JP2006002237A - Steel for plastic mold excellent in texturability and machinability - Google Patents

Steel for plastic mold excellent in texturability and machinability Download PDF

Info

Publication number
JP2006002237A
JP2006002237A JP2004182091A JP2004182091A JP2006002237A JP 2006002237 A JP2006002237 A JP 2006002237A JP 2004182091 A JP2004182091 A JP 2004182091A JP 2004182091 A JP2004182091 A JP 2004182091A JP 2006002237 A JP2006002237 A JP 2006002237A
Authority
JP
Japan
Prior art keywords
less
steel
machinability
ceq
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004182091A
Other languages
Japanese (ja)
Other versions
JP4223442B2 (en
Inventor
Hiroshi Yaguchi
浩 家口
Noriyuki Fujitsuna
宣之 藤綱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004182091A priority Critical patent/JP4223442B2/en
Publication of JP2006002237A publication Critical patent/JP2006002237A/en
Application granted granted Critical
Publication of JP4223442B2 publication Critical patent/JP4223442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel for plastic molds which has both high machinability and high texturability. <P>SOLUTION: The steel comprises, by mass%, over 0.25 to 0.40% C, 0.05 to less than 0.50% Si, over 0.9 to 1.5% Mn, up to 0.01% P, 0.02 to less than 0.08% S, 0.05 to 0.30% Ni, 0.30 to less than 1.35% Cr, 0.02 to less than 0.50% Mo, 0.02 to 0.30% V, 0.02 to 0.10% Zr, and less than 0.035% Al, with the balance being Fe and impurities, and is characterized in that K is up to 0.63, Ceq is 0.72 to 0.85, (wherein K and Ceq are represented by the following formulae), and concerning sulfide inclusions larger than 50 μm<SP>2</SP>in size, the inclusions with an aspect ratio of at most 3.8 exist 2.5 pieces per mm<SP>2</SP>, and the inclusions with an aspect ratio of at least 7.0 exist 4.0 pieces per mm<SP>2</SP>. K=0.01(C%)+0.60(Si%)+0.12(Mn%)+3.5(P%)+4.10(S%)-0.19(Mo%)+0.10(Cr%)-0.10(Ni%). Ceq=(C%)+(Si%)/10+((Mn%)-32/55×(S%))/5+(Ni%)/23+(Cr%)/9+(Mo%)/2+(V%)/2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、良好な被削性を備え、かつシボ加工性に優れたプラスチック金型用鋼に関する。   The present invention relates to a steel for plastic molds that has good machinability and is excellent in texture processing.

プラスチック金型の製作コストにおいて、金型の機械加工費が占める割合が大きいため、加工容易性すなわち被削性が求められる。従来、金型用鋼としては、S55C等の機械構造用炭素鋼やSCM440等の機械構造用合金鋼が用いられてきたが、近年、金型製作コストのより一層の低減が求められてきており、被削性を改善した鋼種が種々提案されている。   Since the manufacturing cost of the plastic mold accounts for a large proportion of the machining cost of the mold, workability, that is, machinability is required. Conventionally, carbon steel for machine structure such as S55C and alloy steel for machine structure such as SCM440 have been used as mold steel, but in recent years, further reduction in mold production cost has been demanded. Various steel types with improved machinability have been proposed.

例えば、特開平8−13088号公報(特許文献1)には、C:0.05〜0.20%の下で適量(0.01〜0.10%)のSを添加し、低Si化することで、溶接熱影響部とその周囲との硬さの差を小さくすることにより被削性の改善やシボむらの発生防止を図った鋼が、また特許第3141735号(特開平9−49067号)公報(特許文献2)には、従来被削性に有害とされてきたSiを0.5〜2.5%と高添加することによって被削性を改善した鋼が、また特開平10−121196号公報(特許文献3)には、Sを0.06〜0.20%と多量に添加するとともに靭性の劣化を防止すべくMn/S比を10〜14に規定した鋼が、また特開2000−303140号公報(特許文献4)には、前記特許文献1の鋼に対してSを0.02〜0.04%に減らす一方、Cを0.20超〜0.30%に増加してパーライト量を増やすと共に焼入性を確保すべくCrを1.30〜1.50%添加した鋼が開示されている。
特開平8−13088号公報 特許第3141735号公報 特開平10−121196号公報 特開2000−303140号公報
For example, in JP-A-8-13088 (Patent Document 1), an appropriate amount (0.01 to 0.10%) of S is added under C: 0.05 to 0.20% to reduce Si. Thus, a steel which has improved the machinability and prevented the occurrence of irregularities by reducing the difference in hardness between the weld heat affected zone and its surroundings is disclosed in Japanese Patent No. 3141735 (Japanese Patent Laid-Open No. 9-49067). No.) gazette (Patent Document 2) discloses a steel whose machinability is improved by adding Si, which has been considered harmful to the machinability, as high as 0.5 to 2.5%. No. -12196 (Patent Document 3) discloses a steel in which S is added in a large amount of 0.06 to 0.20% and the Mn / S ratio is specified to 10 to 14 to prevent deterioration of toughness. In JP 2000-303140 A (Patent Document 4), the steel of Patent Document 1 is S While decreasing to 0.02 to 0.04%, increase C to more than 0.20 to 0.30% to increase the amount of pearlite and add 1.30 to 1.50% Cr to ensure hardenability Steel has been disclosed.
JP-A-8-13088 Japanese Patent No. 3141735 JP-A-10-121196 JP 2000-303140 A

