JP2004292929A - Steel for machine structural use - Google Patents

Steel for machine structural use Download PDF

Info

Publication number
JP2004292929A
JP2004292929A JP2003089959A JP2003089959A JP2004292929A JP 2004292929 A JP2004292929 A JP 2004292929A JP 2003089959 A JP2003089959 A JP 2003089959A JP 2003089959 A JP2003089959 A JP 2003089959A JP 2004292929 A JP2004292929 A JP 2004292929A
Authority
JP
Japan
Prior art keywords
less
steel
content
mns
based inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003089959A
Other languages
Japanese (ja)
Other versions
JP3912308B2 (en
Inventor
Takayuki Nishi
隆之 西
Toru Kato
徹 加藤
Hiroaki Taira
裕章 多比良
Koji Watari
宏二 渡里
Naoki Matsui
直樹 松井
Hitoshi Matsumoto
斉 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003089959A priority Critical patent/JP3912308B2/en
Publication of JP2004292929A publication Critical patent/JP2004292929A/en
Application granted granted Critical
Publication of JP3912308B2 publication Critical patent/JP3912308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide inexpensive steel for machine structural use which does not substantially comprise Pb and has excellent machinability, and in which the anisotropy of mechanical properties is reduced. <P>SOLUTION: The steel for machine structural use has a chemical composition comprising 0.1 to 0.6% C, 0.03 to 2.0% Si, 0.2 to 2.0% Mn, 0.03 to 0.20% S, ≤0.1% P, 0.001 to 0.02% N, 0.0003 to 0.005% Al, 0.0001 to 0.01% Ca, 0.0005 to 0.005% O, and 0.0001 to 0.01% Te, and the balance Fe with impurities, and in which the content of Mg in the impurities is controlled to ≤0.001%, and comprises MnS-based inclusions including 0.1 to 0.6 atomic% Te and having a shape in which the width W is ≥2μm, and also, the ratio between the length L and the width W, L/W is ≤5 in the longitudinally vertical section. The steel can further comprise one or more kinds of metals selected from Ti, Cr, V, Mo, Nb, Cu, and Ni or/and one or more kinds of metals selected from Bi and REMs (rare earth metals). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、機械構造用鋼に係り、特に、Pbを含まないにもかかわらず被削性に優れる機械構造用鋼に関する。
【0002】
【従来の技術】
産業用機械、建設用機械、自動車をはじめとする輸送用機械などに用いられる各種の機械構造部品は、素材である機械構造用鋼を熱間鍛造などの熱間加工で所定の形状に粗加工した後、切削加工によって所望の形状に仕上げられることが多い。このため、機械構造用鋼には、良好な機械的性質(例えば、熱処理によって付与される高い硬度、大きな疲労限度(疲労強度)や優れた靱性)とともに、高い被削性が要求される。
【0003】
従来、機械構造用鋼の被削性を高める元素として、Pb(鉛)、S(イオウ)、Te(テルル)やCa(カルシウム)が知られている。
【0004】
すなわち、Pbは、鋼中ではそれ自体単独で或いはMnS系介在物の周囲に析出し、これが切り欠きの起点となるし、Pb自体が低融点、且つ軟質であるために切削面で潤滑効果を有する。このため、切削性及び切り屑処理性が向上するとともに、仕上げ面粗さが低位に安定し、生産性の向上に大いに寄与してきた。更に、Pbを添加すればPbがMnSの周囲に析出して、圧延や鍛造の際のMnSの伸展を抑制するので、機械的性質の異方性も著しく改善される。
【0005】
しかし、近年の環境問題の高まりに伴い、Pbを添加しなくても切削性に優れるとともに機械的性質の異方性が小さい低廉な機械構造用鋼が望まれている。
【0006】
上記のPb以外で鋼の被削性を向上させる最も重要な元素としてSがある。Sは、鋼の主要合金元素であるMnと親和力が大きく、鋼中でMnS粒子として分散することにより、被削性を著しく改善する作用を有する。
【0007】
また、Teは、周期律表でSと同じIVA族に属し、Mnとの親和力が大きく鋼中でMnTe粒子として分散する。このため、Teを添加することによって、被削性を改善することができる。また、MnS系介在物の周囲にMnTeが析出することにより、圧延や鍛造の際にMnS系介在物の伸展を抑制することができるといわれている。
【0008】
他の元素としては、CaはSとの親和力が大きくCaSを含むMnSを形成することにより、MnS系介在物の形態調整と、CaSによる切削工具の保護効果により被削性を改善する作用を有する。Caには、圧延や鍛造の際のMnSの伸展を抑制する作用もある。また、CaはO(酸素)との親和力も大きいので、Al等の硬質の酸化物系介在物を、CaO−Al或いはCaO−Al−SiO 等の形の軟質な介在物にし、これによって工具摩耗を軽減して被削性を改善する作用を有する。
【0009】
上記のS、Te及びCaを添加する機械構造用快削鋼については既に多数の報告がなされている。
【0010】
例えば、特許文献1には、特定量のC、Si、Mn、P、Al、O、Ni及びCrに加えて、質量%で、Sを0.005〜0.03%含み、更に、Caを5〜30ppm含有するか、Ca及びTeをそれぞれ5〜30ppmずつ含有する熱間鍛造用棒鋼の製造方法が開示されている。上記特許文献で提案された技術は、前記特定の化学組成を有する鋼のうち、CからSまでの元素に加えてCaだけを含有する鋼については、鋳片から棒鋼までの圧延比を9.5以下に、また、CからSまでの元素に加えてCaとTeの双方を含有する鋼については、鋳片から棒鋼までの圧延比を63以下にすることによりMnSの形状変形を最小限に抑制するものである。しかし、この技術は、鋳片から棒鋼までの圧延比を限定する必要があるし、鋼にTeとCaを複合添加する場合には、Te(%)/S(%)で0.05〜0.1もの量のTeを含有させる必要があり、Pb非添加の切削性に優れる機械構造用鋼を低コストで得たいという産業界の要望には必ずしも応えられてはいない。
【0011】
【特許文献1】
特開平10−296396号公報
【0012】
【発明が解決しようとする課題】
本発明は、上記現状に鑑みてなされたもので、その目的は、実質的にPbを含まない鋼であって、切削性に優れるとともに機械的性質の異方性が小さい低廉な機械構造用鋼を提供することである。
【0013】
【課題を解決するための手段】
本発明の要旨は、下記(1)〜(4)に示す機械構造用鋼にある。
【0014】
(1)質量%で、C:0.1〜0.6%、Si:0.03〜2.0%、Mn:0.2〜2.0%、S:0.03〜0.20%、P:0.1%以下、N:0.001〜0.02%、Al:0.0003〜0.005%、Ca:0.0001〜0.01%、O(酸素):0.0005〜0.005%及びTe:0.0001〜0.01%を含み、残部はFe及び不純物で、不純物中のMgは0.001%以下の化学組成からなり、更に、Teを0.1〜0.6原子%含む幅Wが2μm以上、且つ、長さLと幅Wの比L/Wが5以下の形状を有するMnS系介在物を長手方向縦断面に含有することを特徴とする機械構造用鋼。
【0015】
(2)質量%で、C:0.1〜0.6%、Si:0.03〜2.0%、Mn:0.2〜2.0%、S:0.03〜0.20%、P:0.1%以下、N:0.001〜0.02%、Al:0.0003〜0.005%、Ca:0.0001〜0.01%、O(酸素):0.0005〜0.005%及びTe:0.0001〜0.01%を含み、更に、Ti:0.1%以下、Cr:2.5%以下、V:0.5%以下、Mo:1.0%以下、Nb:0.1%以下、Cu:2.0%以下及びNi:2.0%以下から選択される1種以上を含有し、残部はFe及び不純物で、不純物中のMgは0.001%以下の化学組成からなり、更に、Teを0.1〜0.6原子%含む幅Wが2μm以上、且つ、長さLと幅Wの比L/Wが5以下の形状を有するMnS系介在物を長手方向縦断面に含有することを特徴とする機械構造用鋼。
【0016】
(3)質量%で、C:0.1〜0.6%、Si:0.03〜2.0%、Mn:0.2〜2.0%、S:0.03〜0.20%、P:0.1%以下、N:0.001〜0.02%、Al:0.0003〜0.005%、Ca:0.0001〜0.01%、O(酸素):0.0005〜0.005%及びTe:0.0001〜0.01%を含み、更に、Bi:0.1%以下及びREM(希土類元素):0.01%以下から選択される1種以上を含有し、残部はFe及び不純物で、不純物中のMgは0.001%以下の化学組成からなり、更に、Teを0.1〜0.6原子%含む幅Wが2μm以上、且つ、長さLと幅Wの比L/Wが5以下の形状を有するMnS系介在物を長手方向縦断面に含有することを特徴とする機械構造用鋼。
【0017】
(4)質量%で、C:0.1〜0.6%、Si:0.03〜2.0%、Mn:0.2〜2.0%、S:0.03〜0.20%、P:0.1%以下、N:0.001〜0.02%、Al:0.0003〜0.005%、Ca:0.0001〜0.01%、O(酸素):0.0005〜0.005%及びTe:0.0001〜0.01%を含み、更に、Ti:0.1%以下、Cr:2.5%以下、V:0.5%以下、Mo:1.0%以下、Nb:0.1%以下、Cu:2.0%以下及びNi:2.0%以下から選択される1種以上、並びに、Bi:0.1%以下及びREM(希土類元素):0.01%以下から選択される1種以上を含有し、残部はFe及び不純物で、不純物中のMgは0.001%以下の化学組成からなり、更に、Teを0.1〜0.6原子%含む幅Wが2μm以上、且つ、長さLと幅Wの比L/Wが5以下の形状を有するMnS系介在物を長手方向縦断面に含有することを特徴とする機械構造用鋼。
【0018】
以下、上記の(1)〜(4)の機械構造用鋼に係る発明をそれぞれ(1)〜(4)の発明という。
【0019】
上記(1)〜(4)の発明でいう「MnS系介在物」とは、主要構成元素がMnとSとからなる介在物、特に、介在物中のMnとSの占める割合が合計で90原子%以上である介在物を指す。
【0020】
その形状は、圧延方向又は鍛錬軸に平行に切断した面である「長手方向縦断面」(以下「L断面」ともいう)で観察したものである。そして、「長さL」とは、L断面中で観察される最も長い部分を、また、その「幅W」とは長さLに対して直交する方向で最も長い部分を意味する。例えば、加工を圧延で行った場合、圧延比が断面積比で2以上であれば、圧延の長手方向とMnS系介在物の長さを表す直線はほぼ平行になる。
【0021】
MnS系介在物中に含まれる原子%でのTeの含有量は、無作為に抽出した10〜20程度の前記MnS系介在物中の含有量の平均値をいう。
【0022】
また、(3)及び(4)の発明における「REM(希土類元素)」は、Sc、Y及びランタノイドの合計17元素の総称であり、REMの含有量は上記元素の合計含有量を指す。
【0023】
本発明者らは、被削性を改善する元素として良く知られているS、Te及びCaを複合して含有させたPb非添加鋼を用いて、被削性と機械的性質について検討を行った。
【0024】
その結果、Pb非添加鋼にS、Te及びCaを複合添加することによってPb添加鋼と同等の優れた被削性、なかでも超硬工具を用いた場合に工具摩耗量が少なく大きな工具寿命が確保できる良好な被削性及び異方性の小さい機械的性質を付与させるには、S、Te及びCaを単に複合添加するだけではなく、これらの元素が形成する硫化物形態を調整する必要があることが判明した。
【0025】
すなわち、酸化物系介在物を軟質化したうえで、少量のCaがMnS系介在物に固溶した硫化物を工具の摩耗が生じる面に付着させれば超硬工具の摩耗量が低減し、また、硫化物を伸展が少ない形状に維持すれば機械的性質に異方性が生じることを低減できることが判明した。
【0026】
そこで、MnS系介在物に対するCaとTeの作用及び上記MnS系介在物におけるCa及びTeの存在形態について、詳細な検討を行った。その結果、下記(a)〜(d)の知見が得られた。
【0027】
(a)偏晶反応で生成したMnSは球状であり、偏晶反応によってMnS系介在物を生成させるには、例えば、十分に脱酸した状態で下記 (1)式を満たすようにすればよい。
【0028】
Ca/O≧0.8・・・(1)。ここで、 (1)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
【0029】
(b)MnS系介在物が液相で存在する偏晶の状態において、TeはMnS系介在物に十分均一に溶解する。
