JP2024016289A - Iron-based sintered sliding member and its manufacturing method - Google Patents

Iron-based sintered sliding member and its manufacturing method Download PDF

Info

Publication number
JP2024016289A
JP2024016289A JP2023199937A JP2023199937A JP2024016289A JP 2024016289 A JP2024016289 A JP 2024016289A JP 2023199937 A JP2023199937 A JP 2023199937A JP 2023199937 A JP2023199937 A JP 2023199937A JP 2024016289 A JP2024016289 A JP 2024016289A
Authority
JP
Japan
Prior art keywords
iron
based sintered
sliding member
metal sulfide
sintered sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023199937A
Other languages
Japanese (ja)
Inventor
大輔 深江
亮一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2018/031980 external-priority patent/WO2020044466A1/en
Priority claimed from PCT/JP2018/031989 external-priority patent/WO2020044468A1/en
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Publication of JP2024016289A publication Critical patent/JP2024016289A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0221Using a mixture of prealloyed powders or a master alloy comprising S or a sulfur compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/128Porous bearings, e.g. bushes of sintered alloy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • F16C33/145Special methods of manufacture; Running-in of sintered porous bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/45Others, including non-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/62Low carbon steel, i.e. carbon content below 0.4 wt%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/64Medium carbon steel, i.e. carbon content from 0.4 to 0,8 wt%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/66High carbon steel, i.e. carbon content above 0.8 wt%, e.g. through-hardenable steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/70Ferrous alloys, e.g. steel alloys with chromium as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/70Ferrous alloys, e.g. steel alloys with chromium as the next major constituent
    • F16C2204/72Ferrous alloys, e.g. steel alloys with chromium as the next major constituent with nickel as further constituent, e.g. stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/20Shaping by sintering pulverised material, e.g. powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/06Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/08Time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/12Force, load, stress, pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/90Surface areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/20Land vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • F16C33/104Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing in a porous body, e.g. oil impregnated sintered sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1095Construction relative to lubrication with solids as lubricant, e.g. dry coatings, powder

Abstract

【課題】摺動性能に優れる鉄基焼結摺動部材を提供することである。【解決手段】質量%で、S:3~15%、Cr、Ca、V、Ti、及びMgからなる群から選択される1種以上:合計量で0.2~6%を含み、残部:Fe及び不可避不純物からなり、Cr、Ca、V、Ti、及びMgからなる群から選択される1種以上を有する硫化物粒子が分散する基地と、気孔とを含む、鉄基焼結摺動部材が提供される。【選択図】図1An object of the present invention is to provide an iron-based sintered sliding member that has excellent sliding performance. [Solution] S: 3 to 15%, one or more selected from the group consisting of Cr, Ca, V, Ti, and Mg: 0.2 to 6% in total amount, and the balance: An iron-based sintered sliding member comprising Fe and unavoidable impurities and a base in which sulfide particles containing one or more selected from the group consisting of Cr, Ca, V, Ti, and Mg are dispersed, and pores. is provided. [Selection diagram] Figure 1

Description

本発明の一実施形態は、鉄基焼結摺動部材及びその製造方法に関する。 One embodiment of the present invention relates to an iron-based sintered sliding member and a method for manufacturing the same.

原料粉末を金型内で圧縮成形して得られた圧粉体を焼結する、いわゆる粉末冶金法は、ニアネットシェイプに造形できるので、後の機械加工による削り代が少なく材料損失が小さいこと、また一度金型を作製すれば同じ形状の製品が多量に生産できること等の理由から経済性に優れている。また、粉末冶金法は、通常の溶解によって製造される合金で得ることができない特殊な合金を製造できること等の理由から合金設計の幅が広い。このため自動車部品を始めとする機械部品に広く適用されている。 The so-called powder metallurgy method, in which raw powder is compression-molded in a mold and the resulting green compact is sintered, can be shaped into a near-net shape, so there is less machining allowance during subsequent machining and material loss is small. Moreover, once a mold is made, it is possible to produce a large quantity of products of the same shape, making it highly economical. Furthermore, the powder metallurgy method has a wide range of alloy designs because it allows the production of special alloys that cannot be obtained with alloys produced by ordinary melting. For this reason, it is widely applied to mechanical parts including automobile parts.

機械部品の中でも摺動部材は、低摩擦係数であるとともに耐摩耗性を備えることが重要になる。特に高面圧が付加される用途では、青銅系、鉛青銅系等の銅系焼結体によって形成される摺動部材が好ましく用いられる。
従来の銅系焼結体は、焼結体に含まれる気孔部に潤滑油が保持されて、耐摩耗性を改善することができる。さらに、鉛青銅系焼結体は、基地に含まれる鉛相が固体潤滑剤として働いて、耐摩耗性を改善することができる。
Among mechanical parts, it is important for sliding members to have a low coefficient of friction and wear resistance. Particularly in applications where high surface pressure is applied, a sliding member formed of a copper-based sintered body such as bronze-based or lead bronze-based is preferably used.
In conventional copper-based sintered bodies, lubricating oil is retained in the pores included in the sintered bodies, and wear resistance can be improved. Furthermore, in the lead bronze-based sintered body, the lead phase contained in the matrix acts as a solid lubricant and can improve wear resistance.

特許文献1には、摺動特性とともに機械的強度に優れる鉄基焼結摺動部材として、硫化物粒子が分散するフェライト基地と、気孔とからなる金属組織を有し、硫化物粒子が基地に対して15~30体積%で分散する鉄基焼結摺動部材が提案される。
特許文献1には、基地中に析出する硫化物は、固体潤滑作用を発揮させるために、所定の大きさを有することが好ましいことが記載されている。具体的には、特許文献1には、最大粒径が10μm以上の硫化物粒子の面積が、硫化物粒子全体の面積の30%以上を占めることが好ましいと提案されている。
特許文献2には、強度を保持しながら被削性を改善する焼結部材として、基地組織の全面にわたり結晶粒内に10μm以下のMnS粒子が均一に分散する被削性焼結部材が提案される。
Patent Document 1 describes an iron-based sintered sliding member that has excellent sliding properties and mechanical strength, and has a metal structure consisting of a ferrite base in which sulfide particles are dispersed and pores. On the other hand, an iron-based sintered sliding member is proposed in which the content is dispersed at 15 to 30% by volume.
Patent Document 1 describes that the sulfide precipitated in the matrix preferably has a predetermined size in order to exhibit a solid lubricating effect. Specifically, Patent Document 1 proposes that the area of sulfide particles having a maximum particle size of 10 μm or more preferably occupies 30% or more of the area of the entire sulfide particles.
Patent Document 2 proposes a machinable sintered member in which MnS particles of 10 μm or less are uniformly dispersed in crystal grains over the entire surface of the base structure, as a sintered member that improves machinability while maintaining strength. Ru.

特開2014-181381号公報Japanese Patent Application Publication No. 2014-181381 特開2002-332552号公報Japanese Patent Application Publication No. 2002-332552

鉛青銅系焼結体は多量の鉛を含むことから、環境問題に対応するため、鉛の削減や代替材料の開発が望まれている。鉛青銅系焼結体の代替材料として種々の材料が検討されているが、銅系焼結体では摩擦係数及び耐摩耗性のさらなる改善が望まれる。また、銅系焼結体では銅の使用量が多くなるためコストが高くなる問題がある。 Since lead bronze sintered bodies contain a large amount of lead, there is a desire to reduce lead and develop alternative materials in order to address environmental issues. Although various materials are being considered as substitute materials for lead bronze-based sintered bodies, further improvements in the coefficient of friction and wear resistance of copper-based sintered bodies are desired. In addition, copper-based sintered bodies use a large amount of copper, resulting in an increase in cost.

特許文献1の記載から、鉄基焼結摺動部材において、基地中の硫化物粒子の粒径は摺動性能の観点から10μm以上と大きいことが好ましい。特許文献1では、不可避不純物として0.03~0.9質量%のMnが含まれる鉄粉末に、硫化鉄を添加することで、焼結体において硫化物粒子を所定の体積割合とし、かつ、硫化物粒子を粗大化している。 From the description in Patent Document 1, in the iron-based sintered sliding member, the particle size of the sulfide particles in the matrix is preferably as large as 10 μm or more from the viewpoint of sliding performance. In Patent Document 1, iron sulfide is added to iron powder containing 0.03 to 0.9 mass% Mn as an unavoidable impurity, so that the sulfide particles are set at a predetermined volume ratio in the sintered body, and Sulfide particles are coarsened.

特許文献2では、Mnを含む鉄粉末に、MoS粉末を添加することで、焼結体にMnS粒子を析出させている。Mnが酸化しやすい成分であり、Mn豊富の鉄合金の原料の製造入手は困難である。
本発明の一実施形態は、摺動性能に優れる鉄基焼結摺動部材を提供することを目的とする。
In Patent Document 2, MnS particles are precipitated in a sintered body by adding MoS 2 powder to iron powder containing Mn. Mn is a component that is easily oxidized, and it is difficult to manufacture and obtain raw materials for Mn-rich iron alloys.
One embodiment of the present invention aims to provide an iron-based sintered sliding member with excellent sliding performance.

