刃先の生成量、したがって仕上面あらさに影響を与える元素で、0.0060%未満では構成刃先の生成量が多くなって、仕上面あらさが劣化する。また、Nは、鋼組織中の転位上に偏析しやすい性質があり、それが母地を脆化して生成したクラックの伝播を促進し、結果として、切り屑の破断性を増進する。そのために、Nは0.0060%以上を必要とするが、0.0200%を超えると、鋳造時に気泡が発生して鋳塊の内部欠陥および表面疵を誘発しやすくなる。
Solid solution N: 0.0060 to 0.0200%
The solid solution N is an element that affects the generation amount of the constituent cutting edge, and hence the roughness of the finished surface. If it is less than 0.0060%, the generation amount of the constituent cutting edge increases and the finish surface roughness deteriorates. Further, N has a property of being easily segregated on dislocations in the steel structure, which promotes the propagation of cracks generated by embrittlement of the base metal, and as a result, improves the fracture property of the chips. Therefore, N needs to be 0.0060% or more. However, if it exceeds 0.0200%, bubbles are generated during casting, which easily induces internal defects and surface defects in the ingot.

本発明は、圧延ままで鉛添加快削鋼と同等の被削性を有する無鉛の低炭素硫黄快削鋼の提供を目的として、上述の基本成分をベースにした。さらに、本発明は、その目的を保証するために、つぎの4因子、すなわち鋼中のMnS形態(サイズ、形状および個数)、さらにMn/S比、有害酸化物の組成と量、ならびに固溶Nの在り方を明らかにした。   The present invention is based on the above-mentioned basic components for the purpose of providing a lead-free low-carbon sulfur free-cutting steel that has the same machinability as a lead-added free-cutting steel as it is rolled. Further, in order to guarantee the object, the present invention provides the following four factors: MnS form (size, shape and number) in steel, Mn / S ratio, composition and amount of harmful oxide, and solid solution. Clarified how N should be.

まず、MnSは、そのサイズが大きく、アスペクト比の小さい球状、すなわち厚みの大きい形態のものが多いほど被削性そして表面仕上あらさに有利である。本発明では、圧延方向に延伸された厚み1μm以上のMnSの平均厚みが2.5μm以上であると共にMnSの総面積が、測定面積の1.5%以上とすることで、上記の効果を確保する。   First, the larger the size of MnS, the smaller the aspect ratio, the smaller the aspect ratio, that is, the larger the thickness, the more advantageous the machinability and surface finish. In the present invention, the average thickness of MnS having a thickness of 1 μm or more stretched in the rolling direction is 2.5 μm or more, and the total area of MnS is 1.5% or more of the measurement area, thereby ensuring the above effect. To do.

また、上記MnSのサイズは、Mn/S比が小さいほど大きくなるが、一方で熱間圧延性を低下させ、割れや疵を発生する。逆に、Mn/S比を大きくすると、MnSが小さくなって大型球状のMnSが得られ難い。これを両立させるには、Mn/S比を3〜4.5の範囲、よりよいのは3〜4に制御するとよいことが確認できた。   Further, the size of the MnS increases as the Mn / S ratio decreases, but on the other hand, the hot rollability is reduced, and cracks and wrinkles are generated. Conversely, when the Mn / S ratio is increased, MnS decreases and it is difficult to obtain large spherical MnS. In order to make this compatible, it has been confirmed that the Mn / S ratio should be controlled within the range of 3 to 4.5, and more preferably 3 to 4.

つぎに、鋼中の酸化物、すなわちAl23、SiO2、MnO、MgOの1種および2種が多量に存在すると、工具の磨耗を招きやすく、結果的に仕上表面あらさを悪化させる。そして、その大きさが10μm以上になると、工具の寿命によくない影響を与えることが確認できたので、これを30個/g以下に制御して工具寿命を保護し、良好な仕上面あらさを得ることができる。 Next, if a large amount of oxides in steel, that is, Al 2 O 3 , SiO 2 , MnO, and MgO, is present in a large amount, the tool is likely to be worn, resulting in deterioration of the finished surface roughness. And when the size becomes 10 μm or more, it has been confirmed that it has a bad influence on the tool life, so this is controlled to 30 pieces / g or less to protect the tool life, and a good surface finish is achieved. Obtainable.

