JP2004346402A - Method of refining steel material for spring - Google Patents

Method of refining steel material for spring Download PDF

Info

Publication number
JP2004346402A
JP2004346402A JP2003147042A JP2003147042A JP2004346402A JP 2004346402 A JP2004346402 A JP 2004346402A JP 2003147042 A JP2003147042 A JP 2003147042A JP 2003147042 A JP2003147042 A JP 2003147042A JP 2004346402 A JP2004346402 A JP 2004346402A
Authority
JP
Japan
Prior art keywords
steel
slag
refining
mass
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003147042A
Other languages
Japanese (ja)
Inventor
Tomoya Maekawa
智哉 前川
Toushi Shibata
闘志 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003147042A priority Critical patent/JP2004346402A/en
Publication of JP2004346402A publication Critical patent/JP2004346402A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of refining molten steel, which reduces or cut down on the amount of non-metallic inclusions formed in the step of smelting a high Si-SiCr steel having higher tensile strength, and efficiently refines the steel. <P>SOLUTION: The method of refining the steel material for a spring comprises adding a slag-making material to the molten steel to form smelting slag, and reacting the molten steel with the smelting slag to refine the steel. The molten steel includes, by mass%, 0.50-0.90% C, 1.80-3.00% Si, 0.50-1.00% Mn, 0.10-0.90% Cr, 0.05-0.15% V and 0.30% or less Ni. The slag-making material includes, by mass%, 40-75% CaO, 10-60% SiO<SB>2</SB>, 40% or less Al<SB>2</SB>O<SB>3</SB>and unavoidable impurities; has a powdery or granular shape; and is pre-melted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、非金属介在物の量と大きさとの制御が可能なばね用鋼材の製造に好適な製鋼精錬方法に関するものである。特に、効率よく十分な精錬を行うことができるばね用鋼材の製鋼精錬方法に関する。
【0002】
【従来の技術】
従来、自動車エンジン弁ばね用などの高疲労強度を要求される部材の鋼線としては、JIS G 3561で規定されるSWOSC−V相当の成分を有する鋼(以下SiCr鋼と呼ぶ)が使用されている。一般的に、鋼線の疲労強度は、引張り強度と比例して向上するといわれている。このため、より高い疲労強度を要求されるばねなどの構造用部材には、より高い引張り強度が得られる成分の鋼線が開発されている。その具体例としては、以下のものが挙げられる。
【0003】
(従来技術1)
特許文献1に代表される高Si−SiCr鋼は、従来のSiCr鋼よりさらに高い引張り強度が得られ、より高い疲労強度(例えば10回線返し疲労で800MPa)を達成できるとされている。
【0004】
(従来技術2)
特許文献2では、鋼中に含有する非金属介在物の成分及び大きさを特定することで、高い引張り強度が得られ、疲労強度を向上できる鋼材が開示されている。
【0005】
(従来技術3)
特許文献3及び非特許文献1では、鋼中のSi成分が0.5〜1.5質量%の範囲にあるSiCr鋼の製鋼精錬条件を開示している。更に、SiCr鋼の疲労性能に影響を及ぼす非金属介在物の組成制御及び削減の効果を示している。
【0006】
【特許文献1】
特開平9−71843号公報(特許第3233188号公報)
【特許文献2】
特開平6−306542号公報
【特許文献3】
特公平6−104844号公報
【非特許文献1】
第126・127回西山記念館講座『高清浄鋼:高清浄線材製造技術の最近の進歩』、昭和63年11月14日発行、145〜166ページ
【0007】
【発明が解決しようとする課題】
しかし、上記の従来技術では、必ずしも十分な疲労性能の改善が実現されておらず、より一層の疲労特性の改善が求められていた。
【0008】
「従来技術1」では、従来のSiCr鋼より更に高い引張り強度が得られ、より高い疲労強度が得られるとされている。しかし、疲労強度は、引張り強度と比例する反面、より微細な欠陥に対しての切り欠き感受性が増すことによって期待される所定の疲労強度が得られないことも実証されている。つまり、ある程度の強度以上になると疲労強度のばらつきが大きくなる。その原因の主なものとしては鋼線内部に、その材料を製造する製鋼段階で発生する非金属介在物の存在が挙げられる。
【0009】
「従来技術2」では、含有する非金属介在物の成分及び大きさを鋼中成分のコントロールにより実現しようとするものであるが、成分コントロールだけでは十分な疲労強度の改善が得られない。
【0010】
「従来技術3」の技術は、鋼中のSi成分が0.5〜1.5質量%の範囲にある一般的なSiCr鋼などでは十分な疲労強度が得られる。しかし、より高強度にするためにSiの含有量を増加した高Si−SiCr鋼などでは、非金属介在物の量及びその個々の大きさから同介在物が起因となる折損が生じ、所定の高い疲労強度が得られない。
【0011】
つまり、これまで開示された製鋼精錬技術では、鋼中のSi成分が1.0〜1.5質量%の範囲にあるSiCr鋼に対して、その疲労性能に影響を及ぼす非金属介在物の制御や低減が可能であった。ところが、より高い疲労強度を得るためにSiの含有量を高めたもの、即ち、鋼中のSi成分が1.8質量%以上である高Si−SiCr鋼では、Siが高い分だけ酸化による珪素酸化物(SiO)の介在物が増加し、これが疲労性能に悪影響を及ぼし、所定の疲労性能が得られないという問題があった。
【0012】
従って、本発明の主目的は、高Si−SiCr鋼において非金属介在物量の低減、及び各介在物を小さくして疲労強度に優れたばね用鋼材が得られると共に、効率よく精錬することが可能なばね用鋼材の製鋼精錬方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、ばね用鋼材を溶解精錬する工程において、特定の組成を有すると共に、その組成でプリメルトされた造滓材を用いることで上記目的を達成する。
【0014】
即ち、本発明は、溶鋼中に造滓材を加えて精錬スラグを形成し、溶鋼と精錬スラグとを反応させて製鋼精錬するばね用鋼材の製鋼精錬方法である。上記溶鋼は、C:0.50〜0.90質量%、Si:1.80〜3.00質量%、Mn:0.50〜1.00質量%、Cr:0.10〜0.90質量%、V:0.05〜0.15質量%、Ni:0.30質量%以下を含有する。そして、上記造滓材は、CaO:40〜75質量%、SiO:10〜60質量%、Al:40質量%以下及び不可避的不純物からなる粉状又は粒状であり、かつプリメルトされているものを用いる。