しかしながら、近年、単に被削性を改善するだけでなく、成形品の表面品質の向上や離型促進などのために金型表面に硬度なシボ加工が施される場合が多くなり、プラスチック金型用鋼に対して優れたシボ加工性が要求されるようななってきた。
従来の技術においても、低Si化によってある程度のシボ加工ムラの防止が図れれてきたが、優れた被削性とシボ加工性とが兼備するには至っていない。すなわち、特許文献1の鋼では、C量が少ないため、強度を確保しようとすると種々の合金元素の添加が不可欠となり、これらの合金元素の偏析のために十分なシボ加工性が得られない。また、特許文献2の鋼では、高Si化によって被削性を改善するために、シボ加工性に問題があり、十分なシボ加工性が得られているとは言えない。また、特許文献3の鋼は、S量が多く、大形のMnSが圧鍛方向に展伸され易く、良好なシボ加工性が得られいない。また、特許文献4の鋼では、低Si化により、シボ加工性の向上を図っているものの、焼入性を確保するためにCr等の合金元素添加量が多く、十分なシボ加工性が得られていない。
本発明はかかる問題に鑑みなされたもので、優れた被削性とシボ加工性とを兼備したプラスチック金型用鋼を提供することを目的とする。
However, in recent years, not only is machinability improved, but the surface of the mold is often subjected to hard embossing in order to improve the surface quality of the molded product and promote mold release. There has been a demand for excellent grain-workability for steel.
Even in the conventional technology, the reduction in the unevenness of the embossing process has been achieved to some extent by the reduction in Si, but the excellent machinability and the embossing processability have not yet been combined. That is, in the steel of Patent Document 1, since the amount of C is small, it is indispensable to add various alloy elements to secure the strength, and sufficient embossing workability cannot be obtained for segregation of these alloy elements. Moreover, in steel of patent document 2, in order to improve machinability by high Si formation, there exists a problem in embossing workability, and it cannot be said that sufficient embossing workability is obtained. Further, the steel of Patent Document 3 has a large amount of S, and large MnS is easily stretched in the direction of pressure forging, so that a good texture is not obtained. In addition, although the steel of Patent Document 4 is intended to improve the texture processing by reducing Si, the amount of alloying elements such as Cr is large in order to ensure hardenability, and sufficient texture processing is obtained. It is not done.
This invention is made | formed in view of this problem, and it aims at providing the steel for plastic molds which has the outstanding machinability and the embossing workability.

合金元素量が多くなると、凝固時のミクロ偏析が大きくなり、その結果、鍛造・圧延を行ってもミクロ偏析は完全には消失せず、シボ加工むらが生じ易くなることは従来から報告されていた。もっとも、偏析を助長する元素としては、MnSを生成させるS、P、Si並びに必要以上に添加された場合のCr、Moが知られていた。しかし、本発明者が合金元素の偏折について、詳細に調査したところ、偏析には前記以外の他の元素も影響を及ぼすことと、従来偏析に悪影響を及ぼすと言われていたMoはむしろ偏析を低減してシボ加工性を改善させることを見出した。さらに、被削性を改善するには、大形で球状の硫化物系介在物が所定量以上存在することが重要であり、一方大形であっても展伸された介在物が多くなると、偏析と同様にシボ加工性を低下させることを突き止めた。本発明はかかる知見を基に完成されたものである。   As the amount of alloying elements increases, microsegregation at the time of solidification increases, and as a result, it has been reported that microsegregation does not disappear completely even when forging / rolling is performed, and that uneven embossing tends to occur. It was. However, as elements that promote segregation, S, P, Si for generating MnS, and Cr, Mo when added more than necessary are known. However, when the present inventor conducted a detailed investigation on the segregation of the alloy elements, the other elements other than the above have an effect on the segregation, and Mo, which has been said to have an adverse effect on the segregation, is rather segregated. It was found that wrinkle workability was improved by reducing Furthermore, in order to improve the machinability, it is important that large and spherical sulfide inclusions are present in a predetermined amount or more. On the other hand, even if the inclusions are large, As with segregation, it was found that the textured workability was lowered. The present invention has been completed based on such knowledge.

すなわち、本発明のプラスチック金型用鋼は、mass%で、
C :0.25%超,0.40%以下、
Si:0.05%以上,0.50%未満、
Mn:0.9%超,1.5%以下、
P :0.01%以下、
S :0.02%以上,0.08%未満、
Ni:0.05%以上,0.30%以下、
Cr:0.30%以上,1.35%未満、
Mo:002%以上,0.50%未満、
V :0.02%以上,0.30%以下、
Zr:0.02%以上,0.10%以下、
Al:0.035%未満
を含み、残部がFe及び不可避的不純物からなり、KおよびCeqを下記式で表したとき、K:0.63以下、Ceq:0.72以上,0.85以下を満足し、
サイズが50μm2以上で、アスペクト比が3.8以下の硫化物系介在物Aを2.5個/mm2 以上で、サイズが50μm2以上で、アスペクト比が7.0以上の硫化物系介在物Bを4.0個/mm2 以下としたものである。
K=0.01(C%)+0.60(Si%)+0.12(Mn%)+3.5(P%)
+4.10(S%)−0.19(Mo%)+0.10(Cr%)−0.10(Ni%)
Ceq=(C%)+(Si%)/10+((Mn%)−32/55×(S%))/5
+(Ni%)/23+(Cr%)/9+(Mo%)/2+(V%)/2
That is, the plastic mold steel of the present invention is mass%,
C: more than 0.25%, 0.40% or less,
Si: 0.05% or more, less than 0.50%,
Mn: more than 0.9%, 1.5% or less,
P: 0.01% or less,
S: 0.02% or more, less than 0.08%,
Ni: 0.05% or more, 0.30% or less,
Cr: 0.30% or more, less than 1.35%,
Mo: 002% or more, less than 0.50%,
V: 0.02% or more, 0.30% or less,
Zr: 0.02% or more, 0.10% or less,
Al: less than 0.035%, the balance is Fe and inevitable impurities, and when K and Ceq are expressed by the following formula, K: 0.63 or less, Ceq: 0.72 or more, 0.85 or less Satisfied,
Sulfide type having a size of 50 μm 2 or more and an aspect ratio of 3.8 or less of sulfide inclusions A of 2.5 pieces / mm 2 or more, a size of 50 μm 2 or more and an aspect ratio of 7.0 or more Inclusion B is 4.0 pieces / mm 2 or less.
K = 0.01 (C%) + 0.60 (Si%) + 0.12 (Mn%) + 3.5 (P%)
+ 4.10 (S%) -0.19 (Mo%) +0.10 (Cr%) -0.10 (Ni%)
Ceq = (C%) + (Si%) / 10 + ((Mn%) − 32/55 × (S%)) / 5
+ (Ni%) / 23+ (Cr%) / 9+ (Mo%) / 2+ (V%) / 2