さらに、4番めの因子として、固溶Nが存在すると、構成刃先が小型化して表面あらさを改善し、この効果は0.0060〜0.0200%の範囲で確保できる。   Further, when solid solution N is present as the fourth factor, the constituent cutting edge is reduced in size to improve the surface roughness, and this effect can be ensured in the range of 0.0060 to 0.0200%.

以上4因子の作用と効果を明らかにしたが、各因子はそれぞれ単独では所定の効果が発揮できず、これらのすべてを同時に充足させることで、鉛添加快削鋼と同等の被削性および仕上表面あらさならびに製造性が確保できる。   Although the actions and effects of the above four factors have been clarified, each factor cannot exert its intended effect on its own, and by satisfying all of these factors simultaneously, the machinability and finish equivalent to lead-added free-cutting steel are achieved. Surface roughness and manufacturability can be secured.

なお、本発明の無鉛タイプの低炭素硫黄快削鋼は、つぎのように製造することにより容易に得られる。   The lead-free low-carbon sulfur free-cutting steel of the present invention can be easily obtained by manufacturing as follows.

まず、MnSの形態に影響を与えるOを制御するために、転炉でCを吹き下げ0.04%以下としてフリー酸素(溶存酸素)の高い状況を作り出す。そして、この溶鋼を出湯するさいに、通常は取鍋に入らないようにしている過酸化の転炉スラグを積極的に溶鋼に入れるか、あるいは外部からMnO2やスケールを添加する。また、このときに、必要なFe−Mn、Fe−P、Fe−S等の合金材を添加する。   First, in order to control O which affects the form of MnS, C is blown down in the converter and 0.04% or less is created to create a situation where free oxygen (dissolved oxygen) is high. When the molten steel is discharged, a peroxidized converter slag, which is normally prevented from entering the ladle, is actively added to the molten steel, or MnO 2 and scale are added from the outside. At this time, necessary alloy materials such as Fe—Mn, Fe—P, and Fe—S are added.

その後、溶鋼処理工程において、上部に、FetO、MnO、MnS濃度の高いスラグを形成させた状態で加熱および成分調整を行い、そして連続鋳造あるいは造塊により鋳片を製造する。このように、上部に過酸化かつMnS濃度の高いスラグを形成させることにより、MnおよびSの歩留りが向上し、必要以上にMn、S源を供給しないため、短時間で成分調製ができることもあいまって、フリー酸素が高く維持できる。なお、フリー酸素が高いとCOガスが発生し、また高めたNからN2ガスが発生することも重なって、ブローホールが生成し、凝固界面にとらわれて疵になるおそれがある。このような場合は、連続鋳造鋳型における鋳型内電磁撹拌の強度を上げ、ブローホールが凝固界面にとらわれることなく、上方へ抜け出るような鋳造条件で操業する。この操作により、フリー酸素および窒素の増量ならびにブローホール抑制の両立をはかることができる。   Thereafter, in the molten steel treatment step, heating and component adjustment are performed in a state where a slag having a high FetO, MnO, and MnS concentration is formed on the upper portion, and a slab is manufactured by continuous casting or ingot forming. In this way, by forming slag with high oxidation and MnS concentration at the top, the yield of Mn and S is improved, and Mn and S sources are not supplied more than necessary, so that it is possible to prepare components in a short time. Free oxygen can be maintained high. In addition, when free oxygen is high, CO gas is generated and N2 gas is also generated from the increased N, so that blowholes are generated and may be trapped by the solidification interface and become wrinkled. In such a case, the strength of the electromagnetic stirring in the mold in the continuous casting mold is increased, and the operation is performed under casting conditions such that the blowhole comes out upward without being caught by the solidification interface. By this operation, both the increase of free oxygen and nitrogen and the suppression of blowholes can be achieved.

なお、使用する上記合金材は、含有するAl、Si、Mg濃度の低い原料を選択することにより、溶湯中のAl23、SiO2、MnO、MgO等の酸化物の低量化調整をはかることができる。また、これら酸化物の量は、上記したフリー酸素量を高めることにより、その個数を調整することができる。 The alloy material to be used should be adjusted to reduce the amount of oxides such as Al 2 O 3 , SiO 2 , MnO, and MgO in the molten metal by selecting raw materials containing low concentrations of Al, Si, and Mg. Can do. The number of these oxides can be adjusted by increasing the amount of free oxygen described above.

