JP2005023342A - Method for manufacturing high-s free cutting steel superior in machinability, and high-s free cutting steel - Google Patents
Method for manufacturing high-s free cutting steel superior in machinability, and high-s free cutting steel Download PDFInfo
- Publication number
- JP2005023342A JP2005023342A JP2003187668A JP2003187668A JP2005023342A JP 2005023342 A JP2005023342 A JP 2005023342A JP 2003187668 A JP2003187668 A JP 2003187668A JP 2003187668 A JP2003187668 A JP 2003187668A JP 2005023342 A JP2005023342 A JP 2005023342A
- Authority
- JP
- Japan
- Prior art keywords
- less
- free
- steel
- cutting steel
- excluding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は人体に有害でリサイクルを困難にするPbを使用しない快削鋼(Pbフリー快削鋼)の技術に関するものである。
【0002】
【従来の技術】
快削鋼に含まれるPbは、被削性改善に極めて有効な元素である。しかし、埋め立てられた廃棄スクラップから溶け出すおそれがあることや溶解すると人体に有害なPbガスが発生するので、リサイクルの障害となっていた。このため、鋼へのPb使用廃止が求められている。Pbを除いた場合、被削性が劣化するため、代わりの快削性元素を添加する必要がある。
【0003】
被削性(特に切屑処理性)を改善するためにはSの増量(高S快削鋼)が提案されており、例えば特許文献1ではSを0.4%超とすることを提案している。しかしこの特許文献1が指摘しているようにS含有率が高まると熱間加工性が低下するため、例えば圧延材の表面疵が増大する。そこでこの特許文献1ではMn含有率を増大することによってMn/S比を最大5.0まで高めることを推奨している。さらには鋼中の酸素含有率が低いとMnSが小型化して被削性が低減することに着目し、鋼中の酸素濃度を0.005〜0.040%程度に高めることも提案している。ところが後述の特許文献2の従来技術欄に記載されているように、この特許文献1の方法(Mn/S比の向上、鋼中酸素濃度の向上)によったとしても、なお仕上げ面粗さが不十分となっている。
【0004】
仕上げ面粗さを改善できた鋼として特許文献2がある。この特許文献2の発明は、Sを0.4%以上と高めた高S快削鋼であり、またMn/S比を最大5.0まで高めており、かつ鋼中酸素濃度を0.005〜0.040%まで高めている点で上記特許文献1と共通するが、悪い仕上げ面粗さを改善するためにSnを0.0015〜0.60%添加している点で改善されている。Snを用いれば、切削時に形成される構成刃先を脆くでき、切削面に付着する構成刃先のかけらが小さくなるためであるとしている。しかしSnは熱間加工性を劣化させるため、Mn/S比向上による熱間加工性向上効果(表面疵低減効果)を打ち消してしまう。従って特許文献2の方法によっても表面疵の低減と仕上げ面粗さの両立が困難となっている。
【0005】
Snを使用することなく仕上げ面粗さを改善した例として特許文献3がある。この特許文献3はSを0.5%程度まで高めている点、及び鋼中のO2を100〜300ppmと高くしている点で上記特許文献1〜2と共通しており、鋼中のO2が高くなってMnSサイズが大きくなる程、仕上げ面粗さが良好となることを特定の式を用いて示している。しかし、この特許文献3はMn/S比についての配慮がなされておらず、実施例の欄を参照すると、Mn/S比は最大でも3.3である。そのため表面疵の改善効果が不十分となっており、特許文献3の方法によっても表面疵の低減と仕上げ面粗さの両立が困難となっている。
【0006】
【特許文献1】
特開2000−319753号公報
【特許文献2】
特開2002−249848号公報
【特許文献3】
特開平5−345951号公報
【0007】
【発明が解決しようとする課題】
本発明は上記の様な事情に着目してなされたものであって、その目的は、被削性(特に切屑処理性)を高めた高S快削鋼において、表面疵の発生防止と仕上げ面粗さの改善とを両立することのできる技術を確立することにある。
【0008】
【課題を解決するための手段】
表面疵の発生防止と仕上げ面粗さの改善とを両立するには、特許文献3においてMn/S比を向上することが想定された。しかしMn/S比を増大するとMnSサイズが小さくなってしまい、仕上げ面粗さの改善効果を十分に得ることができなかった。しかもMnSサイズの低下は、特許文献1〜3が教示するように、鋼中の酸素濃度を0.005〜0.040%に制御したとしても同様であった。
【0009】
そこで本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、鋼中の酸素濃度はMnSサイズと直接的な関係がないことを発見し、さらに鋭意研究を重ねた結果、鋳造直前のフリー酸素濃度がMnSサイズに大きく影響しており、該フリー酸素濃度を低減するとMn/S比を増大しながらも大きなサイズのMnSを生成させることができ、表面疵の発生防止と仕上げ面粗さの改善とを両立できることを見出し、本発明を完成した。
【0010】
すなわち、本発明に係る被削性に優れた高S快削鋼の製造方法は、C:0.01〜0.25%(質量%の意。以下、同じ)、Si:0.01%以下(0%を含まない)、Mn:1.3〜3.5%、P:0.2%以下(0%を含まない)、S:0.38〜0.8%、Al:0.01%以下(0%を含まない)、N:0.007%以上、O:0.008%以上を含有し、残部がFe及び不可避的不純物からなり、Mn/S比(質量比)が3.5以上である高S快削鋼の製造方法において、鋳造直前の溶鋼のフリー酸素濃度を0.004%以上にする点に要旨を有するものである。溶鋼のフリー酸素濃度を0.004%以上とするためには、脱酸剤としてのSi及びAlを添加しないのが有効である。このようにして得られる高S快削鋼では、MnSの平均面積が10μm2以上となっており仕上げ面粗さが改善されている。本発明の高S快削鋼は、連続鋳造法又は造塊法によって製造されるが、造塊法によればMnSサイズを大きくするのに有利である。この高S快削鋼を切削することによって鋼部品を製造できる。
【0011】
【発明の実施の形態】