前記プラスチック金型用鋼において、
C :0.25%超,0.35%以下、
S :0.03%以上,0.05%未満、
Ni:0.10%以上,0.20%以下、
Cr:0.50%以上,1.0%未満、
Mo:005%以上,0.25%以下、
V :0.05%以上,0.30%以下、
Al:0.005%未満
K:0.57以下、
Ceq:0.74以上,0.81以下
とすることが好ましく、あるいはさらに硫化物系介在物Aを3.5個/mm2 以上で、硫化物系介在物Bを3.0個/mm2 以下とすることが好ましい。
In the plastic mold steel,
C: more than 0.25%, 0.35% or less,
S: 0.03% or more, less than 0.05%,
Ni: 0.10% or more, 0.20% or less,
Cr: 0.50% or more, less than 1.0%,
Mo: 005% or more, 0.25% or less,
V: 0.05% or more, 0.30% or less,
Al: less than 0.005% K: 0.57 or less,
Ceq: preferably 0.74 or more and 0.81 or less, or more, sulfide inclusions A at 3.5 pieces / mm 2 or more and sulfide inclusions B at 3.0 pieces / mm 2 The following is preferable.

本発明のプラスチック金型用鋼は、所定成分の下、構成成分元素の偏析傾向を定量化したK値を0.63以下、成分の硬さ(強度)上昇傾向を定量化したCeq値を0.72〜0.85に規定し、さらに被削性、シボ加工性を左右する50μm2以上のサイズの硫化物形介在物について、アスペクト比が3.8以下の球状介在物の個数を2.5個/mm2 以上とし、アスペクト比が7.0以上の展伸状介在物の個数を4.0個/mm2 以下としたので、被削性およびシボ加工性とが共に優れる。 The plastic mold steel according to the present invention has a K value obtained by quantifying the segregation tendency of the constituent elements under a predetermined component of 0.63 or less, and a Ceq value obtained by quantifying the increase tendency of the hardness (strength) of the component. The number of spherical inclusions having an aspect ratio of 3.8 or less is specified for sulfide type inclusions having a size of 50 μm 2 or more, which are specified in .72 to 0.85 and further affect the machinability and texture processing. Since the number of stretched inclusions having an aspect ratio of 7.0 or more is 4.0 pieces / mm 2 or less at 5 pieces / mm 2 or more, both the machinability and the texture processing are excellent.

まず、本発明のプラスチック金型用鋼の成分(mass%)限定理由について説明する。
C:0.25%超,0.40%以下
Cは強度確保に必要な元素である。被削性の改善にはC量を低下させることが有効であるが、C量を低下させると、強度が低下し、必要強度を確保するには合金元素の添加量を増大させることが必要となり、シボ加工性が低下する。すなわち、C量が0.25%以下では被削性を損なわない範囲で合金元素を添加しても強度の確保が困難になり、一方0.40%超では被削性が低下する。このため、C量の下限を0.25%(0.25%を含まず。)とし、その上限を0.40%とし、好ましくは0.35%とするのがよい。
First, the reasons for limiting the components (mass%) of the plastic mold steel of the present invention will be described.
C: more than 0.25%, 0.40% or less C is an element necessary for ensuring strength. In order to improve machinability, it is effective to reduce the amount of C. However, if the amount of C is reduced, the strength decreases, and it is necessary to increase the amount of alloy element added to ensure the required strength. As a result, the embossing processability decreases. That is, if the C content is 0.25% or less, it is difficult to ensure the strength even if alloying elements are added within a range that does not impair the machinability, while if it exceeds 0.40%, the machinability decreases. For this reason, the lower limit of the C amount is 0.25% (excluding 0.25%), and the upper limit is 0.40%, preferably 0.35%.

Si:0.05%以上,0.50%未満
Siは強度向上元素として、また脱酸元素として0.05%以上添加することが必要であるが、多すぎると偏析、バンド状組織の生成促進によりシボ加工性が低下する。このため、Si量の下限を0.05%、好ましくは0.10%とし、上限を0.50%(0.50%を含まず。)、好ましくは0.40%以下とする。
Si: 0.05% or more, less than 0.50% Si needs to be added as a strength improving element and 0.05% or more as a deoxidizing element. As a result, the embossing processability decreases. For this reason, the lower limit of the Si content is 0.05%, preferably 0.10%, and the upper limit is 0.50% (not including 0.50%), preferably 0.40% or less.

Mn:0.9%超,1.5%以下
Mnは脱酸と強度確保の観点から重要な元素であり、0.9%以下ではかかる作用が過少であり、一方1.5%超では偏析傾向が著しくなり、バンド組織の生成促進によりシボ加工性が劣化するようになる。このため、Mn量の下限を0.9%(0.9%を含まず。)とし、好ましくは1.0%とするのがよい。一方、その上限を1.5%とし、好ましくは1.4%とするのがよい。
Mn: more than 0.9%, 1.5% or less Mn is an important element from the viewpoint of deoxidation and securing strength, and its action is insufficient at 0.9% or less, while segregation is performed at more than 1.5%. The tendency becomes remarkable, and the embossing process is deteriorated by promoting the formation of the band structure. For this reason, the lower limit of the amount of Mn is 0.9% (not including 0.9%), preferably 1.0%. On the other hand, the upper limit is 1.5%, preferably 1.4%.