【0030】
(c)MnSの周囲にMnTeが析出する状態のMnS系介在物が存在する場合にはMnTeによる熱間加工性の低下のために熱間での加工割れが発生しやすい。
【0031】
(d)MnS系介在物が偏晶反応で生成しうる状態で適正量のTeを添加すれば、MnS系介在物にTeを固溶させ、且つ、MnS系介在物の周囲にMnTeが析出しないようにすることができる。
【0032】
そこで次に、偏晶反応で生成させたMnS系介在物の伸展特性について調査した。その結果、下記(e)及び(f)の事項が判明した。
【0033】
(e)偏晶反応で生成させた特定量のTeを含むMnS系介在物は伸展し難い。
【0034】
(f)硫化物を上記(e)の偏晶反応で生成させた0.1〜0.6原子%のTeを含むMnS系介在物とすれば、鋼中のS含有量が同じであっても、機械的性質の異方性を小さくすることができる。なお、硫化物を偏晶反応で生成させた0.1〜0.6原子%のTeを含むMnS系介在物とするためには、例えば、下記 (2)式を満たすようにすればよい。
【0035】
0.007≦Te/S<0.05・・・(2)。ここで、 (2)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
【0036】
前記の(1)〜(4)の発明は、上記の知見に基づいて完成されたものである。
【0037】
【発明の実施の形態】
以下、本発明の各要件について詳しく説明する。
(A)鋼の化学組成
先ず、本発明の機械構造用鋼における化学組成とその限定理由について述べる。なお、以下の説明において、各元素の含有量の「%」表示は「質量%」を意味する。
【0038】
C:0.1〜0.6%
Cは、鋼の強度や靱性を得るのに必要な元素である。機械構造用鋼として特に重要な引張り強度及び疲労強度を得るには、その含有量を0.1%以上とする必要がある。一方、その含有量が0.6%を超えると、快削鋼の前提となる素地の加工性が損なわれる。したがって、Cの含有量を0.1〜0.6%とした。
【0039】
Si:0.03〜2.0%
Siは、鋼の脱酸及び固溶強化作用を有する元素である。これらの効果のうち後述のCa添加による偏晶のMnS系介在物を形成させるのに十分な脱酸作用を確保するためには、Siの含有量を0.03%以上とする必要がある。しかし、その含有量が2.0%を超えると、固溶強化が過剰となる。したがって、Si含有量を0.03〜2.0%とした。なお、Siの更に好ましい含有量は0.1〜1.0%である。
【0040】
Mn:0.2〜2.0%
Mnは、焼入れ性を向上させて鋼の引張り強度を高めるのに有用な元素である。更に、MnはMnS系介在物を形成することにより被削性を高めるとともに脆化の原因となるFeSの生成を抑制する作用を有する。しかし、Mnの含有量が0.2%未満では添加効果に乏しい。一方、その含有量が2.0%を超えると、焼入れ性が高くなり過ぎるため、被削性が損なわれる。したがって、Mnの含有量を0.2〜2.0%とした。なお、Mn含有量の更に好ましい範囲は0.4〜2.0%である。
【0041】
S:0.03〜0.20%
Sは、MnS系介在物を形成して、被削性を高めるのに必須の元素である。通常の機械構造用鋼と比較して被削性向上効果を得るためには、Sの含有量を0.03%以上とする必要がある。一方、その含有量が0.20%を超えると、鍛造時に割れが発生したり、機械的性質の劣化が著しくなって機械構造用鋼としての必要機能が十分確保できない。したがって、Sの含有量を0.03〜0.20%とした。なお、十分な被削性を得るために、Sの含有量は0.045〜0.20%とすることが更に好ましい。
【0042】
P:0.1%以下
Pは、靱性の劣化や延性の低下をもたらす。特に、その含有量が0.1%を超えると靱性の劣化や延性の低下が大きくなる。したがって、Pの含有量を0.1%以下とした。なお、Pの含有量が0.1%以下であれば、大きな靱性の劣化や延性の低下を生じることなく固溶強化作用が得られるので、材料としての必要強度を考慮してその含有量を選択できる。前記の固溶強化作用を確実に得るにはPの含有量を0.003%以上とするのがよい。なお、Pは鉄鉱石やスクラップから混入する場合が多いが、脱P処理や加P処理は製造コストの増加を招くので、強度面とコスト面とを総合してその含有量を決定すればよい。
【0043】
N:0.001〜0.02%
Nは、鋼中で窒化物を形成して結晶粒を微細化し、靱性及び疲労特性といった機械構造用鋼に必要な性質を高める作用を有する。前記の作用を確実なものとするためには、Nの含有量は0.001%以上とする必要がある。一方、Nの含有量が0.02%を超えると、一部の窒化物が粗大化して靱性の低下が著しくなる。したがって、Nの含有量を0.001〜0.02%とした。
【0044】
Al:0.0003〜0.005%
Alは、鋼中でO(酸素)と強い親和力を有しAlを形成する。酸化物系介在物中に適当な濃度のAlを含ませることにより、酸化物は高速切削の温度域で軟質化し被削性の向上に寄与する。この酸化物の軟質化のためには、Alの含有量は0.0003%以上とする必要がある。一方、Alの含有量が0.005%を超えると、酸化物系介在物の主体がAlになるため、却って工具摩耗量が大きくなる。したがって、Al含有量を0.0003〜0.005%とした。
【0045】
Ca:0.0001〜0.010%
鋼中のCaは、O(酸素)及びSと強い親和力を有し、酸化物系介在物中にCaOを形成し、また、MnS系介在物中に固溶する。酸化物系介在物中に適当な濃度のCaOを含ませることにより、酸化物は高速切削の温度域で軟質化して被削性の向上に寄与する。更に、前記 (2)式を満たす条件下で硫化物系介在物中にCaSを含ませることにより、硫化物は偏晶反応で生成し、効率よく硫化物にTeを含有させることができる。CaO形成及びMnS系介在物にCaを固溶させるために、Caの含有量は少なくとも0.0001%が必要である。しかし、0.010%を超えてCaを含有させても、CaS形成による偏晶反応での硫化物の生成は飽和し、Ca処理コストが嵩むばかりである。したがって、Caの含有量を0.0001〜0.010%とした。
【0046】
O(酸素):0.0005〜0.005%
鋼中のOは、鋼中の酸化物系介在物に由来するものと鋼中に溶存するものとからなる。酸化物系介在物の量は鋼の被削性や機械的性質に影響し、一方、溶存酸素量は硫化物の形態と酸化物系介在物の組成に影響を及ぼす。溶存酸素と酸化物系介在物に含有されるOを分離して検出することは困難なため、本発明におけるO含有量は、一般的な分析方法で得られる全O含有量とする。酸化物系介在物量の観点からはO含有量が増加すると、被削性及び機械的性質の低下をきたす。また、溶存酸素量の観点からは、Oの含有量が増加することはCaと結合するO量の増加を意味するので、CaSが形成し難くなる。すなわち、O含有量が0.005%を超えると、被削性及び機械的性質の低下が大きくなるし、CaSの形成が極めて難しくなる。一方、前述したAl含有量の上限が0.005%の下では、スラグ精錬を長時間実施してもOの含有量を0.0005%未満とすることは困難であるし、コストも嵩むばかりである。したがって、Oの含有量を0.0005〜0.005%とした。
【0047】
Te:0.0001〜0.01%
本発明においてTeは重要な元素である。すなわち、MnS系介在物中にTeを固溶させることにより、機械的性質の異方性の低減と被削性確保の両立を図る。前記の効果を得るにはTeの含有量は0.0001%以上が必要である。一方、その含有量が0.01%を超えるとMnS系介在物の周囲にMnTeが析出する。したがって、Teの含有量を0.0001〜0.01%とした。
【0048】
本発明においては、不純物中のMgを下記のとおり規定する。
【0049】
Mg:0.001%以下
本発明を実施するのに有害な元素としてはMgがあげられる。本発明は、球状のMnS系介在物を生成させることにより、MnS系介在物へのTeの固溶を確実なものにするものであるが、MgはS及びOとの親和力が強くMgO及びMgSを生成する。このうちMgOは硬質の酸化物で被削性の低下をもたらす。また、MgO及びMgSのいずれもMnS系介在物の晶出起点となり、偏晶反応によると考えられる球状のMnS系介在物の生成を阻害する。特に、Mgの含有量が0.001%を超えると本発明の効果を奏することができない。したがって、溶鋼へのMgの添加は避ける必要がある。そして、不純物として入るMgはその含有量を0.001%以下とする必要がある。なお、不純物中のMgは0.0005%以下とすることがより好ましい。
【0050】
前記(1)の発明に係る機械構造用鋼は、上記のCからTeまでの元素及び残部としてのFeと不純物からなり、不純物中のMgが上記の規定を満たす化学組成を有する鋼である。
【0051】
前記(2)の発明に係る機械構造用鋼は、引張強度、靱性などの機械的性質を向上させることを目的として、上記(1)の発明の鋼のFeの一部に代えて、Ti:0.1%以下、Cr:2.5%以下、V:0.5%以下、Mo:1.0%以下、Nb:0.1%以下、Cu:2.0%以下及びNi:2.0%以下から選択される1種以上を含有させた化学組成を有する鋼である。
【0052】
一般に、鋼の引張強度を高めると被削性が低下することが知られているが、上記のTiからNiまでのいずれの元素も、それぞれ適正な範囲の含有量であれば、既に述べたMnS系介在物形成に大きな影響を与えないので、機械的性質の異方性の低減と被削性の確保とを妨げることなく、鋼の引張強度を高める作用を有する。これらのTiからNiまでの元素は以下に述べる範囲内でそれぞれを単独で含有させてもよいし、2種以上を複合して含有させてもよい。
【0053】
Ti:0.1%以下
Tiは、鋼中で炭化物、窒化物及び炭窒化物を形成して結晶粒を微細化するので、鋼の引張強度が向上するとともに靱性も改善される。これらの効果を確実に得るには、Tiは0.005%以上の含有量とすることが好ましい。しかし、その含有量が0.1%を超えると、前記の効果が飽和するばかりか、硬質のTiNの粗大化が生じるため被削性の低下をきたす。したがって、Tiを添加する場合には、その含有量を0.1%以下とするのがよい。
【0054】
Cr:2.5%以下
Crは、鋼の引張強度を高めるのに有用な元素である。この効果を確実に得るためには、Crは0.03%以上の含有量とすることが望ましい。しかし、その含有量が2.5%を超えると、硬度上昇による被削性の低下が顕在化する。したがって、Crを添加する場合には、その含有量を2.5%以下とするのがよい。
【0055】
V:0.5%以下
Vは、Tiと同様に、鋼中で炭化物、窒化物及び炭窒化物を形成して結晶粒を微細化するので、鋼の引張強度が高まるとともに靱性も良好になる。これらの効果を確実に得るには、Vは0.05%以上の含有量とすることが好ましい。しかし、その含有量が0.5%を超えると、前記の効果が飽和するばかりか、被削性の低下をきたす。したがって、Vを添加する場合には、その含有量を0.5%以下とするのがよい。
【0056】
Mo:1.0%以下
Moは、鋼の引張強度を高めるのに有用な元素である。この効果を確実に得るためには、Moは0.05%以上の含有量とすることが望ましい。しかし、その含有量が1.0%を超えると、熱間加工後の組織が異常に粗大化して靱性の低下をきたす。したがって、Moを添加する場合には、その含有量を1.0%以下とするのがよい。
【0057】
Nb:0.1%以下
Nbは、鋼中で炭化物、窒化物及び炭窒化物を形成して結晶粒を微細化するので、鋼の引張強度が高まるとともに靱性も改善される。これらの効果を確実に得るには、Nbは0.005%以上の含有量とすることが好ましい。しかし、その含有量が0.1%を超えると、前記の効果が飽和するばかりか、被削性の著しい低下をきたす。したがって、Nbを添加する場合には、その含有量を0.1%以下とするのがよい。
【0058】
Cu:2.0%以下
Cuは、析出強化によって鋼の引張強度を高める作用を有する。この効果を確実に得るためには、Cuは0.2%以上の含有量とすることが望ましい。しかし、その含有量が2.0%を超えると、熱間加工性が劣化することに加えて、析出物が粗大化して前記効果が飽和したり、却って低下することがある。したがって、Cuを添加する場合には、その含有量を2.0%以下とするのがよい。
【0059】
Ni:2.0%以下
Niは、固溶強化によって鋼の引張強度を高める作用を有する。この効果を確実に得るためには、Niは0.2%以上の含有量とすることが望ましい。しかし、Niを2.0%を超えて含有させても、前記効果は飽和しコストが嵩むばかりとなる。したがって、Niを添加する場合には、その含有量は2.0%以下とするのがよい。
【0060】
前記(3)の発明に係る機械構造用鋼は、被削性を更に向上させることを目的として、前述の(1)の発明の鋼のFeの一部に代えて、Bi:0.1%以下及びREM(希土類元素):0.01%以下から選択される1種以上を含有させた化学組成を有する鋼である。
【0061】
上記のBiとREMはいずれも、それぞれ適正な範囲の含有量であれば、先に述べたMnS系介在物形態制御による機械的性質の異方性の低減を妨げることなく、被削性を更に高める作用を有する。上記のBiとREMは以下に述べる範囲内でそれぞれを単独で含有させてもよいし、2種を複合して含有させてもよい。
【0062】
Bi:0.1%以下
Biは、MnS系介在物の周囲にBiとして析出しMnS系介在物の塑性変形を抑制して機械的性質の異方性を小さくするとともに、切削時に鋼と工具間で潤滑作用を示して被削性を改善する。こうした効果を明確に得るには、Biは0.01%以上の含有量とすることが好ましい。しかし、Biを0.1%を超えて含有させても被削性改善効果は飽和し、添加コストが嵩むばかりである。したがって、Biを添加する場合には、その含有量を0.1%以下とするのがよい。
【0063】
REM(希土類元素):0.01%以下
REMは、前述のとおりSc、Y及びランタノイドの合計17元素を指す。いずれも鋼中のSやOと強い親和力を有するので、鋼中では化学的にほぼ等価とみなし、上記元素の合計含有量をREMの含有量とする。特に、工業的にミッシュメタルで扱う場合には、簡便にはLa、Ce及びNd含有量の和と見なしてもよい。
【0064】
REMは、鋼中のS及びOと反応して、REM硫化物及びREM酸硫化物を溶鋼段階から形成し、これらが適度に分散して被削性を高める作用を有する。なお、REMは凝固のミクロ偏析過程でのMnS系介在物へのTeの溶解には影響を及ぼさない。
【0065】
前記した効果を確実に得るには、REMは0.001%以上の含有量とすることが好ましい。しかし、REMの含有量が0.01%を超えると、硬質のREM酸化物の生成量が増大し、却って被削性の低下を招く。したがって、REMを添加する場合には、その含有量を0.01%以下とするのがよい。
【0066】
前記(4)の発明に係る機械構造用鋼は、引張強度、靱性などの機械的性質を向上させること、及び被削性を更に向上させることを目的として、前述の(1)の発明の鋼のFeの一部に代えて、Ti:0.1%以下、Cr:2.5%以下、V:0.5%以下、Mo:1.0%以下、Nb:0.1%以下、Cu:2.0%以下及びNi:2.0%以下から選択される1種以上、並びに、Bi:0.1%以下及びREM(希土類元素):0.01%以下から選択される1種以上を含有させた化学組成を有する鋼である。
【0067】
なお、溶鋼中でSeはTeとほぼ同様の化学的作用を有するため、工業的にはTeと等価な元素としてTeの含有量に置換してSeを用いることが可能である。しかし、近年の環境問題の高まりに伴い、Se非添加の要望もあるため、本発明においてはSeを添加しないこととした。
(B)MnS系介在物
次に、鋼の化学組成を前記(A)項のようにした場合の、MnS系介在物について述べる。
【0068】
前記(1)〜(4)の発明の重要な要素技術にMnS系介在物中へのTeの固溶があげられる。この要素技術の根幹は、MnS系介在物の晶出形態を調整することにより可及的少量のTeを有効に作用させるものである。その結果として、長手方向縦断面(L断面)において、幅Wが2μm以上、且つ、長さLと幅Wの比L/Wが5以下であるMnS系介在物中にTeを0.1〜0.6原子%含有させることが可能となり、これによって機械構造用の圧延鋼材の機械特性の異方性を大幅に改善することが可能となる。
【0069】
先ず、前記(1)〜(4)の発明において、L断面におけるMnS系介在物を対象とするのは、これが機械的性質の異方性の主要因になるためである。また、偏晶反応によって生成するMnS系介在物を主体とする場合には、L断面において幅Wが2μm未満であれば機械的性質の異方性にほとんど影響を及ぼさないためである。
【0070】
次に、MnS系介在物中にTeを固溶させて熱間及び冷間での加工時のMnS系介在物の塑性変形を抑制して機械的性質の異方性を小さくするが、少量が生成することを避けられないTeやCaを固溶しない硫化物の前記L/Wの値は5を超えるものであり、これらを含めてしまうと、特性向上の主体となるMnS系介在物の組成を測定する場合の誤差要因となってしまう。
【0071】
最後に、対象とするMnS系介在物中のTeの含有量について説明する。
【0072】
前記MnS系介在物中のTeの含有量が0.1原子%未満では、一見したところでは形態調整がなされたように見えても、実際には鋼中で伸展した形状のある部分の断面を観察しているに過ぎず、機械的性質の異方性改善効果が望めない。一方、前記MnS系介在物中のTe含有量が0.6原子%を超えても、機械的性質の異方性改善効果は飽和してコストが嵩むことがあるし、そのような状態のMnS系介在物の周囲を観察するとMnTeが認められる場合が多く、このMnTeは低融点のため熱間加工性の低下原因ともなる。
【0073】
したがって、前記(1)〜(4)の発明においては、幅Wが2μm以上、且つ、長さLと幅Wの比L/Wが5以下の形状で、更に、Teを0.1〜0.6原子%含むMnS系介在物をL断面に含有することとした。なお、前記MnS系介在物中のTeの含有量は0.2〜0.6原子%とすることが一層好ましい。
【0074】
ここで、MnS系介在物の長さLは、L断面中で観察される最も長い部分を、また、その幅Wは長さLに対して直交する方向で最も長い部分を意味し、例えば、加工を圧延で行った場合、圧延比が断面積比で2以上であれば、圧延の長手方向とMnS系介在物の長さを表す直線はほぼ平行になることは既に述べたとおりである。
【0075】
また、MnS系介在物中に含まれる原子%でのTeの含有量は、無作為に抽出した10〜20程度の前記硫化物中の含有量の平均値を指すことも既に述べたとおりである。
【0076】
なお、MnS系介在物中のTeの含有量の測定については、その一つを例示すれば、エネルギー分散型X線マイクロアナライザーを用いて、L断面において上記の対象とする形態のMnS系介在物を無作為に10〜20程度抽出し、それらの含有量の平均値を採用すればよい。上記のエネルギー分散型X線マイクロアナライザーを用いる場合、CaとTeの特性X線が近いので、極力分解能を高めた設定を採用するのがよい。MnS系介在物中のTeの含有量の測定は常法の微小領域が可能な機器分析を用いればよく、その方法は特に前述の方法に限定しなくてよい。
【0077】
なお、前記(1)〜(4)の発明で規定する微量Teの含有で機械的性質の異方性が小さくなるのは、MnS系介在物に少量のCaを含有する圧延や鍛造など加工によって伸展し難い硫化物組成になることに加えて、その硫化物がミクロ偏析の比較的初期段階において液相で生成することにあると考えられる。つまり、液相のMnS系介在物で生成した場合、微量のTeを含むことにより、MnS系介在物中にTeが少量であるが固溶することになる。実際、化学組成を前記(A)項のように調整した鋼の中で、熱間加工時に伸展が進行していないMnS系介在物中のTeについて、前記のエネルギー分散型X線マイクロアナライザーを用いて分析したところ、0.1〜0.6原子%のTeが検出された。このようなミクロ偏析初期に生成する硫化物は比較的大きいものが多く、これらにTeが固溶するので、機械的性質の異方性をより効果的に改善するものと考えられる。
【0078】
なお、例えば、十分に脱酸した状態で前記 (1)式を満たすようにするとともに、前記 (2)式を満たすようにして鋼塊を製造することによって、Teを0.1〜0.6原子%含む幅Wが2μm以上、且つ、長さLと幅Wの比L/Wが5以下の形状を有するMnS系介在物を長手方向縦断面に含有させることができる。
【0079】
すなわち、鋼中のCaとOの比は、MnS系介在物の形成に影響を及ぼし、その値が0.8以上でMnS系介在物が初晶が液相と推定される球状に生成する。これは鋼の凝固におけるミクロ偏析過程でMnS系介在物が偏晶反応によって生成するためと理解される。
【0080】
本発明で重要な点は、添加したTeが部分的にMnTeとして晶出することなく、MnS系介在物に極力均一に固溶していることである。MnS系介在物中に均一にTeを固溶させるには、ミクロ偏析の初期の段階の方が固相率が低く、液相でのTeの拡散速度が十分に速いことが有利と考えられるため、本発明者らは、多数のMnS系介在物の中からTeを固溶しているMnS系介在物を観察して分類した。その結果、このミクロ偏析初期の過程で偏晶反応で生成した球状硫化物にTeが均一に固溶していることが判明した。これは、液相側でのTeの拡散が十分に行われるとともに、溶鋼中のTeが液相のMnS系介在物には溶解しやすいためと思われる。
【0081】
なお、鋼中のTeとSの比である「Te/S」の値を0.007以上とすることによって、安定且つ確実にMnS系介在物中にTeを固溶させて熱間及び冷間での加工時のMnS系介在物の塑性変形を抑制することができるが、「Te/S」の値が0.05以上になると、MnS系介在物中に含まれる原子%でのTeの含有量が0.6原子%を超えるようになるので、MnTeの部分的な晶出が生じてしまう。
【0082】
以下、本発明者らが、0.38〜0.42%のC、0.18〜0.22%のSi、1.1〜1.3%のMn、0.015〜0.025%のP、0.001〜0.002%のAl、0.006〜0.010%のN、0.22〜0.28%のCr、0.08〜0.12%のV及び0.0005%未満のMgを基本の組成とし、S含有量を0.08〜0.12%及び0.16〜0.19%の2水準としてTe、Ca及びO(酸素)の含有量を種々変えた鋼を用いて検討した例によって、上記の内容を更に詳しく説明する。
【0083】
すなわち、雰囲気調整が可能な通常の誘導加熱炉を用いて、上記の鋼についてそれぞれ150kg鋼塊を作製した。なお、Teの含有量は添加量の調整によって、Oの含有量は初期の脱酸状態の調整及び必要に応じて酸化鉄を添加することによって、また、Caの含有量は鋳型に鋳造する数分前にCaSi合金鉄を添加することに調整した。
【0084】
次いで、これらの鋼塊を1473Kに加熱し、1273〜1373Kで仕上げる熱間鍛造を行って、直径が55〜60mmの丸棒を作製した。なお、熱間鍛造後の冷却条件は大気中放冷とした。
【0085】
このようにして得た各丸棒の鍛造軸に平行な方向(以下L方向という)及び鍛造軸に垂直な方向(以下C方向という)から、それぞれ直径が9.9mmで標点距離が35mmの引張試験片を採取し、常温(室温)での引張試験を行って、MnS系介在物形態の影響を最も受けやすい伸びと絞りを測定し、それぞれC方向の値とL方向の値の比を求めて、機械的性質の異方性を評価した。
【0086】
図1及び図2に、Sの含有量が0.08〜0.12%の場合について、Ca/Oの値が伸びのC方向の値とL方向の値の比(以下、「伸び比(C方向/L方向)」という)及び絞りのC方向の値とL方向の値の比(以下、「絞り比(C方向/L方向)」という)に及ぼす影響を示す。また、図3及び図4に、Sの含有量が0.16〜0.19%の場合について、Ca/Oの値が「伸び比(C方向/L方向)」及び「絞り比(C方向/L方向)」に及ぼす影響を示す。なお、上記の各図においてTe添加と記載したものは、Te/Sの値が0.02〜0.04の範囲になるようTeを含有させたものである。
【0087】
図1〜4から、Ca/Oの値が0.8以上の場合に、「伸び比(C方向/L方向)」及び「絞り比(C方向/L方向)」は大きくなり、材料の異方性が改善されることが明らかである。更に、Ca/Oの値が0.8以上で、且つ、TeをTe/Sの値で0.02〜0.04の範囲で含有させると、異方性の改善効果が顕著なことがわかる。
【0088】
図5及び図6に、Sの含有量が0.08〜0.12%で、Ca/Oの値が1.0〜2.0の場合について、Te/Sの値が「伸び比(C方向/L方向)」及び「絞り比(C方向/L方向)」に及ぼす影響を示す。
【0089】
図5に示されるように、「伸び比(C方向/L方向)」はTe/Sの値が0.007で75%以上の値となり、Te/Sの値が0.05未満までは75%以上となる。しかし、Te/Sの値が0.05以上になっても伸びの異方性改善効果は認められない。これはMnS系介在物の伸展が抑制されることによる伸びの異方性改善効果が、Teを過剰に含有させたことによるMnTeの形成によって相殺されたためと思われる。
【0090】
一方、図6から、「絞り比(C方向/L方向)」はTe/Sの値が0.007で50%以上となり、Te/Sの値が0.05でその効果が飽和することが認められる。
【0091】
Te添加にはコストを要すること、更には、融点が1424Kと低いMnTeが形成されることにより熱間加工性が低下することを考慮すると、Teの含有量は必要な材料特性を満たす可及的少量が望ましい。
【0092】
次に、0.38〜0.42%のC、0.18〜0.22%のSi、1.1〜1.3%のMn、0.015〜0.025%のP、0.001〜0.002%のAl、0.006〜0.010%のN、0.22〜0.28%のCr、0.08〜0.12%のV及び0.0005%未満のMgを基本の組成とし、Sの含有量を0.08〜0.12%、Ca/Oの値を1.0〜2.0として、Te/Sの値を種々変えた鋼を用いて検討した例によって、前記のMnS系介在物中のTe含有量の規定に関して、更に詳しく説明する。
【0093】
すなわち、雰囲気調整が可能な通常の誘導加熱炉を用いて、上記の鋼についてもそれぞれ150kg鋼塊を作製した。この場合も、Teの含有量は添加量の調整によって、Oの含有量は初期の脱酸状態の調整及び必要に応じて酸化鉄を添加することによって、また、Caの含有量は鋳型に鋳造する数分前にCaSi合金鉄を添加することに調整した。
【0094】
これらの鋼塊についても先の場合と同様に、1473Kに加熱し、1273〜1373Kで仕上げる熱間鍛造を行って、直径が55〜60mmの丸棒にした。なお、熱間鍛造後の冷却条件は大気中放冷とした。
【0095】
このようにして得た各丸棒のL方向及びC方向から、それぞれ直径が9.9mmで標点距離が35mmの引張試験片を採取し、常温(室温)での引張試験を行って伸びと絞りを測定し、それぞれC方向の値とL方向の値の比を求めて、機械的性質の異方性を評価した。また、L断面におけるMnS系介在物中のTeの含有量は、対象とする形態のMnS系介在物(つまり、幅Wが2μm以上、且つ、長さLと幅Wの比L/Wが5以下であるMnS系介在物)を無作為に10抽出してエネルギー分散型X線マイクロアナライザーを用いて分析し、それらの含有量の平均値から算出した。
【0096】
図7及び図8に、MnS系介在物中の原子%でのTeの含有量が「伸び比(C方向/L方向)」及び「絞り比(C方向/L方向)」に及ぼす影響を示す。
【0097】
図7から、MnS系介在物中のTeの含有量が0.1原子%以上の場合に、「伸び比(C方向/L方向)」は75%を超えて異方性が改善されるものの、前記Teの含有量が0.6原子%を超えてもその効果は飽和することがわかる。同様に、図8から、MnS系介在物中のTeの含有量が0.1原子%以上の場合に、「絞り比(C方向/L方向)」は50%を超えて異方性が改善されるものの、前記Teの含有量が0.6原子%を超えてもその効果は飽和することが明らかである。
【0098】
なお、本発明においては、Teを添加することによってMnTeを形成させて被削性を改善するわけではないので、Teは機械的性質の異方性を改善するに足る可及的少量を含有させればよく、その費用対効果は極めて優れたものとなる。
【0099】
加えて本発明の有用な点は、被削性そのものはS及びCaの添加、並びに、酸化物組成制御という従来のCa−S快削鋼の長所を引き継ぎながら、微量のTeを限定された条件で含有させることにより発揮できることにある。つまり、本発明によれば、種々の硬さを有する鋼を基本に様々な加工比又は複雑形状に加工される機械構造用鋼の機械的性質の異方性を相対的に改善できる。したがって、機械的性質の異方性の観点から犠牲にせざるを得なかった被削性を、S含有量を適度に上げることにより改善することも可能になり、Pb非添加の快削鋼としての適用範囲は広いものと考えられる。
【0100】
【実施例】
次に実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
雰囲気調整が可能な誘導加熱炉を用いて、表1〜4に示す化学組成の鋼の150kg鋼塊を作製した。すなわち、不活性ガス雰囲気下において1823〜1873Kの温度で溶解・保持してSを含む各合金成分を添加調整し、その後、O(酸素)含有量及びTe含有量を調整するために酸化鉄又は酸化Mnと金属Teを添加し、更にその後、Caの含有量を調整するためにCaSi合金鉄を添加して所定時間攪拌した後、直径が約230mmで高さが360mmの丸鋳型に鋳込んで凝固させた。なお、表2及び表4にはCa/Oの値とTe/Sの値も併記した。
【0101】
【表1】

Figure 2004292929
【0102】
【表2】
Figure 2004292929
【0103】
【表3】
Figure 2004292929
【0104】
【表4】
Figure 2004292929
【0105】
次いで、上記の各鋼塊を1473Kに加熱し、鋳型の高さ方向をL方向として通常の方法で熱間鍛造し、1273〜1373Kで直径が55〜60mmの丸棒に仕上げた。なお、熱間鍛造後の冷却条件は大気中放冷とした。
【0106】
このようにして得た各丸棒のL方向及びC方向から、それぞれ直径が9.9mmで標点距離が35mmの引張試験片を採取し、常温(室温)での引張試験を行って伸びと絞りを測定し、それぞれC方向の値とL方向の値の比を求めて、機械的性質の異方性を評価した。
【0107】
また、L断面における幅Wが2μm以上、且つ、長さLと幅Wの比L/Wが5以下であるMnS系介在物を無作為に10抽出してエネルギー分散型X線マイクロアナライザーを用いて分析し、それらの含有量の平均値からMnS系介在物中のTeの含有量を求めた。
【0108】
被削性については、旋削試験を行って評価した。すなわち、潤滑は乾式として超硬工具P20のチップを使用し、2mmの切り込み量、0.2mm/revの送り量、132m/分の切削速度の条件で旋削し、旋削開始15分後のチップのクレーター摩耗量(μm)を測定した。
【0109】
表5に、上記の各試験結果を示す。なお、表5においては、MnS系介在物中の原子%でのTeの含有量を「MnS中Te量」と記載し、以下の説明でもこの「MnS中Te量」という用語を用いることにする。また、被削性の欄における「◎」、「○」及び「×」はそれぞれの比較基準とした鋼を旋削した場合のチップのクレーター摩耗量を基準値として、摩耗量が85%未満、85%以上で115%未満、115%以上であることを示す。
【0110】
【表5】
Figure 2004292929
【0111】
本発明例の場合、試験番号1〜4に示すように、種々のS含有量の鋼TA0〜TA3は、S含有量が同じレベルにある比較例の試験番号21の鋼C0及び試験番号25〜27の鋼C4〜C6と比較して、被削性は同等であるものの「伸び比(C方向/L方向)」及び「絞り比(C方向/L方向)」が高くなり、異方性が改善されている。
【0112】
本発明例である試験番号5〜20の鋼TA4〜TA19Tの場合は、成分によって材料強度は変化するが、それぞれ成分が同等の鋼C5や鋼C10〜C20を用いた比較例である試験番号26や試験番号31〜41と比較して、「伸び比(C方向/L方向)」及び「絞り比(C方向/L方向)」が高くなり、異方性が改善されていることが明らかである。
【0113】
比較例の試験番号21の場合、鋼C0はCa及びTeを含まないためMnS中Te量が本発明で規定する範囲から外れ、機械的性質の異方性が大きい。
【0114】
また、比較例の試験番号22における鋼C1はS含有量が本発明で規定する条件から外れており、被削性に劣っている。
【0115】
比較例の試験番号30は、鋼C9のMg含有量が0.0011%と高く、S含有量が同じレベルにある鋼C5を用いた試験番号26と比べて被削性が低下している。
【0116】
試験番号23〜27及び試験番号31〜41の場合、MnS中Te量が本発明で規定する範囲から低く外れるため、機械的性質の異方性が大きい。
【0117】
なお、比較例の試験番号28及び29は、鋼C7と鋼C8のSの含有量がそれぞれ0.1%、0.17%のレベルで、MnS中Te量が本発明の規定から高く外れた場合であるが、本発明例の試験番号3及び4の鋼TA2及び鋼TA3と同等程度にしか機械的性質の異方性が改善されていない。
(実施例2)
雰囲気調整が可能な誘導加熱炉を用いて、表6及び表7に示す化学組成のBi又はREMを含有する鋼の150kg鋼塊を作製した。すなわち、不活性ガス雰囲気下において1823〜1873Kの温度で溶解・保持してSを含む各合金成分を添加調整し、その後、O(酸素)含有量及びTe含有量を調整するために酸化鉄又は酸化Mnと金属Teを添加し、更にその後、Caの含有量を調整するためにCaSi合金鉄を添加して所定時間攪拌した後、直径が約230mmで高さが360mmの丸鋳型に鋳込んで凝固させた。なお、Bi又はREMはCa添加直前に金属Bi又はミッシュメタルの形で添加して含有量を調整した。なお、表7にはCa/Oの値とTe/Sの値も併記した。
【0118】
【表6】
Figure 2004292929
【0119】
【表7】
Figure 2004292929
【0120】
次いで、実施例1の場合と同様に上記の各鋼塊を1473Kに加熱し、鋳型の高さ方向をL方向として通常の方法で熱間鍛造し、1273〜1373Kで直径が55〜60mmの丸棒に仕上げた。なお、熱間鍛造後の冷却条件は大気中放冷とした。
【0121】
このようにして得た各丸棒を用いて、前記実施例1と同様の方法で機械的性質の異方性、「MnS中Te量」及び被削性を調査した。
【0122】
表8に、上記の各試験結果を示す。なお、表8には実施例1の鋼C5を用いた試験番号26の結果を併記した。
【0123】
【表8】
Figure 2004292929
【0124】
試験番号42〜44に示すように、種々のBi含有量の鋼TB1〜TB3は、Biを除いた他の成分の含有量は同じレベルにあるがMnS中Te量が本発明で規定する条件から外れた試験番号26の鋼C5及び、成分の含有量はそれぞれ同じレベルにあるがMnS中Te量が本発明で規定する条件から外れた試験番号48〜50の鋼B1〜B3と比較して、「伸び比(C方向/L方向)」及び「絞り比(C方向/L方向)」で示される機械的性質の異方性だけではなく、被削性も改善されていることがわかる。
【0125】
同様に試験番号45〜47に示すように、種々のREM含有量の鋼TR1〜TR3は、REMを除いた他の成分の含有量は同じレベルにあるがMnS中Te量が本発明で規定する条件から外れた試験番号26の鋼C5及び、成分の含有量はそれぞれ同じレベルにあるがMnS中Te量が本発明で規定する条件から外れた試験番号51〜53の鋼R1〜R3と比較して、「伸び比(C方向/L方向)」及び「絞り比(C方向/L方向)」で示される機械的性質の異方性だけではなく、被削性も改善されていることが明らかである。
【0126】
【発明の効果】
本発明の機械構造用鋼は切削性に優れるとともに機械的性質の異方性が小さく、しかも低廉であるので、産業用機械、建設用機械、自動車をはじめとする輸送用機械など各種機械構造部品の素材として利用することができる。更に、本発明の機械構造用鋼は実質的にPbを含まないので、地球環境に優しい鋼として好適である。
【図面の簡単な説明】
【図1】Sの含有量が0.08〜0.12%の場合について、Ca/Oの値及びTe添加の有無が伸びの異方性に及ぼす影響を示す図である。
【図2】Sの含有量が0.08〜0.12%の場合について、Ca/Oの値及びTe添加の有無が絞りの異方性に及ぼす影響を示す図である。
【図3】Sの含有量が0.16〜0.19%の場合について、Ca/Oの値及びTe添加の有無が伸びの異方性に及ぼす影響を示す図である。
【図4】Sの含有量が0.16〜0.19%の場合について、Ca/Oの値及びTe添加の有無が絞りの異方性に及ぼす影響を示す図である。
【図5】Sの含有量が0.08〜0.12%、Ca/Oの値が1.0〜2.0の場合について、Te/Sの値が伸びの異方性に及ぼす影響を示す図である。
【図6】Sの含有量が0.08〜0.12%、Ca/Oの値が1.0〜2.0の場合について、Te/Sの値が絞りの異方性に及ぼす影響を示す図である。
【図7】MnS系介在物中の原子%でのTeの含有量が伸びの異方性に及ぼす影響を示す図である。
【図8】MnS系介在物中の原子%でのTeの含有量が絞り異方性に及ぼす影響を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel for machine structural use, and particularly to a steel for machine structural use which is excellent in machinability despite not containing Pb.
[0002]
[Prior art]
Various types of mechanical structural parts used in industrial machinery, construction machinery, automobiles, and other transport machinery are roughly machined to a specified shape by hot working such as hot forging. After that, it is often finished to a desired shape by cutting. For this reason, the steel for machine structural use is required to have good machinability as well as good mechanical properties (for example, high hardness imparted by heat treatment, large fatigue limit (fatigue strength) and excellent toughness).
[0003]
Conventionally, Pb (lead), S (sulfur), Te (tellurium), and Ca (calcium) are known as elements that enhance the machinability of steel for machine structural use.
[0004]
In other words, Pb precipitates alone or around MnS-based inclusions in steel, which serves as a starting point of the notch. Pb itself has a low melting point and is soft, so that the lubrication effect on the cut surface is reduced. Have. For this reason, the cutting property and the chip handling property have been improved, and the finished surface roughness has been stabilized at a low level, which has greatly contributed to the improvement in productivity. Furthermore, when Pb is added, Pb precipitates around MnS and suppresses the extension of MnS during rolling or forging, so that the anisotropy of the mechanical properties is remarkably improved.
[0005]
However, with the increase of environmental problems in recent years, there has been a demand for inexpensive steel for machine structural use which has excellent machinability without adding Pb and has small anisotropy of mechanical properties.
[0006]
S is the most important element for improving the machinability of steel other than Pb. S has a high affinity for Mn, which is a main alloy element of steel, and has an effect of significantly improving machinability by being dispersed as MnS particles in steel.
[0007]
Te belongs to the same IVA group as S in the periodic table, and has a high affinity for Mn and is dispersed as MnTe particles in steel. Therefore, the machinability can be improved by adding Te. Further, it is said that the precipitation of MnTe around the MnS-based inclusions can suppress the extension of the MnS-based inclusions during rolling or forging.
[0008]
As other elements, Ca has a large affinity with S to form MnS containing CaS, thereby adjusting the morphology of MnS-based inclusions and improving the machinability by the protective effect of the cutting tool by CaS. . Ca also has the effect of suppressing the extension of MnS during rolling and forging. In addition, Ca has a high affinity for O (oxygen), so that Al 2 O 3 Hard oxide-based inclusions such as CaO-Al 2 O 3 Or CaO-Al 2 O 3 -SiO 2 And the like, which has the effect of reducing tool wear and improving machinability.
[0009]
Numerous reports have already been made on free-cutting steels for mechanical structures to which S, Te and Ca are added.
[0010]
For example, Patent Document 1 includes, in addition to a specific amount of C, Si, Mn, P, Al, O, Ni, and Cr, 0.005 to 0.03% of S by mass%, and further contains Ca. A method for producing a steel bar for hot forging containing 5 to 30 ppm or 5 to 30 ppm each of Ca and Te is disclosed. The technique proposed in the above-mentioned patent document discloses that, among steels having the above-mentioned specific chemical composition, a steel containing only Ca in addition to the elements from C to S has a rolling ratio of 9. 5 or less, and for a steel containing both Ca and Te in addition to the elements from C to S, the rolling ratio from the slab to the bar is 63 or less to minimize the shape deformation of MnS. It is to suppress. However, in this technique, it is necessary to limit the rolling ratio from the slab to the steel bar, and when Te and Ca are added to steel in combination, the Te (%) / S (%) is 0.05 to 0. It is necessary to contain a large amount of Te, and it has not always been possible to meet the demands of the industry in order to obtain low-cost steel for machine structural use excellent in machinability without adding Pb.
[0011]
[Patent Document 1]
JP-A-10-296396
[0012]
[Problems to be solved by the invention]
The present invention has been made in view of the above situation, and an object thereof is a steel substantially free of Pb, which is excellent in machinability and has low anisotropy in mechanical properties and is inexpensive steel for machine structural use. It is to provide.
[0013]
[Means for Solving the Problems]
The gist of the present invention resides in steel for machine structural use shown in the following (1) to (4).
[0014]
(1) In mass%, C: 0.1 to 0.6%, Si: 0.03 to 2.0%, Mn: 0.2 to 2.0%, S: 0.03 to 0.20% , P: 0.1% or less, N: 0.001 to 0.02%, Al: 0.0003 to 0.005%, Ca: 0.0001 to 0.01%, O (oxygen): 0.0005 0.005% and Te: 0.0001% to 0.01%, with the balance being Fe and impurities, Mg in the impurities having a chemical composition of 0.001% or less, and further containing 0.1 to 0.1% of Te. A machine characterized by containing a MnS-based inclusion having a shape in which a width W containing 0.6 atomic% is 2 μm or more and a ratio L / W of length L to width W is 5 or less in a longitudinal vertical section. Structural steel.
[0015]
(2) In mass%, C: 0.1 to 0.6%, Si: 0.03 to 2.0%, Mn: 0.2 to 2.0%, S: 0.03 to 0.20% , P: 0.1% or less, N: 0.001 to 0.02%, Al: 0.0003 to 0.005%, Ca: 0.0001 to 0.01%, O (oxygen): 0.0005 -0.005% and Te: 0.0001-0.01%, and further, Ti: 0.1% or less, Cr: 2.5% or less, V: 0.5% or less, Mo: 1.0. % Or less, Nb: 0.1% or less, Cu: 2.0% or less, and Ni: 2.0% or less. The balance is Fe and impurities, and Mg in the impurities is 0% or less. It has a chemical composition of 0.001% or less, a width W containing 0.1 to 0.6 atomic% of Te is 2 μm or more, and a ratio L / W of the length L to the width W is 5 or less. Mn Mechanical structural steel, characterized in that it contains a system inclusions in the longitudinal direction longitudinal section.
[0016]
(3) In mass%, C: 0.1 to 0.6%, Si: 0.03 to 2.0%, Mn: 0.2 to 2.0%, S: 0.03 to 0.20% , P: 0.1% or less, N: 0.001 to 0.02%, Al: 0.0003 to 0.005%, Ca: 0.0001 to 0.01%, O (oxygen): 0.0005 0.001% to 0.005% and Te: 0.0001% to 0.01%. Bi: 0.1% or less and REM (rare earth element): 0.01% or less. The balance is Fe and impurities, and Mg in the impurities has a chemical composition of 0.001% or less. Further, the width W containing 0.1 to 0.6 atom% of Te is 2 μm or more, and the length L is A steel for machine structural use characterized by containing a MnS-based inclusion having a shape having a ratio L / W of a width W of 5 or less in a longitudinal longitudinal section.
[0017]
(4) In mass%, C: 0.1 to 0.6%, Si: 0.03 to 2.0%, Mn: 0.2 to 2.0%, S: 0.03 to 0.20% , P: 0.1% or less, N: 0.001 to 0.02%, Al: 0.0003 to 0.005%, Ca: 0.0001 to 0.01%, O (oxygen): 0.0005 -0.005% and Te: 0.0001-0.01%, and further, Ti: 0.1% or less, Cr: 2.5% or less, V: 0.5% or less, Mo: 1.0. % Or less, Nb: 0.1% or less, Cu: 2.0% or less and Ni: 2.0% or less, and Bi: 0.1% or less and REM (rare earth element): It contains at least one element selected from 0.01% or less, the balance being Fe and impurities, and Mg in the impurities has a chemical composition of 0.001% or less. A machine characterized by containing a MnS-based inclusion having a shape in which a width W containing 0.6 atomic% is 2 μm or more and a ratio L / W of length L to width W is 5 or less in a longitudinal vertical section. Structural steel.
[0018]
Hereinafter, the inventions relating to the above-mentioned steels for machine structural use (1) to (4) are referred to as inventions (1) to (4), respectively.
[0019]
The “MnS-based inclusions” referred to in the above inventions (1) to (4) include inclusions whose main constituent elements are Mn and S, in particular, the ratio of Mn and S in the inclusions is 90 in total. Refers to inclusions that are at least atomic%.
[0020]
The shape is observed in a “longitudinal longitudinal section” (hereinafter also referred to as “L section”), which is a plane cut parallel to the rolling direction or the wrought axis. “Length L” means the longest part observed in the L section, and “width W” means the longest part in a direction orthogonal to the length L. For example, when processing is performed by rolling, if the rolling ratio is 2 or more in cross-sectional area ratio, the longitudinal direction of rolling and the straight line representing the length of the MnS-based inclusions are substantially parallel.
[0021]
The content of Te in atomic% contained in the MnS-based inclusion refers to an average value of the content in the MnS-based inclusion of about 10 to 20 extracted at random.
[0022]
In the inventions of (3) and (4), “REM (rare earth element)” is a general term for a total of 17 elements of Sc, Y and lanthanoid, and the content of REM indicates the total content of the above elements.
[0023]
The present inventors have studied the machinability and mechanical properties using a Pb-free steel containing S, Te and Ca in combination as a well-known element for improving machinability. Was.
[0024]
As a result, by adding S, Te and Ca to Pb-free steel in combination, excellent machinability equivalent to that of Pb-added steel, especially when using carbide tools, the tool wear is small and a long tool life is achieved. In order to provide good machinability and mechanical properties with small anisotropy that can be ensured, it is necessary not only to simply add S, Te and Ca in combination, but also to adjust the sulfide form formed by these elements. It turned out to be.
[0025]
In other words, after softening the oxide-based inclusions, if a small amount of Ca is solid-dissolved in the MnS-based inclusions and adheres to the surface where the tool wears, the wear amount of the carbide tool is reduced, Further, it has been found that maintaining the sulfide in a shape with little extension can reduce the occurrence of anisotropy in mechanical properties.
[0026]
Therefore, detailed studies were made on the effects of Ca and Te on the MnS-based inclusions and the forms of Ca and Te present in the MnS-based inclusions. As a result, the following findings (a) to (d) were obtained.
[0027]
(A) MnS generated by the monotectic reaction is spherical, and in order to generate MnS-based inclusions by the monotectic reaction, for example, the following formula (1) may be satisfied in a sufficiently deoxidized state. .
[0028]
Ca / O ≧ 0.8 (1). Here, the symbol of the element in the formula (1) represents the content of the element in steel in mass%.
[0029]
(B) Te is sufficiently and uniformly dissolved in the MnS-based inclusions in a state of monocrystal in which the MnS-based inclusions exist in a liquid phase.
[0030]
(C) When MnTe-based inclusions in a state where MnTe precipitates around MnS, hot working cracks are likely to occur due to a decrease in hot workability due to MnTe.
[0031]
(D) If an appropriate amount of Te is added in a state where the MnS-based inclusions can be generated by the monotectic reaction, Te is dissolved in the MnS-based inclusions and MnTe does not precipitate around the MnS-based inclusions. You can do so.
[0032]
Then, next, the extension characteristic of the MnS-based inclusions generated by the monotectic reaction was investigated. As a result, the following items (e) and (f) were found.
[0033]
(E) MnS-based inclusions containing a specific amount of Te generated by the monotectic reaction are difficult to extend.
[0034]
(F) If the sulfide is a MnS-based inclusion containing 0.1 to 0.6 atomic% of Te produced by the monotectic reaction of (e), the S content in the steel is the same. Also, the anisotropy of the mechanical properties can be reduced. In order to make the sulfide a MnS-based inclusion containing 0.1 to 0.6 atomic% of Te generated by the monotectic reaction, for example, the following formula (2) may be satisfied.
[0035]
0.007 ≦ Te / S <0.05 (2). Here, the symbol of the element in the formula (2) indicates the content of the element in steel in mass%.
[0036]
The inventions (1) to (4) have been completed based on the above findings.
[0037]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, each requirement of the present invention will be described in detail.
(A) Chemical composition of steel
First, the chemical composition of the steel for machine structural use of the present invention and the reasons for the limitation will be described. In the following description, “%” of the content of each element means “% by mass”.
[0038]
C: 0.1-0.6%
C is an element necessary for obtaining the strength and toughness of steel. In order to obtain tensile strength and fatigue strength which are particularly important as steel for machine structural use, the content thereof needs to be 0.1% or more. On the other hand, if the content exceeds 0.6%, the workability of the base material, which is the premise of free-cutting steel, is impaired. Therefore, the content of C is set to 0.1 to 0.6%.
[0039]
Si: 0.03 to 2.0%
Si is an element having a deoxidizing and solid solution strengthening action of steel. Among these effects, the content of Si needs to be 0.03% or more in order to secure a deoxidizing action sufficient to form monocrystalline MnS-based inclusions by adding Ca described later. However, when the content exceeds 2.0%, solid solution strengthening becomes excessive. Therefore, the Si content is set to 0.03 to 2.0%. In addition, the more preferable content of Si is 0.1 to 1.0%.
[0040]
Mn: 0.2-2.0%
Mn is an element useful for improving hardenability and increasing tensile strength of steel. Further, Mn has the effect of increasing the machinability by forming MnS-based inclusions and suppressing the generation of FeS which causes embrittlement. However, when the content of Mn is less than 0.2%, the effect of addition is poor. On the other hand, if the content exceeds 2.0%, the hardenability becomes too high, and the machinability is impaired. Therefore, the content of Mn is set to 0.2 to 2.0%. Note that a more preferable range of the Mn content is 0.4 to 2.0%.
[0041]
S: 0.03 to 0.20%
S is an element essential for forming MnS-based inclusions and improving machinability. In order to obtain an effect of improving machinability as compared with ordinary steel for machine structural use, the S content needs to be 0.03% or more. On the other hand, if the content exceeds 0.20%, cracks occur during forging, and mechanical properties are significantly deteriorated, so that the necessary functions as mechanical structural steel cannot be sufficiently secured. Therefore, the content of S is set to 0.03 to 0.20%. In addition, in order to obtain sufficient machinability, the S content is more preferably set to 0.045 to 0.20%.
[0042]
P: 0.1% or less
P causes deterioration of toughness and ductility. In particular, when the content exceeds 0.1%, deterioration of toughness and reduction of ductility increase. Therefore, the content of P is set to 0.1% or less. When the content of P is 0.1% or less, a solid solution strengthening action can be obtained without significant deterioration in toughness or ductility. You can choose. In order to reliably obtain the solid solution strengthening action, the P content is preferably set to 0.003% or more. In addition, P is often mixed from iron ore or scrap. However, since removal of P or addition of P causes an increase in manufacturing cost, the content may be determined by integrating strength and cost. .
[0043]
N: 0.001 to 0.02%
N forms a nitride in the steel to refine the crystal grains, and has an effect of increasing properties required for the steel for machine structural use, such as toughness and fatigue properties. In order to ensure the above effect, the N content needs to be 0.001% or more. On the other hand, if the N content exceeds 0.02%, some nitrides become coarse and the toughness is significantly reduced. Therefore, the content of N is set to 0.001 to 0.02%.
[0044]
Al: 0.0003-0.005%
Al has a strong affinity with O (oxygen) in steel and Al 2 O 3 To form Suitable concentration of Al in oxide-based inclusions 2 O 3 By containing the oxide, the oxide is softened in a high-speed cutting temperature range and contributes to improvement in machinability. For softening this oxide, the Al content needs to be 0.0003% or more. On the other hand, when the content of Al exceeds 0.005%, the main component of the oxide-based inclusions is Al. 2 O 3 Therefore, the tool wear amount is rather increased. Therefore, the Al content is set to 0.0003 to 0.005%.
[0045]
Ca: 0.0001-0.010%
Ca in steel has a strong affinity for O (oxygen) and S, forms CaO in oxide-based inclusions, and forms a solid solution in MnS-based inclusions. By including an appropriate concentration of CaO in the oxide-based inclusions, the oxide is softened in a high-speed cutting temperature range and contributes to improvement in machinability. Furthermore, by including CaS in the sulfide-based inclusions under the condition satisfying the expression (2), the sulfide is generated by the monotectic reaction, and the sulfide can efficiently contain Te. In order to form CaO and solid-dissolve Ca in MnS-based inclusions, the content of Ca must be at least 0.0001%. However, even if Ca is contained in an amount exceeding 0.010%, the formation of sulfide in the monotectic reaction due to the formation of CaS is saturated, and the cost of Ca treatment is only increased. Therefore, the content of Ca is set to 0.0001 to 0.010%.
[0046]
O (oxygen): 0.0005 to 0.005%
O in steel consists of those derived from oxide inclusions in steel and those dissolved in steel. The amount of oxide-based inclusions affects the machinability and mechanical properties of steel, while the amount of dissolved oxygen affects the form of sulfides and the composition of oxide-based inclusions. Since it is difficult to separate and detect dissolved oxygen and O contained in oxide-based inclusions, the O content in the present invention is the total O content obtained by a general analysis method. From the viewpoint of the amount of oxide-based inclusions, when the O content increases, the machinability and mechanical properties decrease. Further, from the viewpoint of the amount of dissolved oxygen, an increase in the content of O means an increase in the amount of O combined with Ca, so that CaS is not easily formed. That is, when the O content exceeds 0.005%, machinability and mechanical properties are greatly reduced, and formation of CaS becomes extremely difficult. On the other hand, when the above-mentioned upper limit of the Al content is less than 0.005%, it is difficult to reduce the O content to less than 0.0005% even if slag refining is performed for a long time, and the cost increases. It is. Therefore, the content of O is set to 0.0005 to 0.005%.
[0047]
Te: 0.0001 to 0.01%
Te is an important element in the present invention. That is, by forming a solid solution of Te in the MnS-based inclusions, it is possible to reduce anisotropy of mechanical properties and secure machinability. To obtain the above effect, the content of Te needs to be 0.0001% or more. On the other hand, if the content exceeds 0.01%, MnTe precipitates around MnS-based inclusions. Therefore, the content of Te is set to 0.0001 to 0.01%.
[0048]
In the present invention, Mg in the impurities is defined as follows.
[0049]
Mg: 0.001% or less
A harmful element for practicing the present invention is Mg. The present invention ensures the solid solution of Te in MnS-based inclusions by generating spherical MnS-based inclusions. However, Mg has a strong affinity for S and O, and MgO and MgS Generate Of these, MgO is a hard oxide and causes a decrease in machinability. In addition, both MgO and MgS serve as crystallization starting points for MnS-based inclusions, and inhibit the formation of spherical MnS-based inclusions, which are considered to be due to a monotectic reaction. In particular, if the Mg content exceeds 0.001%, the effects of the present invention cannot be achieved. Therefore, it is necessary to avoid adding Mg to the molten steel. The content of Mg contained as an impurity must be 0.001% or less. The content of Mg in the impurities is more preferably 0.0005% or less.
[0050]
The steel for machine structural use according to the invention (1) is a steel comprising the above-mentioned elements from C to Te, the balance of Fe and impurities, and Mg in the impurities having a chemical composition satisfying the above-mentioned regulations.
[0051]
The steel for machine structural use according to the invention of the above (2) is intended to improve mechanical properties such as tensile strength and toughness. 0.1% or less, Cr: 2.5% or less, V: 0.5% or less, Mo: 1.0% or less, Nb: 0.1% or less, Cu: 2.0% or less, and Ni: 2. It is a steel having a chemical composition containing at least one selected from 0% or less.
[0052]
In general, it is known that machinability decreases when the tensile strength of steel is increased. However, if any of the above elements from Ti to Ni is contained in an appropriate range, respectively, the above-described MnS Since it does not significantly affect the formation of system inclusions, it has the effect of increasing the tensile strength of steel without hindering reduction of anisotropy in mechanical properties and ensuring machinability. Each of these elements from Ti to Ni may be contained alone within the range described below, or may be contained in combination of two or more.
[0053]
Ti: 0.1% or less
Ti forms carbides, nitrides and carbonitrides in the steel to refine the crystal grains, thereby improving the tensile strength and the toughness of the steel. To ensure these effects, it is preferable that the content of Ti is 0.005% or more. However, if the content exceeds 0.1%, not only the above effects are saturated, but also the hard TiN is coarsened, resulting in a reduction in machinability. Therefore, when Ti is added, its content is preferably set to 0.1% or less.
[0054]
Cr: 2.5% or less
Cr is an element useful for increasing the tensile strength of steel. In order to reliably obtain this effect, it is desirable that the content of Cr be 0.03% or more. However, when the content exceeds 2.5%, a decrease in machinability due to an increase in hardness becomes apparent. Therefore, when Cr is added, its content is preferably set to 2.5% or less.
[0055]
V: 0.5% or less
V forms carbides, nitrides, and carbonitrides in the steel in the same manner as Ti, so that the crystal grains are refined, so that the tensile strength of the steel is increased and the toughness is also improved. In order to ensure these effects, it is preferable that the content of V be 0.05% or more. However, when the content exceeds 0.5%, not only the above effects are saturated, but also the machinability is reduced. Therefore, when V is added, its content is preferably 0.5% or less.
[0056]
Mo: 1.0% or less
Mo is an element useful for increasing the tensile strength of steel. To ensure this effect, it is desirable that the content of Mo be 0.05% or more. However, if the content exceeds 1.0%, the structure after hot working becomes abnormally coarse and the toughness is reduced. Therefore, when Mo is added, its content is preferably set to 1.0% or less.
[0057]
Nb: 0.1% or less
Nb forms carbides, nitrides and carbonitrides in the steel to refine the crystal grains, so that the tensile strength of the steel is increased and the toughness is also improved. In order to surely obtain these effects, the content of Nb is preferably set to 0.005% or more. However, when the content exceeds 0.1%, not only the above effects are saturated, but also the machinability is significantly reduced. Therefore, when Nb is added, its content is preferably set to 0.1% or less.
[0058]
Cu: 2.0% or less
Cu has the effect of increasing the tensile strength of steel by precipitation strengthening. In order to ensure this effect, it is desirable that the content of Cu be 0.2% or more. However, if the content exceeds 2.0%, in addition to the deterioration of hot workability, precipitates may become coarse and the above-mentioned effect may be saturated or may be rather reduced. Therefore, when Cu is added, its content is preferably set to 2.0% or less.
[0059]
Ni: 2.0% or less
Ni has the effect of increasing the tensile strength of steel by solid solution strengthening. To ensure this effect, it is desirable that the content of Ni be 0.2% or more. However, even if Ni is contained in excess of 2.0%, the effect is saturated and the cost is increased. Therefore, when Ni is added, its content is preferably 2.0% or less.
[0060]
The steel for machine structural use according to the invention (3) has a Bi: 0.1% content in place of a part of Fe of the steel according to the invention (1) for the purpose of further improving machinability. And REM (rare earth element): Steel having a chemical composition containing at least one selected from 0.01% or less.
[0061]
Both Bi and REM described above, if contained in appropriate ranges, can further improve the machinability without hindering the reduction of the anisotropy of the mechanical properties by controlling the MnS-based inclusion morphology described above. Has the effect of increasing. The above-mentioned Bi and REM may be contained alone or in a combination of two kinds within the range described below.
[0062]
Bi: 0.1% or less
Bi precipitates as Bi around the MnS-based inclusions and suppresses plastic deformation of the MnS-based inclusions to reduce mechanical property anisotropy. Improves cutting performance. In order to clearly obtain such effects, the content of Bi is preferably set to 0.01% or more. However, even if Bi is contained in an amount exceeding 0.1%, the effect of improving machinability saturates, and the cost of addition increases only. Therefore, when Bi is added, its content is preferably set to 0.1% or less.
[0063]
REM (rare earth element): 0.01% or less
REM indicates a total of 17 elements of Sc, Y and lanthanoid as described above. Since both have strong affinity with S and O in steel, they are considered to be substantially equivalent chemically in steel, and the total content of the above elements is defined as the content of REM. In particular, when industrially using misch metal, it may be simply regarded as the sum of La, Ce and Nd contents.
[0064]
REM reacts with S and O in steel to form REM sulfide and REM oxysulfide from the molten steel stage, and these are appropriately dispersed to enhance machinability. REM does not affect the dissolution of Te into MnS-based inclusions during the microsegregation process of solidification.
[0065]
To ensure the above-mentioned effects, it is preferable that the content of REM is 0.001% or more. However, when the content of REM exceeds 0.01%, the amount of hard REM oxide generated increases, and on the contrary, the machinability decreases. Therefore, when REM is added, its content is preferably set to 0.01% or less.
[0066]
The steel for machine structural use according to the invention (4) is a steel according to the invention (1) for the purpose of improving mechanical properties such as tensile strength and toughness, and further improving machinability. Of Ti, 0.1% or less, Cr: 2.5% or less, V: 0.5% or less, Mo: 1.0% or less, Nb: 0.1% or less, Cu : At least one selected from 2.0% or less and Ni: 2.0% or less, and one or more selected from Bi: 0.1% or less and REM (rare earth element): 0.01% or less Is a steel having a chemical composition containing
[0067]
Since Se has almost the same chemical action as Te in molten steel, it is industrially possible to use Se as an element equivalent to Te by substituting it with the content of Te. However, with the increase in environmental problems in recent years, there has been a demand for non-Se addition. Therefore, in the present invention, Se is not added.
(B) MnS-based inclusions
Next, MnS-based inclusions when the steel has a chemical composition as described in the above section (A) will be described.
[0068]
An important elemental technology of the inventions (1) to (4) is the solid solution of Te in MnS-based inclusions. The basis of this elemental technology is to control the crystallization form of the MnS-based inclusions to make the smallest possible amount of Te act effectively. As a result, in the longitudinal longitudinal section (L section), Te is contained in the MnS-based inclusion having the width W of 2 μm or more and the ratio L / W of the length L to the width W of 5 or less in the MnS-based inclusion. It becomes possible to contain 0.6 atomic%, thereby making it possible to greatly improve the anisotropy of the mechanical properties of the rolled steel material for machine structure.
[0069]
First, in the inventions of the above (1) to (4), the reason for targeting the MnS-based inclusions in the L section is that this is a main factor of the anisotropy of the mechanical properties. Further, when the MnS-based inclusions generated by the monotectic reaction are mainly used, the anisotropy of the mechanical properties is hardly affected if the width W in the L section is less than 2 μm.
[0070]
Next, Te is dissolved in the MnS-based inclusions to suppress the plastic deformation of the MnS-based inclusions during hot and cold working to reduce the anisotropy of the mechanical properties. The value of L / W of the sulfide which does not form a solid solution of Te or Ca, which cannot be avoided, exceeds 5, and if these are included, the composition of MnS-based inclusions which is a main component of the property improvement Will be an error factor when measuring.
[0071]
Finally, the content of Te in the target MnS-based inclusion will be described.
[0072]
If the content of Te in the MnS-based inclusions is less than 0.1 atomic%, the cross section of a portion having a shape elongated in the steel is actually reduced even if it seems that the shape is adjusted at first glance. It is merely observed, and the effect of improving the anisotropy of the mechanical properties cannot be expected. On the other hand, even if the Te content in the MnS-based inclusions exceeds 0.6 atomic%, the effect of improving the anisotropy of the mechanical properties may be saturated and the cost may increase. When MnTe is observed around the system inclusions, MnTe is often observed, and since MnTe has a low melting point, it also causes a reduction in hot workability.
[0073]
Therefore, in the above inventions (1) to (4), the width W is 2 μm or more, the ratio L / W of the length L to the width W is 5 or less, and Te is further set to 0.1 to 0. MnS-based inclusions containing 0.6 atomic% were included in the L section. It is more preferable that the content of Te in the MnS-based inclusion is 0.2 to 0.6 atomic%.
[0074]
Here, the length L of the MnS-based inclusion means the longest part observed in the L section, and the width W thereof means the longest part in a direction orthogonal to the length L. As described above, when the processing is performed by rolling, if the rolling ratio is 2 or more in cross-sectional area ratio, the longitudinal direction of rolling and the straight line representing the length of the MnS-based inclusions are almost parallel, as described above.
[0075]
Also, as already described, the content of Te in atomic% contained in the MnS-based inclusions indicates an average value of the content in the sulfide of about 10 to 20 extracted at random. .
[0076]
As one example of the measurement of the content of Te in the MnS-based inclusions, using an energy dispersive X-ray microanalyzer, the MnS-based inclusions of the above-described form in the L section are used. Is randomly extracted about 10 to 20, and the average value of their contents may be adopted. When the above energy dispersive X-ray microanalyzer is used, the characteristic X-rays of Ca and Te are close to each other. The measurement of the content of Te in the MnS-based inclusions may be performed by a conventional instrumental analysis capable of forming a minute region, and the method is not particularly limited to the above-described method.
[0077]
In addition, the decrease in the anisotropy of the mechanical properties due to the inclusion of the trace amount of Te specified in the inventions of the above (1) to (4) is due to a process such as rolling or forging containing a small amount of Ca in the MnS-based inclusion. It is thought that the sulfide is formed in the liquid phase at a relatively early stage of micro-segregation, in addition to the sulfide composition that is difficult to extend. In other words, when produced by liquid phase MnS-based inclusions, a small amount of Te is included in the MnS-based inclusions to form a solid solution in a small amount by containing a small amount of Te. In fact, among the steels whose chemical compositions have been adjusted as described in the above item (A), for Te in MnS-based inclusions that have not progressed during hot working, the aforementioned energy dispersive X-ray microanalyzer was used. As a result, 0.1 to 0.6 atomic% of Te was detected. Many of the sulfides generated in the early stage of such micro-segregation are relatively large, and since Te forms a solid solution in these sulfides, it is considered that the anisotropy of the mechanical properties is more effectively improved.
[0078]
In addition, for example, while satisfying the above-mentioned formula (1) in a sufficiently deoxidized state and producing a steel ingot so as to satisfy the above-mentioned formula (2), Te is set to 0.1 to 0.6. MnS-based inclusions having a shape in which the width W including atomic% is 2 μm or more and the ratio L / W of the length L to the width W is 5 or less can be contained in the longitudinal vertical section.
[0079]
That is, the ratio of Ca to O in steel affects the formation of MnS-based inclusions, and when the ratio is 0.8 or more, MnS-based inclusions are formed into spheres whose primary crystals are assumed to be in the liquid phase. It is understood that this is because MnS-based inclusions are formed by a monotectic reaction in the micro-segregation process in the solidification of steel.
[0080]
An important point in the present invention is that the added Te is dissolved as uniformly as possible in the MnS-based inclusions without being partially crystallized as MnTe. In order to uniformly dissolve Te in the MnS-based inclusions, it is considered advantageous that the early stage of microsegregation has a lower solid fraction and a sufficiently high Te diffusion rate in the liquid phase. The present inventors have observed and classified MnS-based inclusions in which Te is dissolved as a solid solution from a large number of MnS-based inclusions. As a result, it was found that Te was uniformly dissolved in the spherical sulfide generated by the monotectic reaction in the initial stage of the micro-segregation. This is considered to be because Te in the liquid phase is sufficiently diffused and Te in the molten steel is easily dissolved in the MnS-based inclusions in the liquid phase.
[0081]
By setting the value of “Te / S”, which is the ratio of Te to S in the steel, to 0.007 or more, Te is dissolved stably and surely in the MnS-based inclusions to form a hot and cold steel. Plastic deformation of the MnS-based inclusions at the time of processing can be suppressed, but when the value of “Te / S” becomes 0.05 or more, the content of Te in atomic% contained in the MnS-based inclusions is reduced. Since the amount exceeds 0.6 atomic%, partial crystallization of MnTe occurs.
[0082]
In the following, the present inventors have determined that 0.38 to 0.42% of C, 0.18 to 0.22% of Si, 1.1 to 1.3% of Mn, and 0.015 to 0.025% of P, 0.001-0.002% Al, 0.006-0.010% N, 0.22-0.28% Cr, 0.08-0.12% V and 0.0005% Steel with different composition of Te, Ca and O (oxygen) with the basic composition of less than Mg and two levels of S content of 0.08-0.12% and 0.16-0.19% The above contents will be described in more detail with reference to an example studied using.
[0083]
That is, 150 kg steel ingots were prepared for each of the above steels using a normal induction heating furnace capable of adjusting the atmosphere. The content of Te is adjusted by adjusting the amount of addition, the content of O is adjusted by adjusting the initial deoxidation state and, if necessary, by adding iron oxide. Minutes before the addition of the CaSi alloy was adjusted.
[0084]
Next, these steel ingots were heated to 1473K, and hot forging was performed at 1273 to 1373K to produce round bars having a diameter of 55 to 60 mm. The cooling conditions after hot forging were allowed to cool in the air.
[0085]
From the direction parallel to the forging axis (hereinafter referred to as L direction) and the direction perpendicular to the forging axis (hereinafter referred to as C direction) of each round bar thus obtained, each of the round bars has a diameter of 9.9 mm and a gauge length of 35 mm. Tensile test specimens were collected and subjected to a tensile test at room temperature (room temperature) to measure the elongation and squeeze most susceptible to the MnS-based inclusion morphology, and to determine the ratio of the values in the C and L directions, respectively. The anisotropy of the mechanical properties was evaluated.
[0086]
1 and 2, when the S content is 0.08 to 0.12%, the Ca / O value is the ratio of the elongation in the C direction to the value in the L direction (hereinafter referred to as “elongation ratio ( C direction / L direction)) and the ratio of the value of the diaphragm in the C direction to the value in the L direction (hereinafter, referred to as “aperture ratio (C direction / L direction)”). 3 and 4, when the S content is 0.16 to 0.19%, the Ca / O values are “elongation ratio (C direction / L direction)” and “drawing ratio (C direction). / L direction) ". In each of the above-mentioned drawings, what is described as Te addition contains Te so that the value of Te / S is in the range of 0.02 to 0.04.
[0087]
1 to 4, when the value of Ca / O is 0.8 or more, the “elongation ratio (C direction / L direction)” and the “drawing ratio (C direction / L direction)” increase, It is clear that the anisotropy is improved. Furthermore, when the value of Ca / O is 0.8 or more and Te is contained in the range of 0.02 to 0.04 as the value of Te / S, the effect of improving anisotropy is remarkable. .
[0088]
FIGS. 5 and 6 show that when the content of S is 0.08 to 0.12% and the value of Ca / O is 1.0 to 2.0, the value of Te / S is "elongation ratio (C Direction / L direction) and the aperture ratio (C direction / L direction).
[0089]
As shown in FIG. 5, the “elongation ratio (C direction / L direction)” is 75% or more when the value of Te / S is 0.007 and is 75% when the value of Te / S is less than 0.05. % Or more. However, even if the value of Te / S is 0.05 or more, the effect of improving the anisotropy of elongation is not recognized. This is presumably because the effect of improving the anisotropy of elongation due to the suppression of the extension of MnS-based inclusions was offset by the formation of MnTe due to the excessive inclusion of Te.
[0090]
On the other hand, it can be seen from FIG. 6 that the “aperture ratio (C direction / L direction)” is 50% or more when the value of Te / S is 0.007 and the effect is saturated when the value of Te / S is 0.05. Is recognized.
[0091]
Considering that the addition of Te is costly and furthermore that the hot workability is reduced due to the formation of MnTe having a melting point as low as 1424K, the Te content should satisfy the required material properties. A small amount is desirable.
[0092]
Next, 0.38 to 0.42% C, 0.18 to 0.22% Si, 1.1 to 1.3% Mn, 0.015 to 0.025% P, 0.001 -0.002% Al, 0.006-0.010% N, 0.22-0.28% Cr, 0.08-0.12% V and less than 0.0005% Mg With the composition of S, the content of S being 0.08 to 0.12%, the value of Ca / O being 1.0 to 2.0, and examining using steels with various values of Te / S. The definition of the Te content in the MnS-based inclusions will be described in more detail.
[0093]
That is, 150 kg steel ingots were prepared for each of the above steels using a normal induction heating furnace capable of adjusting the atmosphere. In this case, too, the content of Te is adjusted by adjusting the addition amount, the content of O is adjusted by adjusting the initial deoxidation state and, if necessary, iron oxide is added, and the content of Ca is adjusted by casting into a mold. A few minutes before, it was adjusted to add CaSi alloy iron.
[0094]
These ingots were also heated to 1473 K and hot forged to finish at 1273 to 1373 K, as in the previous case, to form round bars having a diameter of 55 to 60 mm. The cooling conditions after hot forging were allowed to cool in the air.
[0095]
A tensile test piece having a diameter of 9.9 mm and a gauge length of 35 mm was sampled from the L direction and the C direction of each round bar thus obtained, and subjected to a tensile test at room temperature (room temperature) to determine the elongation and the elongation. The aperture was measured, and the ratio between the value in the C direction and the value in the L direction was determined to evaluate the anisotropy of the mechanical properties. Further, the content of Te in the MnS-based inclusions in the L section is determined by the MnS-based inclusions in the target form (that is, the width W is 2 μm or more, and the ratio L / W of the length L to the width W is 5 / L). The following MnS-based inclusions) were randomly extracted 10 and analyzed using an energy dispersive X-ray microanalyzer, and calculated from the average of their contents.
[0096]
7 and 8 show the effect of the content of Te in atomic% in the MnS-based inclusions on the “elongation ratio (C direction / L direction)” and the “drawing ratio (C direction / L direction)”. .
[0097]
From FIG. 7, when the content of Te in the MnS-based inclusion is 0.1 atomic% or more, the “elongation ratio (C direction / L direction)” exceeds 75%, but the anisotropy is improved. It can be seen that the effect is saturated even if the content of Te exceeds 0.6 atomic%. Similarly, from FIG. 8, when the content of Te in the MnS-based inclusions is 0.1 atomic% or more, the “drawing ratio (C direction / L direction)” exceeds 50% and the anisotropy is improved. However, it is clear that the effect is saturated even if the content of Te exceeds 0.6 atomic%.
[0098]
In the present invention, MnTe is not formed by adding Te to improve machinability, so that Te is contained in as small a quantity as possible to improve the anisotropy of mechanical properties. And its cost-effectiveness is very good.
[0099]
In addition, the usefulness of the present invention is that the machinability itself is based on the addition of S and Ca and the advantage of the conventional Ca-S free-cutting steel of oxide composition control, while maintaining a small amount of Te under limited conditions. It can be exhibited by containing it. That is, according to the present invention, it is possible to relatively improve the anisotropy of the mechanical properties of the steel for machine structural use which is processed into various working ratios or complicated shapes based on steels having various hardnesses. Therefore, the machinability, which had to be sacrificed from the viewpoint of the anisotropy of the mechanical properties, can be improved by appropriately increasing the S content, and as a Pb-free free-cutting steel, The scope of application is considered broad.
[0100]
【Example】
Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
(Example 1)
Using an induction heating furnace capable of adjusting the atmosphere, a 150 kg ingot of steel having a chemical composition shown in Tables 1 to 4 was produced. That is, in an inert gas atmosphere, melting and holding are performed at a temperature of 1823 to 1873K to add and adjust each alloy component including S, and then, to adjust the O (oxygen) content and the Te content, use iron oxide or After adding Mn oxide and metal Te, and further adding CaSi alloy iron to adjust the Ca content and stirring for a predetermined time, the mixture was cast into a round mold having a diameter of about 230 mm and a height of 360 mm. Coagulated. Tables 2 and 4 also show the values of Ca / O and Te / S.
[0101]
[Table 1]
Figure 2004292929
[0102]
[Table 2]
Figure 2004292929
[0103]
[Table 3]
Figure 2004292929
[0104]
[Table 4]
Figure 2004292929
[0105]
Next, each of the above-mentioned steel ingots was heated to 1473K, hot forged by a usual method with the height direction of the mold set to the L direction, and finished into a round bar having a diameter of 55 to 60 mm at 1273 to 1373K. The cooling conditions after hot forging were allowed to cool in the air.
[0106]
A tensile test piece having a diameter of 9.9 mm and a gauge length of 35 mm was sampled from the L direction and the C direction of each round bar thus obtained, and subjected to a tensile test at room temperature (room temperature) to determine the elongation and the elongation. The aperture was measured, and the ratio between the value in the C direction and the value in the L direction was determined to evaluate the anisotropy of the mechanical properties.
[0107]
In addition, an MnS-based inclusion having a width W of 2 μm or more in the L section and a ratio L / W of the length L to the width W of 5 or less is randomly extracted 10 and an energy dispersive X-ray microanalyzer is used. The content of Te in the MnS-based inclusions was determined from the average of those contents.
[0108]
The machinability was evaluated by performing a turning test. That is, the lubrication is performed by dry cutting using a carbide tool P20 tip under the conditions of a cutting amount of 2 mm, a feed amount of 0.2 mm / rev, and a cutting speed of 132 m / min. The crater wear (μm) was measured.
[0109]
Table 5 shows the results of the above tests. In Table 5, the content of Te in atomic% in MnS-based inclusions is described as “Te content in MnS”, and the term “Te content in MnS” will be used in the following description. . In the machinability column, “◎”, “○”, and “×” indicate that the wear amount is less than 85% and 85%, based on the crater wear amount of the tip when the steel is turned as a comparison reference. % To less than 115% and 115% or more.
[0110]
[Table 5]
Figure 2004292929
[0111]
In the case of the present invention example, as shown in Test Nos. 1 to 4, steels TA0 to TA3 having various S contents are steel C0 of Test No. 21 and Test Nos. 25 to 25 of Comparative Examples in which the S contents are at the same level. As compared with the No. 27 steels C4 to C6, the machinability is the same, but the “elongation ratio (C direction / L direction)” and “drawing ratio (C direction / L direction)” are high, and the anisotropy is low. Has been improved.
[0112]
In the case of steels TA4 to TA19T of test numbers 5 to 20 which are examples of the present invention, although the material strength changes depending on the components, test numbers 26 which are comparative examples using steel C5 and steels C10 to C20 having the same components, respectively. It is clear that the "elongation ratio (C direction / L direction)" and the "drawing ratio (C direction / L direction)" are higher than those of the test numbers 31 to 41, and the anisotropy is improved. is there.
[0113]
In the case of Test No. 21 of the comparative example, since the steel C0 does not contain Ca and Te, the amount of Te in MnS falls outside the range specified in the present invention, and the anisotropy of the mechanical properties is large.
[0114]
Further, the steel C1 in Test No. 22 of the comparative example had an S content deviating from the condition specified in the present invention, and was inferior in machinability.
[0115]
In Test No. 30 of the comparative example, the Mg content of steel C9 was as high as 0.0011%, and the machinability was lower than that of Test No. 26 using steel C5 having the same level of S content.
[0116]
In the case of Test Nos. 23 to 27 and Test Nos. 31 to 41, the amount of Te in MnS deviates from the range specified in the present invention, so that the mechanical properties have large anisotropy.
[0117]
In Test Nos. 28 and 29 of the comparative examples, the contents of S in the steels C7 and C8 were 0.1% and 0.17%, respectively, and the Te content in MnS deviated from the specification of the present invention. In some cases, the anisotropy of the mechanical properties is improved only to the same degree as steel TA2 and steel TA3 of Test Nos. 3 and 4 of the present invention.
(Example 2)
Using an induction heating furnace capable of adjusting the atmosphere, a 150 kg steel ingot of steel containing Bi or REM having the chemical composition shown in Tables 6 and 7 was produced. That is, in an inert gas atmosphere, melting and holding are performed at a temperature of 1823 to 1873K to add and adjust each alloy component including S, and then, to adjust the O (oxygen) content and the Te content, use iron oxide or After adding Mn oxide and metal Te, and further adding CaSi alloy iron to adjust the Ca content and stirring for a predetermined time, the mixture was cast into a round mold having a diameter of about 230 mm and a height of 360 mm. Coagulated. Bi or REM was added in the form of metal Bi or misch metal just before Ca addition to adjust the content. Table 7 also shows the values of Ca / O and Te / S.
[0118]
[Table 6]
Figure 2004292929
[0119]
[Table 7]
Figure 2004292929
[0120]
Next, as in the case of Example 1, each of the above steel ingots was heated to 1473K, and hot forged by a normal method with the height direction of the mold set to the L direction, and a round having a diameter of 55 to 60 mm at 1273 to 1373K. Finished as a stick. The cooling conditions after hot forging were allowed to cool in the air.
[0121]
The anisotropy of the mechanical properties, the “amount of Te in MnS” and the machinability were examined in the same manner as in Example 1 using each of the thus obtained round bars.
[0122]
Table 8 shows the results of the above tests. Table 8 also shows the results of Test No. 26 using the steel C5 of Example 1.
[0123]
[Table 8]
Figure 2004292929
[0124]
As shown in Test Nos. 42 to 44, steels TB1 to TB3 having various Bi contents have the same level of other components except for Bi, but the Te content in MnS is in accordance with the conditions specified in the present invention. Compared with steels C1 to B3 of test numbers 48 to 50, in which the steel C5 of test No. 26 and the content of the components were at the same level but the Te content in MnS deviated from the conditions specified in the present invention, It can be seen that not only the anisotropy of the mechanical properties indicated by “elongation ratio (C direction / L direction)” and “drawing ratio (C direction / L direction)” but also machinability are improved.
[0125]
Similarly, as shown in Test Nos. 45 to 47, steels TR1 to TR3 having various REM contents have the same level of contents of other components except for REM, but the Te content in MnS is defined by the present invention. The steel C5 of Test No. 26 out of the conditions and the contents of the components were at the same level respectively, but the Te content in MnS was compared with the steels R1 to R3 of Test Nos. 51 to 53 out of the conditions specified in the present invention. Thus, it is apparent that not only the anisotropy of the mechanical properties indicated by “elongation ratio (C direction / L direction)” and “drawing ratio (C direction / L direction)” but also machinability are improved. It is.
[0126]
【The invention's effect】
The machine structural steel of the present invention is excellent in machinability, has small anisotropy of mechanical properties, and is inexpensive. Therefore, various machine structural parts such as industrial machines, construction machines, and transport machines including automobiles. It can be used as a material. Furthermore, since the steel for machine structural use of the present invention contains substantially no Pb, it is suitable as a steel that is friendly to the global environment.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of the Ca / O value and the presence or absence of Te on the anisotropy of elongation when the S content is 0.08 to 0.12%.
FIG. 2 is a graph showing the effect of the Ca / O value and the presence or absence of Te on the anisotropy of the drawing when the S content is 0.08 to 0.12%.
FIG. 3 is a graph showing the effect of the Ca / O value and the presence or absence of Te on the anisotropy of elongation when the S content is 0.16 to 0.19%.
FIG. 4 is a graph showing the influence of the Ca / O value and the presence or absence of Te on the anisotropy of the drawing when the S content is 0.16 to 0.19%.
FIG. 5 shows the effect of the value of Te / S on the anisotropy of elongation when the content of S is 0.08 to 0.12% and the value of Ca / O is 1.0 to 2.0. FIG.
FIG. 6 shows the effect of the value of Te / S on the anisotropy of the drawing when the content of S is 0.08 to 0.12% and the value of Ca / O is 1.0 to 2.0. FIG.
FIG. 7 is a graph showing the effect of the content of Te in atomic% of MnS-based inclusions on elongation anisotropy.
FIG. 8 is a view showing the effect of the content of Te in atomic% of MnS-based inclusions on drawing anisotropy.

Claims (4)

質量%で、C:0.1〜0.6%、Si:0.03〜2.0%、Mn:0.2〜2.0%、S:0.03〜0.20%、P:0.1%以下、N:0.001〜0.02%、Al:0.0003〜0.005%、Ca:0.0001〜0.01%、O(酸素):0.0005〜0.005%及びTe:0.0001〜0.01%を含み、残部はFe及び不純物で、不純物中のMgは0.001%以下の化学組成からなり、更に、Teを0.1〜0.6原子%含む幅Wが2μm以上、且つ、長さLと幅Wの比L/Wが5以下の形状を有するMnS系介在物を長手方向縦断面に含有することを特徴とする機械構造用鋼。In mass%, C: 0.1 to 0.6%, Si: 0.03 to 2.0%, Mn: 0.2 to 2.0%, S: 0.03 to 0.20%, P: 0.1% or less, N: 0.001-0.02%, Al: 0.0003-0.005%, Ca: 0.0001-0.01%, O (oxygen): 0.0005-0. 005% and Te: 0.0001 to 0.01%, the balance being Fe and impurities, Mg in the impurities has a chemical composition of 0.001% or less, and furthermore, Te is 0.1 to 0.6. A steel for machine structural use characterized by containing a MnS-based inclusion having a shape in which the width W including atomic% is 2 μm or more, and the ratio L / W of the length L to the width W is 5 or less, in the longitudinal longitudinal section. . 質量%で、C:0.1〜0.6%、Si:0.03〜2.0%、Mn:0.2〜2.0%、S:0.03〜0.20%、P:0.1%以下、N:0.001〜0.02%、Al:0.0003〜0.005%、Ca:0.0001〜0.01%、O(酸素):0.0005〜0.005%及びTe:0.0001〜0.01%を含み、更に、Ti:0.1%以下、Cr:2.5%以下、V:0.5%以下、Mo:1.0%以下、Nb:0.1%以下、Cu:2.0%以下及びNi:2.0%以下から選択される1種以上を含有し、残部はFe及び不純物で、不純物中のMgは0.001%以下の化学組成からなり、更に、Teを0.1〜0.6原子%含む幅Wが2μm以上、且つ、長さLと幅Wの比L/Wが5以下の形状を有するMnS系介在物を長手方向縦断面に含有することを特徴とする機械構造用鋼。In mass%, C: 0.1 to 0.6%, Si: 0.03 to 2.0%, Mn: 0.2 to 2.0%, S: 0.03 to 0.20%, P: 0.1% or less, N: 0.001-0.02%, Al: 0.0003-0.005%, Ca: 0.0001-0.01%, O (oxygen): 0.0005-0. 005% and Te: 0.0001 to 0.01%, and further, Ti: 0.1% or less, Cr: 2.5% or less, V: 0.5% or less, Mo: 1.0% or less, Nb: at least one selected from 0.1% or less, Cu: 2.0% or less, and Ni: 2.0% or less, with the balance being Fe and impurities, with Mg in the impurities being 0.001%. A MnS-based material having the following chemical composition, and having a shape having a width W containing 0.1 to 0.6 atomic% of Te of 2 μm or more and a ratio L / W of length L to width W of 5 or less. Mechanical structural steel, characterized in that it contains the object in the longitudinal direction longitudinal section. 質量%で、C:0.1〜0.6%、Si:0.03〜2.0%、Mn:0.2〜2.0%、S:0.03〜0.20%、P:0.1%以下、N:0.001〜0.02%、Al:0.0003〜0.005%、Ca:0.0001〜0.01%、O(酸素):0.0005〜0.005%及びTe:0.0001〜0.01%を含み、更に、Bi:0.1%以下及びREM(希土類元素):0.01%以下から選択される1種以上を含有し、残部はFe及び不純物で、不純物中のMgは0.001%以下の化学組成からなり、更に、Teを0.1〜0.6原子%含む幅Wが2μm以上、且つ、長さLと幅Wの比L/Wが5以下の形状を有するMnS系介在物を長手方向縦断面に含有することを特徴とする機械構造用鋼。In mass%, C: 0.1 to 0.6%, Si: 0.03 to 2.0%, Mn: 0.2 to 2.0%, S: 0.03 to 0.20%, P: 0.1% or less, N: 0.001-0.02%, Al: 0.0003-0.005%, Ca: 0.0001-0.01%, O (oxygen): 0.0005-0. 005% and Te: 0.0001-0.01%, Bi: 0.1% or less, and REM (rare earth element): 0.01% or less. Among the Fe and impurities, Mg in the impurities has a chemical composition of 0.001% or less. Further, the width W containing 0.1 to 0.6 atomic% of Te is 2 μm or more, and the length L and the width W are A steel for machine structural use characterized by containing a MnS-based inclusion having a shape having a ratio L / W of 5 or less in a longitudinal longitudinal section. 質量%で、C:0.1〜0.6%、Si:0.03〜2.0%、Mn:0.2〜2.0%、S:0.03〜0.20%、P:0.1%以下、N:0.001〜0.02%、Al:0.0003〜0.005%、Ca:0.0001〜0.01%、O(酸素):0.0005〜0.005%及びTe:0.0001〜0.01%を含み、更に、Ti:0.1%以下、Cr:2.5%以下、V:0.5%以下、Mo:1.0%以下、Nb:0.1%以下、Cu:2.0%以下及びNi:2.0%以下から選択される1種以上、並びに、Bi:0.1%以下及びREM(希土類元素):0.01%以下から選択される1種以上を含有し、残部はFe及び不純物で、不純物中のMgは0.001%以下の化学組成からなり、更に、Teを0.1〜0.6原子%含む幅Wが2μm以上、且つ、長さLと幅Wの比L/Wが5以下の形状を有するMnS系介在物を長手方向縦断面に含有することを特徴とする機械構造用鋼。In mass%, C: 0.1 to 0.6%, Si: 0.03 to 2.0%, Mn: 0.2 to 2.0%, S: 0.03 to 0.20%, P: 0.1% or less, N: 0.001-0.02%, Al: 0.0003-0.005%, Ca: 0.0001-0.01%, O (oxygen): 0.0005-0. 005% and Te: 0.0001 to 0.01%, and further, Ti: 0.1% or less, Cr: 2.5% or less, V: 0.5% or less, Mo: 1.0% or less, Nb: 0.1% or less, Cu: 2.0% or less, one or more selected from Ni: 2.0% or less, Bi: 0.1% or less, and REM (rare earth element): 0.01 % Or less, the balance being Fe and impurities, Mg in the impurities having a chemical composition of 0.001% or less, and further containing Te in a range of 0.1 to 0.1%. A steel for machine structural use characterized by containing a MnS-based inclusion having a shape in which the width W including atomic% is 2 μm or more, and the ratio L / W of the length L to the width W is 5 or less, in the longitudinal longitudinal section. .
JP2003089959A 2003-03-28 2003-03-28 Steel for machine structure Expired - Fee Related JP3912308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089959A JP3912308B2 (en) 2003-03-28 2003-03-28 Steel for machine structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089959A JP3912308B2 (en) 2003-03-28 2003-03-28 Steel for machine structure

Publications (2)

Publication Number Publication Date
JP2004292929A true JP2004292929A (en) 2004-10-21
JP3912308B2 JP3912308B2 (en) 2007-05-09

Family

ID=33403702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089959A Expired - Fee Related JP3912308B2 (en) 2003-03-28 2003-03-28 Steel for machine structure

Country Status (1)

Country Link
JP (1) JP3912308B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120905A (en) * 2007-11-14 2009-06-04 Kobe Steel Ltd Steel for machine structural use, having excellent machinability
JP2012117098A (en) * 2010-11-30 2012-06-21 Sumitomo Metal Ind Ltd Free-cutting steel for cold forging
JP2013007098A (en) * 2011-06-24 2013-01-10 Nippon Steel & Sumitomo Metal Corp Steel for hot-forging
CN103352178A (en) * 2013-06-21 2013-10-16 浙江浦宁不锈钢有限公司 Titanium alloy
CN103352177A (en) * 2013-06-17 2013-10-16 浙江浦宁不锈钢有限公司 Strength-enhanced steel
CN103436817A (en) * 2013-06-19 2013-12-11 浙江浦宁不锈钢有限公司 Strength-enhanced steel preparation method
WO2015025746A1 (en) 2013-08-22 2015-02-26 株式会社神戸製鋼所 Steel for mechanical structures which has excellent machinability

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120905A (en) * 2007-11-14 2009-06-04 Kobe Steel Ltd Steel for machine structural use, having excellent machinability
JP2012117098A (en) * 2010-11-30 2012-06-21 Sumitomo Metal Ind Ltd Free-cutting steel for cold forging
JP2013007098A (en) * 2011-06-24 2013-01-10 Nippon Steel & Sumitomo Metal Corp Steel for hot-forging
CN103352177A (en) * 2013-06-17 2013-10-16 浙江浦宁不锈钢有限公司 Strength-enhanced steel
CN103436817A (en) * 2013-06-19 2013-12-11 浙江浦宁不锈钢有限公司 Strength-enhanced steel preparation method
CN103352178A (en) * 2013-06-21 2013-10-16 浙江浦宁不锈钢有限公司 Titanium alloy
WO2015025746A1 (en) 2013-08-22 2015-02-26 株式会社神戸製鋼所 Steel for mechanical structures which has excellent machinability

Also Published As

Publication number Publication date
JP3912308B2 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
US7264684B2 (en) Steel for steel pipes
JP3468239B2 (en) Steel for machine structural use and its manufacturing method
WO2008018242A1 (en) Two-phase stainless steel
JP4424503B2 (en) Steel bar and wire rod
JP6918238B2 (en) Martensitic S Free-cutting stainless steel
JP2008127594A (en) High strength hot forged non-heat treated steel component having excellent fatigue limit ratio
JP3706560B2 (en) Mechanical structural steel with excellent chip control and mechanical properties
JP2010070812A (en) Free-cutting austenitic stainless steel wire rod excellent in cold forgeability, and manufacturing method therefor
JP5316495B2 (en) Bearing steel
JP4041413B2 (en) Machine structural steel having excellent chip disposal and manufacturing method thereof
JP3912308B2 (en) Steel for machine structure
JP2000034538A (en) Steel for machine structure excellent in machinability
JP6814655B2 (en) Ferritic free-cutting stainless steel wire
JP2011184716A (en) Martensitic stainless free-cutting steel bar wire having excellent forgeability
JP2019183257A (en) Ferritic S free-cutting stainless steel
JP5474616B2 (en) Ferritic stainless free-cutting steel rod with excellent forgeability
JP5323369B2 (en) Case-hardened steel with excellent machinability and grain coarsening prevention properties
JP5583986B2 (en) Austenitic stainless free-cutting steel rod with excellent forgeability
JP4687617B2 (en) Steel for machine structure
JP3460721B2 (en) Machine structural steel
JP2006002237A (en) Steel for plastic mold excellent in texturability and machinability
JP4949100B2 (en) Austenitic stainless free-cutting steel with excellent cold forgeability and machinability
JP2001152280A (en) Free cutting steel
JP2004018879A (en) Steel for cold forging superior in swarf treatment property
JP2002003991A (en) Free cutting steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Ref document number: 3912308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees