JP2019127654A - Mixed powder for powder metallurgy - Google Patents

Mixed powder for powder metallurgy Download PDF

Info

Publication number
JP2019127654A
JP2019127654A JP2018203514A JP2018203514A JP2019127654A JP 2019127654 A JP2019127654 A JP 2019127654A JP 2018203514 A JP2018203514 A JP 2018203514A JP 2018203514 A JP2018203514 A JP 2018203514A JP 2019127654 A JP2019127654 A JP 2019127654A
Authority
JP
Japan
Prior art keywords
powder
mass
mixed
metallurgy
magnesium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018203514A
Other languages
Japanese (ja)
Other versions
JP6929259B2 (en
Inventor
眞規 吉田
Masanori Yoshida
眞規 吉田
洋平 高松
Yohei TAKAMATSU
洋平 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to KR1020207023830A priority Critical patent/KR102348200B1/en
Priority to EP18902349.2A priority patent/EP3744441A4/en
Priority to US16/963,652 priority patent/US20210060640A1/en
Priority to CN201880073768.8A priority patent/CN111344090B/en
Priority to MX2020007821A priority patent/MX2020007821A/en
Priority to BR112020014533A priority patent/BR112020014533B8/en
Priority to PCT/JP2018/046397 priority patent/WO2019146310A1/en
Priority to CA3089506A priority patent/CA3089506A1/en
Priority to TW108100643A priority patent/TWI694157B/en
Publication of JP2019127654A publication Critical patent/JP2019127654A/en
Application granted granted Critical
Publication of JP6929259B2 publication Critical patent/JP6929259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/45Others, including non-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/01Main component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide a mixed powder for powder metallurgy that can form a sintering material having excellent cutting properties.SOLUTION: An embodiment of the mixed powder for powder metallurgy according to the present invention consists mainly of an iron-based powder and contains a powder of one or more sulfides selected from among CaS, MnS, and MoSand 0.005-0.025 mass% inclusive of magnesium oxide powder, the magnesium oxide having an average particle diameter D50 of 0.5-5.0 μm inclusive. The total content of the sulfides is preferably 0.04-0.20 mass% inclusive.SELECTED DRAWING: None

Description

本発明は、粉末冶金用混合粉に関する。   The present invention relates to a powder mixture for powder metallurgy.

粉末冶金では、鉄基粉末を焼結することによって例えば網状等の複雑な形状の焼結体を形成することができる。このような焼結体は、例えば自動社部品等の構造用部品として利用されている。部品の寸法精度の向上の要求が高まる中、焼結体をさらに切削加工することで寸法精度をより向上することが必要となっている。   In powder metallurgy, it is possible to form a sintered body having a complicated shape such as a net shape by sintering iron-based powder. Such a sintered body is used, for example, as a structural part such as an automaker part. While the demand for improvement of the dimensional accuracy of parts is increasing, it is necessary to further improve the dimensional accuracy by further cutting the sintered body.

また、部品の製造コスト低減に対する要求も大きいため、切削加工のコスト低減も重要視されている。切削加工では、切削工具の寿命を長くすることにより、コストを抑えることが可能であるが、上述のような焼結体は被削性に劣り、切削工具の寿命が短くなる傾向がある。   In addition, since there is a great demand for reducing the manufacturing cost of parts, reducing the cost of cutting is also regarded as important. In cutting, the cost can be reduced by prolonging the life of the cutting tool, but the sintered body as described above tends to be inferior in machinability and the life of the cutting tool is shortened.

このため、鉄基粉末に被削性を向上して切削工具の寿命を長くする添加材を混合した粉末冶金用混合粉が用いられている。具体的には、被削性を向上する添加材(被削性改善材)として、例えば硫化マンガン(MnS)、硫黄(S)等の粉末が利用されている。これらの被削性改善材は、切削時の抵抗を低くする潤滑剤として機能したり、切りくずの分断の起点となる作用を有し、切削工具の寿命を長くする。   For this reason, mixed powder for powder metallurgy is used in which an iron-based powder is mixed with an additive that improves machinability and prolongs the life of the cutting tool. Specifically, for example, powders such as manganese sulfide (MnS) and sulfur (S) are used as an additive (a machinability improving material) for improving the machinability. These machinability improving materials function as a lubricant that lowers the resistance at the time of cutting, or have an action of becoming a starting point of chip division, and extend the life of the cutting tool.

一般に、粉末冶金用混合粉中の被削性改善材の含有量が大きい程、形成される焼結体の被削性が向上し、切削工具寿命が長くなる。しかしながら、被削性改善材の含有量を大きくすると、焼結材料の圧環強さ等の機械的特性が悪化したり、焼結前後の寸法変化率が変化するため成形金型が新規に必要になったりするという不都合が生じる。このため、一般的に、粉末冶金用混合粉中の被削性改善材の含有量は、0.3質量%から0.5質量%程度とされている。   Generally, as the content of the machinability improving material in the powder mixture for powder metallurgy is larger, the machinability of the formed sintered body is improved, and the cutting tool life is extended. However, when the content of the machinability improving material is increased, mechanical properties such as radial crushing strength of the sintered material deteriorate, and dimensional change rates before and after sintering change, so a new molding die is required. There is a disadvantage in that For this reason, generally, the content of the machinability improving material in the mixed powder for powder metallurgy is about 0.3 mass% to about 0.5 mass%.

また、切削加工の低コスト化や生産性向上の要求から、切削速度の高速化のニーズが大きいが、上述の被削性改善材は、高速切削では比較的効果が小さい。被削性改善材として硫化物を0.3質量%以上添加した場合、焼結時に硫黄が蒸発して、焼結体の外観を汚したり、焼結炉内を汚染して焼結炉にダメージを与えやすくなるという不都合も生じる。   Further, there is a large need for increasing the cutting speed due to demands for cost reduction of cutting and improvement in productivity, but the machinability improving material described above is relatively less effective in high speed cutting. When 0.3 mass% or more of sulfide is added as a machinability improving material, the sulfur evaporates during sintering to contaminate the appearance of the sintered body or contaminate the inside of the sintering furnace to damage the sintering furnace There is also a disadvantage that it becomes easier to

例えば特開平9−279204号公報には、CaO−Al−SiO系複合酸化物の粉末を0.02〜0.3重量%含有する粉末冶金用鉄系混合粉が提案されている。上記公報には、Caを主体とした複合酸化物を用いることにより、焼結体の機械的特性悪化の低減、焼結体の汚れや焼結炉損傷の防止、高速切削での切削工具摩耗の低減が可能であると記載されている。 For example, Japanese Patent Laid-Open No. 9-279204 proposes an iron-based mixed powder for powder metallurgy containing 0.02 to 0.3 wt% of a CaO—Al 2 O 3 —SiO 2 -based composite oxide powder. . In the above publication, by using a complex oxide mainly composed of Ca, the deterioration of the mechanical properties of the sintered body is reduced, the contamination of the sintered body and the sintering furnace are prevented, and the wear of the cutting tool during high-speed cutting is reduced. It is described that reduction is possible.

しかしながら、部品の寸法精度向上及び低コスト化への要求のさらなる高まりにより、より被削性に優れる粉末冶金用混合粉が求められている。   However, the powder powders for powder metallurgy which are more excellent in machinability are required due to the further increase of the demand for improvement in dimensional accuracy and cost reduction of parts.

特開平9−279204号公報JP-A-9-279204

上記実状に鑑みて、本発明は、被削性に優れる焼結材を形成することができる粉末冶金用混合粉を提供することを課題とする。   In view of the said real condition, this invention makes it a subject to provide the mixed powder for powder metallurgy which can form the sintered material which is excellent in machinability.

上記課題を解決するためになされた本発明の一態様に係る粉末冶金用混合粉は、鉄基粉末を主体とし、CaS、MnS及びMoSのいずれか1種以上の硫化物の粉末と、0.005質量%以上0.025質量%以下の酸化マグネシウムの粉末とを含有し、上記酸化マグネシウムの平均粒径D50が、0.5μm以上5.0μm以下である。 The mixed powder for powder metallurgy according to one aspect of the present invention made to solve the above problems is mainly composed of iron-based powder, and powder of any one or more of sulfides of CaS, MnS and MoS 2 ; And the powder of magnesium oxide is from 005% by mass to 0.025% by mass, and the average particle diameter D50 of the magnesium oxide is from 0.5 μm to 5.0 μm.

当該粉末冶金用混合粉は、上記硫化物が、潤滑剤として機能すると共に、切削工具の表面に比較的粒径が小さい酸化マグネシウム粒子を付着させる酸化物を生成して、切削工具が焼結体中の硬い酸化物等により削られることを抑制するものと考えられる。このため、当該粉末冶金用混合粉を焼結して形成される焼結材は、被削性に優れ、切削工具の寿命を比較的長くできる。   In the mixed powder for powder metallurgy, the sulfide functions as a lubricant and forms an oxide that causes magnesium oxide particles having a relatively small particle size to adhere to the surface of the cutting tool, and the cutting tool is a sintered body It is thought that it suppresses that it is scraped off by the hard oxide in the inside. For this reason, the sintered material formed by sintering the mixed powder for powder metallurgy is excellent in machinability and can relatively prolong the life of the cutting tool.

当該粉末冶金用混合粉において、上記硫化物の合計含有量が0.04質量%以上0.20質量%以下であることが好ましい。この構成によれば、当該粉末冶金用混合粉を焼結して形成される焼結材の機械的特性等の低下を抑制することができる。   In the mixed powder for powder metallurgy, the total content of the sulfides is preferably 0.04% by mass or more and 0.20% by mass or less. According to this configuration, it is possible to suppress a decrease in mechanical properties and the like of a sintered material formed by sintering the mixed powder for powder metallurgy.

ここで、「鉄基粉末」とは、純鉄粉、鉄合金粉又はこれらの混合粉を意味する。また、「主体とする」とは、90質量%以上含有することを意味する。「平均粒径D50」とは、レーザー回折散乱法により測定される粒径分布において積算体積が50%となる粒径を意味する。   Here, “iron-based powder” means pure iron powder, iron alloy powder, or a mixed powder thereof. Moreover, "mainly" means containing 90 mass% or more. The “average particle diameter D50” means a particle diameter at which the integrated volume is 50% in the particle diameter distribution measured by the laser diffraction scattering method.

以上のように、本発明の粉末冶金用混合粉は、被削性に優れる焼結材を形成することができる。   As described above, the mixed powder for powder metallurgy according to the present invention can form a sintered material having excellent machinability.

以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

[粉末冶金用混合粉]
本発明の一実施形態に係る粉末冶金用混合粉は、鉄基粉末を主体とし、硫化物の粉末と、酸化マグネシウム(MgO)の粉末とを含有する。また、当該粉末冶金用混合粉は、例えば銅粉、黒鉛粉、粉末潤滑剤等をさらに含有してもよい。
[Mixed powder for powder metallurgy]
The mixed powder for powder metallurgy according to one embodiment of the present invention is mainly composed of iron-based powder, and contains sulfide powder and magnesium oxide (MgO) powder. In addition, the mixed powder for powder metallurgy may further contain, for example, copper powder, graphite powder, powder lubricant and the like.

<鉄基粉末>
当該粉末冶金用混合粉の主体となる鉄基粉末としては、特に限定されず、例えば還元鉄基粉末、アトマイズ鉄基粉末、電解鉄基粉末等を用いることができる。
Iron-based powder
The iron-based powder that is the main component of the mixed powder for powder metallurgy is not particularly limited, and for example, reduced iron-based powder, atomized iron-based powder, electrolytic iron-based powder, and the like can be used.

また、鉄基粉末としては、純鉄粉に限られず、例えば合金元素を予め合金化した鋼粉(予合金鋼粉)、合金元素が部分合金化された鋼粉(部分合金化鋼粉)等を用いることができ、これらの複数種類を混合したものを用いてもよい。上記合金元素としては、例えば銅、ニッケル、クロム、モリブデン、硫黄等、焼結体の特性を改善する周知の元素を含むことができる。   Further, the iron-based powder is not limited to pure iron powder, for example, steel powder obtained by pre-alloying alloying elements (pre-alloy steel powder), steel powder obtained by partially alloying alloy elements (partially alloyed steel powder), etc. These may be used in combination. The alloying elements can include, for example, copper, nickel, chromium, molybdenum, sulfur, and other known elements that improve the characteristics of the sintered body.

鉄基粉末の平均粒径D50としては、粉末冶金用主原料粉末として使用できる大きさであればよく、特に限定されないが、例えば40μm以上120μm以下とすることができる。   The average particle diameter D50 of the iron-based powder is not particularly limited as long as it can be used as a main raw material powder for powder metallurgy, and can be, for example, 40 μm to 120 μm.

<硫化物の粉末>
当該粉末冶金用混合粉を焼結して得られる焼結体において、硫化物はそのままの粒子として残存する。これらの硫化物は、焼結体の主体である鉄基地よりも柔らかいため、焼結体の被削性を向上すると共に、潤滑性を有して切削時の摩擦を軽減するので、切削工具の寿命を長くする。
<Sulphide powder>
In a sintered body obtained by sintering the mixed powder for powder metallurgy, the sulfide remains as particles as it is. Since these sulfides are softer than the iron base that is the main body of the sintered body, they improve the machinability of the sintered body and also have lubricity to reduce the friction at the time of cutting. Increase the life span.

また、焼結体中の硫化物は、切削速度が大きい場合には、切削時の発熱によって脱硫して酸化物を生成する。この酸化物は、切削工具表面に付着して切削工具を保護する皮膜を形成すると共に、切削工具の表面に非常に硬い酸化マグネシウムを付着させるバインダーとなると考えられる。   Further, when the cutting speed is large, the sulfide in the sintered body is desulfurized by heat generation at the time of cutting to form an oxide. This oxide is considered to form a film that adheres to the surface of the cutting tool to protect the cutting tool, and also serves as a binder for adhering very hard magnesium oxide to the surface of the cutting tool.

上記のように被削性を効率よく向上でき、酸化マグネシウムを付着させられる硫化物としては、CaS、MnS及びMoSのいずれか1種以上が用いられる。 As described above, any one or more of CaS, MnS and MoS 2 can be used as the sulfide capable of efficiently improving the machinability and adhering magnesium oxide.

硫化物の合計含有量の下限としては、0.04質量%が好ましく、0.06質量%がより好ましい。一方、硫化物の合計含有量の上限としては、0.20質量%が好ましく、0.18質量%がより好ましい。硫化物の合計含有量が上記下限に満たない場合、被削性を十分に向上できないおそれがある。逆に、硫化物の合計含有量が上記上限を超える場合、当該粉末冶金用混合粉を焼結して得られる焼結体の機械的特性が悪化するおそれがある。   As a lower limit of the total content of sulfides, 0.04% by mass is preferable, and 0.06% by mass is more preferable. On the other hand, as an upper limit of the total content of sulfides, 0.20 mass% is preferable, and 0.18 mass% is more preferable. If the total content of sulfides does not reach the above lower limit, the machinability may not be sufficiently improved. On the contrary, when the total content of sulfides exceeds the above-mentioned upper limit, there is a possibility that the mechanical characteristics of the sintered compact obtained by sintering the mixed powder for powder metallurgy may deteriorate.

CaSやMnSなどの硫化物の平均粒径D50の下限としては、1.0μmが好ましく、1.5μmがより好ましい。一方、硫化物の平均粒径D50の上限としては、10μmが好ましく、8μmがより好ましい。これら硫化物の平均粒径D50が上記下限に満たない場合、当該粉末冶金用混合粉に均等に分散させることが困難となるおそれや、当該粉末冶金用混合粉が不必要に高価となるおそれがある。逆に、これら硫化物の平均粒径D50が上記上限を超える場合、当該粉末冶金用混合粉を焼結して得られる焼結体の被削性を十分に向上できないおそれがある。   As a minimum of average particle diameter D50 of sulfides, such as CaS and MnS, 1.0 micrometer is preferred and 1.5 micrometers is more preferred. On the other hand, as an upper limit of average particle diameter D50 of sulfide, 10 micrometers is preferred and 8 micrometers is more preferred. When the average particle diameter D50 of these sulfides is less than the above lower limit, there is a possibility that it may be difficult to uniformly disperse in the mixed powder for powder metallurgy, or the mixed powder for powder metallurgy may become unnecessarily expensive. is there. On the contrary, when the average particle diameter D50 of these sulfides exceeds the above-mentioned upper limit, there is a possibility that the machinability of the sintered compact obtained by sintering the mixed powder for powder metallurgy can not fully be improved.

<酸化マグネシウムの粉末>
酸化マグネシウムは、化学的に安定な硬い材料である。このため、酸化マグネシウムの粉末は、当該粉末冶金用混合粉を焼結して得られる焼結体中においても微粒子として存在している。この酸化マグネシウムの微粒子は、上記硫化物に起因して生じる酸化物により切削工具の表面に付着することで、切削工具を保護して焼結体の被削性を向上する。
<Powder of magnesium oxide>
Magnesium oxide is a chemically stable hard material. For this reason, the powder of magnesium oxide is also present as fine particles in a sintered body obtained by sintering the mixed powder for powder metallurgy. The fine particles of magnesium oxide adhere to the surface of the cutting tool by the oxide generated due to the sulfide, thereby protecting the cutting tool and improving the machinability of the sintered body.

酸化マグネシウムの含有量の下限としては、0.005質量%であり、0.010質量%が好ましい。一方、酸化マグネシウムの含有量の上限としては、0.025質量%であり、0.020質量%が好ましい。酸化マグネシウムの含有量が上記下限に満たない場合、切削工具の摩耗を低減できないおそれがある。逆に、酸化マグネシウムの含有量が上記上限を超える場合、焼結時の寸法変化率が大きくなるおそれや、焼結体の例えば圧環強さ等の機械的特性が不十分となるおそれがある。   As a minimum of content of magnesium oxide, it is 0.005 mass%, and 0.010 mass% is preferred. On the other hand, the upper limit of the content of magnesium oxide is 0.025% by mass, preferably 0.020% by mass. If the content of magnesium oxide is less than the above lower limit, the wear of the cutting tool may not be reduced. On the contrary, when the content of magnesium oxide exceeds the above upper limit, there is a possibility that the dimensional change rate at the time of sintering becomes large, and the mechanical properties such as radial crushing strength of the sintered body may be insufficient.

酸化マグネシウムの平均粒径D50の下限としては、0.5μmであり、0.7μmが好ましい。一方、酸化マグネシウムの平均粒径D50の上限としては、5.0μmであり、3.0μmが好ましい。酸化マグネシウムの平均粒径D50が上記下限に満たない場合、MgOの凝集が形成される。また、当該粉末冶金用混合粉中に均等に分散させることが容易でなくなるおそれがある。さらに、重量比率を一定とした場合、MgOの粒子数が多くなり、鉄粉粒子と鉄粉粒子の境界に存在するMgOが増えるため、焼結を阻害する。その結果、寸法変化率が大きくなることや圧環強さ等の機械的特性が不十分となる恐れがある。一方、酸化マグネシウムの平均粒径D50が上記上限を超える場合、焼結を阻害して強度低下を招くおそれや、切削工具を欠けさせて摩耗を加速したり、酸化マグネシウム粒子が切削工具に付着することができないことで切削工具の寿命が短くなったり、加工精度を低下させるおそれがある。つまり、粒径が十分に小さい酸化マグネシウムであれば、切削工具に摩耗を加速するような大きなダメージを与えず、酸化マグネシウムが切削工具の表面に付着して切削工具の寿命を延ばすことができる。   As a minimum of average particle diameter D50 of magnesium oxide, it is 0.5 micrometer and 0.7 micrometer is preferred. On the other hand, the upper limit of the average particle diameter D50 of magnesium oxide is 5.0 μm, preferably 3.0 μm. When the average particle diameter D50 of magnesium oxide is less than the above lower limit, aggregation of MgO is formed. Moreover, it may not be easy to disperse | distribute uniformly in the said mixed powder for powder metallurgy. Furthermore, when the weight ratio is constant, the number of MgO particles increases, and MgO present at the boundary between the iron powder particles and the iron powder particles increases, which inhibits sintering. As a result, the dimensional change rate may increase, and mechanical properties such as radial crushing strength may be insufficient. On the other hand, when the average particle diameter D50 of magnesium oxide exceeds the above-mentioned upper limit, there is a possibility that sintering may be inhibited and strength may be reduced, the cutting tool may be chipped to accelerate wear, or magnesium oxide particles may adhere to the cutting tool The inability to do so may shorten the life of the cutting tool or may lower the processing accuracy. That is, if magnesium oxide has a sufficiently small particle size, magnesium oxide adheres to the surface of the cutting tool without increasing damage to the cutting tool so as to accelerate wear, and the life of the cutting tool can be extended.

<銅粉>
銅粉は、鉄基粉末粒子同士を結合するバインダーとして機能し、当該粉末冶金用混合粉を焼結して得られる焼結体の強度を向上する。
<Copper powder>
The copper powder functions as a binder for binding iron-based powder particles to one another, and improves the strength of a sintered body obtained by sintering the mixed powder for powder metallurgy.

この銅粉としては、粉末冶金用に使用されるものを広く用いることができ、例えば電解銅粉、アトマイズ銅粉等を用いることができる。   As this copper powder, what is used for powder metallurgy can be used widely, for example, electrolytic copper powder, atomized copper powder, etc. can be used.

銅粉は、鉄基粉末に単純に混合してもよいが、バインダーを用いて鉄基粉末表面に付着させてよく、鉄基粉末と混合して熱処理することにより鉄基粉末表面に拡散付着させてもよい。   The copper powder may be simply mixed with the iron-based powder, but may be attached to the surface of the iron-based powder using a binder, or diffused and attached to the surface of the iron-based powder by heat treatment by mixing with the iron-based powder. May be

銅粉の含有量の下限としては、焼結体に要求される強度や硬さにもよるが、0.8質量%が好ましく、1.0質量%がより好ましい。一方、銅粉の含有量の上限としては、5.0質量%が好ましく、3.0質量%がより好ましく、2.0質量%が特に好ましい。銅粉の含有量が上記下限に満たない場合、焼結体の強度向上効果が不十分となるおそれがある。逆に、銅粉の含有量が上記上限を超える場合、炭素の拡散を阻害して焼結体の強度が不十分となるおそれがある。   The lower limit of the copper powder content is preferably 0.8% by mass, and more preferably 1.0% by mass, although it depends on the strength and hardness required for the sintered body. On the other hand, as an upper limit of content of a copper powder, 5.0 mass% is preferable, 3.0 mass% is more preferable, and 2.0 mass% is especially preferable. When the content of the copper powder is less than the above lower limit, the strength improvement effect of the sintered body may be insufficient. On the contrary, when content of copper powder exceeds the above-mentioned upper limit, there is a possibility that diffusion of carbon may be inhibited and intensity of a sintered compact may become insufficient.

銅粉の平均粒径D50の下限としては、5μmが好ましく、10μmがより好ましい。一方、銅粉の平均粒径D50の上限としては、50μmが好ましく、40μmがより好ましい。銅粉の平均粒径D50が上記下限に満たない場合、当該粉末冶金用混合粉に均等に分散させることが困難となるおそれや、当該粉末冶金用混合粉が不必要に高価となるおそれがある。逆に、銅粉の平均粒径D50が上記上限を超える場合、当該粉末冶金用混合粉を焼結して得られる焼結体の強度を十分に向上できないおそれがある。   As a minimum of average particle diameter D50 of copper powder, 5 micrometers is preferred and 10 micrometers is more preferred. On the other hand, as an upper limit of average particle diameter D50 of copper powder, 50 micrometers is preferred and 40 micrometers is more preferred. If the average particle size D50 of the copper powder does not satisfy the above lower limit, it may be difficult to uniformly disperse in the mixed powder for powder metallurgy, or the mixed powder for powder metallurgy may be unnecessarily expensive. . Conversely, when the average particle diameter D50 of the copper powder exceeds the above upper limit, the strength of the sintered body obtained by sintering the mixed powder for powder metallurgy may not be sufficiently improved.

<黒鉛粉>
黒鉛粉は、当該粉末冶金用混合粉の焼結時に鉄と反応して硬いパーライト相を形成することにより得られる焼結体の強度を向上する。
Graphite powder
Graphite powder reacts with iron at the time of sintering the mixed powder for powder metallurgy to improve the strength of a sintered body obtained by forming a hard pearlite phase.

黒鉛粉としては、例えば天然黒鉛粉、人造黒鉛粉等を用いることができる。   As the graphite powder, for example, natural graphite powder, artificial graphite powder or the like can be used.

黒鉛粉は、鉄基粉末に単純に混合してもよいが、バインダーを用いて鉄基粉末表面に付着させてよい。   The graphite powder may be simply mixed with the iron-based powder, but may be attached to the surface of the iron-based powder using a binder.

黒鉛粉の含有量の下限としては、0.2質量%が好ましく、0.5質量%がより好ましい。一方、黒鉛粉の含有量の上限としては、1.5質量%が好ましく、1.0質量%がより好ましい。黒鉛粉の含有量が上記下限に満たない場合、焼結体の強度向上効果が不十分となるおそれがある。逆に、黒鉛粉の含有量が上記上限を超える場合、焼結体の靱性が不十分となるおそれがある。   As a minimum of content of graphite powder, 0.2 mass% is preferred and 0.5 mass% is more preferred. On the other hand, as a maximum of content of graphite powder, 1.5 mass% is preferred, and 1.0 mass% is more preferred. When the content of the graphite powder is less than the above lower limit, the strength improvement effect of the sintered body may be insufficient. Conversely, when the content of the graphite powder exceeds the above upper limit, the toughness of the sintered body may be insufficient.

黒鉛粉の平均粒径D50の下限としては、1μmが好ましく、3μmがより好ましい。一方、黒鉛粉の平均粒径D50の上限としては、30μmが好ましく、20μmがより好ましい。黒鉛粉の平均粒径D50が上記下限に満たない場合、当該粉末冶金用混合粉に均等に分散させることが困難となるおそれや、当該粉末冶金用混合粉が不必要に高価となるおそれがある。逆に、黒鉛粉の平均粒径D50が上記上限を超える場合、当該粉末冶金用混合粉を焼結して得られる焼結体において偏析が生じて強度を十分に向上できないおそれがある。   As a minimum of average particle diameter D50 of graphite powder, 1 micrometer is preferred and 3 micrometers is more preferred. On the other hand, as an upper limit of average particle diameter D50 of graphite powder, 30 micrometers is preferred and 20 micrometers is more preferred. If the average particle diameter D50 of the graphite powder is less than the above lower limit, it may be difficult to uniformly disperse the powder powder for the powder metallurgy, or the powder powder for the powder metallurgy may be unnecessarily expensive. . Conversely, when the average particle diameter D50 of the graphite powder exceeds the above upper limit, segregation may occur in the sintered body obtained by sintering the mixed powder for powder metallurgy and the strength may not be sufficiently improved.

<粉末潤滑剤>
粉末潤滑剤は、当該粉末冶金用混合粉を圧粉成形する際に粒子間の摩擦を低減して成形性を向上し、金型寿命を長くする。この粉末潤滑剤は、焼結時に蒸発乃至熱分解して消失する。
<Powder lubricant>
The powder lubricant reduces friction between particles when compacting the mixed powder for powder metallurgy, improves moldability, and prolongs mold life. The powder lubricant evaporates and thermally decomposes and disappears during sintering.

粉末潤滑剤としては、例えばステアリン酸亜鉛等の金属石けん類、エチレンビスアマイド等の非金属石けん類などの粉末が用いられる。   As the powder lubricant, for example, powders of metal soaps such as zinc stearate and non-metal soaps such as ethylene bisamide are used.

粉末潤滑剤の含有量の下限としては、0.2質量%が好ましく、0.5質量%がより好ましい。一方、粉末潤滑剤の含有量の上限としては、1.5質量%が好ましく、1.0質量%がより好ましい。粉末潤滑剤の含有量が上記下限に満たない場合、当該粉末冶金用混合粉の圧粉成形性が不十分となるおそれがある。逆に、粉末潤滑剤の含有量が上記上限を超える場合、当該粉末冶金用混合粉を圧粉後に焼結して得られる密度が低くなり焼結体の強度が不十分となるおそれがある。   As a minimum of content of a powder lubricant, 0.2 mass% is preferred and 0.5 mass% is more preferred. On the other hand, as an upper limit of content of a powder lubricant, 1.5 mass% is preferred, and 1.0 mass% is more preferred. If the content of the powder lubricant is less than the above lower limit, the powder compactability of the powder mixture for powder metallurgy may be insufficient. On the other hand, when the content of the powder lubricant exceeds the above upper limit, the density obtained by sintering the mixed powder for powder metallurgy after sintering is low, and the strength of the sintered body may be insufficient.

粉末潤滑剤の平均粒径D50の下限としては、3μmが好ましく、5μmがより好ましい。一方、粉末潤滑剤の平均粒径D50の上限としては、50μmが好ましく、30μmがより好ましい。粉末潤滑剤の平均粒径D50が上記下限に満たない場合、当該粉末冶金用混合粉に均等に分散させることが困難となるおそれや、当該粉末冶金用混合粉が不必要に高価となるおそれがある。逆に、粉末潤滑剤の平均粒径D50が上記上限を超える場合、当該粉末冶金用混合粉を焼結して得られる焼結体の強度を十分に向上できないおそれがある。   As a minimum of average particle diameter D50 of a powder lubricant, 3 micrometers is preferred and 5 micrometers is more preferred. On the other hand, as an upper limit of average particle diameter D50 of a powder lubricant, 50 micrometers is preferred and 30 micrometers is more preferred. If the average particle diameter D50 of the powder lubricant is less than the above lower limit, it may be difficult to uniformly disperse in the mixed powder for powder metallurgy, or the mixed powder for powder metallurgy may be unnecessarily expensive. is there. Conversely, when the average particle diameter D50 of the powder lubricant exceeds the above upper limit, the strength of the sintered body obtained by sintering the mixed powder for powder metallurgy may not be sufficiently improved.

<利点>
当該粉末冶金用混合粉は、硫化物が、潤滑剤として機能すると共に、切削工具の表面に粒径が小さい酸化マグネシウム粒子を付着させる酸化物を生成して、切削工具が焼結体中の硬い酸化物等により削られることを抑制するものと考えられる。このため、当該粉末冶金用混合粉を焼結して形成される焼結材は、被削性に優れ、切削工具の寿命を比較的長くできる。
<Advantage>
The mixed powder for powder metallurgy forms an oxide in which sulfide functions as a lubricant and causes magnesium oxide particles having a small particle size to adhere to the surface of the cutting tool, and the cutting tool is hard in the sintered body. It is thought that it suppresses that it is scraped by an oxide etc. For this reason, the sintered material formed by sintering the mixed powder for powder metallurgy is excellent in machinability and can relatively prolong the life of the cutting tool.

[その他の実施形態]
上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other Embodiments]
The above embodiment does not limit the configuration of the present invention. Therefore, the above-mentioned embodiment can omit, substitute or add the components of each part of the above-mentioned embodiment based on the description of the present specification and technical common sense, and all of them are interpreted as belonging to the scope of the present invention It should.

以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。   Hereinafter, the present invention will be described in detail based on examples, but the present invention is not to be construed as being limited based on the description of the examples.

鉄基粉末に、銅粉、黒鉛粉、被削性改善材、酸化マグネシウム、粉末潤滑剤を、下の表1に示す割合で混合して粉末冶金用混合粉No.1〜15を試作した。なお、表中の「−」はその材料を配合していないことを示す。   Mixed powder No. 1 for powder metallurgy was mixed with iron-based powder, copper powder, graphite powder, a machinability improver, magnesium oxide and powder lubricant in the proportions shown in Table 1 below. We made 1 to 15 prototypes. In addition, "-" in a table | surface shows that the material is not mix | blended.

なお、鉄基粉末としては、神戸製鋼所社の平均粒径D50が70μmのアトマイズ純鉄粉「アトメル300M」を使用した。銅粉としては、福田金属箔粉工業社の篩目開きが250μmの水アトマイズ銅粉「CuAtW−250」を使用した。黒鉛粉としては、日本黒鉛工業社の平均粒径D50が約23μmの「CPB」を使用した。MnS及びCaSとしては、平均粒径D50が2.4μmの石膏(CaSO)を水素などの還元ガス雰囲気で還元した平均粒径D50が4.9μmの硫化カルシウム(表中の「CaS」)、又は平均粒径D50が4.9μmの硫化マンガン(表中の「MnS」)を使用した。酸化マグネシウムとしては、平均粒径D50が0.7μmのもの、平均粒径D50が2.5μmのもの、又は平均粒径D50が3.2μmのものを使用した。粉末潤滑剤としては、平均粒径D50が27μmのエチレンビスアマイド系ワックスを使用した。 As the iron-based powder, atomized pure iron powder "Atomel 300M" having an average particle diameter D50 of 70 μm of Kobe Steel, Ltd. was used. As the copper powder, a water atomized copper powder "CuAtW-250" having a 250 m sieve mesh of Fukuda Metal Foil & Powder Industry Co., Ltd. was used. As the graphite powder, “CPB” having an average particle diameter D50 of about 23 μm by Nippon Graphite Industries, Ltd. was used. As MnS and CaS, calcium sulfide ("CaS" in the table) having an average particle diameter D50 of 4.9 μm obtained by reducing gypsum (CaSO 4 ) having an average particle diameter D50 of 2.4 μm in a reducing gas atmosphere such as hydrogen Alternatively, manganese sulfide ("MnS" in the table) having an average particle diameter D50 of 4.9 μm was used. As magnesium oxide, one having an average particle diameter D50 of 0.7 μm, one having an average particle diameter D50 of 2.5 μm, or one having an average particle diameter D50 of 3.2 μm was used. An ethylenebisamide wax having an average particle diameter D50 of 27 μm was used as a powder lubricant.

Figure 2019127654
Figure 2019127654

上記粉末冶金用混合粉No.1〜15を、それぞれ金型で圧粉成形し、外径64mm、内径24mm、高さ20mmのリング状の成形体を作成した。なお、圧粉成形は、成形体の密度が7.00g/cmになるように条件を設定した。得られた成形体を10体積%の水素ガスを含む窒素ガス雰囲気下で温度1120℃で60分間焼結して焼結体を得た。 The above-mentioned mixed powder No. Each of 1 to 15 was compacted with a mold to form a ring-shaped compact having an outer diameter of 64 mm, an inner diameter of 24 mm, and a height of 20 mm. In the compacting, the conditions were set so that the density of the compact was 7.00 g / cm 3 . The obtained compact was sintered at a temperature of 1120 ° C. for 60 minutes in a nitrogen gas atmosphere containing 10 vol% of hydrogen gas to obtain a sintered body.

各試作品の焼結時の寸法変化率(成形体基準及び金型基準)、圧環強さ、並びにロックウェル硬さ(Bスケール)を測定した。また、各試作品の焼結体を10個重ねてその側面を旋削加工する試験を行った。切削工具としては、三菱マテリアル社のサーメット「NX2525」を用いたチップ「SNMN120408」を使用した。また、切削条件としては、周速度200m/分、切込み量0.15mm/pass、送り量0.08mm/rev、乾式切削とし、5287m切削した。   The dimensional change ratio (molding standard and mold standard) at sintering of each trial product, radial crushing strength, and Rockwell hardness (B scale) were measured. In addition, a test was performed in which 10 sintered bodies of each trial product were stacked and the side surface was turned. As a cutting tool, a chip "SNMN 120408" using Mitsubishi Materials' cermet "NX2525" was used. As cutting conditions, peripheral speed 200 m / min, infeed amount 0.15 mm / pass, feed amount 0.08 mm / rev, dry cutting was performed, and 5287 m was cut.

上記旋削試験後の切削工具の逃げ面の平行摩耗幅(フランク摩耗幅Vb)を測定した。   The parallel wear width (flank wear width Vb) of the flank of the cutting tool after the turning test was measured.

上記旋削試験後の焼結体の切削加工面の表面粗さRa(算術平均粗さ)及びRz(最大高さ)を測定した。この表面粗さの測定は、ミツトヨ社の表面粗さ測定器「SJ−410」を用い、カットオフ値をλc=0.8mm、λs=2.5μmとし、測定長を5.0mmとし、3箇所測定してその平均値を算出した。   The surface roughness Ra (arithmetic mean roughness) and Rz (maximum height) of the cutting surface of the sintered body after the turning test were measured. The surface roughness is measured using a surface roughness measuring instrument “SJ-410” manufactured by Mitutoyo, with cutoff values of λc = 0.8 mm, λs = 2.5 μm, and a measurement length of 5.0 mm. The average value was calculated by measuring points.

上記の各測定値を次の表2にまとめて示す。   The above measured values are summarized in Table 2 below.

Figure 2019127654
Figure 2019127654

硫化物及び0.010質量%以上0.020質量%以下の酸化マグネシウムを含有する粉末冶金用混合粉No.1〜3,5,7,8,11,13を焼結して得られた焼結体は、成形性及び機械的強度が十分であり、かつ切削工具の摩耗が小さい。   Mixed powder No. 1 for powder metallurgy containing sulfide and 0.010 mass% or more and 0.020 mass% or less of magnesium oxide. The sintered body obtained by sintering 1 to 3, 5, 7, 8, 11 and 13 has sufficient formability and mechanical strength, and the wear of the cutting tool is small.

さらに、No.1,5,8,13,14,15により作成した焼結体に、ドリルで孔開けを行う試験を行った。上記ドリルとしては、OSG社の直径3.8mmのコーティング超硬ドリル「AD−4D」を使用した。加工条件としては、ドリルの周速を2m/min(4358rpm)、送り速度を450mm/min(0.103mm/rev)とし、切削油としてユシロ化学工業社の水溶性油剤「ユシローケンEC50」を焼結体にかけながら切削した。切削距離を稼ぐために、深さ10mmの非貫通孔を180箇所形成した。   Furthermore, no. The sintered body prepared from 1, 5, 8, 13, 14, 15 was subjected to a test for drilling with a drill. As said drill, the coated carbide drill "AD-4D" with a diameter of 3.8 mm of OSG company was used. As processing conditions, the peripheral speed of the drill is 2 m / min (4358 rpm), the feed rate is 450 mm / min (0.103 mm / rev), and the water-soluble oil agent "Yushiroken EC50" of Yushiro Chemical Industry Co., Ltd. is sintered as a cutting oil. I cut it while putting it on my body. In order to increase the cutting distance, 180 non-through holes with a depth of 10 mm were formed.

上記孔開け試験において、非貫通孔を30箇所形成する度に、ドリルの逃げ面摩耗幅(フランク摩耗幅Vb)を測定した。この測定結果を次の表3に示す。   In the above-mentioned drilling test, the flank wear width (flank wear width Vb) of the drill was measured every time 30 non-through holes were formed. The measurement results are shown in Table 3 below.

Figure 2019127654
Figure 2019127654

硫化物及び酸化マグネシウムを含有する粉末冶金用混合粉No.1,5,8,13を焼結して得られた焼結体は、硫化物及び酸化マグネシウムを含有しない粉末冶金用混合粉No.14,15と比較して、切削工具の摩耗が小さい。   Mixed powder No. for powder metallurgy containing sulfide and magnesium oxide The sintered body obtained by sintering 1, 5, 8 and 13 is a mixed powder for powder metallurgy which contains no sulfide and no magnesium oxide. Compared with 14, 15, the wear of the cutting tool is small.

鉄基粉末に、銅粉、黒鉛粉、被削性改善材、酸化マグネシウム、粉末潤滑剤を、下の表4に示す割合で混合して粉末冶金用混合粉No.16〜32を試作した。なお、表中の「−」はその材料を配合していないことを示す。   Mixed powder No. 1 for powder metallurgy was mixed with iron-based powder, copper powder, graphite powder, a machinability improver, magnesium oxide and powder lubricant in the proportions shown in Table 4 below. We made 16 to 32 prototypes. In addition, "-" in a table | surface shows that the material is not mix | blended.

なお、鉄基粉末、銅粉、黒鉛粉、酸化マグネシウム及び粉末潤滑剤としては、上記粉末冶金用混合粉No.1〜15と同じものを使用した。また、被削性改善材としては、上記粉末冶金用混合粉No.1〜15と同じ硫化マンガン並びに100メッシュの金網を通過した平均粒径D50が46.1μmの硫黄(表中の「S」)及び平均粒径D50が13.5μmの硫化鉄(表中の「FeS」)を使用した。   Examples of the iron-based powder, copper powder, graphite powder, magnesium oxide, and powder lubricant include the above mixed powder No. 1 for powder metallurgy. The same one as 1 to 15 was used. Moreover, as a machinability improving material, the above-mentioned mixed powder No. 1 for powder metallurgy is used. The same manganese sulfide as 1 to 15 and sulfur having an average particle diameter D50 of 46.1 μm (“S” in the table) passed through a 100 mesh wire mesh and an iron sulfide having an average particle diameter D50 of 13.5 μm (“in the table FeS ") was used.

Figure 2019127654
Figure 2019127654

上記粉末冶金用混合粉No.16〜32を、それぞれ上記粉末冶金用混合粉No.1〜15と同様に金型で圧粉成形することによりリング状の成形体を作成し、得られた成形体を10体積%の水素ガスを含む窒素ガス雰囲気下で温度1130℃で60分間焼結して焼結体を得た。   The above-mentioned mixed powder No. 1 for powder metallurgy. 16 to 32 are mixed powder No. 1 for powder metallurgy. A ring-shaped compact is prepared by compacting with a mold in the same manner as in 1 to 15 and the resulting compact is fired at a temperature of 1130 ° C. for 60 minutes under a nitrogen gas atmosphere containing 10 vol% hydrogen gas. The sintered compact was obtained.

各試作品の焼結時の寸法変化率(成形体基準及び金型基準)、圧環強さ、並びにロックウェル硬さ(Bスケール)を測定した。また、各試作品の焼結体を10個を重ねてその側面を旋削加工する試験を行った。切削工具としては、住友電工社の立方晶窒化硼素「BN7500」を用いたチップ「2NU−CNGA120408LF」を使用した。また、切削条件としては、周速度200m/分、切込み量0.1mm/pass、送り量0.1mm/rev、乾式切削とし、2735m切削した。   The dimensional change ratio (molding standard and mold standard) at sintering of each trial product, radial crushing strength, and Rockwell hardness (B scale) were measured. In addition, a test was performed in which 10 pieces of sintered bodies of each trial product were stacked and the side surface was turned. As a cutting tool, a chip "2NU-CNGA 120408LF" using cubic boron nitride "BN 7500" manufactured by Sumitomo Electric Co., Ltd. was used. In addition, as cutting conditions, peripheral speed 200 m / min, infeed amount 0.1 mm / pass, feed amount 0.1 mm / rev, dry cutting, and 2735 m was performed.

上記旋削試験後の切削工具の逃げ面の平行摩耗幅(フランク摩耗幅Vb)を測定した。   The parallel wear width (flank wear width Vb) of the flank of the cutting tool after the turning test was measured.

上記の各測定値を次の表5にまとめて示す。   The above measured values are summarized in Table 5 below.

Figure 2019127654
Figure 2019127654

硫化物及び0.010質量%以上0.020質量%以下の酸化マグネシウムを含有する粉末冶金用混合粉No.16〜19,22〜25を焼結して得られた焼結体は、成形性及び機械的強度が十分であり、かつ切削工具の摩耗が小さい。   Mixed powder No. 1 for powder metallurgy containing sulfide and 0.010 mass% or more and 0.020 mass% or less of magnesium oxide. A sintered body obtained by sintering 16 to 19 and 22 to 25 has sufficient formability and mechanical strength, and the wear of the cutting tool is small.

鉄基粉末に、銅粉、黒鉛粉、被削性改善材、酸化マグネシウム、粉末潤滑剤を、下の表6に示す割合で混合して粉末冶金用混合粉No.33〜39を試作した。なお、表中の「−」はその材料を配合していないことを示す。   Copper powder, graphite powder, machinability improving material, magnesium oxide, and powder lubricant were mixed in the ratio shown in Table 6 below, and mixed powder No. 1 for powder metallurgy. Prototypes 33 to 39 were made. In addition, "-" in a table | surface shows that the material is not mix | blended.

なお、鉄基粉末、銅粉、黒鉛粉、酸化マグネシウム及び粉末潤滑剤としては、上記粉末冶金用混合粉No.1〜15と同じものを使用した。また、被削性改善材としては、上記粉末冶金用混合粉No.1〜15と同じ硫化マンガン並びに平均粒径D50が5.0μmの二硫化モリブデン(表中の「MoS」)を使用した。 As iron-based powder, copper powder, graphite powder, magnesium oxide and powder lubricants, the above-mentioned mixed powder No. 1 for powder metallurgy is used. The same as 1-15 was used. Moreover, as a machinability improving material, the above-mentioned mixed powder No. 1 for powder metallurgy is used. The same manganese sulfide as 1 to 15 and molybdenum disulfide having an average particle diameter D50 of 5.0 μm (“MoS 2 ” in the table) were used.

Figure 2019127654
Figure 2019127654

上記粉末冶金用混合粉No.33〜39を、それぞれ上記粉末冶金用混合粉No.16〜32と同様に金型で圧粉成形することによりリング状の成形体を作成し、得られた成形体をNo.16〜32と同様の条件で焼結して焼結体を得た。   The above-mentioned mixed powder No. 1 for powder metallurgy. 33 to 39 are mixed powder No. In the same manner as in Nos. 16 to 32, a ring-shaped molded body was prepared by compacting with a mold, and the obtained molded body was No. It sintered on the same conditions as 16-32, and obtained the sintered compact.

各試作品の焼結時の寸法変化率(成形体基準及び金型基準)、圧環強さ、並びにロックウェル硬さ(Bスケール)を測定した。また、各試作品の焼結体を10個を重ねてその側面を旋削加工する試験を行った。切削工具としては、住友電工社の立方晶窒化硼素「BN7500」を用いたチップ「2NU−CNGA120408LF」を使用した。また、切削条件としては、周速度200m/分、切込み量0.1mm/pass、送り量0.1mm/rev、乾式切削とし、2735m切削した。   The dimensional change ratio (molding standard and mold standard) at sintering of each trial product, radial crushing strength, and Rockwell hardness (B scale) were measured. In addition, a test was performed in which 10 pieces of sintered bodies of each trial product were stacked and the side surface was turned. As a cutting tool, a chip "2NU-CNGA 120408LF" using cubic boron nitride "BN 7500" manufactured by Sumitomo Electric Co., Ltd. was used. In addition, as cutting conditions, peripheral speed 200 m / min, infeed amount 0.1 mm / pass, feed amount 0.1 mm / rev, dry cutting, and 2735 m was performed.

上記旋削試験後の切削工具の逃げ面の平行摩耗幅(フランク摩耗幅Vb)を測定した。   The parallel wear width (flank wear width Vb) of the flank of the cutting tool after the turning test was measured.

上記の各測定値を次の表7にまとめて示す。   The above measured values are summarized in Table 7 below.

Figure 2019127654
Figure 2019127654

硫化物及び0.010質量%以上0.020質量%以下の酸化マグネシウムを含有する粉末冶金用混合粉No.33〜37を焼結して得られた焼結体は、成形性及び機械的強度が十分であり、かつ切削工具の摩耗が小さい。また、No.33及びNo.34を比較すると、硫化物として二硫化モリブデンを用いたNo.34は、硫化物として硫化マンガンを用いたNo.33よりも逃げ面の平行摩耗幅が小さく抑えられている。さらに、硫化物として硫化マンガン及び二硫化モリブデンの2種類を用いたNo.35〜37は、硫化物として硫化マンガン及び二硫化モリブデンのいずれか一方のみを用いたNo.33及びNo.34よりも逃げ面の平行摩耗幅を小さく抑えられている。なお、No.33とNo.18、及びNo.39とNo.32は各種成分の配合量が同じであるが、各材料のバッチの相違に起因して測定値に違いが生じていると考えられる。   Mixed powder No. 1 for powder metallurgy containing sulfide and 0.010 mass% or more and 0.020 mass% or less of magnesium oxide. The sintered body obtained by sintering 33 to 37 has sufficient formability and mechanical strength, and the wear of the cutting tool is small. Also, no. 33 and No. No. 34 using molybdenum disulfide as the sulfide. No. 34 used No. 4 using manganese sulfide as sulfide. The parallel wear width of the flanks is suppressed smaller than 33. Furthermore, No. 1 using two types of manganese sulfide and molybdenum disulfide as sulfides. Nos. 35 to 37 are Nos. Using only one of manganese sulfide and molybdenum disulfide as sulfides. 33 and No. The parallel wear width of the flank is suppressed smaller than 34. No. 33 and No. 18, and no. 39 and No. No. 32 has the same blending amount of various components, but it is considered that differences in measured values are caused due to differences in batches of each material.

本発明に係る粉末冶金用混合粉は、焼結後に切削を行う必要がある高精度の部品を製造するために好適に利用される。   The mixed powder for powder metallurgy according to the present invention is suitably used to manufacture high-precision parts which need to be cut after sintering.

Claims (2)

鉄基粉末を主体とし、
CaS、MnS及びMoSのいずれか1種以上の硫化物の粉末と、
0.005質量%以上0.025質量%以下の酸化マグネシウムの粉末と
を含有し、
上記酸化マグネシウムの平均粒径D50が、0.5μm以上5.0μm以下である粉末冶金用混合粉。
Mainly iron-based powder,
A powder of one or more sulfides of CaS, MnS and MoS 2 ;
And at least 0.005 mass% and at most 0.025 mass% of magnesium oxide powder,
Mixed powder for powder metallurgy, wherein the average particle diameter D50 of the magnesium oxide is 0.5 μm or more and 5.0 μm or less.
上記硫化物の合計含有量が0.04質量%以上0.20質量%以下である請求項1に記載の粉末冶金用混合粉。   The mixed powder for powder metallurgy according to claim 1, wherein the total content of the sulfides is 0.04% by mass or more and 0.20% by mass or less.
JP2018203514A 2018-01-25 2018-10-30 Mixed powder for powder metallurgy Active JP6929259B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA3089506A CA3089506A1 (en) 2018-01-25 2018-12-17 Mixed powder for powder metallurgy
US16/963,652 US20210060640A1 (en) 2018-01-25 2018-12-17 Mixed powder for powder metallurgy
CN201880073768.8A CN111344090B (en) 2018-01-25 2018-12-17 Mixed powder for powder metallurgy
MX2020007821A MX2020007821A (en) 2018-01-25 2018-12-17 Mixed powder for powder metallurgy.
KR1020207023830A KR102348200B1 (en) 2018-01-25 2018-12-17 Mixed powder for powder metallurgy
PCT/JP2018/046397 WO2019146310A1 (en) 2018-01-25 2018-12-17 Mixed powder for powder metallurgy
EP18902349.2A EP3744441A4 (en) 2018-01-25 2018-12-17 Mixed powder for powder metallurgy
BR112020014533A BR112020014533B8 (en) 2018-01-25 2018-12-17 Mixed powder for powder metallurgy
TW108100643A TWI694157B (en) 2018-01-25 2019-01-08 Powder powder for powder metallurgy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018010490 2018-01-25
JP2018010490 2018-01-25

Publications (2)

Publication Number Publication Date
JP2019127654A true JP2019127654A (en) 2019-08-01
JP6929259B2 JP6929259B2 (en) 2021-09-01

Family

ID=67471975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018203514A Active JP6929259B2 (en) 2018-01-25 2018-10-30 Mixed powder for powder metallurgy

Country Status (7)

Country Link
US (1) US20210060640A1 (en)
EP (1) EP3744441A4 (en)
JP (1) JP6929259B2 (en)
CN (1) CN111344090B (en)
BR (1) BR112020014533B8 (en)
CA (1) CA3089506A1 (en)
TW (1) TWI694157B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255603A (en) * 1988-04-05 1989-10-12 Kawasaki Steel Corp Ferrous mixed powder for powder metallurgy having excellent machinability and mechanical property after sintering
JPH06145701A (en) * 1992-11-04 1994-05-27 Kawasaki Steel Corp Iron base powder mixture for powder metallurgy
JP2008127640A (en) * 2006-11-22 2008-06-05 Jfe Steel Kk Iron-based powder for powder metallurgy
JP2009120905A (en) * 2007-11-14 2009-06-04 Kobe Steel Ltd Steel for machine structural use, having excellent machinability
JP2012144801A (en) * 2010-02-18 2012-08-02 Jfe Steel Corp Mixed powder for powder metallurgy and method for producing the same, and sintered body made of iron-based powder excellent in cuttability and method for producing the same
CN103357864A (en) * 2013-06-21 2013-10-23 马鞍山市恒毅机械制造有限公司 Iron-based powder metallurgy material applicable to high-speed boring and preparation method thereof
JP2017179388A (en) * 2016-03-28 2017-10-05 大同特殊鋼株式会社 Powder for sintering and sintered body
CN107812936A (en) * 2017-10-27 2018-03-20 湖北步洲智能机械有限公司 Metallurgical powder composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1152624A (en) * 1995-12-21 1997-06-25 北京科技大学 Easy cutting iron-copper-carbon series agglutinated steel containing composite additives
CN100537817C (en) * 2008-03-17 2009-09-09 莱芜钢铁股份有限公司 Easy-cutting untempered steel and manufacture method thereof
CN102560249A (en) * 2010-12-07 2012-07-11 王平 Formula and process for powder metallurgy
CN105377477B (en) * 2013-07-18 2017-11-24 杰富意钢铁株式会社 The manufacture method of powder used in metallurgy mixed powder and its manufacture method and iron-based powder sintered body
JP6480264B2 (en) * 2015-05-27 2019-03-06 株式会社神戸製鋼所 Mixed powder and sintered body for iron-based powder metallurgy
JP6480265B2 (en) * 2015-05-27 2019-03-06 株式会社神戸製鋼所 Mixed powder for iron-based powder metallurgy, method for producing the same, sintered body and method for producing the same
JP6493357B2 (en) * 2015-12-08 2019-04-03 Jfeスチール株式会社 Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body
CN106939367A (en) * 2016-11-19 2017-07-11 浙江宝信新型炉料科技发展有限公司 A kind of solid calcium metal, ferrosilicon, magnesium-rare earth alloy composite core-spun yarn

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255603A (en) * 1988-04-05 1989-10-12 Kawasaki Steel Corp Ferrous mixed powder for powder metallurgy having excellent machinability and mechanical property after sintering
JPH06145701A (en) * 1992-11-04 1994-05-27 Kawasaki Steel Corp Iron base powder mixture for powder metallurgy
JP2008127640A (en) * 2006-11-22 2008-06-05 Jfe Steel Kk Iron-based powder for powder metallurgy
JP2009120905A (en) * 2007-11-14 2009-06-04 Kobe Steel Ltd Steel for machine structural use, having excellent machinability
JP2012144801A (en) * 2010-02-18 2012-08-02 Jfe Steel Corp Mixed powder for powder metallurgy and method for producing the same, and sintered body made of iron-based powder excellent in cuttability and method for producing the same
CN103357864A (en) * 2013-06-21 2013-10-23 马鞍山市恒毅机械制造有限公司 Iron-based powder metallurgy material applicable to high-speed boring and preparation method thereof
JP2017179388A (en) * 2016-03-28 2017-10-05 大同特殊鋼株式会社 Powder for sintering and sintered body
CN107812936A (en) * 2017-10-27 2018-03-20 湖北步洲智能机械有限公司 Metallurgical powder composition

Also Published As

Publication number Publication date
EP3744441A4 (en) 2021-10-20
CN111344090B (en) 2023-01-06
US20210060640A1 (en) 2021-03-04
CN111344090A (en) 2020-06-26
TW201936942A (en) 2019-09-16
TWI694157B (en) 2020-05-21
BR112020014533B8 (en) 2024-04-30
CA3089506A1 (en) 2019-08-01
BR112020014533A2 (en) 2020-12-29
BR112020014533B1 (en) 2024-04-09
JP6929259B2 (en) 2021-09-01
EP3744441A1 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
TWI392747B (en) Iron powder for powder metallurgy and powder sintered body
CN107614157B (en) Ferrous based powder metallurgical mixed powder and the sintered body made using it
JP5504971B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP5962787B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
KR102102584B1 (en) Mixed powder for iron powder metallurgy and manufacturing method therefor, and sintered body produced therefrom and manufacturing method thereof
JP4839275B2 (en) Mixed powder for powder metallurgy and sintered iron powder
EP3305439B1 (en) Mixed powder for iron-based powder metallurgy, method for producing same, and sintered body produced using same
JP2019512604A (en) Metal powder composition easy to cut
JP2019127654A (en) Mixed powder for powder metallurgy
JP5962691B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
KR102348200B1 (en) Mixed powder for powder metallurgy
JP5816413B2 (en) Method for producing ferrous sintered material
JP2014025109A (en) Mixed powder for powder metallurgy
JP2015157974A (en) Mixed powder for powder metallurgy, production method thereof and iron-based powder-made sintered body
JP5310074B2 (en) Iron-based powder mixture for high-strength sintered parts of automobiles
JP2011122198A (en) Mixed powder for powder metallurgy and sintered compact made of metal powder having excellent cuttability
JP2024016289A (en) Iron-based sintered sliding member and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210810

R150 Certificate of patent or registration of utility model

Ref document number: 6929259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150