本発明では、後述する脱酸操作以外は常法に従って溶鋼の成分調整を行い、次いで必要により分塊圧延した後、熱間圧延することによってC:0.01〜0.2%(質量%の意。以下、同じ)、Si:0.01%以下、Mn:1.3〜3%、P:0.2%以下、S:0.38〜0.8%、Al:0.01%以下、N:0.007%以上、O:0.008%以上を含有し、残部がFe及び不可避的不純物からなり、Mn/S比(質量比)が3.5以上である高S快削鋼を製造している。各成分の限定理由は以下の通りである。
【0012】
C:0.01〜0.25%
Cは鋼の基本強度を決定する為に不可欠な元素であり、また所定量以上添加することによって仕上げ面粗さを改善する作用も有する。しかし過剰に添加すると工具寿命が低下する。C量は、鋼の他の構成要件(他の成分、後述するMnSサイズなど)に応じて適切な範囲に設定されるが、本発明では0.01%以上(好ましくは0.03%以上、さらに好ましくは0.05%超)、0.25%以下(好ましくは0.20%以下、さらに好ましくは0.17%以下)とする。
【0013】
Si:0.01%以下(0%を含まない)
後述するように、本発明では基本的には脱酸剤としてのSiを添加しない。しかしSiは原料(鉄鉱石、スクラップなど)に含まれており脱Si処理をしてもSiO2として混入してくる。また他の鋼を製造する場合には脱酸剤として頻繁に使用されているため、製造設備からもSiO2として混入してくる。SiO2としての混入であれば脱酸剤としての機能を喪失しており、特にSi量は制限されないが、通常、Siは0.01%以下(例えば0.009%以下、特に0.007%以下)程度である(なお実際上、0%となることはない)。
【0014】
Mn:1.3〜3.5%
MnはMnSを形成して被削性を高めるため、本発明では不可欠な元素である。またFeSの生成による圧延中の液相の発生を抑制するため、表面疵を低減する点でも効果がある。しかしMnが過剰となると工具寿命が低下する。Mn量は、1.3%以上(好ましくは1.5%以上、さらに好ましくは2.0%以上)、3.5%以下(好ましくは3.2%以下、さらに好ましくは3.0%以下)程度である。
【0015】
P:0.2%以下(0%を含まない)
Pは過剰となると工具寿命を低下させるため低減することが推奨される。従ってPは0.2%以下、好ましくは0.15%以下、さらに好ましくは0.10%以下とする。なお実際上、Pを0%とすることは困難であり、またPは被削性の改善にも有効である。従ってPは好ましくは0.01%以上、さらに好ましくは0.05%以上とする。
【0016】
S:0.38〜0.8%
SはMnSを形成して被削性を高めるため、本発明では不可欠な元素である。またPb快削鋼と同等の被削性を得るためにはS量を十分に高める必要がある。従って本発明では、S量を0.38%以上、好ましくは0.40%以上、さらに好ましくは0.45%以上とする。しかしSが過剰になると表面疵の発生が認められるようになる。従ってS量は0.8%以下、好ましくは0.7%以下、さらに好ましくは0.65%以下程度とする。
【0017】
Al:0.01%以下(0%を含まない)
後述するように、本発明では基本的に脱酸剤としてのAlを添加しない。しかしAlは他の鋼を製造する場合には脱酸剤として頻繁に使用されているため、製造設備からAl2O3が混入してくる。Al2O3としての混入であれば脱酸剤としての機能を喪失しており、特にAl量は制限されないが、通常、Alは0.01%以下(例えば0.009%以下、特に0.006%以下)程度である(なお実際上、0%となることはない)。
【0018】
N:0.007%以上
Nが多くなるほど仕上げ面粗さが改善される。Nは0.007%以上、好ましくは0.008%以上、さらに好ましくはNは0.009%以上である。表面疵及び仕上げ面粗さの観点からはNの上限は限定されないが、Nが多くなるとブローホールが発生するため上限を設定するのが望ましい。好ましくはNは0.02%以下、さらに好ましくは0.015%以下、特に0.013%以下である。
【0019】
O:0.008%以上
後述するように本発明では鋳造直前の溶鋼中のフリー酸素濃度を高くすることが重要であり、鋼中の酸素濃度は特に設定されないが、通常、0.008%以上、好ましくは0.010%以上、さらに好ましくは0.013%以上程度である。なお表面疵及び仕上げ面粗さと鋼中の酸素濃度との直接の関係はないが、鋼中の酸素濃度が多い程、原料や製造設備由来の酸化物(SiO2、Al2O3など)が多くなっている傾向があり、工具寿命が低下する傾向がある。従って鋼中の酸素は、好ましくは0.03%以下、さらに好ましくは0.02%以下、特に0.018%以下程度とするのが推奨される。
【0020】
また本発明では、MnとSの比(Mn/S;質量基準)が3.5以上に設定されている。MnがSに比べて少なすぎると、表面疵の発生を防止できない。好ましいMn/S比(質量比)は、3.8以上、さらに好ましくは4.0以上である。
【0021】
上記のようにして鋼を製造するに際して、鋳造直前の脱酸操作(例えば取鍋精錬時のスラグ調整による脱酸操作)を工夫している点に本発明の特徴がある。取鍋精錬では、通常、SiやAlなどの脱酸剤を添加して脱酸を行っている。しかし本発明のようにMn/S比を高くすると、Mnが脱酸剤として働くため、溶鋼中のフリー酸素濃度が既に低減されている。ここで常法に従ってSiやAlなどを添加してしまうと、溶鋼中のフリー酸素濃度が著しく少なくなってしまい、鋳造時に析出するMnSが微細化してしまい、仕上げ面粗さが劣化していたのである。また従来の方法では鋼中の酸素を所定量以上確保することを考慮していたが、かかる思想はSiO2やAl2O3を鋼中に持ち込ませることなく十分に浮上させて酸化物を少なくした後で鋳造することを意味するに過ぎず、溶鋼中のフリー酸素は何ら制御されていなかったのであり、むしろSiやAlを脱酸剤として使用してしまっている以上、溶鋼中のフリー酸素は極めて少なくなっていたのである。これに対して、本発明ではフリー酸素濃度を低減し過ぎないようにしており、基本的には脱酸剤としてのSiやAlを添加しないこととしてMnSの微細化を防止している。MnSの微細化を防止することによって、仕上げ面粗さの劣化を防止できる。
【0022】
鋳造直前の溶鋼中のフリー酸素濃度は、0.004%以上、好ましくは0.0043%以上、さらに好ましくは0.0045%以上とする。なおかかるフリー酸素濃度を確保可能である限り、必要によってSiやAlを添加してもよい。またフリー酸素を過剰としなければ、MnSサイズが大きくなり過ぎるのを防止でき、表面疵の発生をさらに抑制できる。従ってフリー酸素濃度は、好ましくは0.01%以下、さらに好ましくは0.008%以下、特に0.006%以下程度とする。
【0023】
上記のようにして溶鋼中のフリー酸素濃度を制御すると、Mn/S比が高められているにも拘わらずMnSの微細化を防止できる。そのため表面疵の発生を防止できると共に、仕上げ面粗さをも改善できる。上記のようにして得られる本発明の鋼中のMnS介在物の平均面積は、10μm2以上、好ましくは20μm2以上、さらに好ましくは50μm2以上である。なおMnS介在物の平均面積は、好ましくは300μm2以下、さらに好ましくは200μm2以下、特に150μm2以下とすることが推奨される。
【0024】