(実施例)
3t規模の誘導炉および100tの転炉ならびに取鍋からなる溶鋼処理設備を使用し、本発明鋼および比較鋼の2群を、Si、Mn、S、Al、N等の配合量を変えつつ溶製した。なお、Si、Alについては、添加するMn、Fe−S合金中のSi、Al含有量を変えて、鋼中の各含有量を変化させた。
(Example)
Using a 3t-scale induction furnace, a 100t converter and a ladle processing facility consisting of a ladle, two groups of the steel of the present invention and the comparative steel are melted while changing the compounding amounts of Si, Mn, S, Al, N, etc. Made. In addition, about Si and Al, Mn to add, Si and Al content in a Fe-S alloy were changed, and each content in steel was changed.

各溶鋼を所定の鋳型に鋳造する直前に、フリー酸素プローブ(ヘレウス社製)を用いてフリー酸素を測定した。溶鋼は、断面が430mm×300mmのブルーム連続鋳造機、ブルーム連鋳と同等の冷却速度となるように設計された3t規模の誘導炉(同サイズの鋳鉄製鋳型)を用いて鋳造した。   Immediately before casting each molten steel into a predetermined mold, free oxygen was measured using a free oxygen probe (manufactured by Heraeus). Molten steel was cast using a bloom continuous casting machine having a cross section of 430 mm × 300 mm and a 3 t scale induction furnace (cast iron mold of the same size) designed to have a cooling rate equivalent to that of bloom continuous casting.

各鋳塊の表面近傍の急冷部からサンプリングし、化学分析した。表1に各鋼の分析結果を示す。なお、表中のOtはトータル酸素量を、Ofはフリー酸素量を表している。   Sampling was performed from a quenching portion near the surface of each ingot, and chemical analysis was performed. Table 1 shows the analysis results for each steel. In the table, Ot represents the total oxygen amount, and Of represents the free oxygen amount.

つぎに、各鋳片を分塊圧延したのち、φ25mmまで圧延し、酸洗し、φ22mmの磨棒とし、切削試験に供した。なお、圧延は1000℃で実施し、800℃から、毎秒1.5℃の平均冷却速度で500℃まで強制空冷した。鋼材温度の測定は放射温度計による。   Next, each slab was subjected to ingot rolling, then rolled to φ25 mm, pickled, and used as a grinding rod of φ22 mm and subjected to a cutting test. The rolling was performed at 1000 ° C. and forced air cooling from 800 ° C. to 500 ° C. at an average cooling rate of 1.5 ° C. per second. Steel material temperature is measured with a radiation thermometer.