本発明の一実施形態は、以下の通りである。
[1]質量%で、S:3~15%、Cr、Ca、V、Ti、及びMgからなる群から選択される1種以上:合計量で0.2~6%を含み、残部:Fe及び不可避不純物からなり、Cr、Ca、V、Ti、及びMgからなる群から選択される1種以上を有する硫化物粒子が分散する基地と、気孔とを含む、鉄基焼結摺動部材。
[2]Ni:0~10%をさらに含む、[1]に記載の鉄基焼結摺動部材。
[3]Mo:0~10%をさらに含む、[1]又は[2]に記載の鉄基焼結摺動部材。
[4]黒鉛:0~1%をさらに含む、[1]から[3]のいずれかに記載の鉄基焼結摺動部材。
[5][1]から[4]のいずれかに記載の鉄基焼結摺動部材を用いる、摺動部品。
One embodiment of the invention is as follows.
[1] In mass%, S: 3 to 15%, one or more selected from the group consisting of Cr, Ca, V, Ti, and Mg: 0.2 to 6% in total amount, balance: Fe An iron-based sintered sliding member, comprising a base in which sulfide particles containing at least one selected from the group consisting of Cr, Ca, V, Ti, and Mg are dispersed, and pores.
[2] The iron-based sintered sliding member according to [1], further containing 0 to 10% Ni.
[3] The iron-based sintered sliding member according to [1] or [2], further containing Mo: 0 to 10%.
[4] The iron-based sintered sliding member according to any one of [1] to [3], further containing graphite: 0 to 1%.
[5] A sliding component using the iron-based sintered sliding member according to any one of [1] to [4].

[6]Cr、Ca、V、Ti、及びMgからなる群から選択される1種以上を合計量で1質量%以上で含む鉄合金粉末Aと、硫黄合金粉末Bを最終焼結体の硫黄含有量が3~15質量%になるように添加し、得られた混合粉末を圧縮成形し、得られた成形体を900℃~1200℃の温度範囲で焼結する、鉄基焼結摺動部材の製造方法。
[7]前記混合粉末は、ニッケル粉末及びニッケル鉄合金粉末からなる群から選択される1種以上を3質量%以上でさらに含む、[6]に記載の鉄基焼結摺動部材の製造方法。
[8]前記混合粉末は、黒鉛を0~1質量%でさらに含む、[6]又は[7]に記載の鉄基焼結摺動部材の製造方法。
[6] Iron alloy powder A containing at least 1% by mass of one or more selected from the group consisting of Cr, Ca, V, Ti, and Mg and sulfur alloy powder B are added to the sulfur of the final sintered body. An iron-based sintered sliding material that is added so that the content is 3 to 15% by mass, compression molds the obtained mixed powder, and sinters the obtained molded body at a temperature range of 900°C to 1200°C. Method of manufacturing parts.
[7] The method for producing an iron-based sintered sliding member according to [6], wherein the mixed powder further contains 3% by mass or more of one or more selected from the group consisting of nickel powder and nickel-iron alloy powder. .
[8] The method for producing an iron-based sintered sliding member according to [6] or [7], wherein the mixed powder further contains graphite in an amount of 0 to 1% by mass.

[9]金属硫化物の面積比率が20%以上であり、単位面積当たりの金属硫化物の粒子数が8.0×1010個/m以上である、鉄基焼結摺動部材。
[10]金属硫化物の全粒子の個数に対して粒子径が1μm以下である金属硫化物の粒子の個数が40%以上である、[9]に記載の鉄基焼結摺動部材。
[11]金属硫化物の面積比率が20%以上であり、金属硫化物の全粒子の個数に対して粒子径が1μm以下である金属硫化物の粒子の個数が40%以上である、鉄基焼結摺動部材。
[12]前記金属硫化物はCrS、CaS、VS、TiS、及びMgSからなる群から選択される1種以上を含む、[9]から[11]のいずれかに記載の鉄基焼結摺動部材。
[13][9]から[12]のいずれかに記載の鉄基焼結摺動部材を用いる、摺動部品。
[9] An iron-based sintered sliding member in which the area ratio of metal sulfide is 20% or more and the number of metal sulfide particles per unit area is 8.0×10 10 particles/m 2 or more.
[10] The iron-based sintered sliding member according to [9], wherein the number of metal sulfide particles having a particle diameter of 1 μm or less is 40% or more of the total number of metal sulfide particles.
[11] An iron-based material in which the area ratio of metal sulfide is 20% or more, and the number of metal sulfide particles with a particle size of 1 μm or less is 40% or more of the total number of metal sulfide particles. Sintered sliding member.
[12] The iron-based sintered slide according to any one of [9] to [11], wherein the metal sulfide contains one or more selected from the group consisting of CrS, CaS, VS, TiS, and MgS. Element.
[13] A sliding component using the iron-based sintered sliding member according to any one of [9] to [12].

一実施形態によれば、摺動性能に優れる鉄基焼結摺動部材を提供することができる。 According to one embodiment, an iron-based sintered sliding member with excellent sliding performance can be provided.

図1は、実施例のスラスト摺動性能を示すグラフである。FIG. 1 is a graph showing the thrust sliding performance of the example. 図2は、実施例のラジアル摺動性能を示すグラフである。FIG. 2 is a graph showing the radial sliding performance of the example. 図3は、実施例1の焼結部材の断面画像を示す。FIG. 3 shows a cross-sectional image of the sintered member of Example 1. 図4は、実施例1及び比較例2の焼結部材の断面画像を示す。FIG. 4 shows cross-sectional images of the sintered members of Example 1 and Comparative Example 2.

以下、本発明の一実施形態について説明するが、以下の例示によって本発明は限定されない。 Hereinafter, one embodiment of the present invention will be described, but the present invention is not limited to the following examples.

一実施形態による鉄基焼結摺動部材は、質量%で、S:3~15%、Cr、Ca、V、Ti、及びMgからなる群から選択される1種以上:合計量で0.2~6%を含み、残部:Fe及び不可避不純物からなり、Cr、Ca、V、Ti、及びMgからなる群から選択される1種以上を有する硫化物粒子が分散する基地と、気孔とを含むことを特徴とする。 The iron-based sintered sliding member according to one embodiment has S: 3 to 15% in mass %, one or more selected from the group consisting of Cr, Ca, V, Ti, and Mg: 0. A base in which sulfide particles containing 2 to 6%, the remainder consisting of Fe and unavoidable impurities, and having one or more selected from the group consisting of Cr, Ca, V, Ti, and Mg are dispersed, and pores. It is characterized by containing.

一実施形態による鉄基焼結摺動部材は、鉄基焼結体によって形成される。
鉄基焼結体は、主成分としてFeを含む。ここで、主成分は、鉄基焼結体中の過半を占める成分を意味する。鉄基焼結体の全体組成に対して、Fe量は50質量%以上が好ましく、60質量%以上がより好ましい。
鉄基焼結体は、粉末冶金法によって、鉄粉末及び/又は鉄合金粉末を含む原料を用いて製造することができる。
焼結体の気孔率は5~40%であることが好ましい、気孔に潤滑油を含浸させることもできる。
The iron-based sintered sliding member according to one embodiment is formed of an iron-based sintered body.
The iron-based sintered body contains Fe as a main component. Here, the main component means a component that occupies the majority of the iron-based sintered body. The amount of Fe is preferably 50% by mass or more, more preferably 60% by mass or more with respect to the overall composition of the iron-based sintered body.
The iron-based sintered body can be manufactured by powder metallurgy using raw materials containing iron powder and/or iron alloy powder.
The porosity of the sintered body is preferably 5 to 40%, and the pores may be impregnated with lubricating oil.

一実施形態による摺動部品は、鉄基焼結摺動部材を用いて形成される。
摺動部品は、鉄基焼結体によって一体的に形成されていてもよい。また、摺動部品は、鉄基焼結体とその他の部材とを組み合わせて用いる場合は、少なくとも摺動面を含む部分が鉄基焼結体によって形成されていることが好ましい。
A sliding component according to one embodiment is formed using an iron-based sintered sliding member.
The sliding component may be integrally formed of an iron-based sintered body. Moreover, when the sliding component is used in combination with an iron-based sintered body and other members, it is preferable that at least a portion including the sliding surface is formed of the iron-based sintered body.

鉄基焼結体は、基地が金属硫化物を含むことが好ましい。
金属硫化物としては、FeS、MnS、CrS、MoS、VS等、又はこれらの組み合わせを挙げることができる。好ましくは、金属硫化物は、MnS、CrS、及びVSからなる群から選択される1種以上を含むことができる。さらに好ましくは、金属硫化物は、CrS及びVSのうち少なくとも一方を含むことができる。
なかでも、鉄基焼結体はCrSを含むことが好ましい。CrSは、原料のCrに由来して鉄基焼結体に配合されるが、原料の鉄粉末にCrが含まれることで、焼結体である鉄基焼結体においてCrSが基地に微細に分布して配合されるようになる。
In the iron-based sintered body, the base preferably contains a metal sulfide.
Examples of metal sulfides include FeS, MnS, CrS, MoS 2 , VS, etc., or combinations thereof. Preferably, the metal sulfide may include one or more selected from the group consisting of MnS, CrS, and VS. More preferably, the metal sulfide may contain at least one of CrS and VS.
Among these, it is preferable that the iron-based sintered body contains CrS. CrS is derived from the raw material Cr and is blended into the iron-based sintered body, but since Cr is included in the raw material iron powder, CrS is finely dispersed in the matrix in the iron-based sintered body, which is the sintered body. It will be distributed and blended.

金属硫化物は固体潤滑剤として摺動特性に寄与する。鉄基焼結体は、金属硫化物の面積比率が基地に対して20%以上が好ましい。これによって、摺動部材の摺動面に金属硫化物を適量で露出することができ、摺動性能をより改善することができる。
鉄基焼結体は、金属硫化物の面積比率が基地に対して35%以下が好ましい。
Metal sulfides contribute to sliding properties as solid lubricants. In the iron-based sintered body, the area ratio of the metal sulfide to the matrix is preferably 20% or more. Thereby, an appropriate amount of metal sulfide can be exposed on the sliding surface of the sliding member, and sliding performance can be further improved.
In the iron-based sintered body, the area ratio of metal sulfide to the base is preferably 35% or less.

ここで、金属硫化物の面積比率の測定方法としては、例えば、鉄基焼結体を任意の箇所で切断し、断面の任意の箇所をメタノールで腐食、鏡面研磨し、金属組織を見えるように加工し、加工した断面を電子線マイクロアナライザー(例えば、株式会社島津製作所製「EPMA1600」)により元素分析画像を得ることで行う。測定は、波長分散型分光器(WDS)方式で行う。測定条件は、例えば、加速電圧は15kV、試料電流は100nA、メジャーリングタイムは5m・sec、エリアサイズは604×454μmとすることができる。また、元素分析画像は、例えば倍率500倍の画像とすることができる。金属硫化物は、基地中に黒色の粒子状に観察される。画像分析には、例えば、画像分析ソフトウエア(三谷商事株式会社製WinROOF)を用いることができる。 Here, as a method for measuring the area ratio of metal sulfides, for example, an iron-based sintered body is cut at an arbitrary point, an arbitrary point on the cross section is corroded with methanol, and mirror polished to make the metal structure visible. The process is performed by obtaining an elemental analysis image of the processed cross section using an electron beam microanalyzer (for example, "EPMA1600" manufactured by Shimadzu Corporation). The measurement is performed using a wavelength dispersive spectrometer (WDS). The measurement conditions can be, for example, an accelerating voltage of 15 kV, a sample current of 100 nA, a measuring time of 5 m·sec, and an area size of 604×454 μm. Further, the elemental analysis image can be an image with a magnification of 500 times, for example. Metal sulfides are observed in the form of black particles in the matrix. For example, image analysis software (WinROOF manufactured by Mitani Shoji Co., Ltd.) can be used for image analysis.

鉄基焼結体は、84.4μm×60.5μmの領域内で金属硫化物の粒子数が500個以上が好ましい。
これによって、鉄基焼結体の基地により微細な金属硫化物の粒子がより多く含まれるようになり、摺動部材の摺動面に微細な粒子を多数露出することができ、摺動性能をより改善することができる。
The iron-based sintered body preferably has 500 or more metal sulfide particles within a region of 84.4 μm x 60.5 μm.
As a result, more fine metal sulfide particles are contained in the base of the iron-based sintered body, and a large number of fine particles can be exposed on the sliding surface of the sliding member, improving sliding performance. It can be further improved.

ここで、金属硫化物の粒子数は、例えば、鉄基焼結体を切断し、断面を鏡面研磨し、研磨面の画像を観察し、研磨面の84.4μm×60.5μmの領域に含まれる金属硫化物の粒子を測定して求めることができる。画像分析には、例えば、画像分析ソフトウエア(三谷商事株式会社製WinROOF)を用いることができる。 Here, the number of metal sulfide particles can be determined by, for example, cutting an iron-based sintered body, mirror-polishing the cross section, observing an image of the polished surface, and determining the number of particles contained in an 84.4 μm x 60.5 μm area of the polished surface. It can be determined by measuring the metal sulfide particles contained in the metal sulfide particles. For example, image analysis software (WinROOF manufactured by Mitani Shoji Co., Ltd.) can be used for image analysis.

金属硫化物は微細に分散することが好ましい。鉄基焼結体は、単位面積当たりの金属硫化物の粒子数が8.0×1010個/m以上が好ましく、1.0×011個/m以上がより好ましい。
これによって、鉄基焼結体の基地により微細な金属硫化物の粒子がより多く含まれるようになり、摺動部材の摺動面に微細な粒子を多数露出することができ、摺動性能をより改善することができる。
鉄基焼結体は、単位面積当たりの金属硫化物の粒子数が1.0×1012個/m以下が好ましい。
金属硫化物の粒子数が多くなると、複数の金属硫化物が結合してより大きな粒子が発生する可能性があるため、この範囲内で、より適正に微細な粒子を多く含むことができる。
Preferably, the metal sulfide is finely dispersed. The number of metal sulfide particles per unit area of the iron-based sintered body is preferably 8.0×10 10 particles/m 2 or more, more preferably 1.0×0 11 particles/m 2 or more.
As a result, more fine metal sulfide particles are contained in the base of the iron-based sintered body, and a large number of fine particles can be exposed on the sliding surface of the sliding member, improving sliding performance. It can be further improved.
The number of metal sulfide particles per unit area of the iron-based sintered body is preferably 1.0×10 12 particles/m 2 or less.
When the number of metal sulfide particles increases, there is a possibility that a plurality of metal sulfides combine to generate larger particles, so within this range, a large amount of fine particles can be contained more appropriately.

ここで、単位面積当たりの金属硫化物の粒子数は、例えば、鉄基焼結体を切断し、断面を鏡面研磨し、研磨面の画像を観察し、研磨面の所定の測定領域に含まれる金属硫化物の粒子を測定して求めることができる。画像分析には、例えば、画像分析ソフトウエア(三谷商事株式会社製WinROOF)を用いることができる。 Here, the number of metal sulfide particles per unit area can be determined by, for example, cutting an iron-based sintered body, mirror-polishing the cross section, observing an image of the polished surface, and calculating the number of particles included in a predetermined measurement area of the polished surface. It can be determined by measuring metal sulfide particles. For example, image analysis software (WinROOF manufactured by Mitani Shoji Co., Ltd.) can be used for image analysis.

鉄基焼結体は、金属硫化物の全粒子の個数に対して粒子径が1μm以下である金属硫化物の粒子の個数が40%以上であることが好ましく、50%以上がより好ましい。
これによって、鉄基焼結体の基地により微細な金属硫化物の粒子がより多く含まれるようになり、摺動部材の摺動面に微細な粒子を多数露出することができ、摺動性能をより改善することができる。
鉄基焼結体は、金属硫化物の全粒子の個数に対して粒子径が1μm以下である金属硫化物の粒子の個数は100%であってもよいが、粗大な粒子が混入する可能性があるため、90%以下であってもよい。
この範囲内で、より適正に微細な粒子を多く含むことができる。
In the iron-based sintered body, the number of metal sulfide particles having a particle diameter of 1 μm or less is preferably 40% or more, more preferably 50% or more, based on the total number of metal sulfide particles.
As a result, more fine metal sulfide particles are contained in the base of the iron-based sintered body, and a large number of fine particles can be exposed on the sliding surface of the sliding member, improving sliding performance. It can be further improved.
In the iron-based sintered body, the number of metal sulfide particles with a particle size of 1 μm or less may be 100% of the total number of metal sulfide particles, but there is a possibility that coarse particles may be mixed in. Therefore, it may be 90% or less.
Within this range, a large amount of fine particles can be contained more appropriately.

ここで、粒子径が1μm以下である金属硫化物の粒子の個数の割合は、例えば、鉄基焼結体を切断し、断面を鏡面研磨し、研磨面の画像を観察し、研磨面の任意大きさ84.4μm×60.5μmの領域に含まれる金属硫化物の全粒子の個数と、粒子径が1μm以下である金属硫化物の粒子の個数とを測定し、その個数の比から求めることができる。画像分析には、例えば、画像分析ソフトウエア(三谷商事株式会社製WinROOF)を用いることができる。 Here, the ratio of the number of metal sulfide particles with a particle size of 1 μm or less can be determined by, for example, cutting an iron-based sintered body, mirror-polishing the cross section, observing an image of the polished surface, and Measure the number of all metal sulfide particles included in an area of size 84.4 μm x 60.5 μm and the number of metal sulfide particles with a particle size of 1 μm or less, and calculate from the ratio of the numbers. Can be done. For example, image analysis software (WinROOF manufactured by Mitani Shoji Co., Ltd.) can be used for image analysis.

鉄基焼結体は、質量%で、S:3~15%、Cr、Ca、V、Ti、及びMgからなる群から選択される1種以上:合計量で0.2~6%を含み、残部:Fe及び不可避不純物からなることが好ましい。
さらに、鉄基焼結体は、Ni:0~10%、Mo:0~10%、黒鉛:0~1%、又はこれらの組み合わせをさらに含むことができる。
The iron-based sintered body contains, in mass%, S: 3 to 15%, one or more selected from the group consisting of Cr, Ca, V, Ti, and Mg: 0.2 to 6% in total amount. , the remainder: preferably consists of Fe and unavoidable impurities.
Furthermore, the iron-based sintered body can further contain Ni: 0 to 10%, Mo: 0 to 10%, graphite: 0 to 1%, or a combination thereof.

以下、鉄基焼結体の組成について説明する。
S:3~15%
鉄基焼結体にSが含まれることで、基地中に金属硫化物を含ませることができる。これによって、摺動部材の摺動面に金属硫化物を適量で露出することができ、摺動性能をより改善することができる。Sは、0.5%以上が好ましく、1%以上がより好ましく、2%以上がさらに好ましく、3%以上が一層好ましい。
過剰のSは、焼結性を阻害して強度を低下させることがある。また、焼結中にSが飛散することもある。そのため、Sは15%以下がよく、6%以下が好ましく、5%以下がより好ましく、4%以下がさらに好ましい。また、この範囲で、複数の金属硫化物の粒子が結合して1つの大きな粒子が発生することを防止し、より微細な金属硫化物の粒子を基地に含ませることができ、摺動性能をより改善することができる。
硫黄は不安定な硫黄合金粉末として添加することが好ましい、例えば硫化鉄やMoS等が挙げられる。
The composition of the iron-based sintered body will be explained below.
S: 3-15%
By including S in the iron-based sintered body, metal sulfide can be included in the base. Thereby, an appropriate amount of metal sulfide can be exposed on the sliding surface of the sliding member, and sliding performance can be further improved. S is preferably 0.5% or more, more preferably 1% or more, even more preferably 2% or more, and even more preferably 3% or more.
Excessive S may inhibit sinterability and reduce strength. Furthermore, S may be scattered during sintering. Therefore, S is preferably 15% or less, preferably 6% or less, more preferably 5% or less, and even more preferably 4% or less. In addition, within this range, it is possible to prevent multiple metal sulfide particles from combining to form one large particle, and it is possible to incorporate finer metal sulfide particles into the base, improving sliding performance. It can be further improved.
Sulfur is preferably added as an unstable sulfur alloy powder, such as iron sulfide or MoS2 .

Cr:0.2~6%
通常、硫化物の形成し易さは、電気陰性度の差がSと大きいものほど高い。電気陰性度の値(ポーリングによる電気陰性度)はS:2.58であり、Mn:1.55、Cr:1.66、Fe:1.83、Cu:1.90、Ni:1.91、Mo:2.16であるから、硫化物は、Mn>Cr>Fe>Cu>Ni>Moの順で形成し易い。このため、硫黄は鉄粉末に含有される不純物としての微量のMnと結合し、MnSを生成する。その後、クロムと反応が起こり、硫化クロムが析出する。クロムは融点が高い、凝集せず、分散の状態のままと硫黄が反応するため、微細な金属硫化物を基地中に生成させることができる。Crは0.2%以上、好ましくは0.5%以上、より好ましくは1.0%以上であることで、材料強度を高め、摺動性能を改善することができる。Crは6%以下が好ましい。
Cr: 0.2-6%
Generally, the greater the difference in electronegativity from S, the easier it is to form sulfides. The electronegativity value (electronegativity by Pauling) is S: 2.58, Mn: 1.55, Cr: 1.66, Fe: 1.83, Cu: 1.90, Ni: 1.91. , Mo: 2.16, sulfides are likely to be formed in the order of Mn>Cr>Fe>Cu>Ni>Mo. Therefore, sulfur combines with a trace amount of Mn as an impurity contained in the iron powder to produce MnS. Thereafter, a reaction occurs with chromium, and chromium sulfide is precipitated. Chromium has a high melting point, does not agglomerate, and reacts with sulfur when it remains in a dispersed state, making it possible to generate fine metal sulfides in the base. When the Cr content is 0.2% or more, preferably 0.5% or more, and more preferably 1.0% or more, the material strength can be increased and the sliding performance can be improved. Cr is preferably 6% or less.

Ca、V、Ti、Mgも上記Crと同様の現象が起こり、微細な金属硫化物を基地中に生成させることができる。Ca、V、Ti、Mgは、それぞれ独立的に0.1~6.0%であることが好ましく、0.2~6%がより好ましく、0.2~4%がさらに好ましい。また、Cr、Ca、V、Ti、及びMgの合計量は、0.2~6%であることが好ましく、0.2~4%がより好ましい。 The same phenomenon as with Cr occurs with Ca, V, Ti, and Mg, and fine metal sulfides can be generated in the base. Ca, V, Ti, and Mg are each independently preferably 0.1 to 6.0%, more preferably 0.2 to 6%, and even more preferably 0.2 to 4%. Further, the total amount of Cr, Ca, V, Ti, and Mg is preferably 0.2 to 6%, more preferably 0.2 to 4%.

Mn:0~0.5%
Mnは、不可避不純物として、鉄粉末に存在している。Mnは酸化しやすい成分でもあり、マンガン豊富な鉄マンガン合金の生成は困難である。マンガン豊富な鉄マンガン合金はあるとしも、高価である。
Mnは、微細な金属硫化物を基地中に生成させることができるが、マンガンを提供する原料粉末の鉄マンガン合金のマンガン量が上限はあり、焼結体に形成できる金属硫化物の量にも上限がある。Mnは、0~0.5%が好ましい。
Mn: 0-0.5%
Mn exists in iron powder as an inevitable impurity. Mn is also a component that is easily oxidized, making it difficult to produce a manganese-rich iron-manganese alloy. Although manganese-rich iron-manganese alloys exist, they are expensive.
Mn can generate fine metal sulfides in the matrix, but there is an upper limit to the amount of manganese in the iron-manganese alloy of raw material powder that provides manganese, and there is also a limit to the amount of metal sulfides that can be formed in the sintered body. There is an upper limit. Mn is preferably 0 to 0.5%.

Mo:0~10%
Moは焼結を促進する効果はあり、金属組織、特にフェライト相を安定させ、強度の強い焼結体が得られる。
Moは、好ましくは0.1%以上、より好ましくは1%以上であることで、材料強度を高め、摺動性能を改善することができる。Moは10%以下が好ましい。
Moは、Mo粉末及び/又はMo合金粉末として添加することができる。
Mo: 0~10%
Mo has the effect of promoting sintering, stabilizes the metal structure, especially the ferrite phase, and provides a strong sintered body.
Mo is preferably 0.1% or more, more preferably 1% or more, so that the material strength can be increased and the sliding performance can be improved. Mo is preferably 10% or less.
Mo can be added as Mo powder and/or Mo alloy powder.

Ni:0~10%
Niは、鉄基焼結体の焼き入れ性を向上し、焼結及び冷却を経て、鉄基焼結体に焼入れ組織を含ませる作用とオーステナイトとして残留する作用を有する。また、Niは、電気陰性度の関係から、硫化鉄を主体とする金属硫化物の形成を阻害しない。Niは、Cと併用した場合に、鉄基地の焼入れ性を改善して、パーライトを微細にして強度を高めたり、焼結時の通常の冷却速度で強度の高いベイナイトやマルテンサイトを得ることを容易にすることができる。
Niは、0.1%以上、好ましくは0.5%以上、より好ましくは1.0%以上であることで、材料強度を高め、摺動性能を改善することができる。Niは10%以下が好ましく、8%以下がより好ましい。
Niは、Ni粉末及び/又はNi合金粉末として添加することができる。
Ni: 0-10%
Ni has the function of improving the hardenability of the iron-based sintered body, causing the iron-based sintered body to contain a hardened structure and remaining as austenite after sintering and cooling. Furthermore, due to its electronegativity, Ni does not inhibit the formation of metal sulfides mainly composed of iron sulfide. When Ni is used in combination with C, it improves the hardenability of the iron base, makes pearlite finer and increases its strength, and can obtain high strength bainite and martensite at the normal cooling rate during sintering. It can be easily done.
When the Ni content is 0.1% or more, preferably 0.5% or more, and more preferably 1.0% or more, the material strength can be increased and the sliding performance can be improved. Ni is preferably 10% or less, more preferably 8% or less.
Ni can be added as Ni powder and/or Ni alloy powder.

C:0~1%
Cは必須元素ではないが、0~1%を添加すると、cの一部はFeに固溶して強度を向上することができる。
C: 0-1%
Although C is not an essential element, when 0 to 1% of C is added, a part of C is dissolved in Fe and the strength can be improved.

鉄基焼結材料は、残部Feであり、不可避不純物が含まれることがある。
鉄基焼結材料は、基地に拡散しない鉱物、酸化物、窒化物、及びホウ化物からなる群から選択される1種以上をさらに含んでもよい。これらの添加剤としては、例えば、MgO、SiO、TiN、CaAlSiO、CrB等、又はこれらの組み合わせが挙げられる。
The remainder of the iron-based sintered material is Fe and may contain unavoidable impurities.
The iron-based sintered material may further include one or more selected from the group consisting of minerals, oxides, nitrides, and borides that do not diffuse into the matrix. These additives include, for example, MgO, SiO2 , TiN, CaAlSiO3 , CrB2, etc., or combinations thereof.

鉄基焼結体の基地は、金属組織として、フェライト、パーライト、及びマルテンサイトからなる群から選択される1種以上を含むことが好ましい。さらに好ましいのはフェライトが主成分である金属組織である。
基地は、金属硫化物が分散することが好ましい。金属硫化物が微細に分散することがさらに好ましい。
The base of the iron-based sintered body preferably contains one or more types selected from the group consisting of ferrite, pearlite, and martensite as a metal structure. More preferred is a metal structure in which ferrite is the main component.
Preferably, the base has metal sulfides dispersed therein. It is further preferred that the metal sulfide is finely dispersed.

以下、鉄基焼結摺動部材の製造方法について説明する。なお、一実施形態による鉄基焼結摺動部材は、以下の製造方法によって製造されたものに限定されることはない。
一実施形態による鉄基焼結摺動部材の製造方法としては、Cr、Ca、V、Ti、及びMgからなる群から選択される1種以上を合計量で1質量%以上で含む鉄合金粉末Aに、硫黄合金粉末Bを最終焼結体の硫黄含有量が3~15質量%になるように添加し、得られた混合粉末を圧縮成形し、得られた成形体を900℃~1200℃の温度範囲で焼結する方法である。
Hereinafter, a method for manufacturing an iron-based sintered sliding member will be described. Note that the iron-based sintered sliding member according to one embodiment is not limited to that manufactured by the following manufacturing method.
A method for manufacturing an iron-based sintered sliding member according to one embodiment includes iron alloy powder containing a total amount of 1% by mass or more of one or more selected from the group consisting of Cr, Ca, V, Ti, and Mg. Sulfur alloy powder B is added to A so that the sulfur content of the final sintered body is 3 to 15% by mass, the obtained mixed powder is compression molded, and the obtained compact is heated at 900°C to 1200°C. This method involves sintering in a temperature range of

Cr、Ca、V、Ti、及びMgは、それぞれ独立的に、鉄合金粉末全量に対して0.1~8質量%で含まれることが好ましい。Cr、Ca、V、Ti、及びMgの合計量は、鉄合金粉末全量に対して1質量%以上が好ましい。また、最終焼結体の硫黄含有量が3~15質量%になるように硫黄合金粉末が混合粉末に添加されることが好ましい。硫黄合金粉末は硫化鉄を使用する場合、Sが35質量%以上で含まれる硫化鉄が好ましい。 It is preferable that Cr, Ca, V, Ti, and Mg are each independently contained in an amount of 0.1 to 8% by mass based on the total amount of the iron alloy powder. The total amount of Cr, Ca, V, Ti, and Mg is preferably 1% by mass or more based on the total amount of the iron alloy powder. Further, it is preferable that the sulfur alloy powder is added to the mixed powder so that the sulfur content of the final sintered body is 3 to 15% by mass. When iron sulfide is used as the sulfur alloy powder, iron sulfide containing 35% by mass or more of S is preferable.

この製造方法によれば、鉄合金粉末Aと、Sの供給源となる硫黄合金粉末Bとが原料粉末に別々に添加されることで、焼結時に硫黄合金粉末が分解して放出されたSと基地中のCr、Ca、V、Ti、及びMgからなる群から選択される1種以上とを結合させてMnS、CrS、VS、又はこれらの組み合わせを析出させることができる。このような製造方法によれば、MnS、CrS、VS、又はこれらの組み合わせを結晶粒内に微細な粒子状の形態で析出させることができる。 According to this manufacturing method, iron alloy powder A and sulfur alloy powder B, which is a source of S, are separately added to the raw material powder, so that the sulfur alloy powder decomposes and is released during sintering. and one or more selected from the group consisting of Cr, Ca, V, Ti, and Mg in the base can be combined to precipitate MnS, CrS, VS, or a combination thereof. According to such a manufacturing method, MnS, CrS, VS, or a combination thereof can be precipitated in the form of fine particles within crystal grains.

圧粉体は、最高保持温度が900℃~1200℃となるように焼結することが好ましい。
この範囲の温度であることで、硫黄合金粉末が分解して、Sと基地中のCr、Ca、V、Ti、及びMgからなる群から選択される1種以上とを結合させて微細な金属硫化物を形成することができる。また、C、Ni、Mn、Cr、Cu、Mo、V等のFe中への拡散を促進して、基地硬さが高い金属組織を生成させ、鉄基焼結体の引張強さをより高めることができる。
圧粉体は、最高保持温度で、10~90分間、保持されることが好ましい。
The green compact is preferably sintered so that the maximum holding temperature is 900°C to 1200°C.
By being at a temperature in this range, the sulfur alloy powder decomposes and combines S with one or more selected from the group consisting of Cr, Ca, V, Ti, and Mg in the base to form fine metal particles. Can form sulfides. In addition, it promotes the diffusion of C, Ni, Mn, Cr, Cu, Mo, V, etc. into Fe to generate a metal structure with high base hardness, further increasing the tensile strength of the iron-based sintered body. be able to.
The green compact is preferably held at the maximum holding temperature for 10 to 90 minutes.

また、焼結雰囲気中に酸素が多量に含まれると金属硫化物より分解したSが酸素と結合してSOガスとして離脱し、基地の金属と結合するS量が減少するため、真空雰囲気中、又は非酸化性雰囲気中で焼結することが好ましい。非酸化性雰囲気としては、例えば、露点が-10℃以下の分解アンモニアガス、窒素ガス、水素ガス、アルゴンガス等を用いることができる。 Additionally, if a large amount of oxygen is included in the sintering atmosphere, S decomposed from the metal sulfide will combine with oxygen and leave as SOx gas, reducing the amount of S that combines with the base metal. or sintering in a non-oxidizing atmosphere. As the non-oxidizing atmosphere, for example, decomposed ammonia gas, nitrogen gas, hydrogen gas, argon gas, etc. having a dew point of −10° C. or lower can be used.

焼結後、焼結体は、2℃/分~400℃/分の冷却速度で冷却されることが好ましい。5~150℃が更に好ましい。この冷却速度によって、最高保持温度から900~200℃までの温度範囲を冷却することが好ましい。 After sintering, the sintered body is preferably cooled at a cooling rate of 2° C./min to 400° C./min. More preferably, the temperature is 5 to 150°C. It is preferable to cool the temperature range from the maximum holding temperature to 900 to 200° C. at this cooling rate.

鉄合金粉末は、主成分であるFeとともに、Cr、Ca、V、Ti、及びMgからなる群から選択される1種以上を含むことが好ましい。Cr、Ca、V、Ti、及びMgからなる群から選択される1種以上の合計量は、鉄紛全量に対して1質量%以上が好ましい。
鉄合金粉末は、C、Ni、Cu、Mo又はこれらの組み合わせをさらに含むことができる。これらの元素は、上記した鉄基焼結体の全体組成の範囲を満たすように、その配合量を調整することが好ましい。
It is preferable that the iron alloy powder contains one or more selected from the group consisting of Cr, Ca, V, Ti, and Mg together with Fe as a main component. The total amount of one or more selected from the group consisting of Cr, Ca, V, Ti, and Mg is preferably 1% by mass or more based on the total amount of iron powder.
The iron alloy powder may further include C, Ni, Cu, Mo or a combination thereof. It is preferable to adjust the blending amount of these elements so as to satisfy the overall composition range of the iron-based sintered body described above.

Sは、硫黄合金粉末、例えば、硫化鉄粉末、二硫化モリブデン粉末等として添加することが好ましい。
Sは、常温では化合力が鈍いが、高温では非常に反応性に富み、金属だけでなくH、O、C等の非金属元素とも化合する。ところで、焼結体の製造においては、一般に原料粉末に成形潤滑剤が添加され、焼結工程の昇温過程において成形潤滑剤を揮発させて取り除く、いわゆる脱ろうが行われる。Sを硫黄粉末の形態で付与すると、成形潤滑剤が分解して生成される成分(主にH、O、C)と化合して離脱するため、金属硫化物形成に必要なSを安定して与えることが難しい。Sを硫黄合金粉末の形態で付与する場合、脱ろう工程が行われる温度域(200~400℃程度)では硫化鉄の形態で存在するため、成形潤滑剤が分解して生成される成分と化合せず、Sの離脱が生じないことから、金属硫化物形成に必要なSを安定して与えることができる。
S is preferably added as a sulfur alloy powder, such as iron sulfide powder or molybdenum disulfide powder.
S has a slow combining power at room temperature, but is extremely reactive at high temperatures, and combines not only with metals but also with nonmetallic elements such as H, O, and C. By the way, in the production of a sintered body, a forming lubricant is generally added to the raw material powder, and the forming lubricant is volatilized and removed during the temperature raising process of the sintering process, which is called dewaxing. When S is applied in the form of sulfur powder, the molding lubricant decomposes and combines with components (mainly H, O, and C) that are generated and is released, thereby stabilizing the S necessary for metal sulfide formation. Difficult to give. When S is applied in the form of sulfur alloy powder, it exists in the form of iron sulfide in the temperature range where the dewaxing process is carried out (approximately 200 to 400 degrees Celsius), so it is mixed with the components produced by decomposition of the forming lubricant. Since S does not separate and S does not separate, S necessary for metal sulfide formation can be stably provided.

焼結工程の昇温過程において988℃を超えると硫黄合金の共晶液相を発生し、液相焼結となって粉末粒子間のネックの成長をより促進する。また、この共晶液相からSが鉄基地中に均一に拡散するので、金属硫化物粒子を基地により均一に分散させて析出させることができる。また、原料の鉄合金粉末にCr、Ca、V、Ti、及びMgからなる群から選択される1種以上が含まれることで、基地中のこれらの元素がSと反応して、より微細な金属硫化物を生成することができる。 When the temperature exceeds 988° C. during the sintering process, a eutectic liquid phase of the sulfur alloy is generated, resulting in liquid phase sintering, which further promotes the growth of necks between powder particles. Further, since S is uniformly diffused into the iron matrix from this eutectic liquid phase, metal sulfide particles can be more uniformly dispersed and precipitated in the matrix. In addition, since the raw material iron alloy powder contains one or more selected from the group consisting of Cr, Ca, V, Ti, and Mg, these elements in the matrix react with S, resulting in finer particles. Metal sulfides can be produced.

原料の混合粉末は、ニッケル粉末、ニッケル鉄合金粉末、又はこれらの組み合わせをさらに含んでもよい。
ニッケルは、鉄基焼結体の基地にNiとして固溶し、基地の強度を高めるように作用するため、好ましく用いることができる。ニッケルは単体で添加してもいい、合金として添加してもいい。ニッケルは混合粉末全量に対して3質量%以上になるように添加することができ、好ましくは5質量%以上である。
The raw material mixed powder may further include nickel powder, nickel-iron alloy powder, or a combination thereof.
Nickel can be preferably used because it forms a solid solution as Ni in the base of the iron-based sintered body and acts to increase the strength of the base. Nickel may be added alone or as an alloy. Nickel can be added in an amount of 3% by mass or more, preferably 5% by mass or more, based on the total amount of the mixed powder.

混合粉末は、黒鉛を0~1質量%でさらに含んでもよい。混合粉末は、Moを0~10質量%でさらに含んでもよい。混合粉末は、金型潤滑剤等の任意成分をさらに含むことができる。 The mixed powder may further contain graphite in an amount of 0 to 1% by mass. The mixed powder may further contain Mo in an amount of 0 to 10% by mass. The mixed powder may further contain optional components such as a mold lubricant.

以下、鉄基焼結摺動部材の他の実施形態について説明する。
他の実施形態による鉄基焼結摺動部材は、金属硫化物の面積比率が20%以上であり、単位面積当たりの金属硫化物の粒子数が8.0×1010個/m以上である、ことを特徴とする。
他の実施形態による鉄基焼結摺動部材は、金属硫化物の面積比率が20%以上であり、金属硫化物の全粒子の個数に対して粒子径が1μm以下である金属硫化物の粒子の個数が40%以上である、ことを特徴とする。
これによれば、鉄基焼結体を用いて摺動部材の摺動性能を改善することができる。
Other embodiments of the iron-based sintered sliding member will be described below.
In the iron-based sintered sliding member according to another embodiment, the area ratio of metal sulfide is 20% or more, and the number of metal sulfide particles per unit area is 8.0×10 10 particles/m 2 or more. characterized by something.
In the iron-based sintered sliding member according to another embodiment, the area ratio of metal sulfide is 20% or more, and the metal sulfide particles have a particle size of 1 μm or less with respect to the total number of metal sulfide particles. It is characterized in that the number of the particles is 40% or more.
According to this, the sliding performance of the sliding member can be improved using the iron-based sintered body.

上記他の実施形態による鉄基焼結摺動部材は、硫化物の面積比率が大きく、単位面積当たりの硫化物の粒子数が多いことで、基地に含まれる金属硫化物が微細となり、摺動性能を改善することができる。
上記さらに他の実施形態による鉄基焼結摺動部材は、硫化物の面積比率が大きく、粒子径が1μm以下である金属硫化物の粒子径の割合が多いことで、基地に含まれる金属硫化物が微細となり、摺動性能を改善することができる。
The iron-based sintered sliding member according to the above other embodiment has a large area ratio of sulfide and a large number of sulfide particles per unit area, so that the metal sulfide contained in the base becomes fine and the sliding member becomes difficult to slide. Performance can be improved.
The iron-based sintered sliding member according to the above-mentioned still other embodiment has a large area ratio of sulfide and a large proportion of the particle size of metal sulfide having a particle size of 1 μm or less. Objects become finer and sliding performance can be improved.

上記した実施形態による鉄基焼結体は、金属硫化物を含む基地とともに、鉄粉等の原料に由来して気孔部を含むことが好ましい。摺動部材に潤滑油を付与して用いる場合では、この気孔部によって潤滑油が保持されて、長期にわたって摺動性能をより改善することができる。 The iron-based sintered body according to the embodiment described above preferably includes pores derived from raw materials such as iron powder as well as a base containing metal sulfide. When lubricating oil is applied to the sliding member and used, the lubricating oil is retained by the pores, and the sliding performance can be further improved over a long period of time.

上記した実施形態による鉄基焼結摺動部材は、Cr、Ca、V、Ti、及びMgからなる群から選択される1種以上を含む鉄合金粉末に、硫黄合金粉末を添加し、得られた混合粉末を圧縮成形し、得られた成形体を焼結することで、焼結体の結晶内に金属硫化物を微細に分散させて形成することができる。 The iron-based sintered sliding member according to the embodiment described above is obtained by adding sulfur alloy powder to iron alloy powder containing one or more selected from the group consisting of Cr, Ca, V, Ti, and Mg. By compression molding the mixed powder and sintering the obtained molded body, it is possible to form a sintered body with metal sulfide finely dispersed within the crystals.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

「製造例1」
(実施例1)
原料粉末A 質量比で3%Cr、0.5%Mo、0.5%V、残部鉄の鉄合金粉末
原料粉末B 質量比35%Sの硫化鉄
原料粉末C Ni粉末
質量比で10%の粉末B、質量比で5%の粉末C、残りは粉末Aを混合して原料粉末を得た。
そして、原料粉末を成形圧力600MPaで成形し、リング形状の圧粉体を作製した。次いで、非酸化性ガス雰囲気中、1130℃で焼結して実施例1の焼結部材を作製した。
"Manufacturing example 1"
(Example 1)
Raw material powder A Iron alloy powder with a mass ratio of 3% Cr, 0.5% Mo, 0.5% V, and the balance iron Raw material powder B Iron sulfide with a mass ratio of 35% S Raw material powder C Ni powder 10% by mass ratio Powder B, 5% by mass of powder C, and the remainder powder A were mixed to obtain a raw material powder.
Then, the raw material powder was molded at a molding pressure of 600 MPa to produce a ring-shaped green compact. Next, the sintered member of Example 1 was produced by sintering at 1130° C. in a non-oxidizing gas atmosphere.

焼結部材を切断し、断面の基地の化学組成を分析した。結果を表1に示す。 The sintered member was cut and the chemical composition of the matrix in the cross section was analyzed. The results are shown in Table 1.

焼結部材の金属硫化物の面積比率は、得られた試料を切断し、断面を鏡面研磨して断面観察を行い、画像分析ソフトウエア(三谷商事株式会社製WinROOF)を用いて、気孔を除く基地部分の面積と金属硫化物の面積を測定し、基地の面積に占める金属硫化物の面積(%)から求めた。測定領域は、84.4μm×60.5μmとした。
金属硫化物は、断面観察の際に、基地中に黒色の粒子状に観察された。
84.4μm×60.5μmの領域内の金属硫化物粒子の個数は、上記面積比率と同様にして、焼結部材の断面を観察、画像分析して求めた。そして、単位面積当たりの金属粒子物の粒子数を算出した。
金属硫化物の全粒子の個数に対して粒子径が1μm以下である金属硫化物の粒子の個数は、上記面積比率と同様にして、焼結部材の断面を観察、画像分析して求めた。
各金属硫化物の粒子の最大粒子径は、各粒子の面積を求め、この面積と等しい円の直径に換算する円相当径で計測した。また、複数の金属硫化物の粒子が結合している場合、結合した金属硫化物を1個の金属硫化物としてこの金属硫化物の面積より円相当径を求めた。
結果を表2に示す。
The area ratio of metal sulfides in the sintered member was determined by cutting the obtained sample, mirror-polishing the cross section, observing the cross section, and removing pores using image analysis software (WinROOF manufactured by Mitani Shoji Co., Ltd.). The area of the base portion and the area of the metal sulfide were measured, and the area was determined from the area (%) of the metal sulfide in the area of the base. The measurement area was 84.4 μm×60.5 μm.
Metal sulfides were observed in the form of black particles in the base during cross-sectional observation.
The number of metal sulfide particles within a region of 84.4 μm x 60.5 μm was determined by observing the cross section of the sintered member and performing image analysis in the same manner as the area ratio. Then, the number of metal particles per unit area was calculated.
The number of metal sulfide particles having a particle diameter of 1 μm or less with respect to the total number of metal sulfide particles was determined by observing and image analyzing the cross section of the sintered member in the same manner as the area ratio.
The maximum particle diameter of each metal sulfide particle was determined by determining the area of each particle and measuring the equivalent circle diameter, which is converted to the diameter of a circle equal to this area. In addition, when a plurality of metal sulfide particles were combined, the combined metal sulfide was regarded as one metal sulfide, and the equivalent circle diameter was determined from the area of this metal sulfide.
The results are shown in Table 2.

(比較例1)
JIS基準のLBC3という混合粉末を用いた他は、実施例1と同様にして、リング形状の圧粉体を作製し、非酸化性ガス雰囲気中、800℃で焼結して比較例1の焼結部材を作製した。
実施例1と同様にして、焼結部材の基地の化学組成を測定した。結果を表1に示す。
(Comparative example 1)
A ring-shaped compact was produced in the same manner as in Example 1, except that a mixed powder called LBC3 according to the JIS standard was used, and was sintered at 800°C in a non-oxidizing gas atmosphere to obtain the sintering method of Comparative Example 1. A binding member was prepared.
In the same manner as in Example 1, the chemical composition of the matrix of the sintered member was measured. The results are shown in Table 1.

(評価)
上記と同様にして以下の寸法の焼結部材を作製し、以下の評価を行った。
「スラスト摺動性能」
直径35mm、厚さ5mmのディスク状の焼結部材を用意した。
FSD製の外径25mm、内径24mm、厚さ15mmのリング状の相手材を用意した。
リングオンディスク摩擦摩耗試験機によって、以下の条件で摺動試験を行い、摩擦係数を測定した。
周速:0.5m/sec
面圧:1,2,・・・,20MPa
時間:各面圧で5min
油種:オイルVG460(滴下)
(evaluation)
Sintered members having the following dimensions were produced in the same manner as above, and the following evaluations were performed.
"Thrust sliding performance"
A disk-shaped sintered member with a diameter of 35 mm and a thickness of 5 mm was prepared.
A ring-shaped mating material made of FSD and having an outer diameter of 25 mm, an inner diameter of 24 mm, and a thickness of 15 mm was prepared.
A sliding test was conducted using a ring-on-disk friction and wear tester under the following conditions, and the friction coefficient was measured.
Circumferential speed: 0.5m/sec
Surface pressure: 1, 2,..., 20MPa
Time: 5 min for each surface pressure
Oil type: Oil VG460 (dripping)

また、試験前後のディスク及びリング(FCD)の摩耗量(μm)を測定した。
結果を図1に示す。図1より、実施例1の焼結部材は、比較例1と同等又はそれ以上に摩擦係数が低く、摺動性能が改善された。また、実施例1の焼結部材を用いることで、焼結部材とともに相手材の摩耗量を低減することができた。
In addition, the wear amount (μm) of the disk and ring (FCD) before and after the test was measured.
The results are shown in Figure 1. From FIG. 1, the sintered member of Example 1 had a friction coefficient as low as or lower than that of Comparative Example 1, and the sliding performance was improved. Further, by using the sintered member of Example 1, the amount of wear of the sintered member and the mating material could be reduced.

「ラジアル摺動性能」
外径16mm、内径10mm、厚さ10mmのリング状の焼結部材を用意した。
S45C製の直径9.980mm、長さ80mmのシャフトを用意した。
以下の条件で圧環試験を行い、摩擦係数を測定した。
周速:1.57m/min
面圧:1,2,・・・,80MPa
時間:各面圧で5min
油種:オイルVG460(含浸)
"Radial sliding performance"
A ring-shaped sintered member with an outer diameter of 16 mm, an inner diameter of 10 mm, and a thickness of 10 mm was prepared.
A shaft made of S45C with a diameter of 9.980 mm and a length of 80 mm was prepared.
A radial crushing test was conducted under the following conditions, and the friction coefficient was measured.
Circumferential speed: 1.57m/min
Surface pressure: 1, 2,..., 80MPa
Time: 5 min for each surface pressure
Oil type: Oil VG460 (impregnated)

また、試験前後のリングの摩耗量(μm)を測定した。
結果を図2に示す。図2より、実施例1の焼結部材は、比較例1と同等又はそれ以上に摩擦係数が低く、摺動性能が改善された。また、実施例1の焼結部材を用いることで、焼結部材の摩耗量を低減することができた。
In addition, the wear amount (μm) of the ring before and after the test was measured.
The results are shown in Figure 2. From FIG. 2, the sintered member of Example 1 had a friction coefficient as low as or lower than that of Comparative Example 1, and the sliding performance was improved. Further, by using the sintered member of Example 1, the amount of wear of the sintered member could be reduced.

図3に、実施例1の焼結部材の金属組織(鏡面研磨)を示す。鉄基地は白色の部分であり、金属硫化物粒子は灰色の部分であり、気孔は黒色の部分である。
図3から、金属硫化物粒子(灰色)は鉄基地(白色)中に析出して微細に分散していることが観察される。
FIG. 3 shows the metal structure (mirror polishing) of the sintered member of Example 1. The iron matrix is the white part, the metal sulfide particles are the gray part, and the pores are the black part.
From FIG. 3, it is observed that metal sulfide particles (gray) are precipitated and finely dispersed in the iron matrix (white).

(比較例2)
表1に示す化学組成となるように各原料を混合して原料粉末を得た。実施例1と同様にして、リング形状の圧粉体を作製し、非酸化性ガス雰囲気中、1130℃で焼結して比較例2の焼結部材を作製した。
実施例1と同様にして、焼結部材の基地の化学組成、物性を測定した。結果を表1、表2に示す。
(Comparative example 2)
Raw material powders were obtained by mixing each raw material so as to have the chemical composition shown in Table 1. A ring-shaped green compact was produced in the same manner as in Example 1, and sintered at 1130° C. in a non-oxidizing gas atmosphere to produce a sintered member of Comparative Example 2.
In the same manner as in Example 1, the chemical composition and physical properties of the base of the sintered member were measured. The results are shown in Tables 1 and 2.

図4に、実施例1及び比較例2の焼結部材の金属組織(鏡面研磨)を比較して示す。鉄基地は白色の部分であり、金属硫化物粒子は灰色の部分であり、気孔は黒色の部分である。
図4から、比較例2に比べて、実施例1の金属硫化物粒子(灰色)は鉄基地(白色)中に析出して微細に分散していることが観察される。
FIG. 4 shows a comparison of the metal structures (mirror polishing) of the sintered members of Example 1 and Comparative Example 2. The iron matrix is the white part, the metal sulfide particles are the gray part, and the pores are the black part.
From FIG. 4, it is observed that, compared to Comparative Example 2, the metal sulfide particles (gray) of Example 1 were precipitated and finely dispersed in the iron base (white).

「製造例2」
表3に示す原料粉末を用意した。
表3に示す原料粉末を、表4に示す組み合わせで混合した。各原料粉末の配合割合を調節して、表4に示す基地の組成が得られるようにした。
上記製造例1と同様にして、圧粉体を作製し、これを用いて焼結部材を作製した。
例10では、JIS基準のLBC3という混合粉末用いて、上記した比較例1と同様にして焼結部材を作製した。
“Manufacturing example 2”
Raw material powders shown in Table 3 were prepared.
The raw material powders shown in Table 3 were mixed in the combinations shown in Table 4. The blending ratio of each raw material powder was adjusted to obtain the base composition shown in Table 4.
A powder compact was produced in the same manner as in Production Example 1 above, and a sintered member was produced using this.
In Example 10, a sintered member was produced in the same manner as in Comparative Example 1 described above using a mixed powder called LBC3 based on the JIS standard.

焼結部材について、金属硫化物の面積比率、単位面積当たりの金属硫化物の粒子数、金属硫化物の全粒子の個数に対して粒子径が1μm以下である金属硫化物の粒子の個数を、上記製造例1と同様にして測定した。
また、焼結部材について、スラスト摺動性能、ラジアル摺動性能を、上記製造例1と同様にして評価した。スラスト摺動性能の評価では、試験前後のディスクの摩耗量からスラスト摩耗量(μm)を求めた。ラジアル摺動性能の評価では、試験前後のリングの摩耗量からラジアル摩耗量(μm)を求めた。
結果を表5に示す。
For the sintered member, the area ratio of metal sulfide, the number of metal sulfide particles per unit area, the number of metal sulfide particles with a particle size of 1 μm or less relative to the total number of metal sulfide particles, It was measured in the same manner as in Production Example 1 above.
Further, the thrust sliding performance and radial sliding performance of the sintered member were evaluated in the same manner as in Manufacturing Example 1 above. In the evaluation of thrust sliding performance, the amount of thrust wear (μm) was determined from the amount of wear of the disk before and after the test. In the evaluation of radial sliding performance, the amount of radial wear (μm) was determined from the amount of ring wear before and after the test.
The results are shown in Table 5.

Claims (13)

質量%で、S:3~15%、Cr、Ca、V、Ti、及びMgからなる群から選択される1種以上:合計量で0.2~6%を含み、残部:Fe及び不可避不純物からなり、Cr、Ca、V、Ti、及びMgからなる群から選択される1種以上を有する硫化物粒子が分散する基地と、気孔とを含む、鉄基焼結摺動部材。 In mass%, S: 3 to 15%, one or more selected from the group consisting of Cr, Ca, V, Ti, and Mg: 0.2 to 6% in total amount, remainder: Fe and inevitable impurities. An iron-based sintered sliding member comprising a base in which sulfide particles containing one or more selected from the group consisting of Cr, Ca, V, Ti, and Mg are dispersed, and pores. Ni:0~10%をさらに含む、請求項1に記載の鉄基焼結摺動部材。 The iron-based sintered sliding member according to claim 1, further comprising 0 to 10% Ni. Mo:0~10%をさらに含む、請求項1又は2に記載の鉄基焼結摺動部材。 The iron-based sintered sliding member according to claim 1 or 2, further comprising Mo: 0 to 10%. 黒鉛:0~1%をさらに含む、請求項1から3のいずれか1項に記載の鉄基焼結摺動部材。 The iron-based sintered sliding member according to any one of claims 1 to 3, further comprising graphite: 0 to 1%. 請求項1から4のいずれか1項に記載の鉄基焼結摺動部材を用いる、摺動部品。 A sliding component using the iron-based sintered sliding member according to any one of claims 1 to 4. Cr、Ca、V、Ti、及びMgからなる群から選択される1種以上を合計量で1質量%以上で含む鉄合金粉末Aに、硫黄合金粉末Bを最終焼結体の硫黄含有量が3~15質量%になるように添加し、得られた混合粉末を圧縮成形し、得られた成形体を900℃~1200℃の温度範囲で焼結する、鉄基焼結摺動部材の製造方法。 Sulfur alloy powder B is added to iron alloy powder A containing one or more selected from the group consisting of Cr, Ca, V, Ti, and Mg in a total amount of 1% by mass or more, so that the sulfur content of the final sintered body is Production of an iron-based sintered sliding member by adding 3 to 15% by mass, compression molding the obtained mixed powder, and sintering the obtained molded body at a temperature range of 900°C to 1200°C. Method. 前記混合粉末は、ニッケル粉末及びニッケル鉄合金粉末からなる群から選択される1種以上を3質量%以上でさらに含む、請求項6に記載の鉄基焼結摺動部材の製造方法。 The method for manufacturing an iron-based sintered sliding member according to claim 6, wherein the mixed powder further contains 3% by mass or more of one or more selected from the group consisting of nickel powder and nickel-iron alloy powder. 前記混合粉末は、黒鉛を0~1質量%でさらに含む、請求項6又は7に記載の鉄基焼結摺動部材の製造方法。 The method for producing an iron-based sintered sliding member according to claim 6 or 7, wherein the mixed powder further contains graphite in an amount of 0 to 1% by mass. 金属硫化物の面積比率が20%以上であり、単位面積当たりの金属硫化物の粒子数が8.0×1010個/m以上である、鉄基焼結摺動部材。 An iron-based sintered sliding member in which the area ratio of metal sulfide is 20% or more and the number of metal sulfide particles per unit area is 8.0×10 10 particles/m 2 or more. 金属硫化物の全粒子の個数に対して粒子径が1μm以下である金属硫化物の粒子の個数が40%以上である、請求項9に記載の鉄基焼結摺動部材。 The iron-based sintered sliding member according to claim 9, wherein the number of metal sulfide particles having a particle diameter of 1 μm or less is 40% or more of the total number of metal sulfide particles. 金属硫化物の面積比率が20%以上であり、金属硫化物の全粒子の個数に対して粒子径が1μm以下である金属硫化物の粒子の個数が40%以上である、鉄基焼結摺動部材。 An iron-based sintered slide in which the area ratio of metal sulfide is 20% or more, and the number of metal sulfide particles with a particle size of 1 μm or less is 40% or more of the total number of metal sulfide particles. moving parts. 前記金属硫化物はCrS、CaS、VS、TiS、及びMgSからなる群から選択される1種以上を含む、請求項9から11のいずれか1項に記載の鉄基焼結摺動部材。 The iron-based sintered sliding member according to any one of claims 9 to 11, wherein the metal sulfide contains one or more selected from the group consisting of CrS, CaS, VS, TiS, and MgS. 請求項9から12のいずれか1項に記載の鉄基焼結摺動部材を用いる、摺動部品。 A sliding component using the iron-based sintered sliding member according to any one of claims 9 to 12.
JP2023199937A 2018-08-29 2023-11-27 Iron-based sintered sliding member and its manufacturing method Pending JP2024016289A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
PCT/JP2018/031980 WO2020044466A1 (en) 2018-08-29 2018-08-29 Iron-based sintered sliding member and method for manufacturing same
JPPCT/JP2018/031989 2018-08-29
PCT/JP2018/031989 WO2020044468A1 (en) 2018-08-29 2018-08-29 Iron-based sintered sliding member and method for producing same
JPPCT/JP2018/031980 2018-08-29
PCT/JP2019/033738 WO2020045505A1 (en) 2018-08-29 2019-08-28 Iron-based sintered sliding member and method for manufacturing same
JP2020539545A JPWO2020045505A1 (en) 2018-08-29 2019-08-28 Iron-based sintered sliding member and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020539545A Division JPWO2020045505A1 (en) 2018-08-29 2019-08-28 Iron-based sintered sliding member and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2024016289A true JP2024016289A (en) 2024-02-06

Family

ID=69644783

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020539545A Pending JPWO2020045505A1 (en) 2018-08-29 2019-08-28 Iron-based sintered sliding member and its manufacturing method
JP2023199937A Pending JP2024016289A (en) 2018-08-29 2023-11-27 Iron-based sintered sliding member and its manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020539545A Pending JPWO2020045505A1 (en) 2018-08-29 2019-08-28 Iron-based sintered sliding member and its manufacturing method

Country Status (4)

Country Link
US (1) US20210316364A1 (en)
JP (2) JPWO2020045505A1 (en)
CN (1) CN112654446B (en)
WO (1) WO2020045505A1 (en)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100227A (en) * 1994-07-30 1996-04-16 Sumitomo Electric Ind Ltd Sintered sliding member
JPH10317002A (en) * 1997-05-20 1998-12-02 Daido Steel Co Ltd Powder with low coefficient of friction, its sintered compact, and production of sintered compact
CN1062029C (en) * 1998-12-11 2001-02-14 中国科学院兰州化学物理研究所 Sulfur-bearing iron-based high temp self-lubricating wear-resisting alloy and its preparing method
JP2001073100A (en) * 1999-08-31 2001-03-21 Daido Steel Co Ltd Ferrous sintered compact, powder for manufacture of ferrous sintered compact, and manufacture of ferrous sintered compact
CN1188538C (en) * 2000-12-21 2005-02-09 高福池 Self-lubricating antiwear composite material
JP4340845B2 (en) * 2003-03-06 2009-10-07 財団法人鉄道総合技術研究所 Current collecting sliding material and method for manufacturing the same
JP4705092B2 (en) * 2005-01-31 2011-06-22 株式会社小松製作所 Method for manufacturing Fe-based sintered sliding material and method for manufacturing sliding member
JP2006219699A (en) * 2005-02-08 2006-08-24 Ntn Corp Method for producing valve seat for check valve
CN100389223C (en) * 2006-01-24 2008-05-21 泰安市仁和科技服务咨询有限公司 Self-lubricating alloy material and method for preparing the same
JP4693170B2 (en) * 2006-03-07 2011-06-01 日立粉末冶金株式会社 Wear-resistant sintered alloy and method for producing the same
CN102002623A (en) * 2010-12-11 2011-04-06 大连大学 Preparation method of brake molybdenum disulfide-Cu-Fe radical friction material
JP5773267B2 (en) * 2011-09-30 2015-09-02 日立化成株式会社 Iron-based sintered sliding member and manufacturing method thereof
JP5631359B2 (en) * 2012-05-17 2014-11-26 公益財団法人鉄道総合技術研究所 Current collecting sliding material and method for manufacturing the same
CN103008667B (en) * 2013-01-07 2015-05-20 北京科技大学 Method for preparing high-density iron-base powder metallurgy parts
JP6112473B2 (en) * 2013-03-13 2017-04-12 日立化成株式会社 Iron-based sintered sliding member
JP6142987B2 (en) * 2013-03-19 2017-06-07 日立化成株式会社 Iron-based sintered sliding member
JP6668031B2 (en) * 2014-09-30 2020-03-18 日本ピストンリング株式会社 Iron-based sintered alloy material for sliding members
CN107321974A (en) * 2017-07-06 2017-11-07 合肥工业大学 A kind of unleaded iron-based material for sliding bearing of high-strength antifriction and preparation method thereof

Also Published As

Publication number Publication date
CN112654446A (en) 2021-04-13
CN112654446B (en) 2023-09-29
US20210316364A1 (en) 2021-10-14
JPWO2020045505A1 (en) 2021-09-02
WO2020045505A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP5308123B2 (en) High-strength composition iron powder and sintered parts using it
JP6112473B2 (en) Iron-based sintered sliding member
JP6142987B2 (en) Iron-based sintered sliding member
JP6194613B2 (en) Iron-based sintered alloy for sliding member and manufacturing method thereof
WO2016035880A1 (en) Cu-BASED SINTERED BEARING AND PRODUCTION METHOD FOR Cu-BASED SINTERED BEARING
WO2020044466A1 (en) Iron-based sintered sliding member and method for manufacturing same
WO2020044468A1 (en) Iron-based sintered sliding member and method for producing same
JP2024016289A (en) Iron-based sintered sliding member and its manufacturing method
EP3424623B1 (en) Cu-based sintered sliding material and production method therefor
JP6384687B2 (en) Manufacturing method of iron-based sintered sliding member
JP2006503981A (en) Method for controlling dimensional changes during sintering of iron-based powder mixtures
JP6341455B2 (en) Manufacturing method of iron-based sintered sliding member
JP6519955B2 (en) Iron-based sintered sliding member and method of manufacturing the same
US20220136561A1 (en) Wear resistant, highly thermally conductive sintered alloy
JP2010144238A (en) Wear-resistant sintered alloy and method for producing the same
CN114351041A (en) Method for producing hard particles, sliding member, and sintered alloy
JP2002069598A (en) Valve guide material
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JP3346310B2 (en) High strength iron-based sintered alloy
JP2005226141A (en) Method for manufacturing graphite-dispersed sintered member
JP2010013696A (en) Wear resistant sintered alloy and its production method
JP2016153528A (en) Alloy powder for blending sintered alloy and abrasion resistant iron-based sintered alloy
JPS5837378B2 (en) Method for producing silicon-containing iron-based sintered alloy
JP2006037138A (en) Valve seat made of iron based sintered alloy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231127