JP5631359B2 - Current collecting sliding material and method for manufacturing the same - Google Patents

Current collecting sliding material and method for manufacturing the same Download PDF

Info

Publication number
JP5631359B2
JP5631359B2 JP2012113695A JP2012113695A JP5631359B2 JP 5631359 B2 JP5631359 B2 JP 5631359B2 JP 2012113695 A JP2012113695 A JP 2012113695A JP 2012113695 A JP2012113695 A JP 2012113695A JP 5631359 B2 JP5631359 B2 JP 5631359B2
Authority
JP
Japan
Prior art keywords
mass
particles
based hard
hard particles
sintered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012113695A
Other languages
Japanese (ja)
Other versions
JP2013241629A (en
Inventor
土屋 広志
広志 土屋
喜雄 久保田
喜雄 久保田
裕生 宮平
裕生 宮平
尚斉 石原
尚斉 石原
亮太 小林
亮太 小林
圭一郎 澁谷
圭一郎 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Fine Sinter Co Ltd
Original Assignee
Railway Technical Research Institute
Fine Sinter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Fine Sinter Co Ltd filed Critical Railway Technical Research Institute
Priority to JP2012113695A priority Critical patent/JP5631359B2/en
Priority to TW102116194A priority patent/TWI479034B/en
Publication of JP2013241629A publication Critical patent/JP2013241629A/en
Application granted granted Critical
Publication of JP5631359B2 publication Critical patent/JP5631359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

本発明は、新幹線等の高速鉄道車両で用いられるパンタグラフ用すり板として有用な、新規な集電摺動材料及びその製造方法に関する。   The present invention relates to a novel current collecting sliding material useful as a pantograph sliding plate used in a high-speed railway vehicle such as a Shinkansen, and a method for manufacturing the same.

新幹線等の高速鉄道車両で用いられるパンタグラフ用すり板には、優れた耐摩耗性と潤滑性が要求される。即ち、高速走行時においてすり板の磨耗が少なく(耐摩耗性)、且つ、トロリ線を損耗させない(潤滑性)という相反特性の両立が求められる。   Pantograph sliding plates used in high-speed railway vehicles such as Shinkansen are required to have excellent wear resistance and lubricity. That is, it is required to satisfy both reciprocal characteristics such that the wear of the sliding plate is low (wear resistance) and the trolley wire is not worn (lubricity) during high-speed running.

従来、上記耐摩耗性及び潤滑性を有するパンタグラフ用すり板としては、Pbを含まず、Fe素地に、耐摩成分としてCr及びVの少なくとも1種を添加し、潤滑成分としてMoS、WS等の金属硫化物を添加したもの、更に硫化処理により硫化物含量を増やしたものが知られている。 Conventionally, as a pantograph slide plate having wear resistance and lubricity, at least one of Cr and V is added as an anti-friction component to Fe base without adding Pb, and MoS 2 , WS 2, etc. as lubrication components There are known ones to which a metal sulfide is added and those having a sulfide content increased by a sulfidation treatment.

例えば、特許文献1の請求項1には、「V、Cr、金属硫化物及びFeからなる焼結合金であって、V及びCrの含有量の合計が1〜30重量%、金属硫化物1〜12重量%ならびに残部Feからなる混合粉末を成形し、焼結して得られる集電摺動材料。」が開示されており、請求項2には、焼結体を更に硫化処理した集電摺動材料が開示されている。   For example, in claim 1 of Patent Document 1, “a sintered alloy composed of V, Cr, metal sulfide and Fe, the total content of V and Cr being 1 to 30% by weight, metal sulfide 1 The current-collecting sliding material obtained by molding and sintering a mixed powder composed of ˜12% by weight and the balance Fe ”is disclosed, and the current collector obtained by further sulfiding the sintered body is disclosed in claim 2. A sliding material is disclosed.

また、特許文献2の請求項1には、「耐摩耗、耐アーク成分として単体Cr8〜28重量%、潤滑成分としてMoS(またはWS)2〜8重量%、潤滑強化成分としてBi0.3〜5重量%、残部Feからなる粉末原料を混合後、圧縮成形し、これを非酸化性ないしは還元性雰囲気中で加熱して焼結体を得ることを特徴とする集電摺動用鉄系焼結合金。」が開示されている。 Further, claim 1 of Patent Document 2 states that “the wear resistance and arc resistance component is 8 to 28% by weight of simple substance Cr, MoS 2 (or WS 2 ) is 2 to 8% by weight, and Bi0.3 is the lubrication strengthening component. Iron-based sintering for current collection sliding, characterized in that a powder raw material consisting of ˜5% by weight and the balance Fe is mixed and then compression molded, and this is heated in a non-oxidizing or reducing atmosphere to obtain a sintered body. Bonds "are disclosed.

しかしながら、新幹線等の高速鉄道車両の営業速度の更なる高速化に鑑みると、従来のパンタグラフ用すり板では耐摩耗性が十分ではなく、また発車・停止近くの低速度域においてはすり板・トロリ線の両方において凝着磨耗が生じ、潤滑性が不足するという問題が指摘されている。よって、耐摩耗性及び潤滑性の更なる向上が求められている。   However, in view of the further increase in the operating speed of high-speed railway vehicles such as Shinkansen, the conventional pantograph sliding plate is not sufficient in wear resistance, and the sliding plate / trolley is used in the low-speed range near departure and stop. It has been pointed out that adhesive wear occurs on both lines, resulting in insufficient lubricity. Therefore, further improvement in wear resistance and lubricity is required.

特開2004−269934号公報JP 2004-269934 A 特開2005−15828号公報JP-A-2005-15828

本発明は、耐摩耗性及び潤滑性が向上した集電摺動材料及びその製造方法を提供することを目的とする。   An object of this invention is to provide the current collection sliding material with improved abrasion resistance and lubricity, and its manufacturing method.

本発明者は上記目的を達成すべく鋭意研究を重ねた結果、特定組成の焼結体合金が上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor has found that a sintered alloy having a specific composition can achieve the above object, and has completed the present invention.

即ち、本発明は下記の集電摺動材料及びその製造方法に関する。
1.1)MnSを0.5〜2.5質量%含む硫黄快削鉄粉、2)Cr粒子及びCrV粒子を含むCr基硬質粒子、3)FeMo粒子及び窒化FeTi粒子を含むFe基硬質粒子、並びに4)MoS及びWSを含む金属硫化物、を含有する原料粉末を焼結することにより得られる焼結合金からなる集電摺動材料であって、
(1)前記焼結合金は、Cr:4.0〜14.0質量%、V:0.2〜3.0質量%、Mo:2.0〜6.5質量%、Ti:0.2〜3.0質量%、W:0.2〜3.0質量%、Mn:0.1〜1.1質量%、S:1.0〜5.0質量%及びN:0.05〜0.4質量%を含有し、残部が不可避不純物及びFeからなり、
(2)前記焼結合金は、組織断面中に面積率で前記Cr基硬質粒子を2.0〜17.0%及びFe基硬質粒子を1.0〜15.0%含有し、且つ、前記MoS及びWSを含む金属硫化物を1.0〜5.0質量%含有する、
ことを特徴とする集電摺動材料。
2.1)MnSを0.5〜2.5質量%含む硫黄快削鉄粉:68.0〜93.0質量%、
2)Cr粒子及びCrV粒子を含むCr基硬質粒子:4.5〜16.0質量%、
3)FeMo粒子及び窒化FeTi粒子を含むFe基硬質粒子:1.5〜11.0質量%、並びに
4)MoS及びWSを含む金属硫化物:1.0〜5.0質量%、を含有する原料粉末を焼結する、焼結合金からなる集電摺動材料の製造方法であって、前記焼結合金は、
(1)Cr:4.0〜14.0質量%、V:0.2〜3.0質量%、Mo:2.0〜6.5質量%、Ti:0.2〜3.0質量%、W:0.2〜3.0質量%、Mn:0.1〜1.1質量%、S:1.0〜5.0質量%及びN:0.05〜0.4質量%を含有し、残部が不可避不純物及びFeからなり、
(2)組織断面中に面積率で前記Cr基硬質粒子を2.0〜17.0%及びFe基硬質粒子を1.0〜15.0%含有し、且つ、前記MoS 及びWS を含む金属硫化物を1.0〜5.0質量%含有する、
ことを特徴とする、集電摺動材料の製造方法。
That is, the present invention relates to the following current-collecting sliding material and a manufacturing method thereof.
1.1) Sulfur free-cutting iron powder containing 0.5 to 2.5% by mass of MnS, 2) Cr-based hard particles containing Cr particles and CrV particles, 3) Fe-based hard particles containing FeMo particles and nitrided FeTi particles And 4) a current-collecting sliding material comprising a sintered alloy obtained by sintering a raw material powder containing metal sulfide containing MoS 2 and WS 2 ,
(1) The sintered alloy contains Cr: 4.0 to 14.0% by mass, V: 0.2 to 3.0% by mass, Mo: 2.0 to 6.5% by mass, Ti: 0.2 -3.0 mass%, W: 0.2-3.0 mass%, Mn: 0.1-1.1 mass%, S: 1.0-5.0 mass%, and N: 0.05-0 .4% by mass, with the balance being inevitable impurities and Fe,
(2) The sintered alloy contains 2.0 to 17.0% of the Cr-based hard particles and 1.0 to 15.0% of the Fe-based hard particles in terms of area ratio in the cross section of the structure, and Containing 1.0 to 5.0% by mass of a metal sulfide containing MoS 2 and WS 2 ;
A current-collecting sliding material.
2.1) Sulfur free-cutting iron powder containing 0.5 to 2.5% by mass of MnS: 68.0 to 93.0% by mass,
2) Cr-based hard particles including Cr particles and CrV particles: 4.5 to 16.0% by mass,
3) FeMo particles and Fe-based hard particles comprising a nitride FeTi particles: from 1.5 to 11.0 wt%, and 4) MoS 2 and metal sulfides containing WS 2: 1.0 to 5.0 wt%, the sintering a raw material powder containing a manufacturing method of a current collector sliding material consisting of sintered alloy, the sintered alloy,
(1) Cr: 4.0-14.0 mass%, V: 0.2-3.0 mass%, Mo: 2.0-6.5 mass%, Ti: 0.2-3.0 mass% W: 0.2-3.0% by mass, Mn: 0.1-1.1% by mass, S: 1.0-5.0% by mass and N: 0.05-0.4% by mass And the balance consists of inevitable impurities and Fe,
(2) It contains 2.0 to 17.0% of the Cr-based hard particles and 1.0 to 15.0% of the Fe-based hard particles in an area ratio in the cross section of the structure, and the MoS 2 and WS 2 are contained. Containing 1.0 to 5.0 mass% of a metal sulfide containing,
A method for producing a current-collecting sliding material .

以下、本発明の集電摺動材料及びその製造方法について詳細に説明する。   Hereinafter, the current-collecting sliding material of the present invention and the manufacturing method thereof will be described in detail.

本発明の集電摺動材料は、1)MnSを0.5〜2.5質量%含む硫黄快削鉄粉、2)Cr粒子及びCrV粒子を含むCr基硬質粒子、3)FeMo粒子及び窒化FeTi粒子を含むFe基硬質粒子、並びに4)MoS及びWSを含む金属硫化物、を含有する原料粉末を焼結することにより得られる焼結合金からなる集電摺動材料であって、
(1)前記焼結合金は、Cr:4.0〜14.0質量%、V:0.2〜3.0質量%、Mo:2.0〜6.5質量%、Ti:0.2〜3.0質量%、W:0.2〜3.0質量%、Mn:0.1〜1.1質量%、S:1.0〜5.0質量%及びN:0.05〜0.4質量%を含有し、残部が不可避不純物及びFeからなり、
(2)前記焼結合金は、組織断面中に面積率で前記Cr基硬質粒子を2.0〜17.0%及びFe基硬質粒子を1.0〜15.0%含有し、且つ、前記MoS及びWSを含む金属硫化物を1.0〜5.0質量%含有することを特徴とする。
The current-collecting sliding material of the present invention includes 1) sulfur free-cutting iron powder containing 0.5 to 2.5% by mass of MnS, 2) Cr-based hard particles containing Cr particles and CrV particles, 3) FeMo particles and nitriding A current-collecting sliding material comprising a sintered alloy obtained by sintering a raw material powder containing Fe-based hard particles containing FeTi particles, and 4) a metal sulfide containing MoS 2 and WS 2 ,
(1) The sintered alloy contains Cr: 4.0 to 14.0% by mass, V: 0.2 to 3.0% by mass, Mo: 2.0 to 6.5% by mass, Ti: 0.2 -3.0 mass%, W: 0.2-3.0 mass%, Mn: 0.1-1.1 mass%, S: 1.0-5.0 mass%, and N: 0.05-0 .4% by mass, with the balance being inevitable impurities and Fe,
(2) The sintered alloy contains 2.0 to 17.0% of the Cr-based hard particles and 1.0 to 15.0% of the Fe-based hard particles in terms of area ratio in the cross section of the structure, and It contains 1.0 to 5.0% by mass of metal sulfide containing MoS 2 and WS 2 .

上記特徴を有する本発明の集電摺動材料は、特定の製造工程を経ることで特定の組成を有することにより、焼結合金からなる従来の集電摺動材料と比べて耐摩耗性及び潤滑性が向上している。そのため、集電摺動材料をパンタグラフ用のすり板として用いる場合には新幹線等の高速鉄道車両の更なる高速化の要求にも応えることができる上、潤滑性が向上しているため発車・停止近くの低速度域での凝着磨耗の発生も抑制することができる。このような本発明の集電摺動材料は、パンタグラフ用すり板をはじめ、自動車の摺動部品、軸受け材等にも用いることが可能である。   The current-collecting sliding material of the present invention having the above characteristics has a specific composition through a specific manufacturing process, so that it has wear resistance and lubrication compared with a conventional current-collecting sliding material made of a sintered alloy. Improved. Therefore, when the current collector sliding material is used as a pantograph sliding plate, it can meet the demand for higher speed of high-speed railway vehicles such as Shinkansen, and the lubrication is improved, so the vehicle starts and stops. It is also possible to suppress the occurrence of adhesive wear at a nearby low speed range. Such a current-collecting sliding material of the present invention can be used for pantograph sliding plates, automobile sliding parts, bearing materials, and the like.

本発明の集電摺動材料は、1)MnSを0.5〜2.5質量%含む硫黄快削鉄粉、2)Cr粒子及びCrV粒子を含むCr基硬質粒子、3)FeMo粒子及び窒化FeTi粒子を含むFe基硬質粒子、並びに4)MoS及びWSを含む金属硫化物、を含有する原料粉末を焼結することにより得られる焼結合金からなる。即ち、焼結合金には、上記硫黄快削鉄粉、上記Cr基硬質粒子、上記Fe基硬質粒子、上記金属硫化物が含まれる。なお、本明細書における上記金属硫化物は、「MoS及びWSを含む金属硫化物」を意味し、この金属硫化物には硫黄快削鉄粉に由来するMnSは含まない。 The current-collecting sliding material of the present invention includes 1) sulfur free-cutting iron powder containing 0.5 to 2.5% by mass of MnS, 2) Cr-based hard particles containing Cr particles and CrV particles, 3) FeMo particles and nitriding It consists of a sintered alloy obtained by sintering raw material powder containing Fe-based hard particles containing FeTi particles and 4) a metal sulfide containing MoS 2 and WS 2 . That is, the sintered alloy includes the sulfur free-cutting iron powder, the Cr-based hard particles, the Fe-based hard particles, and the metal sulfide. Incidentally, the metal sulfide in the present specification means "metal sulfide containing MoS 2 and WS 2", for this metal sulfide not including MnS derived from sulfur free Kezutetsu powder.

上記焼結合金の組成は、Cr:4.0〜14.0質量%、V:0.2〜3.0質量%、Mo:2.0〜6.5質量%、Ti:0.2〜3.0質量%、W:0.2〜3.0質量%、Mn:0.1〜1.1質量%、S:1.0〜5.0質量%及びN:0.05〜0.4質量%を含有し、残部が不可避不純物及びFeであるが、その中でも、Cr:6.0〜11.0質量%、V:0.9〜2.0質量%、Mo:3.0〜5.5質量%、Ti:0.5〜1.0質量%、W:0.8〜1.5質量%、Mn:0.3〜0.8質量%、S:1.0〜2.5質量%及びN:0.1〜0.3質量%であることが好ましい。なお、不可避不純物としては、例えば、Si、C、O、H等の成分が挙げられる。   The composition of the sintered alloy is Cr: 4.0-14.0% by mass, V: 0.2-3.0% by mass, Mo: 2.0-6.5% by mass, Ti: 0.2- 3.0 mass%, W: 0.2-3.0 mass%, Mn: 0.1-1.1 mass%, S: 1.0-5.0 mass%, and N: 0.05-0. 4% by mass, the balance being inevitable impurities and Fe, among which Cr: 6.0 to 11.0% by mass, V: 0.9 to 2.0% by mass, Mo: 3.0 to 5.5 mass%, Ti: 0.5-1.0 mass%, W: 0.8-1.5 mass%, Mn: 0.3-0.8 mass%, S: 1.0-2. It is preferable that they are 5 mass% and N: 0.1-0.3 mass%. Examples of inevitable impurities include components such as Si, C, O, and H.

上記焼結合金は、組織断面中に面積率で上記Cr基硬質粒子を2.0〜17.0%及びFe基硬質粒子を1.0〜15.0%含有する。   The sintered alloy contains 2.0 to 17.0% of the Cr-based hard particles and 1.0 to 15.0% of Fe-based hard particles by area ratio in the cross section of the structure.

Cr基硬質粒子の面積率は2.0〜17.0%であればよいが、その中でも8.0〜17.0%であることが好ましい。より具体的には、Cr粒子の面積率は6.0〜13.0%であることが好ましく、CrV粒子の面積率は2.0〜4.0%であることが好ましい。また、焼結合金中のCr基硬質粒子の含有量としては、4.5〜16.0質量%程度であり、より具体的には、Cr粒子の含有量は4.0〜12.0質量%程度であり、CrV粒子の含有量は0.5〜4.0質量%程度である。このようなCr基硬質粒子は、耐熱性に優れているため、集電摺動材料をパンタグラフ用すり板として用いた場合には、高速(高温)域での材質劣化及びアーク溶損を防止するため、高速域での機械的磨耗及びアーク損耗によるすり板磨耗を効果的に低減することができる。   The area ratio of the Cr-based hard particles may be 2.0 to 17.0%, among which 8.0 to 17.0% is preferable. More specifically, the area ratio of Cr particles is preferably 6.0 to 13.0%, and the area ratio of CrV particles is preferably 2.0 to 4.0%. Further, the content of Cr-based hard particles in the sintered alloy is about 4.5 to 16.0% by mass, and more specifically, the content of Cr particles is 4.0 to 12.0% by mass. The content of CrV particles is about 0.5 to 4.0% by mass. Since such Cr-based hard particles are excellent in heat resistance, when the current-collecting sliding material is used as a pantograph sliding plate, it prevents material deterioration and arc melting in a high-speed (high-temperature) region. Therefore, it is possible to effectively reduce the wear of the sliding plate due to mechanical wear and arc wear in the high speed range.

Cr粒子としては、純度99%質量%以上のものが好ましく、JIS Z2510で規定されるふるい分析で測定した粒径が150〜300μm程度であり、マイクロビッカース硬度計で測定したビッカース硬さ(HV)が200〜700程度であることが好ましい。以下、本明細書における粒径及びビッカース硬さの測定方法は、MoS及びWSの金属硫化物における粒径測定を除き、全て同じである。 The Cr particles preferably have a purity of 99% by mass or more, have a particle size measured by sieve analysis specified in JIS Z2510 is about 150 to 300 μm, and have a Vickers hardness (HV) measured by a micro Vickers hardness meter. Is preferably about 200 to 700. Hereinafter, the particle diameter and Vickers hardness measurement methods in this specification are all the same except for the particle diameter measurement in MoS 2 and WS 2 metal sulfides.

CrV粒子としては、V含有量が65〜70質量%の合金組成であることが好ましく、粒径が75〜355μm程度であり、ビッカース硬さ(HV)が500〜1000程度であることが好ましい。   The CrV particles preferably have an alloy composition with a V content of 65 to 70% by mass, a particle size of about 75 to 355 μm, and a Vickers hardness (HV) of about 500 to 1000.

Fe基硬質粒子の面積率は1.0〜15.0%であればよいが、その中でも4.0〜9.0%であることが好ましい。より具体的には、FeMo粒子の面積率は2.0〜5.0%であることが好ましく、窒化FeTi粒子の面積率は2.0〜4.0%であることが好ましい。また、焼結合金中のFe基硬質粒子の含有量としては、1.5〜11.0質量%程度であり、より具体的には、FeMo粒子の含有量は1.0〜7.0質量%程度であり、窒化FeTi粒子の含有量は0.5〜4.0質量%程度である。このようなFe基硬質粒子は、酸化開始温度が比較的低いため、集電摺動材料をパンタグラフ用すり板として用いた場合には、Fe基硬質粒子の酸化皮膜が低速(低温)域でのすり板・トロリ線間での金属接触を防止するため、凝着磨耗によるすり板磨耗を効果的に低減することができる。よって、上記Cr基硬質粒子とFe基硬質粒子とを組み合わせて含有することにより、低速域から高速域にかけて幅広く耐摩耗性を確保することができる。   The area ratio of the Fe-based hard particles may be 1.0 to 15.0%, but preferably 4.0 to 9.0%. More specifically, the area ratio of FeMo particles is preferably 2.0 to 5.0%, and the area ratio of nitrided FeTi particles is preferably 2.0 to 4.0%. Further, the content of the Fe-based hard particles in the sintered alloy is about 1.5 to 11.0% by mass, and more specifically, the content of the FeMo particles is 1.0 to 7.0% by mass. %, And the content of nitrided FeTi particles is about 0.5 to 4.0% by mass. Since such Fe-based hard particles have a relatively low oxidation start temperature, when the current-collecting sliding material is used as a pantograph slide plate, the Fe-based hard particles have an oxide film in a low speed (low temperature) region. In order to prevent metal contact between the sliding plate and the trolley wire, it is possible to effectively reduce wear of the sliding plate due to adhesive wear. Therefore, by containing the Cr-based hard particles and the Fe-based hard particles in combination, it is possible to ensure a wide wear resistance from a low speed region to a high speed region.

FeMo粒子としては、Mo含有量が60〜75質量%の合金組成であることが好ましく、粒径が150〜425μm程度であり、ビッカース硬さ(HV)が1000〜1500程度であることが好ましい。   The FeMo particles preferably have an alloy composition with an Mo content of 60 to 75% by mass, a particle size of about 150 to 425 μm, and a Vickers hardness (HV) of about 1000 to 1500.

窒化FeTi粒子としては、FeTi粒子の表面を窒素被覆した構造であって、Ti含有量が37.5〜40.5質量%、N含有量が8〜10質量%及び残部がFeである成分組成であることが好ましい。物性としては、粒径が63〜250μm程度であり、ビッカース硬さ(HV)が300〜900(但し、表層の窒化層は含まないFeTiで示されるフェロチタンのビッカース硬さ)程度であることが好ましい。なお、窒化層の厚さは数μm〜数十μm程度である。   The nitrided FeTi particles have a structure in which the surface of the FeTi particles is coated with nitrogen, the Ti content is 37.5 to 40.5% by mass, the N content is 8 to 10% by mass, and the balance is Fe It is preferable that As physical properties, the particle size is about 63 to 250 μm, and the Vickers hardness (HV) is about 300 to 900 (however, the Vickers hardness of ferrotitanium represented by FeTi not including the nitrided surface layer). preferable. The nitride layer has a thickness of about several μm to several tens of μm.

上記焼結合金は、MoS及びWSを含む金属硫化物を1.0〜5.0質量%含有する。この金属硫化物の含有量は1.0〜5.0質量%であればよいが、その中でも2.5〜5.0質量%であることが好ましく、より具体的には、MoSが1.5〜3.0質量%程度、WSが1.0〜2.0質量%程度であることが好ましい。 The sintered alloy contains 1.0 to 5.0% by mass of a metal sulfide containing MoS 2 and WS 2 . The content of the metal sulfide may be 1.0 to 5.0% by mass, of which 2.5 to 5.0% by mass is preferable, and more specifically, MoS 2 is 1 about .5~3.0 wt%, WS 2 is is preferably about 1.0 to 2.0 wt%.

MoSとしては、純度98質量%以上(化学量論組成:Mo:58.5質量%、S:39.3質量%)であることが好ましく、レーザー回折・散乱法で測定した粒径は2〜6μm程度であることが好ましい。WSとしては、純度98質量%以上(化学量論組成:W:72.7質量%、S:25.3質量%)であることが好ましく、ASTM B761の重力沈降によるX線監視で測定した粒径は1.5〜80μm程度であることが好ましい。この金属硫化物としてはMoS及びWSの2成分でよいが、組成の規定に外れず、本発明の効果に影響しない限りMoS、MoS、Mo等のモリブデンの硫化物、WS等のタングステンの硫化物を含んでもよい。 MoS 2 preferably has a purity of 98% by mass or more (stoichiometric composition: Mo: 58.5% by mass, S: 39.3% by mass), and the particle size measured by the laser diffraction / scattering method is 2 It is preferably about ˜6 μm. WS 2 preferably has a purity of 98% by mass or more (stoichiometric composition: W: 72.7% by mass, S: 25.3% by mass), and measured by X-ray monitoring by gravity sedimentation of ASTM B761. The particle size is preferably about 1.5 to 80 μm. As this metal sulfide, two components of MoS 2 and WS 2 may be used, but molybdenum sulfides such as MoS 3 , MoS 4 , and Mo 2 S 3 are not included in the composition and do not affect the effects of the present invention. A tungsten sulfide such as WS 3 may also be included.

本発明の集電摺動材料は、焼結合金がMoS及びWSを含む金属硫化物を1.0〜5.0質量%含有するとともに硫黄快削鉄粉に由来するMnSを含有することにより、優れた機械的強度とともに良好な潤滑性を得ることができる。特にMnSが鉄粉中に均一に分散された硫黄快削鉄粉を原料として用いるため、他の金属粉末を乾式混合した際の偏析が小さいため、焼結合金中の硫化物の均一な分散性も確保しやすく、それ故、同量の硫化物を含有する場合で比較すると従来品よりも優れた機械的強度及び潤滑性を確保することができる。本発明では、硫黄快削鉄粉(SUM)としては、MnSを0.5〜2.5質量%(好ましくは0.5〜2.0質量%)含むものを用いる。硫黄快削鉄粉の粒径としては、180μm以下であることが好ましい。また、焼結合金中の硫黄快削鉄粉の含有量としては、68.0〜93.0質量%程度であり、MnSの含有量としては、0.3〜2.3質量%程度である。 The current-collecting sliding material of the present invention contains 1.0 to 5.0% by mass of a metal sulfide containing MoS 2 and WS 2 in a sintered alloy and MnS derived from sulfur free-cutting iron powder. As a result, good lubricity can be obtained together with excellent mechanical strength. In particular, since sulfur free-cutting iron powder with MnS uniformly dispersed in iron powder is used as a raw material, segregation is small when other metal powders are dry-mixed, so uniform dispersibility of sulfides in sintered alloys Therefore, mechanical strength and lubricity superior to those of conventional products can be ensured as compared with the case where the same amount of sulfide is contained. In this invention, as sulfur free-cutting iron powder (SUM), what contains 0.5-2.5 mass% (preferably 0.5-2.0 mass%) of MnS is used. The particle size of the sulfur free-cutting iron powder is preferably 180 μm or less. Moreover, as content of sulfur free-cutting iron powder in sintered alloy, it is about 68.0-93.0 mass%, and as content of MnS, it is about 0.3-2.3 mass%. .

本発明の集電摺動材料は、これらの成分を含む原料粉末を成形し、焼結することにより得られるものである。例えば、
1)MnSを0.5〜2.5質量%含む硫黄快削鉄粉:68.0〜93.0質量%、
2)Cr粒子及びCrV粒子を含むCr基硬質粒子:4.5〜16.0質量%、
3)FeMo粒子及び窒化FeTi粒子を含むFe基硬質粒子:1.5〜11.0質量%、並びに
4)MoS及びWSを含む金属硫化物:1.0〜5.0質量%、を含有する原料粉末を焼結する製造方法により好適に製造することができる。即ち、上記製造方法によって、
(1)Cr:4.0〜14.0質量%、V:0.2〜3.0質量%、Mo:2.0〜6.5質量%、Ti:0.2〜3.0質量%、W:0.2〜3.0質量%、Mn:0.1〜1.1質量%、S:1.0〜5.0質量%及びN:0.05〜0.4質量%を含有し、残部が不可避不純物及びFeからなり、
(2)組織断面中に面積率で前記Cr基硬質粒子を2.0〜17.0%及びFe基硬質粒子を1.0〜15.0%含有し、且つ、前記MoS及びWSを含む金属硫化物を1.0〜5.0質量%含有する焼結合金から成る集電摺動材料が得られる。
The current-collecting sliding material of the present invention is obtained by molding and sintering a raw material powder containing these components. For example,
1) Sulfur free-cutting iron powder containing 0.5 to 2.5% by mass of MnS: 68.0 to 93.0% by mass,
2) Cr-based hard particles including Cr particles and CrV particles: 4.5 to 16.0% by mass,
3) FeMo particles and Fe-based hard particles comprising a nitride FeTi particles: from 1.5 to 11.0 wt%, and 4) MoS 2 and metal sulfides containing WS 2: 1.0 to 5.0 wt%, the It can manufacture suitably by the manufacturing method which sinters the raw material powder to contain. That is, by the above manufacturing method,
(1) Cr: 4.0-14.0 mass%, V: 0.2-3.0 mass%, Mo: 2.0-6.5 mass%, Ti: 0.2-3.0 mass% W: 0.2-3.0% by mass, Mn: 0.1-1.1% by mass, S: 1.0-5.0% by mass and N: 0.05-0.4% by mass And the balance consists of inevitable impurities and Fe,
(2) It contains 2.0 to 17.0% of the Cr-based hard particles and 1.0 to 15.0% of the Fe-based hard particles in an area ratio in the cross section of the structure, and the MoS 2 and WS 2 are contained. A current-collecting sliding material made of a sintered alloy containing 1.0 to 5.0% by mass of the metal sulfide containing is obtained.

具体的には、必要成分を混合して原料粉末を用意した後、原料粉末の成形を行う。成形に際して、必要に応じて公知の有機バインダー、焼結助材等を適宜添加することもできる。成形方法も、粉末冶金分野で従来から知られている方法を採用でき、例えば、プレス法、CIP法、HIP法、MIM法等により成形することができる。成形圧は、通常5〜8トン/cm程度とすれば良いが、最終的に得られる焼結合金のかさ密度が、通常6.5〜7.5g/cm程度、好ましくは6.8〜7.2g/cmとなるように設定できれば上記成形圧の範囲外であってもよい。特に、本発明では、材料密度比(真比重に対する比)が通常75%以上、特に85%とすることが好ましい。 Specifically, after preparing the raw material powder by mixing necessary components, the raw material powder is molded. At the time of molding, a known organic binder, sintering aid and the like can be appropriately added as necessary. As the forming method, a method conventionally known in the powder metallurgy field can be adopted, and for example, it can be formed by a press method, a CIP method, an HIP method, an MIM method, or the like. The forming pressure is usually about 5 to 8 ton / cm 2, but the bulk density of the finally obtained sintered alloy is usually about 6.5 to 7.5 g / cm 3 , preferably 6.8. It may be outside the range of the molding pressure as long as it can be set to ˜7.2 g / cm 3 . In particular, in the present invention, the material density ratio (ratio to the true specific gravity) is usually 75% or more, preferably 85%.

成形体の焼結に際し、その焼結温度は合金組成等によって異なるが、通常1000℃以上、好ましくは1000〜1200℃とすれば良い。また焼結雰囲気は、通常は還元性雰囲気(アンモニア分解ガス、炭化水素の変成ガス、水素ガス等)又は不活性雰囲気(窒素、アルゴンガス、ヘリウムガス等)とすれば良い。焼結時間は、焼結温度等に応じて定めることができる。例えば、焼結温度が1000〜1200℃程度であれば通常60〜120分程度とすれば良い。焼結後、適宜、再圧縮(加圧)、再焼結を行うこともできる。   When the compact is sintered, the sintering temperature varies depending on the alloy composition and the like, but is usually 1000 ° C. or higher, preferably 1000 to 1200 ° C. The sintering atmosphere is usually a reducing atmosphere (ammonia decomposition gas, hydrocarbon modification gas, hydrogen gas, etc.) or an inert atmosphere (nitrogen, argon gas, helium gas, etc.). The sintering time can be determined according to the sintering temperature or the like. For example, if the sintering temperature is about 1000 to 1200 ° C., it may usually be about 60 to 120 minutes. After sintering, recompression (pressurization) and re-sintering can be performed as appropriate.

本発明の集電摺動材料は、焼結合金がMoS及びWSを含む金属硫化物を1.0〜5.0質量%含有するとともに硫黄快削鉄粉に由来するMnSを含有することにより、優れた機械的強度とともに良好な潤滑性を得ることができる。特にMnSが鉄粉中に均一に分散された硫黄快削鉄粉を原料として用いるため、他の金属粉末を乾式混合した際の偏析が小さいため、焼結合金中の硫化物の均一な分散性も確保しやすく、それ故、同量の硫化物を含有する場合で比較すると従来品よりも優れた機械的強度及び潤滑性を確保することができる。また、硫化物を増量して潤滑性を向上させたい場合においても、コストアップにつながる従来の後処理(硫化処理)を省略できる。 The current-collecting sliding material of the present invention contains 1.0 to 5.0% by mass of a metal sulfide containing MoS 2 and WS 2 in a sintered alloy and MnS derived from sulfur free-cutting iron powder. As a result, good lubricity can be obtained together with excellent mechanical strength. In particular, since sulfur free-cutting iron powder with MnS uniformly dispersed in iron powder is used as a raw material, segregation is small when other metal powders are dry-mixed, so uniform dispersibility of sulfides in sintered alloys Therefore, mechanical strength and lubricity superior to those of conventional products can be ensured as compared with the case where the same amount of sulfide is contained. Further, even when it is desired to improve the lubricity by increasing the amount of sulfide, the conventional post-treatment (sulfurization treatment) that leads to an increase in cost can be omitted.

本発明では、硫黄快削鉄粉(SUM)としては、MnSを0.5〜2.5質量%(好ましくは0.5〜2.0質量%)含むものを用いる。このような硫黄快削鉄粉は、鉄粉中に快削化成分としてMnSを添加し、均一分散させたプレアロイ粉である。硫黄快削鉄粉の粒径としては、180μm以下であることが好ましい。また、焼結合金中の硫黄快削鉄粉の含有量としては、68.0〜93.0質量%程度であり、MnSの含有量としては、0.3〜2.3質量%程度である。   In this invention, as sulfur free-cutting iron powder (SUM), what contains 0.5-2.5 mass% (preferably 0.5-2.0 mass%) of MnS is used. Such a sulfur free-cutting iron powder is a pre-alloy powder in which MnS is added as a free-cutting component in the iron powder and dispersed uniformly. The particle size of the sulfur free-cutting iron powder is preferably 180 μm or less. Moreover, as content of sulfur free-cutting iron powder in sintered alloy, it is about 68.0-93.0 mass%, and as content of MnS, it is about 0.3-2.3 mass%. .

本発明の集電摺動材料は、例えば、各種の鉄道(新幹線のような高速鉄道を含む)のパンタグラフ用すり板をはじめ、自動車の摺動部品、軸受け材等に用いることができる。   The current-collecting sliding material of the present invention can be used for, for example, pantograph sliding plates of various types of railways (including high-speed railways such as the Shinkansen), sliding parts of automobiles, bearing materials, and the like.

これらの使用方法は、各用途で採用されている公知の方法に従って実施すれば良い。例えば、すり板のパンタグラフへの取り付け方法としては、本発明の集電摺動材料からなるすり板を舟体にネジ止め等により固定することにより設置すれば良い。本発明の集電摺動材料は、いずれのタイプのパンタグラフにも適用することが可能である。   What is necessary is just to implement these usage methods according to the well-known method employ | adopted by each use. For example, as a method for attaching the sliding plate to the pantograph, the sliding plate made of the current-collecting sliding material of the present invention may be fixed to the boat body by screwing or the like. The current-collecting sliding material of the present invention can be applied to any type of pantograph.

本発明の集電摺動材料は、特定の製造工程を経ることで特定の組成を有することにより、焼結合金からなる従来の集電摺動材料と比べて耐摩耗性及び潤滑性が向上している。そのため、集電摺動材料をパンタグラフ用のすり板として用いる場合には新幹線等の高速鉄道車両の更なる高速化の要求にも応えることができる上、潤滑性が向上しているため発車・停止近くの低速度域での凝着磨耗の発生も抑制することができる。このような本発明の集電摺動材料は、パンタグラフ用すり板をはじめ、自動車の摺動部品、軸受け材等にも用いることが可能である。   The current-collecting sliding material of the present invention has a specific composition through a specific manufacturing process, thereby improving wear resistance and lubricity compared to a conventional current-collecting sliding material made of a sintered alloy. ing. Therefore, when the current collector sliding material is used as a pantograph sliding plate, it can meet the demand for higher speed of high-speed railway vehicles such as Shinkansen, and the lubrication is improved, so the vehicle starts and stops. It is also possible to suppress the occurrence of adhesive wear at a nearby low speed range. Such a current-collecting sliding material of the present invention can be used for pantograph sliding plates, automobile sliding parts, bearing materials, and the like.

以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。   The present invention will be specifically described below with reference to examples and comparative examples. However, the present invention is not limited to the examples.

実施例1〜11及び比較例1〜10
表1に示す配合で各成分をVI型混合機(徳寿製作所製)で30分間混合した後、成形圧6.5トン/cmですり板形状(サイズ12mm×40mm×270mm)に成形し、アンモニア分解ガス雰囲気下1150℃で90分間焼結を行い、焼結合金試料を得た。
Examples 1-11 and Comparative Examples 1-10
After mixing each component with a VI type mixer (manufactured by Tokuju Seisakusho) for 30 minutes with the formulation shown in Table 1, it was molded into a slab shape (size 12 mm x 40 mm x 270 mm) with a molding pressure of 6.5 tons / cm 2 , Sintering was performed at 1150 ° C. for 90 minutes in an ammonia decomposition gas atmosphere to obtain a sintered alloy sample.

Figure 0005631359
Figure 0005631359

〔表1中、比較例の下線部は、比較例の位置づけの根拠を示す。〕
表1に示された各成分(合金粉末)の組成、粒径等は、以下に示す通りである。
・純鉄粉 …粒径75〜125μm
・硫黄快削鉄粉(全種)…粒径75〜125μm
・Cr粒子 …粒径180〜250μm
・CrV粒子 …粒径180〜300μm、V(66.5〜67.5質量%)
・窒化FeTi粒子 …粒径106〜250μm、Ti(38.5〜40.0質量%)、N(8.5〜9.5質量%)
・FeMo粒子 …粒径212〜300μm、Mo(62.0〜63.0質量%)
・MoS …粒径3.0〜4.0μm
・WS …粒径5.0〜15.0μm
得られた各焼結合金試料の化学成分は、以下に示す通りである。
[In Table 1, the underlined portion of the comparative example indicates the basis for positioning the comparative example. ]
The composition, particle size and the like of each component (alloy powder) shown in Table 1 are as shown below.
・ Pure iron powder: particle size 75 ~ 125μm
・ Sulfur free-cutting iron powder (all types): particle size 75-125μm
・ Cr particles: particle size 180-250μm
・ CrV particles: particle size 180-300μm, V (66.5-67.5% by mass)
・ Nitride FeTi particles: particle size 106-250 μm, Ti (38.5-40.0 mass%), N (8.5-9.5 mass%)
FeMo particles: particle size 212 to 300 μm, Mo (62.0 to 63.0% by mass)
・ MoS 2 ... particle size 3.0 to 4.0 μm
・ WS 2 ... particle size 5.0-15.0μm
The chemical components of the obtained sintered alloy samples are as shown below.

Figure 0005631359
Figure 0005631359

また、各焼結合金試料の組織断面中のCr基硬質粒子及びFe基硬質粒子の面積率は、以下に示す通りである。   Moreover, the area ratios of Cr-based hard particles and Fe-based hard particles in the cross section of each sintered alloy sample are as follows.

Figure 0005631359
Figure 0005631359

試験例1(機械特性の評価)
得られた各焼結合金試料について、ブリネル硬さ(HB)、シャルピー衝撃値(J/cm)及び引張強さ(MPa)の各機械特性を調べた。各測定方法は、以下の通りである。
≪ブリネル硬さ≫
JIS Z2243の方法により測定した。但し、鋼球の直径10mm、荷重500kg及び保ち時間30秒とした。
≪シャルピー衝撃値≫
JIS Z2242の方法により測定した。試験片は、ノッチ無しのものを用いた。
≪引張強さ≫
JIS Z2241の方法により測定した。試験片は、5号試験片、幅20mmのものを用いた。
Test Example 1 (Evaluation of mechanical properties)
About each obtained sintered alloy sample, each mechanical characteristic of Brinell hardness (HB), Charpy impact value (J / cm < 2 >), and tensile strength (MPa) was investigated. Each measuring method is as follows.
≪Brinell hardness≫
It was measured by the method of JIS Z2243. However, the diameter of the steel ball was 10 mm, the load was 500 kg, and the holding time was 30 seconds.
≪Charpy impact value≫
It was measured by the method of JIS Z2242. A test piece without a notch was used.
≪Tensile strength≫
It was measured by the method of JIS Z2241. As the test piece, a No. 5 test piece having a width of 20 mm was used.

各機械特性の評価結果は、以下の通りである。   The evaluation results of each mechanical property are as follows.

Figure 0005631359
Figure 0005631359

試験例2(すり板とした場合を想定した磨耗特性)
得られた各焼結合金試料をすり板とした場合を想定し、すり板の比摩耗量及びトロリ線摩耗偏差をそれぞれ調べた。その結果を表6に示す。表6には、比較のため、背景技術欄記載の特許文献1の鉄系焼結合金(従来材:V、Cr、金属硫化物を含有し、硫化処理したもの)で同様の試験を行った結果も併せて示す。摩耗試験は、下記表5に示す通りに、低速度(25km/h)と高速度(100km/h)の2条件で行った。
Test Example 2 (Abrasion characteristics assuming the use of a sliding plate)
Assuming the case where each of the obtained sintered alloy samples was a grinding plate, the specific wear amount and the trolley wire wear deviation of the grinding plate were examined. The results are shown in Table 6. In Table 6, the same test was performed for comparison with the iron-based sintered alloy of Patent Document 1 described in the background art column (conventional materials: V, Cr, containing metal sulfide and sulfide treatment). The results are also shown. As shown in Table 5 below, the wear test was performed under two conditions of low speed (25 km / h) and high speed (100 km / h).

Figure 0005631359
Figure 0005631359

Figure 0005631359
Figure 0005631359

表6の結果より、本発明の集電摺動材料は、比較品に比べてすり板の摩耗量が少なく、耐摩耗性に優れていることがわかる。また、本発明品は、トロリ線の摩耗量が少ないので、相手材に対する攻撃性が低く、潤滑性に優れていることがわかる。   From the results of Table 6, it can be seen that the current-collecting sliding material of the present invention has less wear on the sliding plate than the comparative product and is excellent in wear resistance. In addition, it can be seen that the product of the present invention has a low amount of wear on the trolley wire, and therefore has a low aggressiveness against the mating material and an excellent lubricity.

Claims (2)

1)MnSを0.5〜2.5質量%含む硫黄快削鉄粉、2)Cr粒子及びCrV粒子を含むCr基硬質粒子、3)FeMo粒子及び窒化FeTi粒子を含むFe基硬質粒子、並びに4)MoS及びWSを含む金属硫化物、を含有する原料粉末を焼結することにより得られる焼結合金からなる集電摺動材料であって、
(1)前記焼結合金は、Cr:4.0〜14.0質量%、V:0.2〜3.0質量%、Mo:2.0〜6.5質量%、Ti:0.2〜3.0質量%、W:0.2〜3.0質量%、Mn:0.1〜1.1質量%、S:1.0〜5.0質量%及びN:0.05〜0.4質量%を含有し、残部が不可避不純物及びFeからなり、
(2)前記焼結合金は、組織断面中に面積率で前記Cr基硬質粒子を2.0〜17.0%及びFe基硬質粒子を1.0〜15.0%含有し、且つ、前記MoS及びWSを含む金属硫化物を1.0〜5.0質量%含有する、
ことを特徴とする集電摺動材料。
1) Sulfur free-cutting iron powder containing 0.5 to 2.5% by mass of MnS, 2) Cr-based hard particles containing Cr particles and CrV particles, 3) Fe-based hard particles containing FeMo particles and nitrided FeTi particles, and 4) A current-collecting sliding material made of a sintered alloy obtained by sintering a raw material powder containing a metal sulfide containing MoS 2 and WS 2 ,
(1) The sintered alloy contains Cr: 4.0 to 14.0% by mass, V: 0.2 to 3.0% by mass, Mo: 2.0 to 6.5% by mass, Ti: 0.2 -3.0 mass%, W: 0.2-3.0 mass%, Mn: 0.1-1.1 mass%, S: 1.0-5.0 mass%, and N: 0.05-0 .4% by mass, with the balance being inevitable impurities and Fe,
(2) The sintered alloy contains 2.0 to 17.0% of the Cr-based hard particles and 1.0 to 15.0% of the Fe-based hard particles in terms of area ratio in the cross section of the structure, and Containing 1.0 to 5.0% by mass of a metal sulfide containing MoS 2 and WS 2 ;
A current-collecting sliding material.
1)MnSを0.5〜2.5質量%含む硫黄快削鉄粉:68.0〜93.0質量%、
2)Cr粒子及びCrV粒子を含むCr基硬質粒子:4.5〜16.0質量%、
3)FeMo粒子及び窒化FeTi粒子を含むFe基硬質粒子:1.5〜11.0質量%、並びに
4)MoS及びWSを含む金属硫化物:1.0〜5.0質量%、を含有する原料粉末を焼結する、焼結合金からなる集電摺動材料の製造方法であって、前記焼結合金は、
(1)Cr:4.0〜14.0 質量%、V:0.2〜3.0質量%、Mo:2.0〜6.5質量%、Ti:0.2〜3.0質量%、W:0.2〜3.0質量%、Mn:0.1〜1.1質量%、 S:1.0〜5.0質量%及びN:0.05〜0.4質量%を含有し、残部が不可避不純物及びFeからなり、
(2)組織断面中に面積率で前記Cr基硬質粒子を2.0〜17.0%及びFe基硬質粒子を1.0〜15.0%含有し、且つ、前記MoS 及びWS を含む金属硫化物を1.0〜5.0質量%含有する、
ことを特徴とする、集電摺動材料の製造方法。
1) Sulfur free-cutting iron powder containing 0.5 to 2.5% by mass of MnS: 68.0 to 93.0% by mass,
2) Cr-based hard particles including Cr particles and CrV particles: 4.5 to 16.0% by mass,
3) FeMo particles and Fe-based hard particles comprising a nitride FeTi particles: from 1.5 to 11.0 wt%, and 4) MoS 2 and metal sulfides containing WS 2: 1.0 to 5.0 wt%, the sintering a raw material powder containing a manufacturing method of a current collector sliding material consisting of sintered alloy, the sintered alloy,
(1) Cr: 4.0-14.0 mass%, V: 0.2-3.0 mass%, Mo: 2.0-6.5 mass%, Ti: 0.2-3.0 mass% W: 0.2-3.0 mass%, Mn: 0.1-1.1 mass%, S: 1.0-5.0 mass% and N: 0.05-0.4 mass% And the balance consists of inevitable impurities and Fe,
(2) It contains 2.0 to 17.0% of the Cr-based hard particles and 1.0 to 15.0% of the Fe-based hard particles in an area ratio in the cross section of the structure, and the MoS 2 and WS 2 are contained. Containing 1.0 to 5.0 mass% of a metal sulfide containing,
A method for producing a current-collecting sliding material .
JP2012113695A 2012-05-17 2012-05-17 Current collecting sliding material and method for manufacturing the same Active JP5631359B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012113695A JP5631359B2 (en) 2012-05-17 2012-05-17 Current collecting sliding material and method for manufacturing the same
TW102116194A TWI479034B (en) 2012-05-17 2013-05-07 Blasting material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012113695A JP5631359B2 (en) 2012-05-17 2012-05-17 Current collecting sliding material and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2013241629A JP2013241629A (en) 2013-12-05
JP5631359B2 true JP5631359B2 (en) 2014-11-26

Family

ID=49842801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012113695A Active JP5631359B2 (en) 2012-05-17 2012-05-17 Current collecting sliding material and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP5631359B2 (en)
TW (1) TWI479034B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020045505A1 (en) * 2018-08-29 2021-09-02 昭和電工マテリアルズ株式会社 Iron-based sintered sliding member and its manufacturing method
CN111360243B (en) * 2020-04-24 2022-04-01 长沙迈特锐新材料有限公司 High-performance self-lubricating copper-based pantograph slide plate material and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2853564B2 (en) * 1994-03-30 1999-02-03 三菱マテリアル株式会社 Pantograph ground plate made of lead impregnated Fe-based sintered alloy with excellent wear resistance
JPH08120425A (en) * 1994-10-17 1996-05-14 Mitsubishi Materials Corp Current collecting pantograph shoe material made of iron-base sintered alloy, having wear resistance and excellent in electric conductivity
JP4340845B2 (en) * 2003-03-06 2009-10-07 財団法人鉄道総合技術研究所 Current collecting sliding material and method for manufacturing the same
JP2004269933A (en) * 2003-03-06 2004-09-30 Railway Technical Res Inst Current collection sliding material
GB2437216A (en) * 2005-01-31 2007-10-17 Komatsu Mfg Co Ltd Sintered material, iron-based sintered sliding material and process for producing the same

Also Published As

Publication number Publication date
JP2013241629A (en) 2013-12-05
TW201350593A (en) 2013-12-16
TWI479034B (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5453251B2 (en) Iron-based powder and composition thereof
JP5613049B2 (en) Iron-based composite powder
JP6227903B2 (en) Alloy steel powder for powder metallurgy and method for producing iron-based sintered body
EP2778243B1 (en) Iron based sintered sliding member and method for producing the same
US9744591B2 (en) Iron base sintered sliding member and method for producing same
JP5929967B2 (en) Alloy steel powder for powder metallurgy
JP5631359B2 (en) Current collecting sliding material and method for manufacturing the same
CN111432958B (en) Partially diffused alloyed steel powder
JPH10504353A (en) Iron-based powder containing chromium, molybdenum and manganese
JP4121383B2 (en) Iron-base metal bond excellent in dimensional accuracy, strength and sliding characteristics and method for manufacturing the same
CN111432957A (en) Alloy steel powder
JP4340845B2 (en) Current collecting sliding material and method for manufacturing the same
JP6728081B2 (en) Current collecting sliding material
JP2021109983A (en) Current collection sliding material
JP2017137580A (en) Manufacturing method of iron-based sintered slide member
JP2004269933A (en) Current collection sliding material
JPS60215736A (en) Production of sintered alloy having excellent resistance to wear at high temperature
JP2020132902A (en) Pre-alloyed steel powder for sintered member, powder for sintered member, and sintered member
JP2021001381A (en) Alloy steel powder for sintered member, iron based mixed powder for sintered member, and sintered member
JPH0772319B2 (en) Manufacturing method of ferrous wear-resistant sintered alloy for current collecting sliding
JPH03170639A (en) Manufacture of ferrous wear-resistant sintered alloy for current collecting and sliding
JPH0533299B2 (en)
JPH04110441A (en) Manufacture of iron series wear resistant sintered alloy for current collecting and sliding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R150 Certificate of patent or registration of utility model

Ref document number: 5631359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250