各試験片の評価方法および条件は以下の通りである。
切削条件(フオーミング加工)
工具:高速度工具鋼SKH4A
切削速度:35m/min
送り:0.01mm/rev
切り込み:0.5mm
切削油:塩素系の非水溶性切削油剤
切削長:500m
仕上面あらさ測定方法
JIS Rzによる評価
MnS形態測定方法
画像解析方法により、圧延方向に延伸されたMnSのうち、厚みが1μm以上のものについて測定した。
酸化物測定方法
φ25mm棒鋼よりサンプルを切り出し、酸溶解法により酸化物系介在物を抽出し、EPMAにより組成および個数を調査し、鋼1gあたりの個数に換算した。なお、酸溶解の前処理として、炭化物生成防止のため、1000℃で溶体化処理を行なった。その後、10gのサンプルを切り出し、試薬級塩酸1:純水3の割合で800ccの溶液を調製し、80℃で5〜6時間でサンプルを
溶解した。その後、孔径10μmのフイルターでろ過し、EPMAでサイズおよび組成を分析した。
固溶N測定方法
固溶Nの量は、不活性ガス融解熱伝導法による全N量と、つぎの方法による化合物型N量との差により求めた。すなわち、10%アセチルアセトン+1%テトラメチルアンモニウムクロライド+メタノール溶液にて電解抽出、1μmフイルターで採取→インドフエノール吸光光度法による。
The evaluation method and conditions of each test piece are as follows.
Cutting conditions (forming)
Tool: High-speed tool steel SKH4A
Cutting speed: 35 m / min
Feed: 0.01mm / rev
Cutting depth: 0.5mm
Cutting oil: Chlorine-based water-insoluble cutting fluid Cutting length: 500 m
Finished Surface Roughness Measurement Method Evaluation by JIS Rz MnS Form Measurement Method The MnS stretched in the rolling direction was measured for those having a thickness of 1 μm or more by the image analysis method.
Oxide Measurement Method A sample was cut out from a φ25 mm steel bar, oxide inclusions were extracted by the acid dissolution method, the composition and number were investigated by EPMA, and converted to the number per 1 g of steel. In addition, as a pretreatment for acid dissolution, solution treatment was performed at 1000 ° C. to prevent the formation of carbides. Thereafter, a 10 g sample was cut out, an 800 cc solution was prepared at a ratio of reagent grade hydrochloric acid 1: pure water 3 and the sample was dissolved at 80 ° C. for 5 to 6 hours. Then, it filtered with the filter of the hole diameter of 10 micrometers, and analyzed the size and composition by EPMA.
Method for measuring solid solution N The amount of solid solution N was determined by the difference between the total N amount by the inert gas melting heat conduction method and the compound type N amount by the following method. That is, electrolytic extraction with 10% acetylacetone + 1% tetramethylammonium chloride + methanol solution, collection with a 1 μm filter → indophenol spectrophotometry.

上記のようにして測定した各試験片の測定値ならびに評価の結果を表2に示す。   Table 2 shows the measurement values and evaluation results of the test pieces measured as described above.

表2からつぎのことが理解される。すなわち、本発明鋼および比較鋼ともに切削加工による疵は生じていないから、快削性に問題がないことは明らかであるが、その仕上面あらさに両群の間で顕著な差があらわれている。そして、表2が示すように、4因子、すなわちMnSの平均厚みと面積率、Mn/S比、有害酸化物の個数そして固溶N量による差異についてみると、一部の因子が本発明の規定する条件範囲内に制御されていても、仕上面あらさが改善されていないことが明瞭である。これらに比し、本発明鋼のすべては、鉛含有タイプの快削鋼について認められるのと同等程度の仕上面あらさである5〜6μmを示している。   The following is understood from Table 2. That is, since there is no flaw due to cutting in both the steel of the present invention and the comparative steel, it is clear that there is no problem in free-cutting properties, but there is a significant difference between the two groups in the finished surface roughness. . And as Table 2 shows, when it sees about 4 factors, ie, the difference by the average thickness and area ratio of MnS, Mn / S ratio, the number of harmful oxides, and the amount of solute N, a part of factors are of this invention. Even if it is controlled within the specified condition range, it is clear that the finished surface roughness is not improved. Compared to these, all of the steels of the present invention exhibit a finished surface roughness of about 5 to 6 μm, which is equivalent to that observed for lead-containing free-cutting steels.

すなわち、500m切削後の仕上面あらさRzが6μm以下の品質を確保するためには、(1)圧延方向に延伸された厚み1μm以上のMnSの平均厚みが2.5μm以上、(2)同MnSの総面積が測定面積の1.5%以上、(3)Mn%/S%<2.7、(4)Al2O3、SiO2、MnO、MgOの1種以上の酸化物のうち、10μm以上のものが30個/g以下、および(5)固溶Nが0.0060〜0.0200%の全条件を同時に満足する本発明鋼のみが、疵がなく、かつ鉛硫黄快削鋼なみの良好な切削仕上面あらさが確実に得られることがわかる。   That is, in order to ensure the quality with a finished surface roughness Rz of 6 μm or less after cutting 500 m, (1) the average thickness of MnS having a thickness of 1 μm or more stretched in the rolling direction is 2.5 μm or more, and (2) the same MnS. (3) Mn% / S% <2.7, (4) One or more oxides of Al2O3, SiO2, MnO, and MgO having a total area of 10% or more. Is less than 30 pieces / g, and (5) only the steel of the present invention which satisfies all the conditions of solute N of 0.0060 to 0.0200% at the same time, has no flaws and is as good as lead sulfur free cutting steel It can be seen that the finished surface roughness can be obtained reliably.