【0015】
上記構成を具える本発明は、鋼中のSi成分を高めることで、強度を向上して疲労性能を高めると共に、造滓材を特定の成分とすることで、形成される精錬スラグの組成を制御して、製鋼段階で発生する非金属介在物の量の低減や、各介在物の大きさの縮小を実現する。特に本発明では、造滓材として、特定の組成の原料を溶融して凝固させたものを粉砕した、いわゆるプリメルト材を用いることで、効率よく精錬することができる。
【0016】
鋼材の製鋼精錬は、例えば、以下のようにして行う。溶解炉である電気炉に金属原料及び酸化物原料などの主原料を投入し、電気炉に具える電極にて放電し、この際の熱により主原料を溶解する。次に、得られた溶鋼(銑鉄)を炉外の精錬用容器(レードル又は取鍋)に移す。精錬用容器に移すことを出鋼と呼ぶ。造滓材は、予め精錬用容器に投入しておくか、出鋼中、溶鋼と共に投入して溶鋼と反応させ、溶鋼の表面に精錬スラグを形成させていく。そして、気密に保持された精錬用容器中に不活性ガスを吹き込み(バブリングし)ながら、溶鋼及び精錬スラグの撹拌を行う。撹拌により、溶鋼と精錬スラグとを反応させて溶鋼中の不純物元素をスラグに吸収させ溶鋼を洗練する(脱硫する)と共に、別途投入したコークスなどの還元剤によりスラグ中の酸化物を還元し、適宜必要な元素を溶鋼中に含ませることで、製鋼精錬を行う。
【0017】
本発明者らが検討した結果、精錬後の精錬スラグの成分、及び塩基度(CaO/SiO)が特定の範囲となるように造滓材の成分を調整することで、鋼中の非金属介在物の量を低減したり、同介在物の大きさを小さくすることができるとの知見を得た。詳しくは、精錬スラグは、CaO及びSiOを合計で50〜90質量%含み、塩基度が1.0以上1.6以下であると、溶鋼中のSiOがスラグ中のSiOと平衡状態になり、SiOなどの有害な非金属介在物の発生を抑制することができる。また、わずかに発生したSiOなどの非金属介在物は、上記特定の組成の精錬スラグと反応することによって、精錬の後工程である圧延などの熱間加工工程において、鋼材とともに変形・破砕されて小径化するため、疲労性能に影響を及ぼさなくなる。このように造滓材の成分の調整により、精錬スラグを制御して、有害な非金属介在物を低減及び小径化することで、優れた強度を具えながら、疲労性能を向上させることができる。
【0018】
そして、本発明者らは、上記優れた性能を示す特定組成の精錬スラグを形成するにあたり、低融点で溶鋼に溶け易く、かつ粘性も低く流動し易い汎用組成のCaO、SiO、Alからなるプリメルト材に、プリメルトされていない粉末の焼石灰(生石灰、以下粉末CaOと呼ぶ)を加えて造滓材の組成を調整してみた。すると、上記特定の組成の精錬スラグを形成することができても、以下の問題があることがわかった。即ち、本発明のように造滓材を高CaO組成とする場合、精錬前において溶鋼に粉末CaOを大量に投入する必要がある。しかし、粉末CaOを大量に投入すると、粘性が上がってCaOが団子状に固まって均一に分散しにくく、精錬用容器に溶鋼を移し終えた際(出鋼終了時)にCaOが塊状に残存することが多い。そのため、撹拌時間によっては精錬スラグ中のCaO濃度が一定せず、部分的に不均一な組成のスラグとなって、目的の組成のスラグに制御できないことがある。
【0019】
目的の組成の精錬スラグを得るには、CaOが十分に分散できるように撹拌時間を長くする必要があるが、撹拌時間が長いことで、結果として精錬時間全体が長くなり、製造性が悪くなる。一方、撹拌時間を短くすると、精錬スラグが溶鋼を十分に精錬することができず、有害な非金属介在物を残存させることになる。また、目的の組成の精錬スラグが得られるまでの間に行われる撹拌は、主にスラグの形成に作用するため、この時間を本来の精錬のために有効に用いることができない。更に、目的の組成となるまでの間の精錬スラグでは、有害な非金属介在物の除去、或いは無害化の能力が低く、効率的に非金属介在物の量の低減や縮小を行いにくい。
【0020】
そこで、本発明では、上記の不具合を解消するべく、汎用組成のプリメルト材に粉末CaOを添加して精錬スラグの組成を調整するのではなく、造滓材として特定の組成に調整したプリメルト材を用いる。このように組成を調整した原料全体が溶融した状態にある造滓材を用いることで、精錬用容器に移行させて撹拌を開始する前において、目的の組成の精製スラグを容易に形成することができる。そのため、本発明は、撹拌時間の一部を粉末CaOの粉砕に充てる必要が無く、撹拌時間の全てを精錬に充てることができ、効率よく精錬することができる。以下、本発明をより詳しく説明する。
【0021】
本発明において造滓材は、CaO:40質量%以上75質量%以下、SiO:10質量%以上60質量%以下、Al:40質量%以下、及び不可避的不純物からなるものとする。即ち、本発明で用いる造滓材は、図1に示すCaO−SiO−A1の三元系状態図において、斜線部で示す範囲とする。不可避的不純物としては、例えば、プリメルトさせる際に用いる蛍石(CaF)などが挙げられる。そして、上記組成に調整した原料粉末を電気炉などで溶融し、凝固させたものを粉砕することで粉状、又は粒状したものを用いる。本発明は、上記組成を有し、かつプリメルトされた造滓材を用いることで、CaO及びSiOを合計で50〜90質量%含み、塩基度(CaOの質量%/SiOの質量%)が1.0以上1.6以下の精錬スラグを形成することができる。更に、上記精錬スラグ中には、A1が5.0質量%以上20質量%以下含有されていることも好ましい。A1を前記規定量含有することで、より低融点の非金属介在物に制御することができ、後工程の熱間圧延で変形され易い介在物とすることができる。それにより、非金属介在物の疲労性能への影響を最小限にし、高い疲労性能を得ることができる。その他、上記精錬スラグに含まれる成分としては、CaF、MgO、MnO、FeO、Cr、Vなどが挙げられる。
【0022】
精錬後の精錬スラグの塩基度を1.6以下としたのは、塩基度が1.6超の場合、初晶として融点が高い(〜2130℃)固相である2CaO・SiOが出現することにより、凝集効果による非金属介在物の浮上分離がされにくく、結果として非金属介在物の出現量が増加するからである。塩基度の下限を1.0以上としたのは、SiOが多いことで、有害な非金属介在物であるSiOが増大するからである。
【0023】
また、出鋼後の撹拌は、溶鋼中に不活性ガスを吹き込んで行うと、精錬スラグと溶鋼との反応を更に促進させることができて好ましい。不活性ガスの具体例としては、アルゴンガスや窒素ガスが挙げられる。
【0024】
製鋼精錬を終えた鋼材は、その後、鋳造工程、圧延工程、伸線工程、及び熱処理工程を経てばね用鋼線を得ることができる。本発明は、上記のように規定の組成を有すると共にプリメルトされた造滓材を用いて特定の組成の精錬スラグを形成し、このスラグと溶鋼とを反応させて溶鋼中の非金属介在物量や大きさを制御する。従って、この精錬方法を経て製造されたばね用鋼線は、強度に優れると共に、高い疲労性能を有することができる。特に、本発明製鋼精錬方法を経て得られたばね用鋼線は、鋼中のSi成分が1.80〜3.00質量%と高くても、疲労性能の改善が図れることが特徴である。
【0025】
一般に、鋼線を製造する場合、まず溶解・精錬工程により鋼材中の不純物を除去した溶鋼を得る。次に、連続鋳造などの鋳造工程により、溶鋼からビレットなどの鋳片を得る。この鋳片を圧延により加工して圧延材を得る。さらに穴ダイスなどで伸線して細径化する。伸線材には、パテンティングなどの熱処理を施して微細なパーライト組織の鋼線とする。
【0026】
上記のような方法により得られるばね用鋼線は、C:0.50〜0.90質量%、Si:1.80〜3.00質量%、Mn:0.5〜1.0質量%、Cr:0.10〜0.90質量%、V:0.05〜0.15質量%、Ni:0.30質量%以下と非金属介在物と不可避的不純物とからなるばね用鋼線である。そして、非金属介在物は、CaO:30〜60質量%、SiO:20〜60質量%、A1:30質量%以下、MnO:20質量%以下、MgO:20質量%以下を含有する。
【0027】
本発明における鋼材の化学成分の限定根拠を以下に説明する。
(C:0.50〜0.90質量%)
Cは一般に鋼材の強度を得るために添加する。0.50質量%未満ではばね用として十分な強度が得られない。逆に、0.90質量%を超えると、パテンティング処理などの熱処理によって旧オーステナイト粒界に網目状のセメンタイトが発生し、その後の加工に悪影響を及ぼす。
【0028】
(Si:1.80〜3.00質量%)
Siはフェライトを固溶強化するために有効であり、特に熱処理後の強度低下を抑制する。また、Siの存在により一定の強度を維持しつつ靭性も確保することができる。1.80質量%未満では一定の強度は確保できるものの、熱処理による強度低下が大きい。逆に3.00質量%を超えると、特に製鋼工程での鋳片表面割れが増加し、疲労性能に悪影響を及ぼす。
【0029】
(Mn:0.50〜1.00質量%)
Mnは鋼の焼入れ性を上げる元素であり、0.50質量%未満では十分な強度が得られない。また、1.00質量%を超えると、偏析し易い元素であるので偏析部でマルテンサイトが発生し、線加工時に悪影響を及ぼす。
【0030】
(Cr:0.10〜0.90質量%)
CrはMn同様、鋼の焼入れ性を向上させると共に、焼入れ後の焼き戻し軟化抵抗性を高め、高強度化に寄与する元素である。0.10質量%未満では、この効果が十分得られない。また、0.90質量%を超えると焼入れ性の過度の増大となって靭性の低下をもたらす。
【0031】
(V:0.05〜0.15質量%)
Vは焼き戻し時に炭化物を形成し、軟化抵抗を増大させる元素である。0.05質量%未満では、その効果が少ない。一方、0.15質量%を超えると焼入れ時に炭化物を多く形成して靭性の低下を招く。
【0032】
(Ni:0.30質量%以下)
NiはSiと同様にフェライト中に固溶し、材料の破壊靭性を向上させる元素である。望ましくは0.10質量%以上でより効果が出せる。一方、0.30質量%を超えるとパテンティングの際や伸線加工中にマルテンサイトが発生し、加工性に悪影響を及ぼす。
【0033】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
(試験例)
プリメルトされた造滓材を溶鋼中に加えて製鋼精錬を行った鋼材に、鋳造、熱間圧延、伸線、熱処理、表面処理を施して鋼線を得た。そして、得られた鋼線において非金属介在物の組成、出現率、最大径を調べてみた。比較として、同様の組成でプリメルトされていない造滓材を溶鋼中に加えて精錬を行った鋼材についても、同様に調べてみた。
【0034】
表1に造滓材の組成を示す。試料Aは、精錬用容器に投入する際、CaO成分が表1に示す値となるように市販のプリメルト材と生石灰(粉末CaO)とを混合して用いた。試料Bは、表1に示す成分の原料粉末を電気炉で溶融して凝固した後、粉砕したプリメルト材である。また、表2に試作に用いた鋼種の組成を示す。
【0035】
【表1】

Figure 2004346402
【0036】
【表2】
Figure 2004346402
【0037】
表2に示す所定の成分の鋼材を電気炉で約1600℃前後にまで加熱し、溶鋼を炉外の精錬用容器(レードル又は取鍋)に移す(出鋼)。精錬スラグを形成する造滓材A、Bは予め精錬用容器に投入しておいた。造滓材Aは、市販のプリメルト材に加えて粉末CaOを投入して、表1に示す組成となるように調整しながら精錬用容器に投入した。造滓材Bは、表1に示す組成のプリメルト材を精錬用容器に投入した。
【0038】
そして、真空精錬装置によって0.1〜100torr(0.133〜133hPa)の減圧下で、底部ポーラスレンガ又は上部上吹きランスからアルゴンガス(Arガス)などの不活性ガスを吹き込み(バブリングし)、造滓材により形成された精錬スラグと溶鋼とを撹拌反応させて精錬する。精錬後、精錬スラグの成分分析を行い、その塩基度(CaOの質量%/SiOの質量%)を調べてみた。表3にその結果を示す。また、精錬スラグのCaO及びSiOの合計量(質量%)を調べたところ、いずれの試料も50〜90質量%であった。精錬した溶鋼は、鋳造して鋳片を製造した。
【0039】
作製した鋳片を熱間圧延し、得られた圧延線材を公知の条件で伸線−熱処理−表面処理の順に施して3.3mmφの鋼線を作製した。得られた鋼線に対し、中村式回転曲げ試験を実施し、折損した線破面から検出できる非金属介在物をSEMで観察し、そのとき観察される非金属介在物の長さの測定、及び組成分析を行った。
また、出現率(非金属介在物起因の折損数/試験本数)を求めた。表3に非金属介在物の出現率、同介在物の最大径、表4に非金属介在物の組成(質量%)を示す。
【0040】
【表3】
Figure 2004346402
【0041】
【表4】
Figure 2004346402
【0042】
表3、4から、原料を全てプリメルトした造滓材Bを用いた試料No.B−1〜B−3は、粉末CaOにより成分を調整した造滓材Aを用いた試料No.A−1〜A−5と比較して、非金属介在物の出現率が低く、同介在物の平均最大粒径も小さいことがわかる。従って、プリメルトされた造滓材Bを用いて製鋼精錬を行うと、非金属介在物の出現率、粒径の改善に寄与することが確認された。
【0043】
また、粉末CaOを添加した造滓材Aを用いた試料No.A−1〜A−5では、有害な非金属介在物とされるSiOの単体の出現が多くみられるのに対し、プリメルトされた造滓材Bを用いた試料No.B−1〜B−3では、SiOの単体の出現頻度が非常に少なくなっていることがわかる。このことから、原料を全てプリメルトした造滓材から形成される精錬スラグは、非金属介在物の組成の制御に良好に機能していることが確認された。
【0044】
更に、精錬前後において、溶鋼中の酸素を分析して、脱酸程度を調べてみた。その結果を表5及び図2に示す。
【0045】
【表5】
Figure 2004346402
【0046】
表5及び図2に示すように炉外の精錬用容器に溶鋼を移す前(出鋼前)において、溶鋼中の酸素濃度は、いずれの試料においてもほとんど変わらないが、精錬用容器に移した直後(精錬前)において、プリメルトした造滓材Bを用いた試料No.B−1〜B−3の方が溶鋼中の酸素濃度が低くなっていることがわかる。また、精錬後において、粉末CaOを用いた試料No.A−1〜A−5と比較して試料No.B−1〜B−3の方が溶鋼中の酸素濃度が低いことがわかる。これらのことから、造滓材Bは、溶鋼とより速く反応して精錬スラグを形成することができ、造滓材Bを用いると精錬速度を速めることができることが確認された。また、造滓材Bを用いると、溶鋼と精錬スラグとを十分に反応させることができることが確認された。
【0047】
上記のようにプリメルトした造滓材を用いて精錬製鋼した試料が良好な結果を示したのは、撹拌開始時において、特定の組成の精錬スラグが形成されており、撹拌時間を全て精錬に充てることができたためであると考えられる。一方、粉末CaOにより調整した造滓材を用いた場合、粉末CaOを十分に溶解するのに時間がかかることがあるため、撹拌開始からしばらくの時間は、特定の組成の精錬スラグが形成されていない恐れがある。従って、撹拌開始からしばらくの間における撹拌は、粉末CaOの溶解に充てられる。その結果、撹拌時間を全て精錬に充てることができず、精錬を十分に行えなかったため、非金属介在物の出現率が高くなったり、大きな非金属介在物が存在したり、有害な非金属介在物であるSiOが残存したと考えられる。
【0048】
【発明の効果】
以上説明したように、本発明製鋼精錬方法によれば、特定組成を有するプリメルトされた造滓材を用いて、精錬スラグの組成を制御することで、精錬工程で鋼中の非金属介在物を低減すると共に、同介在物の組成を制御することができるという特有の効果を奏し得る。そのため、本発明方法により得られるばね用鋼線は、優れた強度を具えながら、疲労強度を向上させることができる。従って、本発明方法により得られたばね用鋼線は、自動車エンジン用弁ばねや、クラッチ用ばねなど疲労強度が要求される部品の素材などの利用に最適である。
【図面の簡単な説明】
【図1】本発明に用いる造滓材におけるCaO−SiO−A1の三元系状態図である。
【図2】出鋼前、精錬前、精錬後における溶鋼中の酸素濃度を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel refining method suitable for manufacturing a spring steel material capable of controlling the amount and size of nonmetallic inclusions. In particular, the present invention relates to a method for refining a steel material for a spring capable of performing sufficient refining efficiently.
[0002]
[Prior art]
Conventionally, as a steel wire for a member requiring high fatigue strength, such as for an automobile engine valve spring, a steel having a component equivalent to SWOSC-V defined by JIS G 3561 (hereinafter referred to as SiCr steel) has been used. I have. Generally, it is said that the fatigue strength of a steel wire increases in proportion to the tensile strength. For this reason, for structural members such as springs that require higher fatigue strength, steel wires having components capable of obtaining higher tensile strength have been developed. Specific examples include the following.
[0003]
(Prior art 1)
High Si-SiCr steel typified by Patent Document 1, conventional higher tensile strength than SiCr steel is obtained, there is a higher fatigue strength (e.g. 800MPa at 107 lines flashing fatigue) can be achieved.
[0004]
(Prior art 2)
Patent Document 2 discloses a steel material capable of obtaining high tensile strength and improving fatigue strength by specifying the components and the size of nonmetallic inclusions contained in steel.
[0005]
(Prior art 3)
Patent Document 3 and Non-Patent Document 1 disclose steelmaking refining conditions for SiCr steel in which the Si component in the steel is in the range of 0.5 to 1.5% by mass. Furthermore, it shows the effect of controlling and reducing the composition of nonmetallic inclusions that affect the fatigue performance of SiCr steel.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-71843 (Japanese Patent No. 3233188)
[Patent Document 2]
JP-A-6-306542 [Patent Document 3]
Japanese Patent Publication No. 6-104844 [Non-Patent Document 1]
The 126th and 127th Nishiyama Memorial Hall Lecture "High Clean Steel: Recent Advances in High Clean Wire Manufacturing Technology", published November 14, 1988, pages 145 to 166.
[Problems to be solved by the invention]
However, in the above-described prior art, sufficient improvement in fatigue performance has not always been realized, and further improvement in fatigue characteristics has been demanded.
[0008]
According to "Prior Art 1", it is described that a higher tensile strength can be obtained than a conventional SiCr steel and a higher fatigue strength can be obtained. However, while the fatigue strength is proportional to the tensile strength, it has also been demonstrated that the expected fatigue strength cannot be obtained due to the increased notch sensitivity to finer defects. That is, when the strength exceeds a certain level, the variation in the fatigue strength increases. The main reason for this is the presence of non-metallic inclusions generated in the steelmaking stage of manufacturing the material inside the steel wire.
[0009]
In “Prior Art 2”, the component and size of the nonmetallic inclusions to be contained are intended to be realized by controlling the components in the steel, but sufficient control of the component does not provide sufficient improvement in fatigue strength.
[0010]
In the technique of "Prior Art 3", sufficient fatigue strength can be obtained with a general SiCr steel or the like in which the Si component in the steel is in the range of 0.5 to 1.5% by mass. However, in a high Si-SiCr steel or the like in which the content of Si is increased in order to achieve higher strength, breakage due to the inclusion occurs due to the amount of the nonmetallic inclusion and the size of each nonmetallic inclusion. High fatigue strength cannot be obtained.
[0011]
That is, in the steel refining technology disclosed so far, control of nonmetallic inclusions that affect the fatigue performance of SiCr steel in which the Si component in the steel is in the range of 1.0 to 1.5 mass%. And reduction was possible. However, in the case of increasing the content of Si in order to obtain higher fatigue strength, that is, in a high Si—SiCr steel in which the Si component in the steel is 1.8% by mass or more, silicon is oxidized by an amount corresponding to the higher amount of Si. Inclusions of oxides (SiO 2 ) increase, which adversely affects fatigue performance, and there is a problem that predetermined fatigue performance cannot be obtained.
[0012]
Therefore, the main object of the present invention is to reduce the amount of nonmetallic inclusions in a high Si-SiCr steel, and to obtain a spring steel excellent in fatigue strength by reducing each inclusion, and it is possible to efficiently refine the steel. An object of the present invention is to provide a method for refining steel for springs.
[0013]
[Means for Solving the Problems]
The present invention achieves the above object by using a slag-making material having a specific composition and pre-melted with the composition in a step of melting and refining a spring steel material.
[0014]
That is, the present invention is a steelmaking and refining method for a spring steel material in which slag is added to molten steel to form a refined slag, and the molten steel and the refined slag are reacted to produce steel. In the molten steel, C: 0.50 to 0.90% by mass, Si: 1.80 to 3.00% by mass, Mn: 0.50 to 1.00% by mass, Cr: 0.10 to 0.90% by mass %, V: 0.05 to 0.15% by mass, and Ni: 0.30% by mass or less. Then, the Zokasuzai is, CaO: 40 to 75 wt%, SiO 2: 10 to 60 wt%, Al 2 O 3: a powder or granular of 40 wt% or less and inevitable impurities, and is premelt Use
[0015]
The present invention having the above-described structure, by increasing the Si component in the steel, improves the strength and fatigue performance, and by using the slag material as a specific component, the composition of the refined slag formed. By controlling, the amount of nonmetallic inclusions generated in the steel making stage and the size of each inclusion are reduced. In particular, in the present invention, the refining can be efficiently performed by using a so-called pre-melt material obtained by melting and solidifying a raw material having a specific composition as a slag-making material.
[0016]
The steelmaking and refining of steel is performed, for example, as follows. A main raw material such as a metal raw material and an oxide raw material is charged into an electric furnace as a melting furnace, and discharged by an electrode provided in the electric furnace, and the main raw material is melted by heat at this time. Next, the obtained molten steel (pig iron) is transferred to a smelting vessel (ladle or ladle) outside the furnace. Transferring to a refining vessel is called tapping. The slag-making material is charged in advance in a smelting vessel, or is charged together with molten steel during tapping and reacted with the molten steel to form smelting slag on the surface of the molten steel. Then, the molten steel and the refining slag are agitated while blowing (bubbling) an inert gas into the refining vessel kept airtight. By stirring, the molten steel reacts with the smelting slag to absorb the impurity elements in the molten steel into the slag to refine the molten steel (desulfurize), and reduce oxides in the slag with a reducing agent such as coke that is separately charged, Steelmaking refining is performed by appropriately including necessary elements in molten steel.
[0017]
As a result of investigations by the present inventors, by adjusting the components of the refining slag after the refining and the components of the slag-making material so that the basicity (CaO / SiO 2 ) is in a specific range, the non-metal in the steel is adjusted. It has been found that the amount of inclusions can be reduced and the size of the inclusions can be reduced. Specifically, the refined slag contains CaO and SiO 2 in a total amount of 50 to 90% by mass, and when the basicity is 1.0 or more and 1.6 or less, the SiO 2 in the molten steel is in an equilibrium state with the SiO 2 in the slag. And the generation of harmful nonmetallic inclusions such as SiO 2 can be suppressed. In addition, non-metallic inclusions such as SiO 2 which are slightly generated react with the refining slag having the above specific composition, and are deformed and crushed together with the steel material in a hot working step such as rolling, which is a post-refining step. Since the diameter is reduced, fatigue performance is not affected. As described above, by adjusting the components of the slag-making material, the refining slag is controlled, and harmful nonmetallic inclusions are reduced and the diameter is reduced, so that fatigue performance can be improved while having excellent strength.
[0018]
In order to form the refining slag of the specific composition exhibiting the above excellent performance, the present inventors have found that CaO, SiO 2 , and Al 2 O of a general-purpose composition that have a low melting point, are easily melted in molten steel, and have low viscosity and are easy to flow. The composition of the slag-making material was adjusted by adding powdered calcined lime (quick lime, hereinafter referred to as powdered CaO) which was not pre-melted to the premelt material No. 3 . Then, it was found that the following problems were found even if a refined slag having the above specific composition could be formed. That is, when the slag-making material has a high CaO composition as in the present invention, it is necessary to put a large amount of powdered CaO into molten steel before refining. However, when a large amount of powdered CaO is added, the viscosity increases and CaO hardens into a dumpling shape and is difficult to be uniformly dispersed, and CaO remains in a lump when the molten steel has been transferred to the refining vessel (at the end of tapping). Often. Therefore, depending on the stirring time, the CaO concentration in the refining slag is not constant, resulting in a slag having a partially non-uniform composition, which may not be controlled to a slag having a desired composition.
[0019]
In order to obtain a refining slag having a desired composition, it is necessary to lengthen the stirring time so that CaO can be sufficiently dispersed. However, a long stirring time results in an increase in the entire refining time and poor productivity. . On the other hand, if the stirring time is shortened, the refining slag cannot sufficiently refine the molten steel, and harmful nonmetallic inclusions remain. Further, the stirring performed until the refining slag having the desired composition is obtained mainly affects the formation of the slag, so that this time cannot be effectively used for the original refining. Furthermore, in the refining slag until the target composition is obtained, the ability to remove or detoxify harmful nonmetallic inclusions is low, and it is difficult to efficiently reduce or reduce the amount of nonmetallic inclusions.
[0020]
Therefore, in the present invention, in order to solve the above problems, instead of adjusting the composition of the refining slag by adding powder CaO to a pre-melt material of a general-purpose composition, a pre-melt material adjusted to a specific composition as a slag-making material is used. Used. By using the slag-making material in which the entire raw material whose composition has been adjusted is in a molten state, it is possible to easily form a purified slag having a desired composition before transferring to a refining vessel and starting stirring. it can. Therefore, in the present invention, it is not necessary to dedicate a part of the stirring time to the pulverization of the powder CaO, and the entire stirring time can be devoted to the refining, and the refining can be performed efficiently. Hereinafter, the present invention will be described in more detail.
[0021]
Slag material in the present invention, CaO: 40 wt% to 75 wt% or less, SiO 2: 10 wt% to 60 wt% or less, Al 2 O 3: 40 wt% or less, and it is assumed that the unavoidable impurities . That is, Zokasuzai used in the present invention, in the ternary phase diagram of CaO-SiO 2 -A1 2 0 3 shown in FIG. 1, the range indicated by the shaded area. Examples of the inevitable impurities include fluorite (CaF 2 ) used for premelting. Then, the raw material powder adjusted to the above composition is melted in an electric furnace or the like, and the solidified material is pulverized to obtain a powdery or granular material. The present invention has the above composition, and by using the pre-melt has been slag material includes 50 to 90 mass% of CaO and SiO 2 in total, basicity (CaO mass% / the SiO 2 weight percent) Can form a smelting slag of 1.0 or more and 1.6 or less. Further, during the refining slag, A1 2 0 3 is also preferably contained 20 wt% or less 5.0% by mass or more. A1 2 0 3 to be to contain the prescribed amount, can be controlled to lower melting non-metallic inclusions can be a hot easily inclusions are deformed by rolling in a subsequent step. Thereby, the influence of the nonmetallic inclusions on the fatigue performance can be minimized, and high fatigue performance can be obtained. In addition, examples of the components contained in the refining slag include CaF 2 , MgO, MnO, FeO, Cr 2 O 3 , and V 2 O 5 .
[0022]
Was the base of the refining slag after refining was 1.6 or less, if the basicity is 1.6 greater, 2CaO · SiO 2 is high melting point (~2130 ℃) the solid phase appears as a primary crystal Thereby, the floating separation of the nonmetallic inclusions due to the aggregation effect is difficult, and as a result, the appearance amount of the nonmetallic inclusions increases. The reason for setting the lower limit of the basicity to 1.0 or more is that since the amount of SiO 2 is large, the amount of harmful nonmetallic inclusions, SiO 2 , increases.
[0023]
Further, it is preferable that the stirring after the tapping is performed by blowing an inert gas into the molten steel, because the reaction between the smelting slag and the molten steel can be further promoted. Specific examples of the inert gas include an argon gas and a nitrogen gas.
[0024]
After the steel refining, the steel material can be subjected to a casting process, a rolling process, a wire drawing process, and a heat treatment process to obtain a spring steel wire. The present invention forms a refining slag of a specific composition using the pre-melted slag material having the specified composition as described above, and reacting the slag with the molten steel to determine the amount of nonmetallic inclusions in the molten steel and the like. Control the size. Therefore, the spring steel wire manufactured through this refining method has excellent strength and high fatigue performance. In particular, the spring steel wire obtained through the steel refining method of the present invention is characterized in that even if the Si component in the steel is as high as 1.80 to 3.00 mass%, the fatigue performance can be improved.
[0025]
Generally, when manufacturing a steel wire, first, molten steel from which impurities in a steel material have been removed by a melting and refining process is obtained. Next, a slab such as a billet is obtained from molten steel by a casting process such as continuous casting. This slab is processed by rolling to obtain a rolled material. The wire is then drawn with a hole die to reduce the diameter. The drawn wire is subjected to heat treatment such as patenting to obtain a fine pearlite structure steel wire.
[0026]
The steel wire for a spring obtained by the method as described above has C: 0.50 to 0.90% by mass, Si: 1.80 to 3.00% by mass, Mn: 0.5 to 1.0% by mass, Cr: 0.10 to 0.90% by mass, V: 0.05 to 0.15% by mass, Ni: 0.30% by mass or less, and a spring steel wire composed of nonmetallic inclusions and unavoidable impurities. . Then, the non-metallic inclusions, CaO: 30 to 60 wt%, SiO 2: 20 to 60 mass%, A1 2 0 3: 30 wt% or less, MnO: 20 wt% or less, MgO: containing 20 wt% or less I do.
[0027]
The grounds for limiting the chemical composition of the steel material in the present invention will be described below.
(C: 0.50 to 0.90 mass%)
C is generally added to obtain the strength of the steel material. If it is less than 0.50% by mass, sufficient strength for a spring cannot be obtained. Conversely, if the content exceeds 0.90% by mass, a network-like cementite is generated at the prior austenite grain boundary by a heat treatment such as a patenting treatment, which adversely affects the subsequent processing.
[0028]
(Si: 1.80 to 3.00 mass%)
Si is effective for solid solution strengthening of ferrite, and particularly suppresses a decrease in strength after heat treatment. In addition, toughness can be secured while maintaining a certain strength due to the presence of Si. If it is less than 1.80% by mass, a certain strength can be ensured, but the strength is largely reduced by heat treatment. Conversely, if the content exceeds 3.00% by mass, slab surface cracks particularly increase in the steelmaking process, which adversely affects fatigue performance.
[0029]
(Mn: 0.50-1.00 mass%)
Mn is an element that increases the hardenability of steel, and if it is less than 0.50% by mass, sufficient strength cannot be obtained. On the other hand, if the content exceeds 1.00% by mass, martensite is generated in the segregated portion because it is an element that is easily segregated, which adversely affects wire processing.
[0030]
(Cr: 0.10 to 0.90 mass%)
Like Mn, Cr is an element that improves the hardenability of steel, increases the tempering softening resistance after quenching, and contributes to high strength. If the amount is less than 0.10% by mass, this effect cannot be sufficiently obtained. On the other hand, if the content exceeds 0.90% by mass, the hardenability becomes excessively high, and the toughness is lowered.
[0031]
(V: 0.05 to 0.15% by mass)
V is an element that forms carbide during tempering and increases softening resistance. If the amount is less than 0.05% by mass, the effect is small. On the other hand, when the content exceeds 0.15% by mass, a large amount of carbide is formed during quenching, and the toughness is reduced.
[0032]
(Ni: 0.30% by mass or less)
Ni is an element that forms a solid solution in ferrite similarly to Si and improves the fracture toughness of the material. Desirably, more effects can be obtained at 0.10% by mass or more. On the other hand, when the content exceeds 0.30% by mass, martensite is generated during patenting or during wire drawing, which adversely affects workability.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
(Test example)
Premelted slag material was added to molten steel, and steelmaking was refined. Casting, hot rolling, wire drawing, heat treatment, and surface treatment were performed to obtain a steel wire. Then, the composition, appearance rate, and maximum diameter of nonmetallic inclusions in the obtained steel wire were examined. As a comparison, a steel material which had been refined by adding a slag material having the same composition but not pre-melted to molten steel was similarly examined.
[0034]
Table 1 shows the composition of the slag-making material. When the sample A was charged into the refining vessel, a commercially available premelt material and quick lime (powder CaO) were mixed so that the CaO component became the value shown in Table 1. Sample B is a premelt material obtained by melting and solidifying raw material powders of the components shown in Table 1 in an electric furnace and then pulverizing the raw material powders. Table 2 shows the compositions of the steel types used in the trial production.
[0035]
[Table 1]
Figure 2004346402
[0036]
[Table 2]
Figure 2004346402
[0037]
A steel material having a predetermined component shown in Table 2 is heated to about 1600 ° C. in an electric furnace, and the molten steel is transferred to a smelting vessel (a ladle or a ladle) outside the furnace (steel tapping). The slag-making materials A and B forming the smelting slag were previously charged in a smelting vessel. The slag-making material A was charged into a refining vessel while adjusting the composition as shown in Table 1 by adding powdered CaO in addition to a commercially available premelt material. As the slag-making material B, a premelt material having a composition shown in Table 1 was charged into a refining vessel.
[0038]
Then, under a reduced pressure of 0.1 to 100 torr (0.133 to 133 hPa) by a vacuum refining apparatus, an inert gas such as an argon gas (Ar gas) is blown (bubbled) from the bottom porous brick or the upper blowing lance, The refining slag formed by the slag-making material and the molten steel are stirred and reacted to refine. After the refining, the component analysis of the refining slag was performed, and its basicity (% by mass of CaO /% by mass of SiO 2 ) was examined. Table 3 shows the results. It also examined the total amount of CaO and SiO 2 of refining slag (mass%) was 50 to 90 wt% both samples. The refined molten steel was cast to produce a slab.
[0039]
The produced slab was hot-rolled, and the obtained rolled wire rod was subjected to known conditions in the order of drawing, heat treatment, and surface treatment to produce a 3.3 mmφ steel wire. The obtained steel wire is subjected to a Nakamura-type rotary bending test, nonmetallic inclusions that can be detected from the broken wire fracture surface are observed by SEM, and the length of the nonmetallic inclusions observed at that time is measured. And composition analysis.
In addition, the appearance rate (the number of breaks caused by nonmetallic inclusions / the number of test pieces) was determined. Table 3 shows the appearance rate of nonmetallic inclusions, the maximum diameter of the inclusions, and Table 4 shows the composition (% by mass) of the nonmetallic inclusions.
[0040]
[Table 3]
Figure 2004346402
[0041]
[Table 4]
Figure 2004346402
[0042]
From Tables 3 and 4, the sample No. using the slag-making material B in which all the raw materials were pre-melted. Sample Nos. B-1 to B-3 using the slag-making material A whose components were adjusted with powdered CaO. It turns out that the appearance rate of nonmetallic inclusions is low and the average maximum particle size of the inclusions is small as compared with A-1 to A-5. Therefore, it was confirmed that the steelmaking refining using the pre-melted slag-making material B contributes to an improvement in the appearance rate and particle size of nonmetallic inclusions.
[0043]
Further, the sample No. using the slag material A to which powder CaO was added was used. In A-1 to A-5, the appearance of a single substance of SiO 2 , which is a harmful non-metallic inclusion, is frequently observed, whereas Sample No. 1 using the pre-melted slag material B is used. In the B-1~B-3, it can be seen that the frequency of occurrence of a single SiO 2 is very small. From this, it was confirmed that the refining slag formed from the slag-making material in which all the raw materials were premelted functions well in controlling the composition of the nonmetallic inclusions.
[0044]
Furthermore, before and after the refining, the oxygen in the molten steel was analyzed to examine the degree of deoxidation. The results are shown in Table 5 and FIG.
[0045]
[Table 5]
Figure 2004346402
[0046]
As shown in Table 5 and FIG. 2, before the molten steel was transferred to the refining vessel outside the furnace (before tapping), the oxygen concentration in the molten steel hardly changed in any of the samples, but was transferred to the refining vessel. Immediately after (before refining), the sample No. using the pre-melted slag material B was used. It can be seen that B-1 to B-3 have lower oxygen concentrations in the molten steel. After the refining, the sample No. Sample Nos. In comparison with A-1 to A-5. It can be seen that B-1 to B-3 have lower oxygen concentrations in the molten steel. From these facts, it was confirmed that the slag-making material B can react with molten steel more quickly to form refining slag, and that the slag-making material B can increase the refining speed. It was also confirmed that the use of the slag-making material B allowed the molten steel and the smelted slag to be sufficiently reacted.
[0047]
The sample refined and refined using the slag-making material premelted as described above showed good results because, at the start of stirring, a refined slag of a specific composition was formed, and the entire stirring time was devoted to refining. It is thought that it was possible. On the other hand, when a slag material prepared with powder CaO is used, it may take time to sufficiently dissolve the powder CaO. For a while after the start of stirring, a refined slag having a specific composition is formed. There is no fear. Therefore, the stirring for a while after the start of stirring is used for dissolving the powder CaO. As a result, the entire stirring time could not be allocated to the refining, and the refining could not be performed sufficiently, so that the appearance rate of nonmetallic inclusions increased, large nonmetallic inclusions were present, and harmful nonmetallic inclusions were present. It is considered that the substance SiO 2 remained.
[0048]
【The invention's effect】
As described above, according to the steel refining method of the present invention, by using a pre-melted slag material having a specific composition, by controlling the composition of the refining slag, non-metallic inclusions in the steel in the refining process. In addition to the reduction, it is possible to obtain a specific effect that the composition of the inclusion can be controlled. Therefore, the spring steel wire obtained by the method of the present invention can improve fatigue strength while having excellent strength. Therefore, the spring steel wire obtained by the method of the present invention is most suitable for use as a material for parts requiring fatigue strength, such as valve springs for automobile engines and springs for clutches.
[Brief description of the drawings]
1 is a ternary phase diagram of CaO-SiO 2 -A1 2 0 3 in the slag material used in the present invention.
FIG. 2 is a graph showing the oxygen concentration in molten steel before tapping, before refining, and after refining.

Claims (2)

溶鋼中に造滓材を加えて精錬スラグを形成し、溶鋼と精錬スラグとを反応させて製鋼精錬するばね用鋼材の製鋼精錬方法であって、
前記溶鋼は、C:0.50〜0.90質量%、Si:1.80〜3.00質量%、Mn:0.50〜1.00質量%、Cr:0.10〜0.90質量%、V:0.05〜0.15質量%、Ni:0.30質量%以下を含有し、
前記造滓材は、CaO:40〜75質量%、SiO:10〜60質量%、Al:40質量%以下及び不可避的不純物からなる粉状又は粒状であり、かつプリメルトされていることを特徴とするばね用鋼材の製鋼精錬方法。
A refining slag is formed by adding a slag material to molten steel, and a steel refining method of a spring steel material for refining steel by reacting molten steel with the refining slag,
In the molten steel, C: 0.50 to 0.90% by mass, Si: 1.80 to 3.00% by mass, Mn: 0.50 to 1.00% by mass, Cr: 0.10 to 0.90% by mass %, V: 0.05 to 0.15% by mass, Ni: 0.30% by mass or less,
The slag material, CaO: 40 to 75 wt%, SiO 2: 10 to 60 wt%, Al 2 O 3: a powder or granular of 40 wt% or less and inevitable impurities, and is premelt A steelmaking and refining method for a spring steel material.
精錬スラグは、CaO及びSiOを合計で50〜90質量%含み、
CaOとSiOの塩基度(CaOの質量%/SiOの質量%)が1.0以上1.6以下であることを特徴とする請求項1記載のばね用鋼材の製鋼精錬方法。
The smelting slag contains CaO and SiO 2 in a total amount of 50 to 90% by mass,
Steel refining method of the spring steel material according to claim 1, wherein the CaO and SiO 2 basicity (weight% / SiO 2 mass% of CaO) is 1.0 to 1.6.
JP2003147042A 2003-05-23 2003-05-23 Method of refining steel material for spring Pending JP2004346402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003147042A JP2004346402A (en) 2003-05-23 2003-05-23 Method of refining steel material for spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003147042A JP2004346402A (en) 2003-05-23 2003-05-23 Method of refining steel material for spring

Publications (1)

Publication Number Publication Date
JP2004346402A true JP2004346402A (en) 2004-12-09

Family

ID=33533689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003147042A Pending JP2004346402A (en) 2003-05-23 2003-05-23 Method of refining steel material for spring

Country Status (1)

Country Link
JP (1) JP2004346402A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111200A1 (en) * 2007-03-14 2008-09-18 Shinko Metal Products Co., Ltd. Seamless steel pipe, hollow spring utilizing seamless steel pipe, and process for manufacturing the same
EP2407571A3 (en) * 2006-06-09 2012-01-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High cleanliness spring steel and high cleanliness spring excellent in fatigue properties
KR101674829B1 (en) * 2015-09-22 2016-11-10 주식회사 포스코 Spring steels having excellent fatigue properties and method for manufacturing the same
JP2021085076A (en) * 2019-11-28 2021-06-03 日本製鉄株式会社 Molten steel ladle refining method
CN115125446A (en) * 2022-06-28 2022-09-30 浙江伊思灵双第弹簧有限公司 High-fatigue-performance spring for automobile and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2407571A3 (en) * 2006-06-09 2012-01-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High cleanliness spring steel and high cleanliness spring excellent in fatigue properties
US8613809B2 (en) 2006-06-09 2013-12-24 Kobe Steel, Ltd. High cleanliness spring steel and high cleanliness spring excellent in fatigue properties
US9441695B2 (en) 2006-06-09 2016-09-13 Kobe Steel, Ltd. High cleanliness spring steel and high cleanliness spring excellent in fatigue properties
WO2008111200A1 (en) * 2007-03-14 2008-09-18 Shinko Metal Products Co., Ltd. Seamless steel pipe, hollow spring utilizing seamless steel pipe, and process for manufacturing the same
EP2703097A1 (en) * 2007-03-14 2014-03-05 Shinko Metal Products Co., Ltd. Process for manufacturing seamless steel pipe
US9482302B2 (en) 2007-03-14 2016-11-01 Shinko Metal Products Co., Ltd. Process for manufacturing seamless steel pipe, hollow spring utilizing seamless steel pipe
US10118208B2 (en) 2007-03-14 2018-11-06 Shinko Metal Products Co., Ltd. Hollow spring utilizing seamless steel pipe
KR101674829B1 (en) * 2015-09-22 2016-11-10 주식회사 포스코 Spring steels having excellent fatigue properties and method for manufacturing the same
JP2021085076A (en) * 2019-11-28 2021-06-03 日本製鉄株式会社 Molten steel ladle refining method
JP7323803B2 (en) 2019-11-28 2023-08-09 日本製鉄株式会社 Ladle refining method for molten steel
CN115125446A (en) * 2022-06-28 2022-09-30 浙江伊思灵双第弹簧有限公司 High-fatigue-performance spring for automobile and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6786964B2 (en) How to prevent blockage of continuous casting nozzle of sulfur-added steel
EP2682489B1 (en) High-carbon steel wire rod excellent in drawability and fatigue characteristics after wire drawing
CN109252087A (en) The alloying technology that Ce inhibits TiN complex inclusion to be formed is added in bearing steel
WO2012079415A1 (en) Steel used for railway locomotive axle and the manufacturing method thereof
JP6937190B2 (en) Ni-Cr-Mo-Nb alloy and its manufacturing method
CN116568833A (en) Ni-based alloy with excellent surface properties and method for producing same
CN117604194B (en) Vacuum consumable electrode for 300M steel and Al-free deoxidizing refining method thereof
WO2023062855A1 (en) Nickel alloy having excellent surface properties and manufacturing method thereof
JP6903182B1 (en) Ni-Cr-Al-Fe alloy with excellent surface properties and its manufacturing method
JP4656007B2 (en) Method of processing molten iron by adding Nd and Ca
CN115244199A (en) Stainless steel, stainless steel material, and method for producing stainless steel
JP2004346402A (en) Method of refining steel material for spring
JP3533196B2 (en) High fatigue strength spring steel wire and its manufacturing method.
EP3674424B1 (en) Smelting method for ultra-low carbon 13cr stainless steel
CN110512140A (en) A kind of engineering machinery wheel steel and preparation method thereof
JP2004169147A (en) Refining process for clean steel containing extremely low amount of non-metallic inclusion
KR20060065492A (en) Highly ductile steel sheet and method of manufacturing the same
JP3632922B2 (en) Steel making and refining method for spring steel and spring steel wire obtained by using the steel making and refining method
RU2443785C1 (en) Flux cored wire filler for out-of-furnace treatment of metallurgical melts
JP4544126B2 (en) Manufacturing method of low carbon sulfur free cutting steel
JP3036362B2 (en) Manufacturing method of oxide dispersion steel
RU2456349C1 (en) Procedure for out-of-furnace treatment of iron-carbon melt
JP4082064B2 (en) Method for melting titanium-containing steel
JPH08225820A (en) Production of high carbon silicon killed steel
JP3825570B2 (en) Austenitic stainless steel slab excellent in workability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007