P:0.01%以下
Pは不純物元素で、偏析傾向があり、シボ加工性を低下させるので少ないほどよく、本発明では0.01%以下に止める。
P: 0.01% or less P is an impurity element and has a tendency to segregate, so that it is preferable that the amount is as small as possible because it reduces the embossing workability.

S:0.02%以上、0.08%未満
Sは被削性の向上に有効な元素であるが、多すぎるとシボ加工性を害する。このため、S量の下限を0.02%とし、好ましくは0.03%とするのがよく、その上限を0.08%(0.08%を含まず。)とし、好ましくは0.05%とするのがよい。
S: 0.02% or more and less than 0.08% S is an element effective for improving machinability. For this reason, the lower limit of the S amount is 0.02%, preferably 0.03%, and the upper limit is 0.08% (not including 0.08%), preferably 0.05. % Is good.

Ni:0.05%以上,0.30%以下
Mo:0.02%以上,0.50%以下
NiおよびMoはシボ加工性を低下させずに焼入性を向上させる有効な元素であり、Ni0.05%未満、Mo0.20%未満ではかかる作用が過少であり、一方Ni0.30%超では添加効果が飽和し、コスト高を招来し、またMo0.50%以上では被削性が低下するようになる。このため、Niの下限を0.05%とし、好ましくは0.10%とするのがよく、その上限を0.30%とし、好ましくは0.20%とするのがよい。また、Moの下限を0.02%とし、好ましくは0.05%とするのがよく、その上限を0.50%(0.50%を除く。)とし、好ましくは0.25%とするのがよい。
Ni: 0.05% or more, 0.30% or less Mo: 0.02% or more, 0.50% or less Ni and Mo are effective elements that improve the hardenability without deteriorating the texture. When Ni is less than 0.05% and Mo is less than 0.20%, the effect is too small. On the other hand, when Ni exceeds 0.30%, the effect of addition is saturated, resulting in high costs, and when Mo is 0.50% or more, machinability is reduced. To come. Therefore, the lower limit of Ni is 0.05%, preferably 0.10%, and the upper limit is 0.30%, preferably 0.20%. The lower limit of Mo is 0.02%, preferably 0.05%, and the upper limit is 0.50% (excluding 0.50%), preferably 0.25%. It is good.

Cr:0.30%以上,1.35%未満
Crは強度確保の観点から重要な元素であるが、多すぎると偏析傾向が著しくなりシボ加工性が劣化する。このため、Cr量の下限を0.30%とし、好ましくは0.50%とするのがよく、一方その上限を1.35%(1.35%を除く。)とし、好ましくは1.0%(1.0%を除く。)とするのがよい。
Cr: 0.30% or more and less than 1.35% Cr is an important element from the viewpoint of securing strength. However, if it is too much, segregation tendency becomes remarkable and the embossing workability deteriorates. For this reason, the lower limit of the Cr content is 0.30%, preferably 0.50%, while the upper limit is 1.35% (excluding 1.35%), preferably 1.0. % (Excluding 1.0%).

V:0.02%以上,0.30%以下
Vは強度向上に不可欠な元素であるだけでなく、強度向上の割りには被削性の低下が小さい元素である。0.02%未満ではかかる作用が過少であり、一方0.30%超添加しても作用が飽和するようになり、原料コスト高を招来する。このため、V量の下限を0.02%とし、好ましくは0.05%とするのがよく、一方その上限を0.30%とし、好ましくは0.20%とするのがよい。
V: 0.02% or more, 0.30% or less V is not only an element indispensable for improving the strength, but also an element having a small decrease in machinability for the improvement in strength. If it is less than 0.02%, such an action is too small. On the other hand, even if it exceeds 0.30%, the action becomes saturated, resulting in high raw material costs. For this reason, the lower limit of the V amount is 0.02%, preferably 0.05%, while the upper limit is 0.30%, preferably 0.20%.

Zr:0.02%以上,0.10%以下
ZrはMnS系介在物を球状化させる作用があり、これによって被削性を向上させると同時に展伸MnSを減少させることができるので、シボ加工性も向上する。0.02%未満ではかかる作用が過少であり、一方0.10%超では前記作用が飽和し、原料コスト高を招来する。このため、Zr量の下限を0.02%とし、好ましくは0.04%とするのがよく、一方その上限を0.10%とし、好ましくは0.08%とするのがよい。
Zr: 0.02% or more, 0.10% or less Zr has the effect of spheroidizing MnS inclusions, thereby improving the machinability and simultaneously reducing the expanded MnS. Also improves. If it is less than 0.02%, such an action is too small. On the other hand, if it exceeds 0.10%, the action is saturated, resulting in high raw material costs. For this reason, the lower limit of the amount of Zr is 0.02%, preferably 0.04%, while the upper limit is 0.10%, preferably 0.08%.

Al:0.035%未満
Alは脱酸元素として添加されることがあるが、Alの添加により酸化物系介在物が硬質なアルミナ系酸化物になり、被削性が低下する。さらに、MnSの生成に影響を及ぼす展伸を促進させて被削性とシボ加工性の低下を招く。このため、少ないほどよいが、本発明では0.035%未満の添加が許容される。好ましくは0.005%未満に止めるのがよい。
Al: less than 0.035% Al may be added as a deoxidizing element. However, the addition of Al causes the oxide inclusions to become hard alumina oxides, resulting in a decrease in machinability. Furthermore, the extension which affects the production | generation of MnS is accelerated | stimulated and the machinability and the embossing workability fall. For this reason, the smaller the amount, the better, but in the present invention, addition of less than 0.035% is allowed. Preferably it is good to stop at less than 0.005%.

K:0.63以下
K=0.01(C%)+0.60(Si%)+0.12(Mn%)+3.5(P%)
+4.10(S%)−0.19(Mo%)+0.10(Cr%)−0.10(Ni%)
K値は凝固時の合金元素のミクロ偏析への影響を表す尺度であり、この値が0.630超では後述の実施例から明らかなように偏析傾向が顕著になり、シボ加工性が劣化するようになる。このため、K値の上限を0.63とし、好ましくは0.57とするのがよい。なお、上記Kを規定する式は、キルド鋼塊の逆V偏析密度は固溶共存相内残溶鋼に働く平均浮力と相関があるとの知見から得られた式(拝田等:「鉄と鋼」、Vol. 67, 1981, p954-958)を基に、係数を発明者等の実験により修正したものである。
K: 0.63 or less K = 0.01 (C%) + 0.60 (Si%) + 0.12 (Mn%) + 3.5 (P%)
+ 4.10 (S%) -0.19 (Mo%) +0.10 (Cr%) -0.10 (Ni%)
The K value is a scale representing the influence of alloy elements on microsegregation during solidification. When this value exceeds 0.630, the segregation tendency becomes prominent as will be apparent from the examples described later, and the embossing workability deteriorates. It becomes like this. For this reason, the upper limit of the K value is 0.63, preferably 0.57. The equation for defining K is an equation obtained from the knowledge that the reverse V segregation density of the killed steel ingot has a correlation with the average buoyancy acting on the residual molten steel in the coexisting solid solution phase (Hida et al. Based on "Steel", Vol. 67, 1981, p954-958), the coefficient was corrected by experiments by the inventors.

Ceq:0.72以上,0.85以下
Ceq=(C%)+(Si%)/10+((Mn%)−32/55×(S%))/5
+(Ni%)/23+(Cr%)/9+(Mo%)/2+(V%)/2
Ceq値は鋼中の合金元素の硬さへの影響をC量に換算して示したもので、後述の実施例から明らかなように、Ceqが0.720未満と低過ぎる場合、安定して必要な硬さ(Hv190〜210)を満足させることができず、一方0.850超と高過ぎる場合、焼戻し温度を高めても硬さがHv210超となって高過ぎる個所が生成し、被削性、シボ加工性が低下するようになる。このため、Ceqの下限を0.72とし、好ましくは0.74とするのがよく、一方その上限を0.85とし、好ましくは0.81とするのがよい。硬さと強度は相関関係があり、本発明鋼では硬さをHv190〜210とすることにより、必要強度が満足される。なお、前記Ceqの式は当業者によく知られた経験式である。
Ceq: 0.72 or more, 0.85 or less Ceq = (C%) + (Si%) / 10 + ((Mn%) − 32/55 × (S%)) / 5
+ (Ni%) / 23+ (Cr%) / 9+ (Mo%) / 2+ (V%) / 2
The Ceq value shows the influence on the hardness of the alloying element in the steel in terms of the amount of C. As is clear from the examples described later, when the Ceq is too low, less than 0.720, it is stable. If the required hardness (Hv 190 to 210) cannot be satisfied, and if it is too high (over 0.850), even if the tempering temperature is increased, the hardness will be over Hv 210, resulting in a portion that is too high. And wrinkle processability are reduced. For this reason, the lower limit of Ceq should be 0.72, preferably 0.74, while the upper limit should be 0.85, preferably 0.81. Hardness and strength have a correlation, and in the steel of the present invention, the required strength is satisfied by setting the hardness to Hv 190 to 210. The equation of Ceq is an empirical formula well known to those skilled in the art.

本発明鋼の構成成分は上記のとおりであり、残部Feおよび不可避的不純物よりなる。上記成分のほか、被削性、シボ加工性を向上させる元素とし、Cu,Pb,Bi,REM,Nb,Tiを適量(合計で4%以下程度)添加してもよい。また、上記成分では硫化物系介在物の形態制御元素としてZrを挙げたが、他にもCa,Mg,Te,Seなどが考えられる。もっとも、Caについては大形酸化物を生成しやすくなり、シボ加工性や疲労強度を低下させることがあるので注意が必要である。   The constituent components of the steel of the present invention are as described above, and consist of the balance Fe and inevitable impurities. In addition to the above-described components, Cu, Pb, Bi, REM, Nb, and Ti may be added in appropriate amounts (about 4% or less in total) as elements that improve machinability and grain workability. In the above components, Zr is cited as a form control element for sulfide inclusions, but Ca, Mg, Te, Se, etc. are also conceivable. However, it is necessary to be cautious about Ca because it tends to form large oxides and may reduce the texture and fatigue strength.

本発明鋼の組織は、基本的にフェライトおよびパーライトの二相組織であるが、本発明者の実験により、組織中に存在する硫化物系介在物の内、サイズが50μm2以上の大形介在物については、被削性およびシボ加工性への影響が特に大きいことが分かった。 The structure of the steel of the present invention is basically a two-phase structure of ferrite and pearlite. According to experiments by the present inventor, large inclusions having a size of 50 μm 2 or more among sulfide inclusions present in the structure It was found that the effect on the machinability and the embossing workability was particularly great.

被削性の改善には大形で球状の硫化物系介在物が多数存在することが有効であり、本発明では、後述の実施例から明らかなようにアスペクト比が3.8以下の球状硫化物系介在物Aの個数を2.5個/mm2 以上、好ましくは3.5個/mm2 以上とする。一方、大形で展伸された硫化物系介在物が多数存在すると、展伸された部分とその周りの部分との被削性が異なるため、シボ加工性が劣化する。このため、後述の実施例から明らかなようにアスペクト比が7.0以上の球状硫化物系介在物Bの個数を4.0個/mm2 以下、好ましくは3.0個/mm2 以下とする。 In order to improve machinability, it is effective that a large number of large and spherical sulfide inclusions exist. In the present invention, as will be apparent from the examples described later, spherical sulfide having an aspect ratio of 3.8 or less is effective. The number of physical inclusions A is 2.5 pieces / mm 2 or more, preferably 3.5 pieces / mm 2 or more. On the other hand, if there are a large number of large and expanded sulfide inclusions, the machinability of the stretched portion and the surrounding portion will be different, so that the embossing processability is deteriorated. For this reason, as will be apparent from the examples described later, the number of spherical sulfide inclusions B having an aspect ratio of 7.0 or more is 4.0 pieces / mm 2 or less, preferably 3.0 pieces / mm 2 or less. To do.

なお、前記硫化物系介在物とは、MnSに代表されるMn系の硫化物が主体となるが、Zr,Ca,Mg,Te,Seの硫化物も対象となる。また、これらの複合硫化物でもよい。あるいはさらに、その他の元素で硫化物に含有されることが知られているFe,Cr,Ti,Oを含んだものでもよい。   The sulfide inclusions are mainly Mn sulfides represented by MnS, but Zr, Ca, Mg, Te, Se sulfides are also targeted. These composite sulfides may also be used. Or, further, other elements including Fe, Cr, Ti, and O, which are known to be contained in sulfides, may be used.

本発明のプラスチック金型用鋼の製造に際しては、所定成分の鋼を溶製し、その鋳造片に熱間鍛造を施した後、必要に応じて焼準を行った後、硬度をHv190〜210に調整すべく焼き戻しが施される。特に、硫化物系介在物のサイズを制御するには、成分的にはZrの作用が大きいが、製造上は鋳造時の冷却速度の制御や、熱間鍛造の鍛造温度、鍛圧比を制御することが有効である。その他、脱酸元素の制御によってもサイズのコントロールが可能である。
代表的な製造方法は以下の通りである。電気炉において、原料を投入して成分調整を行った後、取鍋精錬と真空処理を行う。取鍋精錬と真空処理の主な目的は、被削性などに有害な酸化物系介在物を低減することにある。その後、鋼塊に鋳造する。鋳造速度はMnSのサイズコントロールに有効であり、大型化には鋳造速度を遅く、例えば15℃/min以下、好ましくは10℃/min以下程度にする。鋳造後、1100℃以上に加熱・保持した後、鍛造加工される。MnSの大形球状化には加熱温度を高めることが有効である。また、加熱にあたっては、鋼塊内部まで十分に温度が上昇する様にすることが必要である。更に、鍛造加工の途中で再加熱することもMnSの大形球状化には有効である。鍛造加工に際しての鍛圧比は、製品の要求仕様によって異なり、内部品質を確保するためには、ある程度以上の鍛圧比が必要であるが、MnSの大形化のためには、必要以上に上昇させないようにすることが望ましい。例えば、2〜4程度の鍛圧比にすること、好ましくは2〜3程度にすることが推奨される。また、逆方向からの鍛造加工を追加することは、内部品質を確保しながらMnSの展伸を抑制して大形球状化を確保する上で有効である。
In producing the steel for plastic molds of the present invention, a steel having a predetermined component is melted, the cast piece is subjected to hot forging, then subjected to normalization as necessary, and the hardness is set to Hv 190 to 210. Tempering is performed to adjust to. In particular, in order to control the size of sulfide inclusions, the action of Zr is large in terms of components, but in production, the cooling rate during casting, the forging temperature of hot forging, and the forging pressure ratio are controlled. It is effective. In addition, the size can be controlled by controlling the deoxidizing element.
A typical manufacturing method is as follows. In an electric furnace, raw materials are charged and the components are adjusted, and then ladle refining and vacuum processing are performed. The main purpose of ladle refining and vacuum treatment is to reduce oxide inclusions harmful to machinability. Thereafter, it is cast into a steel ingot. The casting speed is effective for controlling the size of MnS. For increasing the size, the casting speed is slow, for example, 15 ° C./min or less, preferably about 10 ° C./min or less. After casting, after heating and holding at 1100 ° C. or higher, forging is performed. Increasing the heating temperature is effective for increasing the size of MnS. Moreover, in heating, it is necessary to make the temperature sufficiently rise to the inside of the steel ingot. Furthermore, reheating during the forging process is also effective for making MnS into a large spheroid. The forging ratio at the time of forging varies depending on the required specifications of the product, and in order to ensure the internal quality, a forging pressure ratio of a certain level or more is necessary, but for increasing the size of MnS, it is not increased more than necessary. It is desirable to do so. For example, a forging pressure ratio of about 2 to 4, preferably about 2 to 3 is recommended. In addition, the addition of forging from the opposite direction is effective in ensuring large spheroidization by suppressing the expansion of MnS while ensuring the internal quality.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はかかる実施例によって限定的に解釈されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limitedly interpreted by this Example.

表1に示す成分を実験用の真空誘導加熱炉で溶解し、鋳造後、鋳造時の平均冷却速度を制御して凝固させ、得られた鋳造片を100mm×l00mmの角材に熱間鍛造した。鋳造時の平均冷却速度、熱間鍛造における加熱温度及び平均の鍛圧比を表2に併せて示す。
得られた鍛造片を880℃×2hの焼準を行った後、焼戻しを行った。この際、焼戻し温度T、焼戻し後の冷却速度CRは標準的な範囲(T:580〜640℃、CR:1〜5℃/min )で調整した。
The components shown in Table 1 were melted in an experimental vacuum induction heating furnace, solidified by controlling the average cooling rate at the time of casting, and the obtained cast piece was hot forged into a 100 mm × 100 mm square. Table 2 also shows the average cooling rate during casting, the heating temperature in hot forging, and the average forging pressure ratio.
The obtained forged piece was subjected to normalization at 880 ° C. × 2 h, and then tempered. At this time, the tempering temperature T and the cooling rate CR after tempering were adjusted within a standard range (T: 580 to 640 ° C., CR: 1 to 5 ° C./min).

上記のようにして製造された鋼材を用いて、その表面から25mm深さ部位から組織観察試験片、シボ加工性試験片、切削試験片を採取した。
組織観察は硫化物系介在物のサイズ、形態を観察する目的で画像解析機能を有するEPMAを用いて実施された。1サンプル当りの被顕面積を約120mm2 とし、介在物1個当りの面積、長径と短径を測定し、アスペクト比(長径/短径)を求めた。表2にはサイズが50μm2以上の大径の硫化物で、アスペクト比が3.8以下のものAとアスペクト比が7.0以上のものBの個数を示した。
切削試験は、超硬工具を使用したフライス試験を行い、エ具磨耗量が2mmになる切削長さを工具寿命として評価した。切削条件は、回転数=1050rpm、送り速度=250mm/min 、切り込み=5mm、切削幅=15mmのダウンカットとした。
シボ加工性は、試験片に対して、#2000番までペーパー研磨した後、塩化第2鉄水溶液によってエッチングを施し、触針式の粗さ測定機を用いて表面粗さを測定することにより評価した。測定結果Ra(nm)を表2に併せて示す。
Using the steel material produced as described above, a structure observation test piece, an embossing test piece, and a cutting test piece were collected from a portion 25 mm deep from the surface.
Tissue observation was performed using EPMA having an image analysis function for the purpose of observing the size and form of sulfide inclusions. The exposed area per sample was about 120 mm 2 , the area per inclusion, the major axis and the minor axis were measured, and the aspect ratio (major axis / minor axis) was determined. Table 2 shows the number of large-diameter sulfides having a size of 50 μm 2 or more and having an aspect ratio of 3.8 or less and A having an aspect ratio of 7.0 or more.
In the cutting test, a milling test using a carbide tool was performed, and the cutting length at which the tool wear amount was 2 mm was evaluated as the tool life. The cutting conditions were a down cut with a rotation speed = 1050 rpm, a feed rate = 250 mm / min, a cutting depth = 5 mm, and a cutting width = 15 mm.
Wrinkle processability is evaluated by polishing the test piece to paper # 2000, etching with ferric chloride aqueous solution, and measuring the surface roughness using a stylus type roughness measuring machine. did. The measurement results Ra (nm) are also shown in Table 2.

Figure 2006002237
Figure 2006002237

Figure 2006002237
Figure 2006002237

表1および表2より、本発明にかかる成分、硫化物の個数条件を満足する発明例は、被削性およびシボ加工性が共に優れている。しかし、成分条件を満足しても製造条件が不適当な試料No. 32、34では硫化物の個数条件が満足されず、切削長が13.8m、13.6mであり、被削性はまずまずであったが、シボ加工性が著しく劣化した。
From Tables 1 and 2, the invention examples satisfying the conditions for the number of components and sulfides according to the present invention are excellent in both machinability and texture. However, even if the component conditions are satisfied, Samples Nos. 32 and 34 whose production conditions are inappropriate are not satisfied with the number of sulfides, the cutting lengths are 13.8 m and 13.6 m, and the machinability is reasonable. However, the embossing processability was remarkably deteriorated.

Claims (3)

mass%で、
C :0.25%超,0.40%以下、
Si:0.05%以上,0.50%未満、
Mn:0.9%超,1.5%以下、
P :0.01%以下、
S :0.02%以上,0.08%未満、
Ni:0.05%以上,0.30%以下、
Cr:0.30%以上,1.35%未満、
Mo:002%以上,0.50%未満、
V :0.02%以上,0.30%以下、
Zr:0.02%以上,0.10%以下、
Al:0.035%未満
を含み、残部がFe及び不可避的不純物からなり、KおよびCeqを下記式で表したとき、K:0.63以下、Ceq:0.72以上,0.85以下を満足し、
サイズが50μm2以上で、アスペクト比が3.8以下の硫化物系介在物Aが2.5個/mm2 以上で、サイズが50μm2以上で、アスペクト比が7.0以上の硫化物系介在物Bが4.0個/mm2 以下である、シボ加工性と被削性に優れたプラスチック金型用鋼。
K=0.01(C%)+0.60(Si%)+0.12(Mn%)+3.5(P%)
+4.10(S%)−0.19(Mo%)+0.10(Cr%)−0.10(Ni%)
Ceq=(C%)+(Si%)/10+((Mn%)−32/55×(S%))/5
+(Ni%)/23+(Cr%)/9+(Mo%)/2+(V%)/2
mass%
C: more than 0.25%, 0.40% or less,
Si: 0.05% or more, less than 0.50%,
Mn: more than 0.9%, 1.5% or less,
P: 0.01% or less,
S: 0.02% or more, less than 0.08%,
Ni: 0.05% or more, 0.30% or less,
Cr: 0.30% or more, less than 1.35%,
Mo: 002% or more, less than 0.50%,
V: 0.02% or more, 0.30% or less,
Zr: 0.02% or more, 0.10% or less,
Al: less than 0.035%, the balance is Fe and inevitable impurities, and when K and Ceq are expressed by the following formula, K: 0.63 or less, Ceq: 0.72 or more, 0.85 or less Satisfied,
Sulfide type having a size of 50 μm 2 or more and an aspect ratio of 3.8 or less of sulfide inclusions A of 2.5 pieces / mm 2 or more, a size of 50 μm 2 or more and an aspect ratio of 7.0 or more Steel for plastic molds with inclusions B of 4.0 pieces / mm 2 or less and excellent in texture and machinability.
K = 0.01 (C%) + 0.60 (Si%) + 0.12 (Mn%) + 3.5 (P%)
+ 4.10 (S%) -0.19 (Mo%) +0.10 (Cr%) -0.10 (Ni%)
Ceq = (C%) + (Si%) / 10 + ((Mn%) − 32/55 × (S%)) / 5
+ (Ni%) / 23+ (Cr%) / 9+ (Mo%) / 2+ (V%) / 2
請求項1に記載した成分において、
C :0.25%超,0.35%以下、
S :0.03%以上,0.05%未満、
Ni:0.10%以上,0.20%以下、
Cr:0.50%以上,1.0%未満、
Mo:005%以上,0.25%以下、
V :0.05%以上,0.30%以下、
Al:0.005%未満
であり、
K:0.57以下、
Ceq:0.74以上,0.81以下
を満足する、請求項1に記載したプラスチック金型用鋼。
A component according to claim 1, wherein
C: more than 0.25%, 0.35% or less,
S: 0.03% or more, less than 0.05%,
Ni: 0.10% or more, 0.20% or less,
Cr: 0.50% or more, less than 1.0%,
Mo: 005% or more, 0.25% or less,
V: 0.05% or more, 0.30% or less,
Al: less than 0.005%,
K: 0.57 or less,
The steel for plastic molds according to claim 1, which satisfies Ceq: 0.74 or more and 0.81 or less.
硫化物系介在物Aが3.5個/mm2 以上で、硫化物系介在物Bが3.0個/mm2 以下である、請求項1又は2に記載したプラスチック金型用鋼。
The plastic mold steel according to claim 1 or 2, wherein the sulfide inclusion A is 3.5 pieces / mm 2 or more and the sulfide inclusion B is 3.0 pieces / mm 2 or less.
JP2004182091A 2004-06-21 2004-06-21 Steel for plastic molds with excellent texture and machinability Expired - Lifetime JP4223442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182091A JP4223442B2 (en) 2004-06-21 2004-06-21 Steel for plastic molds with excellent texture and machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182091A JP4223442B2 (en) 2004-06-21 2004-06-21 Steel for plastic molds with excellent texture and machinability

Publications (2)

Publication Number Publication Date
JP2006002237A true JP2006002237A (en) 2006-01-05
JP4223442B2 JP4223442B2 (en) 2009-02-12

Family

ID=35770879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182091A Expired - Lifetime JP4223442B2 (en) 2004-06-21 2004-06-21 Steel for plastic molds with excellent texture and machinability

Country Status (1)

Country Link
JP (1) JP4223442B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256797A (en) * 2008-03-28 2009-11-05 Hitachi Metals Ltd Steel for die having excellent machinability
CN108034907A (en) * 2017-11-24 2018-05-15 万鑫精工(湖南)有限公司 A kind of gear reducer input shaft
CN108504935A (en) * 2018-05-11 2018-09-07 攀钢集团攀枝花钢铁研究院有限公司 Containing V, N Micro Alloying pre-hardened plastic mold steel and preparation method thereof
CN109504899A (en) * 2018-12-05 2019-03-22 鞍钢股份有限公司 Plastic die steel and preparation method thereof
CN114807727A (en) * 2022-05-07 2022-07-29 江苏省沙钢钢铁研究院有限公司 Cord steel and method for controlling plasticization of inclusions in cord steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113122776B (en) * 2021-04-21 2022-04-08 江苏永钢集团有限公司 High-strength high-toughness medium-and large-diameter non-quenched and tempered steel for direct cutting and production process thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256797A (en) * 2008-03-28 2009-11-05 Hitachi Metals Ltd Steel for die having excellent machinability
CN108034907A (en) * 2017-11-24 2018-05-15 万鑫精工(湖南)有限公司 A kind of gear reducer input shaft
CN108504935A (en) * 2018-05-11 2018-09-07 攀钢集团攀枝花钢铁研究院有限公司 Containing V, N Micro Alloying pre-hardened plastic mold steel and preparation method thereof
CN109504899A (en) * 2018-12-05 2019-03-22 鞍钢股份有限公司 Plastic die steel and preparation method thereof
CN109504899B (en) * 2018-12-05 2020-07-17 鞍钢股份有限公司 Plastic die steel and preparation method thereof
CN114807727A (en) * 2022-05-07 2022-07-29 江苏省沙钢钢铁研究院有限公司 Cord steel and method for controlling plasticization of inclusions in cord steel
CN114807727B (en) * 2022-05-07 2023-05-26 江苏省沙钢钢铁研究院有限公司 Control method for plasticity of inclusions in cord steel and cord steel

Also Published As

Publication number Publication date
JP4223442B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP5277315B2 (en) Environmentally friendly lead-free free-cutting steel and method for producing the same
JP6143355B2 (en) Hot-rolled steel sheet with excellent drawability and surface hardness after carburizing heat treatment
KR100740414B1 (en) Non-refined steel being reduced in anisotropy of material and excellent in strength, toughness and machinability
JP2016169433A (en) Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment
JP4041413B2 (en) Machine structural steel having excellent chip disposal and manufacturing method thereof
JP4223442B2 (en) Steel for plastic molds with excellent texture and machinability
JP6515957B2 (en) Roll outer layer material for rolling having excellent wear resistance and composite roll for rolling
JP2007231337A (en) Hot rolled steel sheet and steel component
JP2003073767A (en) Outer layer material of roll for hot rolling and composite roll for hot rolling
JP4922971B2 (en) Composite roll for hot rolling and manufacturing method thereof
JP2005336553A (en) Hot tool steel
JP2006291237A (en) Steel superior in cold-forgeability and machinability for machine structural use
JP4830239B2 (en) Manufacturing method of low carbon martensitic stainless hot rolled steel sheet with excellent punchability
JP6292362B1 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
JP2022130746A (en) Non-heat-treated forged component and non-heat-treated forging steel
TWI776112B (en) Matian loose iron series stainless steel with excellent cold workability and high hardness and high corrosion resistance and its production method
JP2004292929A (en) Steel for machine structural use
JP5867143B2 (en) Centrifugal cast roll outer layer material for hot rolling excellent in fatigue resistance, centrifugal cast composite roll for hot rolling, and production method thereof
JP6277040B2 (en) Composite roll for rolling
JP7513008B2 (en) Manufacturing method for steel plate with low edge crack occurrence rate
JP2001234278A (en) Cold tool steel excellent in machinability
KR101091275B1 (en) Eco-Friendly Pb-Free Free-Cutting Steel
KR20140002256A (en) Micro-alloyed steel and method of manufacturing the same
JP2018075638A (en) Composite roll for rolling
JP4596312B2 (en) Outer layer material for rolling roll excellent in wear resistance and heat crack resistance and rolling roll using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081119

R150 Certificate of patent or registration of utility model

Ref document number: 4223442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

EXPY Cancellation because of completion of term