Figure 2006200032
Figure 2006200032

Figure 2006200032
Figure 2006200032

Claims (2)

重量%で、C:0.02〜0.15%、Si:≦0.01%、Mn:0.6〜3.0%、P:≦0.2%、S:0.2〜1.0%、Al:≦0.005%、およびO:20〜500ppmを基本成分として含有する鋼であって、圧延方向に延伸された厚み1μm以上のMnSの平均厚みが2.5μm以上であるとともに、同MnSの総面積が測定面積の1.5%以上であり、またMn/Sが3〜4.5であり、またAl23、SiO2、MnOおよびMgOの1種および2種以上から成る酸化物のうち、10μm以上の酸化物が30個/g以上であり、さらに固溶Nが重量%で0.0060〜0.0200%であることを特徴とする低炭素硫黄快削鋼。 C: 0.02-0.15%, Si: ≦ 0.01%, Mn: 0.6-3.0%, P: ≦ 0.2%, S: 0.2-1. A steel containing 0%, Al: ≦ 0.005%, and O: 20 to 500 ppm as basic components, and the average thickness of MnS having a thickness of 1 μm or more stretched in the rolling direction is 2.5 μm or more. The total area of MnS is 1.5% or more of the measurement area, Mn / S is 3 to 4.5, and one or more of Al 2 O 3 , SiO 2 , MnO and MgO. A low carbon sulfur free cutting steel characterized in that the number of oxides of 10 μm or more is 30 pieces / g or more and the solid solution N is 0.0060 to 0.0200% by weight. . 請求項1の低炭素硫黄快削鋼であって、Al:<0.002%であることを特徴とする低炭素硫黄快削鋼。















The low-carbon sulfur free-cutting steel according to claim 1, wherein Al: <0.002%.















JP2005015782A 2005-01-24 2005-01-24 Low-carbon sulfur free-cutting steel Pending JP2006200032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005015782A JP2006200032A (en) 2005-01-24 2005-01-24 Low-carbon sulfur free-cutting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005015782A JP2006200032A (en) 2005-01-24 2005-01-24 Low-carbon sulfur free-cutting steel

Publications (1)

Publication Number Publication Date
JP2006200032A true JP2006200032A (en) 2006-08-03

Family

ID=36958289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005015782A Pending JP2006200032A (en) 2005-01-24 2005-01-24 Low-carbon sulfur free-cutting steel

Country Status (1)

Country Link
JP (1) JP2006200032A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046198A1 (en) * 2005-10-17 2007-04-26 Kabushiki Kaisha Kobe Seiko Sho Low-carbon sulfur-containing free-cutting steel with excellent cuttability
CN113546966A (en) * 2021-08-12 2021-10-26 广东韶钢松山股份有限公司 Method for reducing pits on surface of chalcogenide free-cutting steel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173574A (en) * 1993-12-21 1995-07-11 Nippon Steel Corp Low carbon sulfur-based free cutting steel excellent in machinability
JPH0931522A (en) * 1995-07-21 1997-02-04 Daido Steel Co Ltd Production of low carbon/sulfur base free cutting steel
JP2000319753A (en) * 1999-04-30 2000-11-21 Daido Steel Co Ltd Low carbon sulfur base free-cutting steel
JP2000336454A (en) * 1999-05-25 2000-12-05 Pohang Iron & Steel Co Ltd BISMUTH (Bi)-SULFUR (S) FREE-CUTTING STEEL EXCELLENT IN HIGH TEMPERATURE DUCTILITY AND ITS PRODUCTION
JP2001329335A (en) * 2000-05-16 2001-11-27 Kobe Steel Ltd Low carbon sulfur based bn free cutting steel excellent in hot ductility
JP2003253390A (en) * 2002-03-07 2003-09-10 Kobe Steel Ltd Wire rod of low-carbon sulfur-based free cutting steel, and manufacturing method therefor
JP2003268488A (en) * 2002-03-12 2003-09-25 Mitsubishi Steel Mfg Co Ltd Sulfur-containing free cutting steel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173574A (en) * 1993-12-21 1995-07-11 Nippon Steel Corp Low carbon sulfur-based free cutting steel excellent in machinability
JPH0931522A (en) * 1995-07-21 1997-02-04 Daido Steel Co Ltd Production of low carbon/sulfur base free cutting steel
JP2000319753A (en) * 1999-04-30 2000-11-21 Daido Steel Co Ltd Low carbon sulfur base free-cutting steel
JP2000336454A (en) * 1999-05-25 2000-12-05 Pohang Iron & Steel Co Ltd BISMUTH (Bi)-SULFUR (S) FREE-CUTTING STEEL EXCELLENT IN HIGH TEMPERATURE DUCTILITY AND ITS PRODUCTION
JP2001329335A (en) * 2000-05-16 2001-11-27 Kobe Steel Ltd Low carbon sulfur based bn free cutting steel excellent in hot ductility
JP2003253390A (en) * 2002-03-07 2003-09-10 Kobe Steel Ltd Wire rod of low-carbon sulfur-based free cutting steel, and manufacturing method therefor
JP2003268488A (en) * 2002-03-12 2003-09-25 Mitsubishi Steel Mfg Co Ltd Sulfur-containing free cutting steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046198A1 (en) * 2005-10-17 2007-04-26 Kabushiki Kaisha Kobe Seiko Sho Low-carbon sulfur-containing free-cutting steel with excellent cuttability
US8052925B2 (en) 2005-10-17 2011-11-08 Kobe Steel, Ltd. Low carbon resulfurized free-machining steel having high machinability
CN113546966A (en) * 2021-08-12 2021-10-26 广东韶钢松山股份有限公司 Method for reducing pits on surface of chalcogenide free-cutting steel
CN113546966B (en) * 2021-08-12 2023-08-01 广东韶钢松山股份有限公司 Method for reducing pits on surface of chalcogenide free-cutting steel

Similar Documents

Publication Publication Date Title
JP5266686B2 (en) Bearing steel and its manufacturing method
JP2006336092A (en) Steel for forging having excellent hydrogen crack resistance, and crankshaft
JP2006206967A (en) Method for continuously casting free-cutting steel for machine structure
JP2007063589A (en) Steel bar or wire rod
JP4900127B2 (en) Induction hardening steel and manufacturing method thereof
JP6999475B2 (en) Highly Si-containing austenitic stainless steel with excellent manufacturability
JP4041511B2 (en) Low-carbon sulfur free-cutting steel with excellent machinability
JP2010070812A (en) Free-cutting austenitic stainless steel wire rod excellent in cold forgeability, and manufacturing method therefor
JP7408347B2 (en) High Ni alloy and method for producing high Ni alloy
JP4876638B2 (en) Low carbon sulfur free cutting steel
JP5452253B2 (en) Forged steel and crankshaft
JP5092578B2 (en) Low carbon sulfur free cutting steel
JP2007169769A (en) High cleanliness steel having excellent fatigue strength
JP5299169B2 (en) Continuous casting method and continuous cast slab of low alloy steel for corrosion resistant thick plate
JP4203068B2 (en) Low-carbon sulfur free-cutting steel with excellent machinability
JP5137082B2 (en) Steel for machine structure and manufacturing method thereof
JP2004143579A (en) Machine structural steel excellent in scrap treatability and method for producing the same
JP2006200032A (en) Low-carbon sulfur free-cutting steel
JP5474616B2 (en) Ferritic stainless free-cutting steel rod with excellent forgeability
JP4478137B2 (en) Method for producing B-containing low-carbon lead-free free-cutting steel
JP4160103B1 (en) Steel ingot for forging
JP2007146228A (en) Free cutting steel having excellent high temperature ductility
JP4034700B2 (en) Manufacturing method of high S free cutting steel with excellent machinability and high S free cutting steel
JP2006002237A (en) Steel for plastic mold excellent in texturability and machinability
KR101281284B1 (en) Low-carbon lead-free free-cutting steel having excellent machinability and hot workability and method for manufacturing casting strip for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Effective date: 20091104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A521 Written amendment

Effective date: 20091224

Free format text: JAPANESE INTERMEDIATE CODE: A821

A02 Decision of refusal

Effective date: 20101124

Free format text: JAPANESE INTERMEDIATE CODE: A02