鋳造方法は特に限定されず、連続鋳造法であってもよく造塊法であってもよい。連続鋳造法によれば生産性を高めることができる。また造塊法によれば、鋳造時の冷却速度を遅くでき、MnSサイズを大きくし易くなるため、仕上げ面粗さの改善にさらに有効である。造塊法による場合、1つの鋳片の大きさは、例えば5トン以上とすることが推奨される。
【0025】
上記のようにして得られる本発明の鋼は、高S快削鋼であるため被削性(特に切屑処理性)が高められており、Mn/S比が高められているために表面疵が抑制されており、さらには脱酸工程を工夫することによってMnS介在物が大きくなっているために仕上げ面粗さも改善されている。そのため快削鋼として極めて有用であり、種々の鋼部品[例えば、油圧用部品(例えば、アンチロックブレーキシステム(ABS)、オートマチックトランスミッション(AT)などの油圧制御部品など)など]を簡便にかつ精度よく製造できる。
【0026】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0027】
実験例1
高炉から出鋼した鋼を溶銑予備処理及び転炉精錬してC量、Si量、P量を調製した後、取鍋で合金元素(Mn)を添加して精錬することによって下記表1に示す化学成分の鋼を製造し、直ちに連続鋳造(鋳片サイズ:300mm×430mm)又は造塊(サイズ:8トン)によって鋳造した。次いで分塊圧延によって155mm×155mm×10mとした後、熱間圧延によって直径9.5mmの線材を得た。なお取鍋では、No.3〜5の例でのみSi又はAlを添加しており、それ以外の例ではSi及びAlの添加は行わなかった。線材は引き抜き加工して、直径8mm×長さ3mの磨棒材とした。
【0028】
得られた磨棒材の特性は、以下のようにして調べた。
[表面疵]
溶製1チャージ分から得られる全ての磨棒材について、表面の疵の有無を調べた。深さ0.2mm以上の疵があるものを不良品とし、下記基準で評価した。
○:不良品発生率5%以下
×:不良品発生率5%超
[MnSサイズ]
磨棒材を圧延方向に切断し、断面の光学顕微鏡画像(倍率30倍)を固体素子カメラに受像した。画像解析によってそれぞれのMnSの面積を測定し、幅が1μmを超えるものについてその平均値を算出し、下記基準に従って評価した。
○:MnSの面積(平均)が10μm2以上である
×:MnSの面積(平均)が10μm2未満である
[被削性]
線材を輪切りして3000個の試験材を作製し、この試験材を軸回りに回転させながらフォーミングバイト(ハイス SKH4A)を試験材の半径方向に送ることによって溝を形成する切削(切削速度90m/分、送り量0.03mm/rev、切り込み量:1.0mm)を行い、溝底部の仕上げ面粗さ(平均)と切屑処理性(平均)を調べた。
【0029】
試験材の仕上げ面粗さ及び切屑処理性は、同様の切削試験を株式会社神戸製鋼所製のPb複合快削鋼「12L14A」(成分規格:C:0.15%以下、Mn:0.85〜1.15、P:004〜0.09、S:0.28〜0.35、Pb:0.20〜0.35)に対して行い、このPb複合快削鋼「12L14A」の仕上げ面粗さ(十点平均粗さRzは10〜15μm2であった)及び切屑処理性の結果と比較することによって評価した。
○:「12L14A」と同等以上である
×:「12L14A」よりも劣る
結果を表1に示す。
【0030】
【表1】
【0031】
表1から明らかなように、Sが少なすぎる場合、Pb複合快削鋼に匹敵するような切屑処理性が得られない(No.1)。またSを多くしても、Mn/S比が小さいと表面疵が発生する(No.2)。さらにSを多くしてMn/S比も大きくしても、取鍋でのフリー酸素が少なくなっていると、MnSサイズが小さくなるため、Pb複合快削鋼に匹敵するような仕上げ面粗さが得られない(No.3〜5)。なおNo.2は鋼中のSi量が少なくなっているが、これは脱酸剤として添加したSiがスラグ(SiO2)として十分に除去されているためである。さらにNが少なすぎる場合にもPb複合快削鋼に匹敵するような仕上げ面粗さが得られない(No.6)。
【0032】
これらに対して化学成分を適切とし、かつ取鍋でのフリー酸素を十分に確保した場合には、MnSサイズを大きくできるため、表面疵を発生させることなくPb複合快削鋼に匹敵するような被削性(切屑処理性、仕上げ面粗さ)を達成できる(No.7〜17)。特に造塊法によって製造すると、連続鋳造法による場合よりも仕上げ面粗さを高めることができる(No.18)。
【0033】
【発明の効果】
本発明によれば被削性(特に切屑処理性)を高めた高S快削鋼において、Mn/S比が高められているために表面疵が抑制されている。さらにはMn/S比を高めると溶鋼中のフリー酸素濃度が下がって仕上げ面粗さが悪化し易くなるにも拘わらず、本発明では脱酸工程を工夫することによって溶鋼中のフリー酸素濃度の低減を抑制してMnS介在物を大きくしているため、仕上げ面粗さも改善できる。そのため表面疵の発生防止、仕上げ面粗さ(及び切屑処理性)の点でPb快削鋼に匹敵するPbフリー快削鋼を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technology of free-cutting steel (Pb-free free-cutting steel) that does not use Pb, which is harmful to human bodies and difficult to recycle.
[0002]
[Prior art]
Pb contained in free-cutting steel is an extremely effective element for improving machinability. However, there is a risk of melting from the landfilled scrap, and Pb gas harmful to the human body is generated when dissolved, which has been an obstacle to recycling. For this reason, the abolition of Pb use to steel is called for. When Pb is removed, the machinability deteriorates, so it is necessary to add an alternative free-cutting element.
[0003]
In order to improve machinability (especially chip disposability), an increase in S (high S free-cutting steel) has been proposed. For example, Patent Document 1 proposes that S be more than 0.4%. Yes. However, as this patent document 1 points out, when S content rate increases, hot workability will fall, for example, the surface flaw of a rolling material will increase. Therefore, in Patent Document 1, it is recommended to increase the Mn / S ratio to 5.0 at the maximum by increasing the Mn content. Furthermore, focusing on the fact that if the oxygen content in the steel is low, the MnS is reduced in size and machinability is reduced, and it has also been proposed to increase the oxygen concentration in the steel to about 0.005 to 0.040%. . However, as described in the prior art column of Patent Document 2 described later, even if the method of Patent Document 1 (improvement of Mn / S ratio, improvement of oxygen concentration in steel) is used, the finished surface roughness still remains. Is insufficient.
[0004]
There exists patent document 2 as steel which could improve finishing surface roughness. The invention of Patent Document 2 is a high-S free-cutting steel in which S is increased to 0.4% or more, the Mn / S ratio is increased to a maximum of 5.0, and the oxygen concentration in the steel is 0.005. Although it is common to the above-mentioned patent document 1 in that it is increased to ~ 0.040%, it is improved in that 0.0015 to 0.60% of Sn is added to improve poor finished surface roughness. . If Sn is used, the constituent cutting edge formed at the time of cutting can be made fragile, and the fragment of the constituent cutting edge adhering to the cutting surface is reduced. However, since Sn degrades hot workability, the hot workability improvement effect (surface flaw reduction effect) due to the improvement of the Mn / S ratio is negated. Therefore, even by the method of Patent Document 2, it is difficult to achieve both reduction of surface wrinkles and finished surface roughness.
[0005]
As an example of improving the finished surface roughness without using Sn, there is Patent Document 3. This Patent Document 3 is common to the above Patent Documents 1 and 2 in that S is increased to about 0.5% and O 2 in the steel is increased to 100 to 300 ppm. It is shown using a specific formula that the finished surface roughness becomes better as the O 2 becomes higher and the MnS size becomes larger. However, in Patent Document 3, no consideration is given to the Mn / S ratio, and when referring to the column of Examples, the Mn / S ratio is 3.3 at the maximum. Therefore, the effect of improving surface defects is insufficient, and it is difficult to achieve both reduction of surface defects and finished surface roughness even by the method of Patent Document 3.
[0006]
[Patent Document 1]
JP 2000-319753 A [Patent Document 2]
Japanese Patent Laid-Open No. 2002-249848 [Patent Document 3]
JP-A-5-345951
[Problems to be solved by the invention]
The present invention has been made paying attention to the circumstances as described above, and its purpose is to prevent the occurrence of surface flaws and to achieve a finished surface in high-S free-cutting steel with improved machinability (particularly chip disposal). The purpose is to establish a technique capable of achieving both improvement of roughness.
[0008]
[Means for Solving the Problems]
In order to achieve both the prevention of surface flaws and the improvement of the finished surface roughness, it is assumed in Patent Document 3 that the Mn / S ratio is improved. However, when the Mn / S ratio is increased, the MnS size is reduced, and the effect of improving the finished surface roughness cannot be sufficiently obtained. Moreover, the decrease in MnS size was the same even when the oxygen concentration in the steel was controlled to 0.005 to 0.040%, as taught in Patent Documents 1 to 3.
[0009]
Therefore, as a result of intensive studies to solve the above problems, the present inventors discovered that the oxygen concentration in the steel has no direct relationship with the MnS size. The immediately preceding free oxygen concentration has a large effect on the MnS size. Reducing the free oxygen concentration can generate MnS with a large size while increasing the Mn / S ratio. The present invention has been completed by finding out that both improvement of roughness can be achieved.
[0010]
That is, the manufacturing method of the high S free-cutting steel excellent in machinability according to the present invention is: C: 0.01 to 0.25% (meaning mass%, hereinafter the same), Si: 0.01% or less. (Not including 0%), Mn: 1.3 to 3.5%, P: not more than 0.2% (not including 0%), S: 0.38 to 0.8%, Al: 0.01 % Or less (excluding 0%), N: 0.007% or more, O: 0.008% or more, the balance is made of Fe and inevitable impurities, and the Mn / S ratio (mass ratio) is 3. The high-S free-cutting steel manufacturing method of 5 or more has a gist in that the free oxygen concentration of the molten steel immediately before casting is 0.004% or more. In order to make the free oxygen concentration of molten steel 0.004% or more, it is effective not to add Si and Al as deoxidizers. In the high S free-cutting steel thus obtained, the average area of MnS is 10 μm 2 or more, and the finished surface roughness is improved. The high-S free-cutting steel of the present invention is produced by a continuous casting method or an ingot-making method, and the ingot-making method is advantageous for increasing the MnS size. A steel part can be manufactured by cutting this high-S free-cutting steel.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the components of the molten steel are adjusted in accordance with a conventional method except for the deoxidation operation described below, and then, if necessary, after rolling in pieces, by hot rolling, C: 0.01 to 0.2% (mass%) The same applies hereinafter), Si: 0.01% or less, Mn: 1.3 to 3%, P: 0.2% or less, S: 0.38 to 0.8%, Al: 0.01% or less , N: 0.007% or more, O: 0.008% or more, the balance being Fe and inevitable impurities, Mn / S ratio (mass ratio) of 3.5 or more high S free cutting steel Is manufacturing. The reasons for limiting each component are as follows.
[0012]
C: 0.01 to 0.25%
C is an element indispensable for determining the basic strength of steel, and has the effect of improving the finished surface roughness by adding a predetermined amount or more. However, if it is added excessively, the tool life is reduced. The amount of C is set to an appropriate range according to other constituent requirements of steel (other components, MnS size described later, etc.), but in the present invention, 0.01% or more (preferably 0.03% or more, More preferably, it exceeds 0.05%) and 0.25% or less (preferably 0.20% or less, more preferably 0.17% or less).
[0013]
Si: 0.01% or less (excluding 0%)
As described later, in the present invention, Si as a deoxidizer is basically not added. However, Si is contained in the raw material (iron ore, scrap, etc.) and is mixed as SiO 2 even after de-Si treatment. Also since the case of producing the other steels are frequently used as a deoxidizer, coming mixed as SiO 2 from manufacturing facilities. If it is mixed as SiO 2 , the function as a deoxidizer is lost, and the amount of Si is not particularly limited, but usually Si is 0.01% or less (for example, 0.009% or less, especially 0.007%). (In practice, it is never 0%).
[0014]
Mn: 1.3 to 3.5%
Mn is an indispensable element in the present invention because it forms MnS and improves machinability. Moreover, in order to suppress generation | occurrence | production of the liquid phase during rolling by the production | generation of FeS, it is effective also at the point which reduces surface flaws. However, when Mn is excessive, the tool life is reduced. Mn content is 1.3% or more (preferably 1.5% or more, more preferably 2.0% or more), 3.5% or less (preferably 3.2% or less, more preferably 3.0% or less) )
[0015]
P: 0.2% or less (excluding 0%)
If P is excessive, it is recommended to reduce it because the tool life is reduced. Therefore, P is 0.2% or less, preferably 0.15% or less, more preferably 0.10% or less. In practice, it is difficult to set P to 0%, and P is also effective in improving machinability. Therefore, P is preferably 0.01% or more, more preferably 0.05% or more.
[0016]
S: 0.38 to 0.8%
S is an indispensable element in the present invention because it forms MnS to enhance machinability. Moreover, in order to obtain machinability equivalent to Pb free-cutting steel, it is necessary to sufficiently increase the amount of S. Therefore, in the present invention, the S content is 0.38% or more, preferably 0.40% or more, and more preferably 0.45% or more. However, when S is excessive, generation of surface flaws is recognized. Therefore, the S content is 0.8% or less, preferably 0.7% or less, and more preferably 0.65% or less.
[0017]
Al: 0.01% or less (excluding 0%)
As described later, in the present invention, basically, Al as a deoxidizer is not added. However, since Al is frequently used as a deoxidizer in the production of other steels, Al 2 O 3 is mixed from the production facility. If it is mixed as Al 2 O 3 , the function as a deoxidizer is lost, and the amount of Al is not particularly limited, but usually Al is 0.01% or less (for example 0.009% or less, particularly 0. 006% or less) (in practice, it is never 0%).
[0018]
N: Finished surface roughness is improved as N increases by 0.007% or more . N is 0.007% or more, preferably 0.008% or more, and more preferably N is 0.009% or more. Although the upper limit of N is not limited from the viewpoint of surface defects and finished surface roughness, it is desirable to set the upper limit because blow holes are generated when N increases. Preferably N is 0.02% or less, more preferably 0.015% or less, particularly 0.013% or less.
[0019]
O: 0.008% or more As described later, in the present invention, it is important to increase the free oxygen concentration in the molten steel immediately before casting, and the oxygen concentration in the steel is not particularly set. 0.008% or more, preferably 0.010% or more, and more preferably about 0.013% or more. Although there is no direct relationship between surface defects and finished surface roughness and the oxygen concentration in the steel, the higher the oxygen concentration in the steel, the more the oxides derived from raw materials and production equipment (SiO 2 , Al 2 O 3, etc.). There is a tendency to increase, and the tool life tends to decrease. Therefore, it is recommended that the oxygen in the steel is preferably 0.03% or less, more preferably 0.02% or less, particularly 0.018% or less.
[0020]
Moreover, in this invention, ratio (Mn / S; mass reference | standard) of Mn and S is set to 3.5 or more. If Mn is too small compared to S, generation of surface defects cannot be prevented. A preferable Mn / S ratio (mass ratio) is 3.8 or more, more preferably 4.0 or more.
[0021]
When producing steel as described above, the present invention is characterized by devising a deoxidation operation immediately before casting (for example, a deoxidation operation by adjusting slag during ladle refining). In ladle refining, deoxidation is usually performed by adding a deoxidizer such as Si or Al. However, when the Mn / S ratio is increased as in the present invention, since Mn functions as a deoxidizer, the free oxygen concentration in the molten steel has already been reduced. If Si or Al is added according to a conventional method, the free oxygen concentration in the molten steel is remarkably reduced, MnS precipitated during casting is refined, and the finished surface roughness is deteriorated. is there. Further, in the conventional method, it is considered to secure a predetermined amount or more of oxygen in the steel. However, such an idea makes it possible to sufficiently raise the oxide without causing SiO 2 or Al 2 O 3 to be brought into the steel. It was only meant to be cast after that, and free oxygen in the molten steel was not controlled at all. Rather, Si and Al have been used as a deoxidizer, so free oxygen in the molten steel Was extremely small. On the other hand, in the present invention, the free oxygen concentration is not reduced excessively, and basically, MnS is prevented from being refined by not adding Si or Al as a deoxidizer. By preventing the miniaturization of MnS, the degradation of the finished surface roughness can be prevented.
[0022]
The free oxygen concentration in the molten steel immediately before casting is 0.004% or more, preferably 0.0043% or more, and more preferably 0.0045% or more. As long as such a free oxygen concentration can be secured, Si or Al may be added if necessary. If free oxygen is not excessive, the MnS size can be prevented from becoming too large, and the generation of surface flaws can be further suppressed. Accordingly, the free oxygen concentration is preferably 0.01% or less, more preferably 0.008% or less, and particularly about 0.006% or less.
[0023]
When the free oxygen concentration in the molten steel is controlled as described above, it is possible to prevent MnS from being refined even though the Mn / S ratio is increased. Therefore, generation | occurrence | production of a surface flaw can be prevented and finishing surface roughness can also be improved. The average area of MnS inclusions in the steel of the present invention obtained as described above is 10 μm 2 or more, preferably 20 μm 2 or more, more preferably 50 μm 2 or more. The average area of MnS inclusions is preferably 300 μm 2 or less, more preferably 200 μm 2 or less, particularly 150 μm 2 or less.
[0024]
The casting method is not particularly limited, and may be a continuous casting method or an ingot-making method. According to the continuous casting method, productivity can be increased. Also, the ingot forming method can slow down the cooling rate at the time of casting and easily increases the MnS size, which is more effective for improving the finished surface roughness. In the case of the ingot-making method, it is recommended that the size of one slab is, for example, 5 tons or more.
[0025]
The steel of the present invention obtained as described above is a high-S free-cutting steel, so that machinability (particularly chip disposal) is improved, and since the Mn / S ratio is increased, surface flaws are present. Further, since the MnS inclusions are increased by devising the deoxidation step, the finished surface roughness is also improved. Therefore, it is extremely useful as free-cutting steel, and various steel parts [for example, hydraulic parts (for example, hydraulic control parts such as anti-lock brake system (ABS), automatic transmission (AT), etc.), etc.] easily and accurately. Can be manufactured well.
[0026]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
[0027]
Experimental example 1
Table 1 shows the steel produced from the blast furnace after hot metal pretreatment and converter refining to adjust the amount of C, Si and P, and then refining with addition of alloying elements (Mn) in a ladle. Chemical component steel was produced and immediately cast by continuous casting (slab size: 300 mm × 430 mm) or ingot (size: 8 tons). Subsequently, after making into 155 mm x 155 mm x 10 m by partial rolling, the wire rod of 9.5 mm in diameter was obtained by hot rolling. In the ladle, no. Si or Al was added only in the examples of 3 to 5, and Si and Al were not added in the other examples. The wire was drawn to give a polishing rod with a diameter of 8 mm and a length of 3 m.
[0028]
The characteristics of the obtained polishing bar were examined as follows.
[Surface]
The presence or absence of surface wrinkles was examined for all polishing rods obtained from one charge for melting. A product having a wrinkle with a depth of 0.2 mm or more was regarded as a defective product and evaluated according to the following criteria.
○: Defect product occurrence rate 5% or less ×: Defect product occurrence rate over 5% [MnS size]
The polishing rod was cut in the rolling direction, and an optical microscope image (magnification 30 times) of the cross section was received by a solid state camera. The area of each MnS was measured by image analysis, the average value of those having a width exceeding 1 μm was calculated, and evaluated according to the following criteria.
○: MnS area (average) is 10 μm 2 or more ×: MnS area (average) is less than 10 μm 2 [Machinability]
Cutting a wire to produce 3000 test materials, and forming a groove by feeding a forming bit (His SKH4A) in the radial direction of the test material while rotating the test material around its axis (cutting speed: 90 m / mm) Minute, feed amount 0.03 mm / rev, cut amount: 1.0 mm), and the finished surface roughness (average) and chip treatability (average) at the bottom of the groove were examined.
[0029]
For the finished surface roughness and chip treatability of the test material, the same cutting test was performed using a Pb composite free-cutting steel “12L14A” manufactured by Kobe Steel Co., Ltd. (component standard: C: 0.15% or less, Mn: 0.85) To 1.15, P: 004 to 0.09, S: 0.28 to 0.35, Pb: 0.20 to 0.35), and finished surface of this Pb composite free-cutting steel “12L14A” It evaluated by comparing with the result of roughness (10-point average roughness Rz was 10-15 micrometers 2 ) and the chip disposal property.
○: It is equal to or more than “12L14A”. X: Table 1 shows results inferior to “12L14A”.
[0030]
[Table 1]
[0031]
As is apparent from Table 1, when S is too small, chip treatability comparable to Pb composite free-cutting steel cannot be obtained (No. 1). Even if S is increased, surface defects occur when the Mn / S ratio is small (No. 2). Even if S is increased and the Mn / S ratio is increased, if the free oxygen in the ladle is reduced, the MnS size is reduced, so that the finished surface roughness is comparable to Pb composite free-cutting steel. Cannot be obtained (No. 3 to 5). No. In No. 2, the amount of Si in the steel is reduced, but this is because Si added as a deoxidizer is sufficiently removed as slag (SiO 2 ). Furthermore, even when N is too small, a finished surface roughness comparable to Pb composite free-cutting steel cannot be obtained (No. 6).
[0032]
If the chemical components are appropriate for these and sufficient free oxygen in the ladle is secured, the MnS size can be increased, so that it is comparable to Pb composite free-cutting steel without generating surface flaws. Machinability (chip disposal, finished surface roughness) can be achieved (Nos. 7 to 17). In particular, when manufactured by the ingot-making method, the finished surface roughness can be increased as compared with the case of the continuous casting method (No. 18).
[0033]
【The invention's effect】
According to the present invention, in the high S free-cutting steel having improved machinability (particularly chip disposal), surface flaws are suppressed because the Mn / S ratio is increased. Furthermore, even if the Mn / S ratio is increased, the free oxygen concentration in the molten steel decreases and the finished surface roughness tends to deteriorate, but in the present invention, the deoxidation process is devised to reduce the free oxygen concentration in the molten steel. Since the reduction is suppressed and the MnS inclusions are enlarged, the finished surface roughness can also be improved. Therefore, Pb-free free-cutting steel comparable to Pb free-cutting steel in terms of prevention of surface flaws and finish surface roughness (and chip disposal) can be obtained.
Claims (5)
Si:0.01%以下(0%を含まない)、
Mn:1.3〜3.5%、
P :0.2%以下(0%を含まない)、
S :0.38〜0.8%、
Al:0.01%以下(0%を含まない)、
N :0.007%以上、
O :0.008%以上を含有し、
残部がFe及び不可避的不純物からなり、
Mn/S比(質量比)が3.5以上である高S快削鋼の製造方法において、
鋳造直前の溶鋼のフリー酸素濃度を0.004%以上にすることを特徴とする被削性に優れた高S快削鋼の製造方法。C: 0.01 to 0.25% (meaning mass%, the same applies hereinafter),
Si: 0.01% or less (excluding 0%),
Mn: 1.3 to 3.5%
P: 0.2% or less (excluding 0%),
S: 0.38 to 0.8%,
Al: 0.01% or less (excluding 0%),
N: 0.007% or more,
O: 0.008% or more,
The balance consists of Fe and inevitable impurities,
In the manufacturing method of high S free cutting steel whose Mn / S ratio (mass ratio) is 3.5 or more,
A method for producing high-S free-cutting steel excellent in machinability, characterized in that the free oxygen concentration of molten steel immediately before casting is 0.004% or more.
Si:0.01%以下(0%を含まない)、
Mn:1.3〜3.5%、
P :0.2%以下(0%を含まない)、
S :0.38〜0.8%、
Al:0.01%以下(0%を含まない)、
N :0.007%以上、
O :0.008%以上を含有し、
残部がFe及び不可避的不純物からなり、
Mn/S比(質量比)が3.5以上であり、
MnSの平均面積が10μm2以上であることを特徴とする被削性に優れた高S快削鋼。C: 0.01 to 0.25% (meaning mass%, the same applies hereinafter),
Si: 0.01% or less (excluding 0%),
Mn: 1.3 to 3.5%
P: 0.2% or less (excluding 0%),
S: 0.38 to 0.8%,
Al: 0.01% or less (excluding 0%),
N: 0.007% or more,
O: 0.008% or more,
The balance consists of Fe and inevitable impurities,
Mn / S ratio (mass ratio) is 3.5 or more,
A high S free-cutting steel excellent in machinability, characterized in that the average area of MnS is 10 μm 2 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003187668A JP4034700B2 (en) | 2003-06-30 | 2003-06-30 | Manufacturing method of high S free cutting steel with excellent machinability and high S free cutting steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003187668A JP4034700B2 (en) | 2003-06-30 | 2003-06-30 | Manufacturing method of high S free cutting steel with excellent machinability and high S free cutting steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005023342A true JP2005023342A (en) | 2005-01-27 |
JP4034700B2 JP4034700B2 (en) | 2008-01-16 |
Family
ID=34186450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003187668A Expired - Fee Related JP4034700B2 (en) | 2003-06-30 | 2003-06-30 | Manufacturing method of high S free cutting steel with excellent machinability and high S free cutting steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4034700B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007046198A1 (en) * | 2005-10-17 | 2007-04-26 | Kabushiki Kaisha Kobe Seiko Sho | Low-carbon sulfur-containing free-cutting steel with excellent cuttability |
JP2007262435A (en) * | 2006-03-27 | 2007-10-11 | Kobe Steel Ltd | Method for manufacturing low carbon sulfur free cutting steel |
EP1964939A1 (en) * | 2005-12-16 | 2008-09-03 | Kabushiki Kaisha Kobe Seiko Sho | Low-carbon sulfur-containing free-cutting steel with excellent cuttability |
KR101253806B1 (en) * | 2009-07-01 | 2013-04-12 | 주식회사 포스코 | High sulfur free cutting steel having excellent machinability and method for manufacturing the same |
-
2003
- 2003-06-30 JP JP2003187668A patent/JP4034700B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007046198A1 (en) * | 2005-10-17 | 2007-04-26 | Kabushiki Kaisha Kobe Seiko Sho | Low-carbon sulfur-containing free-cutting steel with excellent cuttability |
EP1947206A1 (en) * | 2005-10-17 | 2008-07-23 | Kabushiki Kaisha Kobe Seiko Sho | Low-carbon sulfur-containing free-cutting steel with excellent cuttability |
EP1947206A4 (en) * | 2005-10-17 | 2009-08-19 | Kobe Steel Ltd | Low-carbon sulfur-containing free-cutting steel with excellent cuttability |
US8052925B2 (en) | 2005-10-17 | 2011-11-08 | Kobe Steel, Ltd. | Low carbon resulfurized free-machining steel having high machinability |
EP1964939A1 (en) * | 2005-12-16 | 2008-09-03 | Kabushiki Kaisha Kobe Seiko Sho | Low-carbon sulfur-containing free-cutting steel with excellent cuttability |
EP1964939A4 (en) * | 2005-12-16 | 2009-11-18 | Kobe Steel Ltd | Low-carbon sulfur-containing free-cutting steel with excellent cuttability |
JP2007262435A (en) * | 2006-03-27 | 2007-10-11 | Kobe Steel Ltd | Method for manufacturing low carbon sulfur free cutting steel |
KR101253806B1 (en) * | 2009-07-01 | 2013-04-12 | 주식회사 포스코 | High sulfur free cutting steel having excellent machinability and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP4034700B2 (en) | 2008-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5803824B2 (en) | Method of melting carburized bearing steel | |
JP4900127B2 (en) | Induction hardening steel and manufacturing method thereof | |
JP2007319872A (en) | Method for producing high-s free cutting steel wire rod | |
JP6937190B2 (en) | Ni-Cr-Mo-Nb alloy and its manufacturing method | |
JP4041511B2 (en) | Low-carbon sulfur free-cutting steel with excellent machinability | |
JP5092578B2 (en) | Low carbon sulfur free cutting steel | |
JP2003268488A (en) | Sulfur-containing free cutting steel | |
JP4034700B2 (en) | Manufacturing method of high S free cutting steel with excellent machinability and high S free cutting steel | |
TW202138587A (en) | Stainless steel, stainless steel material, and method for manufacturing stainless steel | |
JP2007239062A (en) | Method for producing titanium-containing ultra-low carbon steel slab | |
JP3647969B2 (en) | Method for refinement of harmful inclusions in steel | |
KR102103382B1 (en) | Steel material and manufacturing method thereof | |
JP2018127670A (en) | Method for refining molten steel | |
JP2021155766A (en) | STRETCHABLE MnS LOW STEEL MATERIAL, STEEL SLAB, AND METHOD FOR MANUFACTURING THEM | |
JP2001026811A (en) | Si ALLOY IRON USED FOR REFINING OF STAINLESS STEEL AND METHOD FOR REFINING STAINLESS STEEL | |
JP4264175B2 (en) | Free-cutting steel bar with excellent machinability and its manufacturing method | |
JP2007262435A (en) | Method for manufacturing low carbon sulfur free cutting steel | |
JPH08225820A (en) | Production of high carbon silicon killed steel | |
JP2003247047A (en) | Electric resistance welded tube and production method thereof | |
JP2007009235A (en) | Steel sheet with excellent workability, and its manufacturing method | |
KR101676144B1 (en) | Medium carbon free cutting steel having hot workability and method for manufacturing the same | |
JP2006200032A (en) | Low-carbon sulfur free-cutting steel | |
JP5387045B2 (en) | Manufacturing method of bearing steel | |
JP2004346402A (en) | Method of refining steel material for spring | |
JP2938456B2 (en) | Work roll for cold rolling and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070731 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071001 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071023 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071025 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4034700 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131102 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |