JP2009120905A - Steel for machine structural use, having excellent machinability - Google Patents

Steel for machine structural use, having excellent machinability Download PDF

Info

Publication number
JP2009120905A
JP2009120905A JP2007295949A JP2007295949A JP2009120905A JP 2009120905 A JP2009120905 A JP 2009120905A JP 2007295949 A JP2007295949 A JP 2007295949A JP 2007295949 A JP2007295949 A JP 2007295949A JP 2009120905 A JP2009120905 A JP 2009120905A
Authority
JP
Japan
Prior art keywords
less
steel
amount
mgo
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007295949A
Other languages
Japanese (ja)
Other versions
JP5234904B2 (en
Inventor
Goro Anami
吾郎 阿南
Akihiro Matsugasako
亮廣 松ケ迫
Atsuhiko Yoshida
敦彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007295949A priority Critical patent/JP5234904B2/en
Publication of JP2009120905A publication Critical patent/JP2009120905A/en
Application granted granted Critical
Publication of JP5234904B2 publication Critical patent/JP5234904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel for machine structural use which is Pb free and has excellent machinability. <P>SOLUTION: The steel for machine structural use having excellent machinability is characterized in that: it has a composition consisting of, by mass, 0.15 to 0.5% C, 0.01 to 2% Si, 0.1 to 2% Mn, 0.01 to 2% Cr, ≤0.1% (not including 0%) P, 0.01 to 0.3% S, 0.001 to 0.01% Al, 0.001 to 0.02% O, 0.001 to 0.025% N, further at least either or 0.0001 to 0.01% Ca and 0.01 to 0.2% Zr, and the balance iron with inevitable impurities; and, based on 100 mass%, in total, of oxide inclusions in the steel, the amount of MgO is 0.1 to 10 mass%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車、産業機械、電気製品等の部品を製造するために有用な機械構造用鋼に関するものであり、殊にPbを実質的に含まずに(いわゆるPbフリーで)、被削性に優れた機械構造用鋼に関するものである。   The present invention relates to a machine structural steel useful for producing parts such as automobiles, industrial machines, and electrical products, and in particular, substantially free of Pb (so-called Pb-free) and machinability. The present invention relates to an excellent steel for machine structural use.

自動車、産業機械、電気製品等の部品は、一般に、機械構造用鋼を切削する工程を経て製造される。そのため機械構造用鋼は、被削性が良好であることが要求される。被削性を改善するには、鋼にPbを含有させることが有効である。しかし現在、Pbによる環境汚染の問題がクローズアップされている。そのため、いわゆるPbフリーで被削性に優れた機械構造用鋼について、様々な技術が提案されている。   Parts such as automobiles, industrial machines, and electrical products are generally manufactured through a process of cutting steel for machine structures. Therefore, machine structural steel is required to have good machinability. In order to improve machinability, it is effective to contain Pb in steel. At present, however, the problem of environmental pollution caused by Pb is highlighted. For this reason, various techniques have been proposed for so-called Pb-free machine structural steel with excellent machinability.

例えば特許文献1は、黒鉛を利用することによってPbフリー鋼の被削性を向上させる技術を開示している。また特許文献1では、酸化物系介在物、特に硬質なAl系酸化物は、被削性を低下させることが記載されている。   For example, Patent Document 1 discloses a technique for improving the machinability of Pb-free steel by using graphite. Patent Document 1 describes that oxide inclusions, particularly hard Al oxides, reduce machinability.

特許文献2は、鋼中の初析フェライト面積率を所定範囲内に制御することによって、および化学成分量のパラメーターを所定範囲内に制御することによって、被削性(特にドリル寿命と切屑破砕性)を向上させる技術を開示している。また特許文献2では、鋼中にCaを含有した酸化物系介在物を形成させることによって、旋削工具寿命を向上させ得ることが記載されている。   Patent Document 2 describes machinability (especially drill life and chip crushability) by controlling the pro-eutectoid ferrite area ratio in steel within a predetermined range and by controlling the parameter of the amount of chemical components within a predetermined range. ) Is disclosed. Patent Document 2 describes that the life of a turning tool can be improved by forming oxide inclusions containing Ca in steel.

特許文献3は、Pbフリー鋼にMgを添加することによって、被削性(特にドリルによる穴加工性)を向上させる技術を開示している。また特許文献3では、硬度が高いAl23等の酸化物系介在物は被削性に悪影響を及ぼすことが記載されている。
特開2005−105359号公報 特開2005−179753号公報 特開2003−119545号公報
Patent Document 3 discloses a technique for improving machinability (particularly, drillability by drilling) by adding Mg to Pb-free steel. Patent Document 3 describes that oxide inclusions such as Al 2 O 3 having high hardness adversely affect machinability.
JP 2005-105359 A JP 2005-179753 A JP 2003-119545 A

上述のようにPbフリー鋼の被削性を向上させる様々な技術がこれまで提案されている。しかし該分野では、被削性のさらなる改善が絶えず求められている。そこで本発明の目的は、Pbフリーで、従来のものよりも優れた被削性を有する機械構造用鋼を提供することにある。   As described above, various techniques for improving the machinability of Pb-free steel have been proposed. However, further improvements in machinability are constantly being sought in the field. Accordingly, an object of the present invention is to provide a steel for machine structure that is Pb-free and has machinability superior to that of the conventional one.

上記目的を達成し得た本発明の被削性に優れた機械構造用鋼は、
C:0.15〜0.5%(質量%の意味、鋼の化学成分について以下同じ)、
Si:0.01〜2%、
Mn:0.1〜2%、
Cr:0.01〜2%、
P:0.1%以下(0%を含まない)、
S:0.01〜0.3%、
Al:0.001〜0.01%、
O:0.001〜0.02%、
N:0.001〜0.025%
を含有し、さらに
Ca:0.0001〜0.01%およびZr:0.01〜0.2%の少なくとも1種を含有し、残部が鉄および不可避不純物からなり、
鋼中の酸化物系介在物の合計100質量%に対して、MgO量が0.1〜10質量%である点に要旨を有する。
The machine structural steel excellent in machinability of the present invention that can achieve the above-mentioned object,
C: 0.15 to 0.5% (meaning mass%, the same applies to chemical components of steel),
Si: 0.01-2%
Mn: 0.1 to 2%,
Cr: 0.01-2%
P: 0.1% or less (excluding 0%),
S: 0.01 to 0.3%,
Al: 0.001 to 0.01%
O: 0.001 to 0.02%,
N: 0.001 to 0.025%
Further containing at least one of Ca: 0.0001 to 0.01% and Zr: 0.01 to 0.2%, the balance consisting of iron and inevitable impurities,
The main point is that the MgO content is 0.1 to 10% by mass with respect to a total of 100% by mass of oxide inclusions in the steel.

本発明の機械構造用鋼には、上記化学成分の他、必要に応じてさらに、(1)Ti:0.2%以下(0%を含まない)、V:0.5%以下(0%を含まない)、Mo:1%以下(0%を含まない)、Nb:0.1%以下(0%を含まない)、Cu:1%以下(0%を含まない)、およびNi:2%以下(0%を含まない)よりなる群から選ばれる少なくとも1種、(2)Se:0.01%以下(0%を含まない)、Te:0.01%以下(0%を含まない)、Bi:0.1%以下(0%を含まない)、希土類元素(以下「REM」と略称する):0.01%以下(0%を含まない)、およびB:0.005%以下(0%を含まない)よりなる群から選ばれる少なくとも1種等を含有させることも有効であり、含有させる成分の種類に応じて、鋼の特性がさらに改善される。   In addition to the above chemical components, the steel for machine structural use according to the present invention may further include (1) Ti: 0.2% or less (not including 0%), V: 0.5% or less (0%) as necessary. Mo: 1% or less (not including 0%), Nb: 0.1% or less (not including 0%), Cu: 1% or less (not including 0%), and Ni: 2 % Or less (not including 0%), (2) Se: 0.01% or less (not including 0%), Te: 0.01% or less (not including 0%) ), Bi: 0.1% or less (excluding 0%), rare earth element (hereinafter abbreviated as “REM”): 0.01% or less (not including 0%), and B: 0.005% or less It is also effective to contain at least one selected from the group consisting of (not including 0%), depending on the type of component to be included, Characteristics of further improves.

本発明によれば、鋼中のMgO量が制限される結果、MnSの微細化を抑制でき、優れた被削性(特に工具寿命)を実現することができる。   According to the present invention, as a result of limiting the amount of MgO in steel, MnS refinement can be suppressed, and excellent machinability (particularly tool life) can be realized.

本発明者らが鋭意検討した結果、鋼中に含まれるMgOの量を抑制すれば、Pbフリー鋼の被削性を充分に向上させ得ることを見出した。詳しくは、機械用構造鋼を従来の量産炉で製造する方法では、炉の耐火物またはスラグからMgが溶出するために、鋼中に必ずMgOが含まれてしまう。そして本発明者らは、このMgOが、Pbフリー鋼で被削性を改善するために用いられるMnSに悪影響を及ぼし、被削性(特に工具寿命)を低減させることを見出した。   As a result of intensive studies by the present inventors, it was found that the machinability of Pb-free steel can be sufficiently improved if the amount of MgO contained in the steel is suppressed. Specifically, in a method for manufacturing a structural steel for a machine in a conventional mass production furnace, Mg elutes from the refractory or slag of the furnace, so that the steel always contains MgO. The inventors have found that this MgO adversely affects MnS used for improving machinability in Pb-free steel and reduces machinability (particularly tool life).

上述の特許文献1〜3に記載されているように、酸化物について、硬質のAl系酸化物が被削性に悪影響を及ぼすこと、Ca含有酸化物が工具寿命を向上させることは該分野で知られている。しかしMgOが被削性に悪影響を及ぼすことは、これまで知られていなかった。それどころか特許文献3では、Mgを積極的に添加することによって被削性を向上させることが記載されている。   As described in Patent Documents 1 to 3 above, regarding oxides, it is in this field that hard Al-based oxides adversely affect machinability, and Ca-containing oxides improve tool life. Are known. However, it has not been known so far that MgO adversely affects machinability. On the contrary, Patent Document 3 describes that machinability is improved by positively adding Mg.

MgOを低減することによって機械用構造鋼の被削性が向上する推定メカニズムとしては、次のようなことが考えられる:鋼中のMnSは、丸くて、大きいほど、被削性(特に工具寿命)を向上させると考えられる。しかし鋼中に微細なMgOが多量に存在すると、MnSは、このMgOを核として微細に析出してしまうため、被削性向上作用が低下する。そのためMgO量を低減すれば、MnSの微細化を防止でき、その結果、良好な被削性を達成することができる。   As an estimation mechanism for improving the machinability of the structural steel for machinery by reducing MgO, the following may be considered: The MnS in the steel is rounder and larger, the machinability (especially the tool life). ). However, if a large amount of fine MgO is present in the steel, MnS precipitates finely with this MgO as a nucleus, so that the machinability improving action is reduced. Therefore, if the amount of MgO is reduced, MnS can be prevented from being refined, and as a result, good machinability can be achieved.

通常の機械構造用鋼では、鋼中の酸化物系介在物の合計100質量%に対して、通常15質量%程度のMgOが含まれる。このMgO量を15質量%から10質量%まで低減させると、ドリル寿命(ドリルが焼き付いて穴が開けられなくなるまでのドリル穴の長さ)を50%増加させることができる(図1)。よって被削性(特にドリル寿命)を向上させるために、鋼中の酸化物系介在物の合計100質量%に対するMgO量は、好ましくは10質量%以下、より好ましくは7質量%以下、さらに好ましくは3質量%以下である。殊にMgO量を15質量%から3質量%まで低減させると、ドリル寿命を倍増させることができる(図1)。一方、本発明の機械構造用鋼中のMgO量の下限は、通常、0.1質量%程度である。   In general steel for machine structural use, about 15% by mass of MgO is usually contained with respect to 100% by mass of the oxide inclusions in the steel. If the amount of MgO is reduced from 15% by mass to 10% by mass, the drill life (the length of the drill hole until the drill is seized and cannot be drilled) can be increased by 50% (FIG. 1). Therefore, in order to improve machinability (especially drill life), the amount of MgO with respect to a total of 100 mass% of oxide inclusions in steel is preferably 10 mass% or less, more preferably 7 mass% or less, and even more preferably. Is 3% by mass or less. In particular, reducing the MgO amount from 15% by mass to 3% by mass can double the drill life (FIG. 1). On the other hand, the lower limit of the amount of MgO in the steel for machine structure of the present invention is usually about 0.1% by mass.

機械構造用鋼中のMgO量は、下記実施例で示すように、X線マイクロアナリシス(EPMA)のエネルギー分散方式(EDS)で測定することができる。   The amount of MgO in mechanical structural steel can be measured by an X-ray microanalysis (EPMA) energy dispersion method (EDS) as shown in the following examples.

鋼中のMgO量を低減させるためには、造滓剤の成分を調整して、溶鋼処理時のスラグ塩基度(CaO/SiO2)を下げれば良いことも、本発明者らは見出した(図2)。このメカニズムとしては、スラグ塩基度が低いほど、スラグや耐火物から金属Mgが生成されにくく、鋼中へのMgの混入が抑制されることが考えられる。鋼中に混入したMgはMgOとなるので、混入を抑制することによってMgO量を低減させることができる。なお鋼中のMgO量は、後述するように、鋼中のAl量にも影響される。 In order to reduce the amount of MgO in the steel, the present inventors have also found that it is only necessary to adjust the component of the slagging agent to lower the slag basicity (CaO / SiO 2 ) during the molten steel treatment ( Figure 2). As this mechanism, it is conceivable that the lower the slag basicity, the less metal Mg is produced from the slag and the refractory, and the lower the mixing of Mg into the steel. Since Mg mixed in the steel becomes MgO, the amount of MgO can be reduced by suppressing the mixing. The amount of MgO in the steel is also affected by the amount of Al in the steel, as will be described later.

図2の近似曲線は、y=2.01x1.37、y:MgO量(質量%)、x:スラグ塩基度(CaO/SiO2)、寄与率R2=0.997として計算した。この近似曲線から、目標とするMgO量を達成するためには、どの程度スラグ塩基度を低減させれば良いか予想することができる。具体的には、スラグ塩基度が3.2程度であれば、鋼中のMgO量は10質量%程度であり、スラグ塩基度が2.5程度であれば、MgO量は7質量%程度であり、スラグ塩基度が1.3程度であれば、MgO量は3質量%程度である。 The approximate curve of FIG. 2 was calculated as y = 2.01 × 1.37 , y: MgO amount (mass%), x: slag basicity (CaO / SiO 2 ), and contribution rate R 2 = 0.997. From this approximate curve, it can be predicted how much the slag basicity should be reduced in order to achieve the target MgO amount. Specifically, if the slag basicity is about 3.2, the amount of MgO in the steel is about 10% by mass, and if the slag basicity is about 2.5, the amount of MgO is about 7% by mass. If the slag basicity is about 1.3, the amount of MgO is about 3% by mass.

次に本発明の機械構造用鋼の化学成分について説明する。   Next, the chemical components of the steel for machine structure of the present invention will be described.

<C:0.15〜0.5%>
Cは、最終製品(部品)の強度を確保するために重要な元素である。しかしC量が過剰であると、鋼の靱性が低下すると共に、硬くなりすぎて被削性(特に工具寿命)が低下する。そこでC量を、0.15%以上(好ましくは0.20%以上)、0.5%以下(好ましくは0.45%以下)とした。
<C: 0.15-0.5%>
C is an important element for ensuring the strength of the final product (part). However, if the amount of C is excessive, the toughness of the steel is lowered, and it becomes too hard and the machinability (particularly the tool life) is lowered. Therefore, the C content is set to 0.15% or more (preferably 0.20% or more) and 0.5% or less (preferably 0.45% or less).

<Si:0.01〜2%>
Siは、脱酸元素として有効である上に、固溶強化によって部品強度を向上させる作用を有する。しかしSi量が過剰であると、被削性に悪影響を及ぼす。そこでSi量を、0.01%以上(特に固溶強化の観点から、好ましくは0.2%以上)、2%以下(好ましくは1.5%以下)とした。
<Si: 0.01-2%>
Si is effective as a deoxidizing element and also has an effect of improving component strength by solid solution strengthening. However, if the amount of Si is excessive, the machinability is adversely affected. Therefore, the Si amount is set to 0.01% or more (particularly from the viewpoint of solid solution strengthening, preferably 0.2% or more), and 2% or less (preferably 1.5% or less).

<Mn:0.1〜2%>
Mnは、鋼の焼入性を向上させて強度増大に寄与する上に、硫化物系介在物を形成して被削性を向上させる重要な元素である。しかしMn量が過剰であると、かえって被削性が低下する。そこでMn量を、0.1%以上(好ましくは0.6%以上)、2%以下(好ましくは1.5%以下)とした。
<Mn: 0.1 to 2%>
Mn is an important element that improves the hardenability of steel and contributes to an increase in strength, and also improves the machinability by forming sulfide inclusions. However, if the amount of Mn is excessive, the machinability is rather lowered. Therefore, the amount of Mn is set to 0.1% or more (preferably 0.6% or more) and 2% or less (preferably 1.5% or less).

<Cr:0.01〜2%>
Crは、鋼の焼入性を向上させて強度増大に寄与する元素である。しかしCr量が過剰であると、被削性が低下する。そこでCr量を、0.01%以上(好ましくは0.1%以上)、2%以下(好ましくは1%以下)とした。
<Cr: 0.01-2%>
Cr is an element that improves the hardenability of steel and contributes to an increase in strength. However, if the amount of Cr is excessive, the machinability deteriorates. Therefore, the Cr amount is set to 0.01% or more (preferably 0.1% or more) and 2% or less (preferably 1% or less).

<P:0.1%以下(0%を含まない)>
Pは、粒界偏析を起こして耐衝撃性を劣化させる元素であるため、その量は、できる限り低いことが好ましい。そこでP量を、0.1%以下(好ましくは0.05%以下)と定めた。但しPは、鋼に不可避的に混入するため、工業生産上、その量を0%にすることは困難である。
<P: 0.1% or less (excluding 0%)>
Since P is an element that causes grain boundary segregation and deteriorates impact resistance, the amount is preferably as low as possible. Therefore, the P amount is set to 0.1% or less (preferably 0.05% or less). However, since P is inevitably mixed in steel, it is difficult to reduce the amount to 0% in industrial production.

<S:0.01〜0.3%>
Sは、MnS等の硫化物系介在物を形成し、被削性を向上させるのに有効な元素である。しかしS量が過剰になると、熱間または冷間鍛造時の割れの起点となって、変形能が低下する。そこでS量を、0.01%以上(好ましくは0.04%以上)、0.3%以下(好ましくは0.15%以下)とした。
<S: 0.01 to 0.3%>
S is an element effective in forming sulfide inclusions such as MnS and improving machinability. However, when the amount of S is excessive, it becomes a starting point of cracking during hot or cold forging, and the deformability is lowered. Therefore, the S amount is set to 0.01% or more (preferably 0.04% or more) and 0.3% or less (preferably 0.15% or less).

<Al:0.001〜0.01%>
溶鋼中のAlは、炉の耐火物からMgの溶出を促進して、鋼中のMgO量を増加させるため、鋼の被削性に悪影響を及ぼす。またAl量が増加すると、鋼中のO量が減少するためMnSが低温で生成する。その結果、MnSが微細化され、被削性に悪影響を及ぼす。さらにAlは、硬質なAl系酸化物を形成することによっても、被削性に悪影響を及ぼす。そこで本発明においてAl量は、できる限り低いことが好ましい。そこでAl量を、0.01%以下(好ましくは0.005%以下)とした。しかし工業生産上、Al量を0%にすることは困難である。そこで生産コスト等の観点からAl量の下限を、0.001%と定めた。なお機械構造用鋼は、通常Alキルド鋼であり、そのAl量は、通常0.02%程度以上である。そのため従来の機械構造用鋼はMgO量が多く、Pbフリーでは、充分な被削性を確保することができなかった。
<Al: 0.001 to 0.01%>
Al in the molten steel promotes the elution of Mg from the refractory of the furnace and increases the amount of MgO in the steel, and thus adversely affects the machinability of the steel. Moreover, when the amount of Al increases, the amount of O in the steel decreases, so that MnS is generated at a low temperature. As a result, MnS is refined and adversely affects machinability. Further, Al adversely affects the machinability by forming a hard Al-based oxide. Therefore, in the present invention, the amount of Al is preferably as low as possible. Therefore, the Al content is set to 0.01% or less (preferably 0.005% or less). However, it is difficult to reduce the Al content to 0% in industrial production. Therefore, the lower limit of the Al amount is set to 0.001% from the viewpoint of production cost and the like. In addition, the steel for machine structure is usually Al killed steel, and the amount of Al is usually about 0.02% or more. Therefore, conventional steel for machine structural use has a large amount of MgO, and Pb-free cannot ensure sufficient machinability.

<O:0.001〜0.02%>
O量が過剰であると、被削性(特に工具寿命)が劣化する。そこでO量を、0.02%以下(好ましくは0.005%以下)とした。なお本発明では、鋼中のMgO量を低減させるために、スラグ塩基度を下げているので、鋼のO量は0.001%以上に増加する。
<O: 0.001 to 0.02%>
If the amount of O is excessive, machinability (particularly tool life) is deteriorated. Therefore, the O amount is set to 0.02% or less (preferably 0.005% or less). In the present invention, since the slag basicity is lowered in order to reduce the amount of MgO in the steel, the amount of O in the steel increases to 0.001% or more.

<N:0.001〜0.025%>
Nは、AlやTi等と窒化物を形成して、オーステナイト結晶粒を微細化し、その結果、靱性や疲労強度を向上させる作用を有する。しかしN量が過剰であると、かえって靱性が低下する。そこでN量を、0.001%以上(好ましくは0.002%以上、より好ましくは0.003%以上)、0.025%以下(好ましくは0.02%以下)とした。
<N: 0.001 to 0.025%>
N forms nitrides with Al, Ti, and the like to refine the austenite crystal grains, and as a result, has an effect of improving toughness and fatigue strength. However, if the amount of N is excessive, the toughness is rather lowered. Therefore, the N content is set to 0.001% or more (preferably 0.002% or more, more preferably 0.003% or more) and 0.025% or less (preferably 0.02% or less).

<Ca:0.0001〜0.01%およびZr:0.01〜0.2%の少なくとも1種>
CaおよびZrは、MnS中に固溶して、MnSの球状化を促進させる作用を有し、その結果、被削性(特に工具寿命)を向上させるために重要な元素である。逆に言えば、CaおよびZrの双方が無い場合、MnSが細長く伸びて、MnSの被削性向上効果が低下する。そこで本発明では、CaおよびZrの少なくとも1種を必須元素とした。しかし溶鋼中でCaおよびZr量が過剰であると、炉の耐火物中のMgが還元・溶出し、鋼中のMgO量が増大する。そこでCa量を、0.0001%以上(好ましくは0.0005%以上)、0.01%以下(好ましくは0.005%以下)と、Zr量を、0.01%以上(好ましくは0.02%以上)、0.2%以下(好ましくは0.15%以下)とした。
<Ca: at least one of 0.0001 to 0.01% and Zr: 0.01 to 0.2%>
Ca and Zr are solid elements in MnS and have a function of promoting spheroidization of MnS, and as a result, are important elements for improving machinability (particularly tool life). Conversely, in the absence of both Ca and Zr, MnS elongates and the machinability improvement effect of MnS decreases. Therefore, in the present invention, at least one of Ca and Zr is an essential element. However, if the Ca and Zr amounts are excessive in the molten steel, Mg in the refractory of the furnace is reduced and eluted, and the amount of MgO in the steel increases. Therefore, the Ca amount is 0.0001% or more (preferably 0.0005% or more), 0.01% or less (preferably 0.005% or less), and the Zr amount is 0.01% or more (preferably 0.00. 02% or more) and 0.2% or less (preferably 0.15% or less).

本発明の機械構造用鋼の基本成分組成は上記の通りであり、残部は実質的に鉄である。但し原料、資材、製造設備等の状況によって持ち込まれる不可避不純物が鋼中に含まれることは、当然に許容される。さらに本発明の鋼は、必要に応じて、以下の選択元素を含有していても良い。   The basic component composition of the steel for machine structural use of the present invention is as described above, and the balance is substantially iron. However, it is naturally allowed that inevitable impurities brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. are contained in the steel. Furthermore, the steel of the present invention may contain the following selective elements as necessary.

<Ti:0.2%以下(0%を含まない)、V:0.5%以下(0%を含まない)、Mo:1%以下(0%を含まない)、Nb:0.1%以下(0%を含まない)、Cu:1%以下(0%を含まない)、およびNi:2%以下(0%を含まない)よりなる群から選ばれる少なくとも1種>
Ti、V、Mo、Nb、CuおよびNiは、強度を向上させるために有効な元素であり、必要に応じて鋼に含有させても良い。強度の観点から、Ti量は、好ましくは0.01%以上(より好ましくは0.02%以上)であり、V量は、好ましくは0.03%以上(より好ましくは0.06%以上)であり、Mo量は、好ましくは0.05%以上(より好ましくは0.10%以上)であり、Nb量は、好ましくは0.010%以上(より好ましくは0.025%以上)であり、Cu量は、好ましくは0.02%以上(より好ましくは0.1%以上)であり、Ni量は、好ましくは0.02%以上(より好ましくは0.1%以上)である。
<Ti: 0.2% or less (not including 0%), V: 0.5% or less (not including 0%), Mo: 1% or less (not including 0%), Nb: 0.1% At least one selected from the group consisting of: (not including 0%), Cu: 1% or less (not including 0%), and Ni: 2% or less (not including 0%)>
Ti, V, Mo, Nb, Cu and Ni are effective elements for improving the strength, and may be contained in steel as necessary. From the viewpoint of strength, the Ti amount is preferably 0.01% or more (more preferably 0.02% or more), and the V amount is preferably 0.03% or more (more preferably 0.06% or more). The amount of Mo is preferably 0.05% or more (more preferably 0.10% or more), and the amount of Nb is preferably 0.010% or more (more preferably 0.025% or more). The amount of Cu is preferably 0.02% or more (more preferably 0.1% or more), and the amount of Ni is preferably 0.02% or more (more preferably 0.1% or more).

しかしこれらの元素量が過剰であると、被削性に悪影響を及ぼす。そこでこれらの元素を含有させる場合、Ti量を0.2%以下(好ましくは0.1%以下)、V量を0.5%以下(好ましくは0.3%以下)、Mo量を1%以下(好ましくは0.5%以下)、Nb量を0.1%以下(好ましくは0.05%以下)、Cu量を1%以下(好ましくは0.5%以下)、およびNi量を2%以下(好ましくは1%以下)とした。   However, if the amount of these elements is excessive, the machinability is adversely affected. Therefore, when these elements are contained, the Ti amount is 0.2% or less (preferably 0.1% or less), the V amount is 0.5% or less (preferably 0.3% or less), and the Mo amount is 1%. (Preferably 0.5% or less), Nb amount is 0.1% or less (preferably 0.05% or less), Cu amount is 1% or less (preferably 0.5% or less), and Ni amount is 2 % Or less (preferably 1% or less).

<Se:0.01%以下(0%を含まない)、Te:0.01%以下(0%を含まない)、Bi:0.1%以下(0%を含まない)、希土類元素:0.01%以下(0%を含まない)、およびB:0.005%以下(0%を含まない)よりなる群から選ばれる少なくとも1種>
Se、Te、Bi、REMおよびBは、被削性を向上させるために有効な元素であり、必要に応じて鋼に含有させても良い。なお希土類元素(REM)は、Sc、Yおよびランタノイドの15元素を含む。工業的にはREMとして、ミッシュメタルを用いる。被削性の観点から、Seは、好ましくは0.001%以上(より好ましくは0.005%以上)であり、Te量は、好ましくは0.001%以上(より好ましくは0.005%以上)であり、Biは、好ましくは0.005%以上(より好ましくは0.010%以上)であり、REM量は、好ましくは0.0001%以上(より好ましくは0.001%以上)であり、B量は、好ましくは0.0005%以上(より好ましくは0.002%以上)である。
<Se: 0.01% or less (not including 0%), Te: 0.01% or less (not including 0%), Bi: 0.1% or less (not including 0%), rare earth elements: 0 0.01% or less (not including 0%), and B: at least one selected from the group consisting of 0.005% or less (not including 0%)>
Se, Te, Bi, REM and B are effective elements for improving the machinability, and may be contained in the steel if necessary. The rare earth element (REM) includes 15 elements of Sc, Y, and lanthanoid. Industrially, misch metal is used as REM. From the viewpoint of machinability, Se is preferably 0.001% or more (more preferably 0.005% or more), and the Te amount is preferably 0.001% or more (more preferably 0.005% or more). Bi is preferably 0.005% or more (more preferably 0.010% or more), and the REM amount is preferably 0.0001% or more (more preferably 0.001% or more). , B amount is preferably 0.0005% or more (more preferably 0.002% or more).

しかしこれらの量が過剰であると、熱間変形能が低下し、部品製造が困難になる。そこでこれらの元素を含有させる場合、Se量を0.01%以下、Te量を0.01%以下、Bi量を0.1%以下(好ましくは0.05%以下)、REM量を0.01%以下(好ましくは0.005%以下)、B量を0.005%以下(好ましくは0.0035%以下)とした。   However, if these amounts are excessive, the hot deformability is lowered and it is difficult to manufacture parts. Therefore, when these elements are contained, the Se amount is 0.01% or less, the Te amount is 0.01% or less, the Bi amount is 0.1% or less (preferably 0.05% or less), and the REM amount is 0.00. The content was set to be 01% or less (preferably 0.005% or less) and the B amount was 0.005% or less (preferably 0.0035% or less).

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and appropriate modifications are made within a range that can meet the above and the following purposes. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例1
表1および2に示す化学成分組成の鋼を溶製した。そして塩基度の低い組成の造滓剤、或いは、塩基度の高い組成の造滓剤を適宜用いて、溶鋼処理時のスラグ塩基度を変化させた。各鋼のスラグから、直接分析したスラグ塩基度の値を、表3および表4に示す。次いで溶鋼を鋳造し、80mmφの棒鋼に圧延して、供試材を作製した。各供試材で、MgO量(質量%)、MnSの平均サイズ(μm2)、MnSのアスペクト比を測定した。また下記のような切削試験(ドリル試験および超硬旋削試験)を行った。これらの結果も併せて表3および表4に示す。
Example 1
Steels having chemical composition shown in Tables 1 and 2 were melted. And the slag basicity at the time of a molten steel process was changed suitably using the faux agent of a composition with low basicity, or the faux agent of a composition with high basicity. The slag basicity values analyzed directly from the slag of each steel are shown in Tables 3 and 4. Next, the molten steel was cast and rolled into a 80 mmφ bar steel to prepare a test material. With each sample material, the amount of MgO (% by mass), the average size of MnS (μm 2 ), and the aspect ratio of MnS were measured. In addition, the following cutting tests (drill test and carbide turning test) were performed. These results are also shown in Tables 3 and 4.

<MgO量の測定>
MgO量の測定は、エネルギー分散型X線分光器(EDS)を用いて行った。詳細には、鋼材中から無作為に10個の酸化物系介在物を抽出した。通常は、研磨面において10mm×10mmの領域を観察すれば、10〜30個程度の酸化物系介在物を見出すことができる。研磨面(観察領域)は任意の断面をとることができるが、圧延方向に対して平行であることが好ましい。酸化物と硫化物との位置関係が分かりやすいからである。次いで、上記のように抽出した10個の酸化物系介在物を、EDSで定量分析して、各介在物に含まれる金属元素の割合を求めた。これらの割合から、MgはMgOに、AlはAl23に、CaはCaOに、MnはMnOに、SiはSiO2に、ZrはZrO2になると想定して、これら想定酸化物の合計100質量%に対するMgO量を、各酸化物系介在物について求めた。なおMn等は硫化物となる場合もあるが、酸化物系介在物を観察しているため、全て酸化物となると想定した。また酸化物は黒色に、硫化物は灰色に見えるため、酸化物と硫化物とは明確に区別できる。このようにして求めた各介在物のMgO量から計算した平均値を、その鋼の「MgO量」とした。
<Measurement of MgO amount>
The amount of MgO was measured using an energy dispersive X-ray spectrometer (EDS). Specifically, ten oxide inclusions were extracted at random from the steel material. Usually, if an area of 10 mm × 10 mm is observed on the polished surface, about 10 to 30 oxide inclusions can be found. The polished surface (observation region) can have an arbitrary cross section, but is preferably parallel to the rolling direction. This is because the positional relationship between oxides and sulfides is easy to understand. Next, the 10 oxide inclusions extracted as described above were quantitatively analyzed by EDS, and the ratio of the metal element contained in each inclusion was determined. From these ratios, it is assumed that Mg is MgO, Al is Al 2 O 3 , Ca is CaO, Mn is MnO, Si is SiO 2 , and Zr is ZrO 2. The amount of MgO relative to 100% by mass was determined for each oxide inclusion. Mn and the like may be sulfides, but all oxides are assumed to be oxides because the oxide inclusions are observed. Since oxides appear black and sulfides appear gray, oxides and sulfides can be clearly distinguished. The average value calculated from the MgO content of each inclusion determined in this way was defined as the “MgO content” of the steel.

<MnSの平均サイズおよびアスペクト比の測定(計算)方法>
D/4部(D:板厚)の縦断面にて、倍率1000倍で1mm2の視野を光学顕微鏡で観察し、1μm以上の各硫化物系介在物の面積を観察した。各面積の平均値を、鋼の「MnSの平均サイズ」とした。さらに各硫化物系介在物の長径および長径方向に直交する方向の幅を測定し、これから各アスペクト比(長径/幅)を求めた。各アスペクト比の平均値を、鋼の「MnSのアスペクト比」とした。
<Measurement (calculation) method of average size and aspect ratio of MnS>
In a longitudinal section of D / 4 part (D: plate thickness), a field of 1 mm 2 was observed with an optical microscope at a magnification of 1000 times, and the area of each sulfide inclusion of 1 μm or more was observed. The average value of each area was defined as “MnS average size” of steel. Further, the major axis of each sulfide inclusion and the width in the direction perpendicular to the major axis direction were measured, and the aspect ratio (major axis / width) was determined therefrom. The average value of each aspect ratio was defined as “MnS aspect ratio” of steel.

<ドリル試験>
10mmφのストレートドリル(SKH51、表面コーティング無し)を、切削速度:20m/min、送り:0.2mm/rev、被削鋼材の厚さ:40mm、乾式(切削油無し)の条件で用いて、ドリル試験を行った。ドリル試験は、被削鋼材に深さ30mmの穴(未貫通)を次々と開けてゆき、そして工具寿命として、ドリルが焼き付いて、穴が開けられなくなるまでのドリル穴の総長さを測定した。
<Drill test>
Using a 10 mmφ straight drill (SKH51, no surface coating), cutting speed: 20 m / min, feed: 0.2 mm / rev, work piece steel thickness: 40 mm, dry type (no cutting oil) A test was conducted. In the drill test, holes with a depth of 30 mm (unpenetrated) were successively opened in the steel material to be cut, and the total length of the drill hole until the drill could not be drilled was measured as the tool life.

<超硬旋削試験>
超硬工具P10(JIS B4053)のチップを、切削速度:150m/min、切込み量:1.5mm、送り:0.25mm/rev、乾式(切削油無し)の条件で用いて、超硬旋削試験を行った。そして工具寿命として、工具側面の摩耗長さが0.2mmになるまでの切削時間を測定した。
<Carbide turning test>
Carbide turning test using chip of carbide tool P10 (JIS B4053) under the conditions of cutting speed: 150 m / min, cutting depth: 1.5 mm, feed: 0.25 mm / rev, dry type (no cutting oil) Went. And as tool life, the cutting time until the wear length of the tool side surface became 0.2 mm was measured.

Figure 2009120905
Figure 2009120905

Figure 2009120905
Figure 2009120905

Figure 2009120905
Figure 2009120905

Figure 2009120905
Figure 2009120905

表3および4の結果から、本発明のMgO量および化学成分量の要件を満たす鋼No.3〜23および26〜58は、良好な工具寿命(ドリル穴の長さおよび切削時間)を示すことが分かる。これに対してスラグ塩基度が高い鋼No.1および2では、MgO量が10質量%を超えており、いずれも工具寿命が不充分である。また鋼No.24および25は、Al量が過剰であるためにMgO量が過剰であり、鋼No.1および2と同様に工具寿命が不充分である。   From the results in Tables 3 and 4, the steel No. 1 satisfying the requirements of the MgO amount and the chemical component amount of the present invention was obtained. It can be seen that 3-23 and 26-58 show good tool life (drill hole length and cutting time). On the other hand, steel No. with high slag basicity. In 1 and 2, the amount of MgO exceeds 10% by mass, and the tool life is insufficient. Steel no. Nos. 24 and 25 have an excessive amount of MgO due to an excessive amount of Al. Like 1 and 2, the tool life is insufficient.

MgO量と工具寿命(ドリル穴の長さ)との関係、およびスラグ塩基度とMgO量との関係を、理解し易くするために、化学成分組成が類似する鋼No.1〜7のデータを用いたグラフを、図1および2に示す。   In order to make it easier to understand the relationship between the amount of MgO and the tool life (drill hole length) and the relationship between the slag basicity and the amount of MgO, steel Nos. With similar chemical composition are used. Graphs using data 1-7 are shown in FIGS.

実施例1の鋼No.1〜7におけるMgO量とドリル穴の長さ(工具寿命)との関係を示すグラフである。Steel No. 1 of Example 1 It is a graph which shows the relationship between the amount of MgO in 1-7, and the length (tool life) of a drill hole. 実施例1の鋼No.1〜7におけるスラグ塩基度とMgO量との関係を示すグラフである。Steel No. 1 of Example 1 It is a graph which shows the relationship between the slag basicity in 1-7, and the amount of MgO.

Claims (3)

C:0.15〜0.5%(質量%の意味、鋼の化学成分について以下同じ)、
Si:0.01〜2%、
Mn:0.1〜2%、
Cr:0.01〜2%、
P:0.1%以下(0%を含まない)、
S:0.01〜0.3%、
Al:0.001〜0.01%、
O:0.001〜0.02%、
N:0.001〜0.025%
を含有し、さらに
Ca:0.0001〜0.01%およびZr:0.01〜0.2%の少なくとも1種を含有し、残部が鉄および不可避不純物からなり、
鋼中の酸化物系介在物の合計100質量%に対して、MgO量が0.1〜10質量%であることを特徴とする被削性に優れた機械構造用鋼。
C: 0.15 to 0.5% (meaning mass%, the same applies to chemical components of steel),
Si: 0.01-2%
Mn: 0.1 to 2%,
Cr: 0.01-2%
P: 0.1% or less (excluding 0%),
S: 0.01 to 0.3%,
Al: 0.001 to 0.01%
O: 0.001 to 0.02%,
N: 0.001 to 0.025%
Further containing at least one of Ca: 0.0001 to 0.01% and Zr: 0.01 to 0.2%, the balance consisting of iron and inevitable impurities,
A machine structural steel excellent in machinability, characterized in that the amount of MgO is 0.1 to 10% by mass with respect to a total of 100% by mass of oxide inclusions in the steel.
Ti:0.2%以下(0%を含まない)、V:0.5%以下(0%を含まない)、Mo:1%以下(0%を含まない)、Nb:0.1%以下(0%を含まない)、Cu:1%以下(0%を含まない)、およびNi:2%以下(0%を含まない)よりなる群から選ばれる少なくとも1種をさらに含有する請求項1に記載の機械構造用鋼。   Ti: 0.2% or less (not including 0%), V: 0.5% or less (not including 0%), Mo: 1% or less (not including 0%), Nb: 0.1% or less (Claim 1) further containing at least one selected from the group consisting of (not including 0%), Cu: 1% or less (not including 0%), and Ni: 2% or less (not including 0%). Machine structural steel as described in 1. Se:0.01%以下(0%を含まない)、Te:0.01%以下(0%を含まない)、Bi:0.1%以下(0%を含まない)、希土類元素:0.01%以下(0%を含まない)、およびB:0.005%以下(0%を含まない)よりなる群から選ばれる少なくとも1種をさらに含有する請求項1または2に記載の機械構造用鋼。   Se: 0.01% or less (not including 0%), Te: 0.01% or less (not including 0%), Bi: 0.1% or less (not including 0%), rare earth elements: 0.0. The machine structure according to claim 1 or 2, further comprising at least one selected from the group consisting of 01% or less (not including 0%) and B: 0.005% or less (not including 0%). steel.
JP2007295949A 2007-11-14 2007-11-14 Machine structural steel with excellent machinability Active JP5234904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007295949A JP5234904B2 (en) 2007-11-14 2007-11-14 Machine structural steel with excellent machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007295949A JP5234904B2 (en) 2007-11-14 2007-11-14 Machine structural steel with excellent machinability

Publications (2)

Publication Number Publication Date
JP2009120905A true JP2009120905A (en) 2009-06-04
JP5234904B2 JP5234904B2 (en) 2013-07-10

Family

ID=40813374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007295949A Active JP5234904B2 (en) 2007-11-14 2007-11-14 Machine structural steel with excellent machinability

Country Status (1)

Country Link
JP (1) JP5234904B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019127654A (en) * 2018-01-25 2019-08-01 株式会社神戸製鋼所 Mixed powder for powder metallurgy
WO2019146310A1 (en) * 2018-01-25 2019-08-01 株式会社神戸製鋼所 Mixed powder for powder metallurgy
WO2019230946A1 (en) * 2018-05-31 2019-12-05 日本製鉄株式会社 Steel material for steel pistons

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034538A (en) * 1998-07-14 2000-02-02 Daido Steel Co Ltd Steel for machine structure excellent in machinability
JP2004292929A (en) * 2003-03-28 2004-10-21 Sumitomo Metal Ind Ltd Steel for machine structural use
JP2006336071A (en) * 2005-06-01 2006-12-14 Kobe Steel Ltd Steel having superior fracture-splittability for connecting rod

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034538A (en) * 1998-07-14 2000-02-02 Daido Steel Co Ltd Steel for machine structure excellent in machinability
JP2004292929A (en) * 2003-03-28 2004-10-21 Sumitomo Metal Ind Ltd Steel for machine structural use
JP2006336071A (en) * 2005-06-01 2006-12-14 Kobe Steel Ltd Steel having superior fracture-splittability for connecting rod

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019127654A (en) * 2018-01-25 2019-08-01 株式会社神戸製鋼所 Mixed powder for powder metallurgy
WO2019146310A1 (en) * 2018-01-25 2019-08-01 株式会社神戸製鋼所 Mixed powder for powder metallurgy
KR20200108064A (en) * 2018-01-25 2020-09-16 가부시키가이샤 고베 세이코쇼 Mixture for powder metallurgy
KR102348200B1 (en) 2018-01-25 2022-01-06 가부시키가이샤 고베 세이코쇼 Mixed powder for powder metallurgy
WO2019230946A1 (en) * 2018-05-31 2019-12-05 日本製鉄株式会社 Steel material for steel pistons
CN112204161A (en) * 2018-05-31 2021-01-08 日本制铁株式会社 Steel material for steel piston
JPWO2019230946A1 (en) * 2018-05-31 2021-06-03 日本製鉄株式会社 Steel materials for steel pistons
CN112204161B (en) * 2018-05-31 2022-01-11 日本制铁株式会社 Steel material for steel piston

Also Published As

Publication number Publication date
JP5234904B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
AU2005264481B2 (en) Steel for steel pipe
US9725783B2 (en) Steel for machine structure use excellent in cutting tool lifetime and machining method of same
JP5231101B2 (en) Machine structural steel with excellent fatigue limit ratio and machinability
CN102741440B (en) Steel material for quenching and method of producing same
KR101953495B1 (en) High carbon cold-rolled steel sheet and method of manufacturing the same
CN100355927C (en) Steel excellent in machinability
KR20100105796A (en) Steel for high-frequency hardening
KR20060047819A (en) Cold work tool steel
US7195736B1 (en) Lead-free steel for machine structural use with excellent machinability and low strength anisotropy
JP2001131684A (en) Steel for machine structure excellent in treatment of chip
JP2006299296A (en) Rolled bar steel for case hardening having excellent fatigue property and crystal grain coarsening resistance, and method for producing the same
EP1518939A1 (en) Sulfur free cutting steel for machine structural use
JP2010070812A (en) Free-cutting austenitic stainless steel wire rod excellent in cold forgeability, and manufacturing method therefor
JP5092578B2 (en) Low carbon sulfur free cutting steel
JP5234904B2 (en) Machine structural steel with excellent machinability
JP4964060B2 (en) Mechanical structural steel and mechanical structural parts with excellent strength anisotropy and machinability
JP5323369B2 (en) Case-hardened steel with excellent machinability and grain coarsening prevention properties
JP7469612B2 (en) Steel bar for machine structure and cutting method thereof
JP2001220645A (en) Lead-free steel for machine structure excellent in machinability and small in anisotropy of strength
JP5583986B2 (en) Austenitic stainless free-cutting steel rod with excellent forgeability
JP2009242910A (en) Steel for machine structure use having excellent machinability and strength anisotropy and component for machine structure
JP4949100B2 (en) Austenitic stainless free-cutting steel with excellent cold forgeability and machinability
JP2008126273A (en) Manufacturing method of b-containing lead-free low carbon free cutting steel
JP2001152280A (en) Free cutting steel
JP2002069568A (en) Tool steel having low decarburizing property and tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5234904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3