JP6114118B2 - Method for producing S-containing steel - Google Patents

Method for producing S-containing steel Download PDF

Info

Publication number
JP6114118B2
JP6114118B2 JP2013117914A JP2013117914A JP6114118B2 JP 6114118 B2 JP6114118 B2 JP 6114118B2 JP 2013117914 A JP2013117914 A JP 2013117914A JP 2013117914 A JP2013117914 A JP 2013117914A JP 6114118 B2 JP6114118 B2 JP 6114118B2
Authority
JP
Japan
Prior art keywords
mass
steel
less
slag
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013117914A
Other languages
Japanese (ja)
Other versions
JP2014234543A (en
Inventor
史明 桐原
史明 桐原
轟 秀和
秀和 轟
佳孝 山下
佳孝 山下
清輝 粢田
清輝 粢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2013117914A priority Critical patent/JP6114118B2/en
Publication of JP2014234543A publication Critical patent/JP2014234543A/en
Application granted granted Critical
Publication of JP6114118B2 publication Critical patent/JP6114118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、S(硫黄)含有鋼の製造方法に係り、S濃度を精度よく制御する精錬方法を提案する。   The present invention relates to a method for producing S (sulfur) -containing steel, and proposes a refining method for accurately controlling the S concentration.

SUS303に代表されるような、S含有ステンレス鋼は、快削性を高めたステンレス鋼であり、機械加工精密部品に用いられている。この鋼種は、Sを0.15〜0.25質量%と高濃度含有し、MnS粒子を形成することによって、工具による研削時に、被削性を高めた鋼種である。被削性あるいは切削性を高めたオーステナイト系ステンレス鋼の化学成分が、幾つか開示されている。   S-containing stainless steel represented by SUS303 is a stainless steel with improved free-cutting properties and is used for machining precision parts. This steel type contains S in a high concentration of 0.15 to 0.25% by mass, and forms MnS particles to improve machinability when grinding with a tool. Several chemical components of austenitic stainless steel with improved machinability or machinability are disclosed.

硫黄を0.15〜0.50質量%含有し、O濃度を80〜200ppmに調整することで、熱間加工または熱間・冷間加工後の硫化物の形状を粒状型に制御して、被削性を高めたオーステナイト系ステンレス鋼が開示されている(例えば、特許文献1参照)。この技術では、硫化物中に析出している酸化物中をSi−Mn系酸化物にすることが重要であることを示している。   By containing 0.15 to 0.50% by mass of sulfur and adjusting the O concentration to 80 to 200 ppm, the shape of sulfide after hot working or hot / cold working is controlled to a granular type, An austenitic stainless steel with improved machinability is disclosed (for example, see Patent Document 1). This technique shows that it is important to make Si—Mn oxide in the oxide precipitated in the sulfide.

また、高速切削加工およびネジ切り加工に用いられる硫黄添加オーステナイト系ステンレス鋼が示されている(例えば、特許文献2参照)。硫黄:0.10〜0.55質量%、銅:1〜5質量%、カルシウム>35×10−4質量%、酸素>70×10−4質量%、酸素含有率に対するカルシウム含有率の比を、0.2〜0.6の重量組成を有することで、切削性を改善したものである。 In addition, sulfur-added austenitic stainless steel used for high-speed cutting and threading is shown (for example, see Patent Document 2). Sulfur: 0.10 to 0.55 mass%, copper: 1 to 5 mass%, calcium> 35 × 10 −4 mass%, oxygen> 70 × 10 −4 mass%, ratio of calcium content to oxygen content Therefore, the machinability is improved by having a weight composition of 0.2 to 0.6.

このようにS濃度が高いために、製鋼工程で幾つかの困難な点があった。一つは、割れ感受性が高いため、鋳造時にスラブが割れ易いという問題があり、幾つかの技術が示されている(例えば、非特許文献1参照)。   As described above, since the S concentration is high, there are some difficulties in the steel making process. One is the high cracking susceptibility, so there is a problem that the slab is easily broken during casting, and some techniques have been shown (for example, see Non-Patent Document 1).

硫黄含有快削ステンレス鋼のような難加工鋼片の熱間圧延時の先端割れを、簡易に、かつ確実に防止する圧延方法が開示されている(例えば、特許文献3参照)。被圧延材の鋼片よりも熱間加工性のよいダミー部材を、圧延前の鋼片の端面を覆うように溶接し、そのダミー部材を溶接した端面側から圧延を開始する方法である。   There has been disclosed a rolling method for easily and reliably preventing tip cracks during hot rolling of difficult-to-machine steel pieces such as sulfur-containing free-cutting stainless steel (see, for example, Patent Document 3). This is a method in which a dummy member having better hot workability than the steel slab of the material to be rolled is welded so as to cover the end face of the steel slab before rolling, and rolling is started from the end face side where the dummy member is welded.

硫黄快削ステンレス鋼を水平連続鋳造機で鋳造し鋳片表層部位を固相線温度まで急冷却し、鋳造時に鋳片表面の固相線温度から1000℃までを緩冷却する。なおかつ、鋳片の断面積と製品の断面積の比が500以下に制限することで、硫黄快削ステンレス鋼鋳片の熱間加工に際してブレークダウン工程を省略可能とし、さらには被削性を改善できる製造方法が開示されている(例えば、特許文献4参照)。   Sulfur free-cutting stainless steel is cast with a horizontal continuous casting machine, the slab surface layer is rapidly cooled to the solidus temperature, and slowly cooled from the solidus temperature on the slab surface to 1000 ° C during casting. Moreover, by limiting the ratio of the cross-sectional area of the slab to the cross-sectional area of the product to 500 or less, the breakdown process can be omitted during hot working of the sulfur free-cutting stainless steel slab, and further machinability is improved. The manufacturing method which can be performed is disclosed (for example, refer patent document 4).

また、SUS303系の溶製の際に、溶鋼中に含有される窒素が低下しないよう制御する技術が示されている。すなわち、SUS303系の溶製の際のRH脱ガス処理において、RH脱ガス処理の処理開始から5分〜15分後の初期の間に溶鋼中にS成分を投入することにより、RH脱ガス処理時間における投入後のS濃度の高い時間の割合を多くすることで、RH脱ガス処理における脱窒素を抑制する方法が開示されている(例えば、特許文献5参照)。   In addition, a technique for controlling nitrogen contained in molten steel so as not to decrease during the melting of SUS303 is shown. That is, in the RH degassing process at the time of melting SUS303, by introducing the S component into the molten steel during the initial period of 5 to 15 minutes after the start of the RH degassing process, the RH degassing process is performed. A method for suppressing denitrification in the RH degassing process by increasing the proportion of time during which the S concentration is high after charging is disclosed (for example, see Patent Document 5).

特許公開平8−260102号公報Japanese Patent Publication No. 8-260102 特許公開平9−137254号公報Japanese Patent Publication No. 9-137254 特許公開2007−98436号公報Japanese Patent Publication No. 2007-98436 特許公開平5−50199号公報Japanese Patent Publication No. 5-50199 特許公開2009−235550号公報Japanese Patent Publication No. 2009-235550

岸田寿夫、品川丞、石塚久雄、小沢正俊、早川静則:鉄と鋼、Vol.60(1974)No. 7、p.1052−1062Toshio Kishida, Atsushi Shinagawa, Hisao Ishizuka, Masatoshi Ozawa, Shigenori Hayakawa: Iron and Steel, Vol. 60 (1974) No. 7, p. 1052-1062

このように、被削性あるいは切削性を高めたオーステナイト系ステンレス鋼の化学成分に関する発明や、脱窒素を抑える精錬方法、熱間加工性を改善する製造方法の開示はあるが、S濃度自体を的確に制御しようとする発明は示されていない。   As described above, there is an invention relating to chemical components of austenitic stainless steel with improved machinability or machinability, a refining method for suppressing denitrification, and a manufacturing method for improving hot workability, but the S concentration itself is also disclosed. The invention to be precisely controlled is not shown.

しかしながら、精錬時において、S添加量が多く、溶鋼中への歩留が高すぎたり、添加量が適正でもスラグ中に過剰に移行してしまい溶鋼中への歩留が低すぎたりして、S濃度が目標の範囲を外してしまう問題があった。   However, at the time of refining, the amount of S added is large and the yield in the molten steel is too high, or even if the amount added is appropriate, the yield shifts excessively into the slag and the yield in the molten steel is too low. There has been a problem that the S concentration falls outside the target range.

本発明の目的は、S含有鋼の製造方法に係り、S濃度を精度よく制御する精錬方法を提案することにある。   An object of the present invention relates to a method for producing S-containing steel, and is to propose a refining method for accurately controlling the S concentration.

発明者らは、S含有ステンレス鋼のS濃度に及ぼす種々の影響について、実機データを基に解析を行った。とくにAODまたはVODにおけるスラグ組成との関係性、取鍋精錬での操業時間との関係に着目した。その結果、スラグの塩基度が1〜1.5、Sの添加量が0.3〜0.6質量%時であり、かつ、S添加量およびスラグ塩基度が所定の関数で規定される範囲内にある場合に、S含有ステンレス鋼において目標のS濃度範囲を得られることが確認された。   The inventors analyzed various effects on the S concentration of S-containing stainless steel based on actual machine data. In particular, we focused on the relationship with the slag composition in AOD or VOD, and the relationship with the operation time in ladle refining. As a result, the basicity of slag is 1 to 1.5, the addition amount of S is 0.3 to 0.6% by mass, and the addition amount of S and the basicity of slag are defined by a predetermined function. It was confirmed that the target S concentration range can be obtained in the S-containing stainless steel.

さらに、取鍋精錬において40分以上Arガス攪拌をした後、連続鋳造によりスラブを製造することにより、目標とするS濃度0.15〜0.2質量%により的確に制御できることが明らかになった。   Furthermore, after Ar gas stirring for 40 minutes or more in ladle refining, it was clarified that by controlling the target S concentration of 0.15 to 0.2% by mass by producing a slab by continuous casting. .

即ち、本発明は、スラグの塩基度CaO/SiOを1〜1.5に制御したCaO−SiO系スラグを形成し、Sを0.3%〜0.6質量%添加し、その際、スラグの塩基度とSの添加量は下記の関係を満たし、
(2/3)×(CaO/SiO)−0.5≦S添加量(質量%)≦(2/3)×(CaO/SiO)−(4/15)
さらにスラグにSを移行させた後、最終的に溶鋼中のS濃度を0.15〜0.25質量%に制御し、スラブを製造することを特徴とするS含有鋼の製造方法である。
That is, the present invention forms a CaO—SiO 2 slag in which the basicity CaO / SiO 2 of slag is controlled to 1 to 1.5, and S is added in an amount of 0.3% to 0.6% by mass. The basicity of slag and the amount of S added satisfy the following relationship:
(2/3) × (CaO / SiO 2 ) −0.5 ≦ S addition amount (mass%) ≦ (2/3) × (CaO / SiO 2 ) − (4/15)
Furthermore, after making S transfer to slag, the S concentration in molten steel is finally controlled to 0.15-0.25 mass%, and it is a manufacturing method of S containing steel characterized by manufacturing a slab.

より好ましくは、前記鋼は、C:0.30質量%以下、Si:1質量%以下、Mn:2質量%以下を含む。   More preferably, the steel contains C: 0.30 mass% or less, Si: 1 mass% or less, and Mn: 2 mass% or less.

より好ましくは、前記鋼は、ステンレス鋼である。   More preferably, the steel is stainless steel.

より好ましくは、前記鋼は、Cr:15〜20質量%、Ni:5〜10質量%を含む。   More preferably, the steel includes Cr: 15-20% by mass and Ni: 5-10% by mass.

より好ましくは、前記鋼は、C:0.30質量%以下、Si:1質量%以下、Mn:2質量%以下、Cr:15〜20質量%、Ni:5〜10質量%、残部Feおよび不可避的不純物からなる。   More preferably, the steel contains C: 0.30 mass% or less, Si: 1 mass% or less, Mn: 2 mass% or less, Cr: 15-20 mass%, Ni: 5-10 mass%, the balance Fe and Consists of inevitable impurities.

より好ましくは、前記鋼の精錬にあたり、原料をまず溶解した後、AODまたはVODにて、脱炭し、FeSi合金を用いてCr還元し、石灰石を投入し、スラグの塩基度CaO/SiOを前記範囲に制御する。 More preferably, in refining the steel, the raw materials are first melted, then decarburized by AOD or VOD, Cr reduced using an FeSi alloy, limestone is added, and the slag basicity CaO / SiO 2 is changed. Control within the range.

より好ましくは、最終的に溶鋼中のS濃度を0.15〜0.25質量%に制御した後、連続鋳造によりスラブを製造する。   More preferably, after the S concentration in the molten steel is finally controlled to 0.15 to 0.25% by mass, the slab is manufactured by continuous casting.

より好ましくは、連続鋳造の前に、取鍋精錬にて精錬し、取鍋精錬開始から40分以上Ar攪拌することで、S濃度を0.15〜0.20質量%に制御し、その後連続鋳造によりスラブを製造することである。   More preferably, refining is performed by ladle refining before continuous casting, and Ar concentration is stirred for 40 minutes or more from the start of ladle refining, so that the S concentration is controlled to 0.15 to 0.20% by mass, and then continuous. It is to produce a slab by casting.

本発明の取鍋精錬におけるAr攪拌時間と溶鋼中S濃度との関係を示すグラフである。It is a graph which shows the relationship between Ar stirring time and S concentration in molten steel in the ladle refining of this invention. 本発明の実施例(発明例および比較例)におけるスラグ塩基度(C/S)とS添加量との関係を示すグラフである。It is a graph which shows the relationship between slag basicity (C / S) and the amount of S addition in the Example (invention example and comparative example) of this invention.

本発明の精錬方法では、まず電気炉にて、スクラッブやフェロニッケル、フェロクロムなどを溶解して、ステンレス鋼の粗溶湯を得る。その後、このステンレス鋼の粗溶湯をAODまたはVODにおいてCを除去するための酸素吹精(酸化精錬)を行い、FeSi合金によるCr還元を行う。その後、石灰石を投入し、後述するようなスラグ組成の調整を行う。   In the refining method of the present invention, scrubbing, ferronickel, ferrochrome, etc. are first melted in an electric furnace to obtain a crude stainless steel melt. Thereafter, this crude molten steel is subjected to oxygen blowing (oxidation refining) to remove C in AOD or VOD, and Cr reduction by FeSi alloy is performed. Thereafter, limestone is added to adjust the slag composition as described later.

その後、成分調整を目的とした精錬を行うと共に、S含有量の調整(S添加)を行う。基本的に、0.3〜0.6質量%の範囲のSを添加し、スラグの塩基度CaO/SiOを1〜1.5に調節し、最終的に、0.15〜0.25質量%のSを含有するステンレス鋼を製造するものである。その原理ならびに限定理由について、以下に説明する。 Thereafter, refining for the purpose of adjusting the components is performed, and the S content is adjusted (S addition). Basically, S in the range of 0.3 to 0.6 mass% is added, and the basicity CaO / SiO 2 of the slag is adjusted to 1 to 1.5, and finally 0.15 to 0.25. Stainless steel containing mass% S is produced. The principle and reasons for limitation will be described below.

上記AODまたはVOD精錬において、特に限定はしないが、S含有量の調整には通常FeS合金を用いて行う。このFeSはS純分20〜60質量%のFeSが良い。添加したS量は、一旦、溶鋼に全て入る。その後、(1)式の反応により、溶鋼中のSはスラグ中へと分配される。
=(S) …(1)
ここで、下線は溶鋼中に含まれることを示し、( )はスラグ中に含まれることを示す。
The AOD or VOD refining is not particularly limited, but the S content is usually adjusted using a FeS alloy. This FeS is preferably FeS having a pure S content of 20 to 60% by mass. The added amount of S once enters the molten steel. Thereafter, S in the molten steel is distributed into the slag by the reaction of the formula (1).
S = (S) (1)
Here, the underline indicates that it is included in the molten steel, and () indicates that it is included in the slag.

S分配比=(質量%S)/[質量%S] …(2)
ここで、( )はスラグ中のS濃度、[ ]は溶鋼中のS濃度を表す。
S distribution ratio = (mass% S) / [mass% S] (2)
Here, () represents the S concentration in the slag, and [] represents the S concentration in the molten steel.

S含有ステンレス鋼を製造するにあたっては、Sを効果的にメタル中に歩留るよう操作するのが好ましい。つまり、(2)式のS分配比を低く保つことが、肝要である。S分配比を低く保つには、CaOの活量を低く、SiOの活量を高くするのが望ましい。つまり、CaO/SiOを低く制御すればいいということが分かった。 In producing S-containing stainless steel, it is preferable to operate so that S is effectively retained in the metal. That is, it is important to keep the S distribution ratio in the equation (2) low. In order to keep the S distribution ratio low, it is desirable to lower the activity of CaO and increase the activity of SiO 2 . That is, it was found that CaO / SiO 2 should be controlled to be low.

以下に本発明に係る精錬方法について詳細に説明する。
ステンレス鋼において、Sはステンレス鋼中のMnと結合し、MnS粒子を形成し、工具による被削性を向上させる元素である。その作用効果は、0.15質量%より小さいときは、十分発揮されない。一方、0.25質量%を超えて過剰に添加しても、被削性向上の効果は、飽和するため、経済的でない上に、割れ感受性を悪化させる。そのため、ステンレス鋼中のS含有量は0.15%〜0.25質量%とする。好ましくは、0.15質量%〜0.20質量%とする。
The refining method according to the present invention will be described in detail below.
In stainless steel, S is an element that combines with Mn in stainless steel to form MnS particles and improve the machinability with a tool. The effect is not sufficiently exhibited when it is less than 0.15% by mass. On the other hand, even if it is added excessively exceeding 0.25% by mass, the effect of improving the machinability is saturated, so that it is not economical and crack sensitivity is deteriorated. Therefore, the S content in the stainless steel is 0.15% to 0.25% by mass. Preferably, it is 0.15 mass%-0.20 mass%.

また、本発明が対象とする鋼種は、特に限定されないが、好ましくはC:0.30質量%以下、Si:1質量%以下、Mn:2質量%以下、Cr:15〜20質量%、Ni:5〜10質量%、残部Feおよび不可避的不純物からなるステンレス鋼である。この成分に限定した理由を説明する。   Further, the steel type targeted by the present invention is not particularly limited, but preferably C: 0.30 mass% or less, Si: 1 mass% or less, Mn: 2 mass% or less, Cr: 15-20 mass%, Ni : Stainless steel consisting of 5 to 10% by mass, the balance Fe and inevitable impurities. The reason for limiting to this component will be described.

C:0.30質量%以下
Cは強度を保つために有用な元素であるが、高すぎると鋭敏化を引き起こし耐食性を低下させる。したがって、0.30質量%以下が好ましい。
C: 0.30% by mass or less C is an element useful for maintaining strength, but if it is too high, it causes sensitization and reduces corrosion resistance. Therefore, 0.30 mass% or less is preferable.

Si:1質量%以下
Siは脱酸に寄与することから有用な元素であるが、高すぎると脆化を引き起こす。そのため、1質量%以下とすることが好ましい。
Si: 1% by mass or less Si is a useful element because it contributes to deoxidation, but if it is too high, it causes embrittlement. Therefore, it is preferable to set it as 1 mass% or less.

Mn:2質量%以下
MnはSと結合してMnSを形成し、被削性を維持するために重要な元素である。しかし高すぎると、熱間加工性を低下させるので、2質量%以下とすることが好ましい。
Mn: 2% by mass or less Mn is an important element for bonding with S to form MnS and maintaining machinability. However, if it is too high, the hot workability is lowered.

Cr:15〜20質量%
Crは、オーステナイト系ステンレス鋼としての耐食性を得る上で必要な元素である。しかし、20質量%を超えるとδ/γ組織のバランスを損ない熱間加工性が低下する。そのため、15〜20質量%と規定とすることが好ましい。
Cr: 15-20% by mass
Cr is an element necessary for obtaining corrosion resistance as an austenitic stainless steel. However, if it exceeds 20% by mass, the balance of δ / γ structure is impaired and hot workability is reduced. Therefore, it is preferable to set it as 15-20 mass%.

Ni:5〜10質量%
オーステナイト系ステンレス鋼には必要不可欠な元素で、オーステナイト相を安定させる元素である。低いとδフェライトが急激に増加し、熱間加工性を損ないかつオーステナイト相が安定しないため、下限は5質量%とした。しかし、Niは高価な元素であるため上限は10質量%とすることが好ましい。
Ni: 5 to 10% by mass
It is an indispensable element for austenitic stainless steel and an element that stabilizes the austenitic phase. If it is low, δ ferrite increases rapidly, the hot workability is impaired and the austenite phase is not stable, so the lower limit was made 5 mass%. However, since Ni is an expensive element, the upper limit is preferably 10% by mass.

上述したステンレス鋼のAODまたはVODにおける精錬過程において、上述したS濃度を得るために、0.3質量%〜0.6質量%のS量に相当するFeS合金の添加を行うが、FeSiの添加を伴うCr還元または脱酸時、またその後に生成するスラグのCaO/SiOを、1〜1.5に調整することが、極めて重要な作業である。操業データの解析から、CaO/SiOを1〜1.5に制御することにより、S分配比は5〜50と低く保つことができることがわかった。ここで、特に限定はしないが、通常の精錬では、メタル重量が50〜70tであれば、スラグの重量は4〜6t程度に保つのが望ましい。 In the above-described refining process of stainless steel in AOD or VOD, in order to obtain the above-mentioned S concentration, FeS alloy corresponding to 0.3% to 0.6% by mass of S is added. It is an extremely important operation to adjust the CaO / SiO 2 of slag generated during Cr reduction or deoxidation accompanied by slag to 1 to 1.5. From the analysis of operation data, it was found that the S distribution ratio can be kept as low as 5 to 50 by controlling CaO / SiO 2 to 1 to 1.5. Here, although not particularly limited, in normal refining, when the metal weight is 50 to 70 t, it is desirable to maintain the weight of the slag at about 4 to 6 t.

さらに、CaO/SiOを1未満とすると、スラグの流動性が悪化し、最終的に排滓できないといった問題を生じたり、脱酸状態が悪くなり酸素濃度の値が100ppmを超えて高くなってしまう。酸素濃度の値が100ppmを超えると、熱間圧延時に板に割れが生じるなど問題をきたす。この理由も加味して、CaO/SiOを1以上とした。 Furthermore, when CaO / SiO 2 is less than 1, the fluidity of the slag is deteriorated, resulting in a problem that it cannot be finally discharged, the deoxidation state is deteriorated, and the value of the oxygen concentration exceeds 100 ppm. End up. If the value of the oxygen concentration exceeds 100 ppm, there will be problems such as cracking in the plate during hot rolling. In consideration of this reason, CaO / SiO 2 was set to 1 or more.

CaO/SiOを1.5より高いと、S分配比が高くなり、溶鋼中へのSの歩留低下を引き起こす。つまり、1.5を超えるCaO/SiOとした場合でも0.6質量%を超えてSを添加すれば、0.15%以上のSを得ることは出来るが、この手段は有効資源であるSを廃棄するスラグに移行させてしまうものであり、FeSといったS資源を無駄にするばかりか、コスト高となる。そのため、本発明では、スラグの塩基度を1.5以下と規定した。それとともに、Sの添加量の上限を0.6質量%と規定した。 If CaO / SiO 2 is higher than 1.5, the S distribution ratio is increased, and the yield of S in the molten steel is reduced. That is, even when CaO / SiO 2 exceeds 1.5, if S is added exceeding 0.6 mass%, S of 0.15% or more can be obtained, but this means is an effective resource. This shifts the slag to the slag for discarding S, which not only wastes S resources such as FeS but also increases the cost. Therefore, in this invention, the basicity of slag was prescribed | regulated as 1.5 or less. At the same time, the upper limit of the addition amount of S was defined as 0.6% by mass.

ここで、特に限定はしないが、スラグ中のS濃度は1〜7質量%に制御するのが望ましい。   Here, although not particularly limited, it is desirable to control the S concentration in the slag to 1 to 7% by mass.

ここで、S添加量を0.3質量%〜0.6質量%、CaO/SiOを1〜1.5、なおかつ、下記の範囲を満たすように限定した理由を説明する。
(2/3)×(CaO/SiO)−0.5≦S添加量(質量%)≦(2/3)×(CaO/SiO)−(4/15)
Here, the S amount 0.3 wt% to 0.6 wt%, CaO / SiO 2 1 to 1.5, yet, illustrating the reason for limiting to satisfy the following.
(2/3) × (CaO / SiO 2 ) −0.5 ≦ S addition amount (mass%) ≦ (2/3) × (CaO / SiO 2 ) − (4/15)

基本的に、スラグ塩基度(CaO/SiO)が高くなると、S分配比が高くなるため、スラグ中にSが移行する傾向にある。実機でのデータを解析したところ、スラグ塩基度に対して、傾き2/3の関係で、S添加量を高めていく必要があることが明らかとなった。なおかつ、S濃度の下限0.15質量%と上限0.25質量%を満足するには、上記の式を満たす必要があることが明らかとなった。したがって、本発明の範囲に限定する理由は以下の通りである。 Basically, when the slag basicity (CaO / SiO 2 ) increases, the S distribution ratio increases, so that S tends to migrate into the slag. As a result of analyzing data with an actual machine, it became clear that it is necessary to increase the amount of S addition with a slope of 2/3 with respect to the slag basicity. In addition, it has been clarified that the above formula needs to be satisfied in order to satisfy the lower limit of 0.15 mass% and the upper limit of 0.25 mass% of the S concentration. Therefore, the reason for limiting to the scope of the present invention is as follows.

S添加量が0.3質量%未満、または、(2/3)×(CaO/SiO)−0.5より低い場合、スラグ中にSが分配しすぎて、ステンレス鋼中のS含有量は0.15質量%未満と本発明の範囲に満たない。 When S addition amount is less than 0.3 mass% or lower than (2/3) × (CaO / SiO 2 ) −0.5, S is excessively distributed in the slag, and the S content in the stainless steel Is less than 0.15% by mass and less than the scope of the present invention.

S添加量を0.6質量%超、または、(2/3)×(CaO/SiO)−(4/15)より高くした場合、スラグにSが分配したとしても、ステンレス鋼中のS含有量は0.25質量%を超えて高くなってしまう。 Even if S is distributed to the slag when the S addition amount exceeds 0.6 mass% or higher than (2/3) × (CaO / SiO 2 ) − (4/15), S in the stainless steel Content will become high exceeding 0.25 mass%.

上述したAODまたはVODにおける精錬過程の後、取鍋精錬により、Ar攪拌を行いながら、温度の調整を行う。AODまたはVODの精錬過程において添加したS量は、一旦、溶鋼に全て入るが、(1)式の反応により、スラグ中へと分配される。図1に、メタル量60トン、スラグ量5トン、S添加量0.5質量%、C/S=1.3の条件下における、AOD精錬工程以降の溶鋼S濃度の推移を示す。   After the refining process in the above-described AOD or VOD, the temperature is adjusted while stirring Ar by ladle refining. The amount of S added in the refining process of AOD or VOD once enters all of the molten steel, but is distributed into the slag by the reaction of formula (1). FIG. 1 shows the transition of the molten steel S concentration after the AOD refining process under the conditions of a metal amount of 60 tons, a slag amount of 5 tons, an S addition amount of 0.5 mass%, and C / S = 1.3.

この図より、取鍋精錬開始直後(30分)では、溶鋼からスラグ中へのS分配が終了しておらず、0.3質量%と本発明の範囲を超えて高い状態である事が分かる。50分においては、0.21質量%と0.25質量%以下には入っているが、まだ、平衡値である0.17%には到達していないことが分かる。このように、取鍋精錬過程にてArガスを40分以上攪拌すると、メタル中のS濃度は平衡値に到達して、スラブにて安定したS濃度を得ることが可能である。この操作により、0.15〜0.2質量%のS濃度に制御することが可能となる。したがって、より好ましい製造の様態は、取鍋精錬過程にてArガスを40分以上攪拌することである。特に限定しないが、Arガスの流量は40〜200NL/分がよい。   From this figure, it can be seen that immediately after the start of the ladle refining (30 minutes), the S distribution from the molten steel into the slag is not completed, and is 0.3 mass%, which is a high state exceeding the range of the present invention. . It can be seen that at 50 minutes, they are within 0.21% by mass and 0.25% by mass or less, but have not yet reached the equilibrium value of 0.17%. Thus, when Ar gas is stirred for 40 minutes or more in the ladle refining process, the S concentration in the metal reaches an equilibrium value, and it is possible to obtain a stable S concentration in the slab. By this operation, it becomes possible to control the S concentration to 0.15 to 0.2 mass%. Therefore, a more preferable mode of production is to stir Ar gas for 40 minutes or more in the ladle refining process. Although not particularly limited, the flow rate of Ar gas is preferably 40 to 200 NL / min.

次に実施例を提示して本発明の構成および作用効果をより明らかにするが、本発明は以下の実施例にのみ限定されるものではない。
電気炉でまず原料を溶解し、続いてAODまたはVODにおいてCを除去するための酸素吹精(酸化精錬)を行い、FeSi合金によるCr還元または脱酸を行った。その後、石灰石を投入し、スラグ組成の調整を行った。ここでは、成分調整を目的とした精錬を行うと共に、Sを添加した。本操業ではS源としてS純分30質量%のFeSを用いた。AODまたはVODにおける精錬過程の後、取鍋精錬により、Ar攪拌を行いながら、温度の調整を行った。最終的に、連続鋳造によりスラブを製造した。なお、溶鋼重量は50〜70トン、スラグ重量は4〜6トンであった。
Next, examples will be presented to clarify the configuration and operational effects of the present invention. However, the present invention is not limited to the following examples.
First, the raw material was melted in an electric furnace, and then oxygen blowing (oxidation refining) for removing C in AOD or VOD was performed, and Cr reduction or deoxidation was performed using an FeSi alloy. Thereafter, limestone was added to adjust the slag composition. Here, refining was performed for the purpose of adjusting the components, and S was added. In this operation, Fe S containing 30% by mass of S was used as the S source. After the refining process at AOD or VOD, the temperature was adjusted by ladle refining while stirring Ar. Finally, the slab was manufactured by continuous casting. The molten steel weight was 50 to 70 tons, and the slag weight was 4 to 6 tons.

製造したスラブは1000mm幅×154mm厚×6000〜8000mm長さのサイズとした。スラブは表面を研削し、1200℃に加熱して熱間圧延を実施し、厚み6mmの熱帯を製造した。その後、焼鈍、酸洗を行い、表面のスケールを除去した。   The manufactured slab was 1000 mm wide × 154 mm thick × 6000 to 8000 mm long. The surface of the slab was ground, heated to 1200 ° C. and hot-rolled to produce a 6 mm thick tropics. Thereafter, annealing and pickling were performed to remove the scale on the surface.

表1に、得られたステンレス合金の化学成分、AODまたはVOD精錬終了時のスラグ組成、Sの添加量および取鍋精錬時間を示す。合金の化学成分およびスラグ組成は蛍光X線分析装置を用いて定量分析を行い、合金の酸素濃度は不活性ガスインパルス融解赤外線吸収法で定量分析を行った。   Table 1 shows the chemical composition of the obtained stainless steel alloy, the slag composition at the end of AOD or VOD refining, the amount of S added, and the ladle refining time. The chemical composition and slag composition of the alloy were quantitatively analyzed using a fluorescent X-ray analyzer, and the oxygen concentration of the alloy was quantitatively analyzed by an inert gas impulse melting infrared absorption method.

スラグの分析値が合計で95〜99質量%であるのは、不可避的な不純物としてAl、FeO、Cr、NiOなどを含有しているためである。 The total analysis value of slag is 95 to 99% by mass because it contains Al 2 O 3 , FeO, Cr 2 O 3 , NiO and the like as unavoidable impurities.

熱間加工性の評価は、熱間圧延工程後の熱帯を、全長目視により検査することで行った。全長に亘り耳割れが確認されなかった場合に◎とした。軽度の発生、すなわち、耳割れが10箇所未満であった場合を○とした。耳割れが10箇所以上確認された場合に×と評価した。なお、耳割れの割れ長さは、発生した場合10〜30mmほどであった。   The hot workability was evaluated by inspecting the tropics after the hot rolling step by full length visual inspection. The case where no cracks were observed over the entire length was marked as ◎. A case where the occurrence of mildness, that is, the case where there were less than 10 ear cracks, was rated as ◯. When 10 or more ear cracks were confirmed, it was evaluated as x. In addition, the crack length of the ear crack was about 10-30 mm when it generate | occur | produced.

切削性の評価は、ドリル穿孔試験により行った。試験条件は、ドリル径:φ10mm、推力:400N、周速:10m/分として、板厚6mmの熱帯が貫通するまでの穿孔時間を測定した。10秒以下であれば○と評価し、10秒を超えたら×とした。   The machinability was evaluated by a drill drilling test. The test conditions were as follows: drill diameter: φ10 mm, thrust: 400 N, peripheral speed: 10 m / min, and the drilling time until a tropical plate with a thickness of 6 mm penetrated was measured. If it was 10 seconds or less, it was evaluated as ◯, and if it exceeded 10 seconds, it was marked as x.

図2に、実施例について、C/SとS添加量の分布を示す。実線で囲んだ範囲が、本願発明の範囲である。発明例1〜10は範囲を満たしていて、比較例は範囲から外れていることが分かる。以下にその詳細を説明する。   FIG. 2 shows the distribution of C / S and S addition amount for the examples. The range enclosed by the solid line is the scope of the present invention. It turns out that the invention examples 1-10 satisfy | fill the range, and the comparative example has remove | deviated from the range. Details will be described below.

発明例の1〜7は、取鍋精錬時間が40分以上と長くかつ成分について本発明の範囲を満足していたために、S濃度が0.15〜0.2質量%に制御できた。発明例の8〜10は成分について本発明の範囲を満足していたものの取鍋精錬時間が40分未満と短かったために、0.2〜0.25質量%の範囲に制御された。   In Examples 1 to 7, the ladle refining time was as long as 40 minutes or more and the range of the present invention was satisfied for the components, so the S concentration could be controlled to 0.15 to 0.2% by mass. Although 8-10 of the invention example was satisfying the range of this invention about the component, since the ladle refining time was as short as less than 40 minutes, it was controlled by the range of 0.2-0.25 mass%.

一方、比較例11は塩基度が1未満と低かったため、S濃度が0.25質量%を超えて高かった。そのため、熱間加工性が低下し耳割れを生じた。例12は、塩基度が1.5を超えて高かったために、S濃度が0.15質量%未満と低くなった。例13は、添加量が0.3質量%を下回って低かった為に、S濃度が0.15質量%未満と低くなった。そのため、十分な切削性が得られなかった。例14は添加量が0.6質量%を超えて高かったために、S濃度が0.25質量%を超えて高かった。そのため、熱間加工性が低下し耳割れを生じた。例15〜17は、S添加量が、関係式(2/3)×(CaO/SiO)−(4/15)の値を超えて高く添加したために、S濃度が0.25質量%を超えて高かった。そのため、熱間加工性が低下し耳割れを生じた。例18〜20は、関係式(2/3)×(CaO/SiO)−0.5の値未満であったために、S濃度が0.15質量%未満と低くなった。そのため、十分な切削性が得られなかった。 On the other hand, since the basicity of Comparative Example 11 was as low as less than 1, the S concentration was higher than 0.25% by mass. Therefore, the hot workability was lowered and the ear cracks were generated. In Example 12, since the basicity was higher than 1.5, the S concentration was as low as less than 0.15% by mass. In Example 13, since the addition amount was lower than 0.3% by mass, the S concentration was as low as less than 0.15% by mass. Therefore, sufficient machinability was not obtained. In Example 14, since the addition amount was higher than 0.6% by mass, the S concentration was higher than 0.25% by mass. Therefore, the hot workability was lowered and the ear cracks were generated. In Examples 15 to 17, since the addition amount of S was higher than the value of the relational expression (2/3) × (CaO / SiO 2 ) − (4/15), the S concentration was 0.25% by mass. It was much higher. Therefore, the hot workability was lowered and the ear cracks were generated. Since Examples 18 to 20 were less than the value of the relational expression (2/3) × (CaO / SiO 2 ) −0.5, the S concentration was as low as less than 0.15% by mass. Therefore, sufficient machinability was not obtained.

Figure 0006114118
Figure 0006114118

S含有量を高精度に制御することができるので、SUS303に代表されるS含有ステンレス鋼の製造上、有望である。
Since the S content can be controlled with high accuracy, it is promising in the production of S-containing stainless steel represented by SUS303.

Claims (8)

スラグの塩基度CaO/SiOを1〜1.5に制御したCaO−SiO系スラグを形成し、Sを0.3%〜0.6質量%添加し、その際、スラグの塩基度とSの添加量は下記の関係を満たし、
(2/3)×(CaO/SiO)−0.5≦S添加量(質量%)≦(2/3)×(CaO/SiO)−(4/15)
さらにスラグにSを移行させた後、最終的に溶鋼中のS濃度を0.15〜0.25質量%に制御し、スラブを製造することを特徴とするS含有鋼の製造方法。
A slag basicity CaO / SiO 2 is controlled to 1 to 1.5 to form a CaO-SiO 2 slag, and 0.3% to 0.6% by mass of S is added. The addition amount of S satisfies the following relationship,
(2/3) × (CaO / SiO 2 ) −0.5 ≦ S addition amount (mass%) ≦ (2/3) × (CaO / SiO 2 ) − (4/15)
Furthermore, after making S transfer to slag, S concentration in molten steel is finally controlled to 0.15-0.25 mass%, and the manufacturing method of S containing steel characterized by manufacturing slab.
前記鋼は、C:0.30質量%以下、Si:1質量%以下、Mn:2質量%以下を含むことを特徴とする請求項1に記載のS含有鋼の製造方法。   The said steel contains C: 0.30 mass% or less, Si: 1 mass% or less, Mn: 2 mass% or less, The manufacturing method of the S content steel of Claim 1 characterized by the above-mentioned. 前記鋼は、ステンレス鋼であることを特徴とする請求項2に記載のS含有鋼の製造方法。   The said steel is stainless steel, The manufacturing method of the S content steel of Claim 2 characterized by the above-mentioned. 前記鋼は、Cr:15〜20質量%、Ni:5〜10質量%を含むことを特徴とする請求項1〜3のいずれかに記載のS含有鋼の製造方法。   The said steel contains Cr: 15-20 mass%, Ni: 5-10 mass%, The manufacturing method of the S containing steel in any one of Claims 1-3 characterized by the above-mentioned. 前記は、C:0.30質量%以下、Si:1質量%以下、Mn:2質量%以下、Cr:15〜20質量%、Ni:5〜10質量%、残部Feおよび不可避的不純物からなることを特徴とする請求項2に記載のS含有鋼の製造方法。
The steel is composed of C: 0.30% by mass or less, Si: 1% by mass or less, Mn: 2% by mass or less, Cr: 15-20% by mass, Ni: 5-10% by mass, balance Fe and inevitable impurities. The method for producing S-containing steel according to claim 2, wherein:
前記鋼の精錬にあたり、原料をまず溶解した後、AODまたはVODにて、脱炭し、FeSi合金を用いてCr還元し、石灰石を投入し、スラグの塩基度CaO/SiOを前記範囲に制御することを特徴とする請求項1〜5のいずれかに記載のS含有鋼の製造方法。 In refining the steel, the raw materials are first melted, then decarburized with AOD or VOD, Cr reduced using FeSi alloy, limestone is added, and the basicity of slag CaO / SiO 2 is controlled within the above range. The method for producing S-containing steel according to any one of claims 1 to 5, wherein: 最終的に溶鋼中のS濃度を0.15〜0.25質量%に制御した後、連続鋳造によりスラブを製造することを特徴とする請求項1〜6のいずれかに記載のS含有鋼の製造方法。   The S-containing steel according to any one of claims 1 to 6, wherein the slab is produced by continuous casting after finally controlling the S concentration in the molten steel to 0.15 to 0.25 mass%. Production method. 前記連続鋳造の前に、取鍋精錬にて精錬し、取鍋精錬開始から40分以上Ar攪拌することで、S濃度を0.15〜0.20質量%に制御し、その後連続鋳造によりスラブを製造することを特徴とする請求項1〜7のいずれかに記載のS含有鋼の製造方法。
Before the continuous casting, the steel is refined by ladle refining, and Ar concentration is controlled for 40 minutes or more from the start of ladle refining to control the S concentration to 0.15 to 0.20% by mass. The manufacturing method of the S content steel in any one of Claims 1-7 characterized by manufacturing.
JP2013117914A 2013-06-04 2013-06-04 Method for producing S-containing steel Active JP6114118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013117914A JP6114118B2 (en) 2013-06-04 2013-06-04 Method for producing S-containing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013117914A JP6114118B2 (en) 2013-06-04 2013-06-04 Method for producing S-containing steel

Publications (2)

Publication Number Publication Date
JP2014234543A JP2014234543A (en) 2014-12-15
JP6114118B2 true JP6114118B2 (en) 2017-04-12

Family

ID=52137469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013117914A Active JP6114118B2 (en) 2013-06-04 2013-06-04 Method for producing S-containing steel

Country Status (1)

Country Link
JP (1) JP6114118B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6848369B2 (en) * 2015-11-27 2021-03-24 日本製鉄株式会社 Sulfur-added raw material to molten steel and manufacturing method of sulfur-added steel
EP3540082A4 (en) * 2016-11-10 2020-06-03 Nippon Steel Corporation Sulfur additive for molten steel, and method for manufacturing sulfur-added steel
CN115852090B (en) * 2022-11-15 2023-09-29 安徽工业大学 Method for modifying and recycling metallurgical refining waste residues

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170507A (en) * 1985-01-25 1986-08-01 Nippon Steel Corp Method for refining high-s chromium steel
JPH0931522A (en) * 1995-07-21 1997-02-04 Daido Steel Co Ltd Production of low carbon/sulfur base free cutting steel
JP4544126B2 (en) * 2005-10-19 2010-09-15 住友金属工業株式会社 Manufacturing method of low carbon sulfur free cutting steel

Also Published As

Publication number Publication date
JP2014234543A (en) 2014-12-15

Similar Documents

Publication Publication Date Title
CN101346486B9 (en) Duplex stainless steel
JP4824640B2 (en) Duplex stainless steel and manufacturing method thereof
KR102531813B1 (en) High-strength stainless steel sheet with excellent fatigue properties and manufacturing method thereof
JP4924422B2 (en) Low carbon sulfur free cutting steel
JP6146908B2 (en) Stainless steel with excellent surface properties and its manufacturing method
JP6869142B2 (en) Stainless steel sheet and its manufacturing method
JP2010202905A (en) High cleanliness silicon-deoxidized steel and production method thereof
US20230077573A1 (en) Stainless steel for metal foils, stainless steel foil, and methods for producing them
JP6116286B2 (en) Ferritic stainless steel with less heat generation
JP5616283B2 (en) Fe-Ni-Cr-Mo alloy and method for producing the same
JP2018031028A (en) Fe-Ni-Cr-Mo ALLOY AND METHOD FOR PRODUCING THE SAME
JP6603033B2 (en) High Mn content Fe-Cr-Ni alloy and method for producing the same
JP6114118B2 (en) Method for producing S-containing steel
JP4203068B2 (en) Low-carbon sulfur free-cutting steel with excellent machinability
CN115244199B (en) Stainless steel, stainless steel material, and method for producing stainless steel
WO2007046198A1 (en) Low-carbon sulfur-containing free-cutting steel with excellent cuttability
JP4656007B2 (en) Method of processing molten iron by adding Nd and Ca
JP4544126B2 (en) Manufacturing method of low carbon sulfur free cutting steel
JP4728155B2 (en) Manufacturing method of low carbon sulfur free cutting steel
KR20230010244A (en) Precipitation hardening type martensitic stainless steel sheet with excellent fatigue resistance
JP7288131B1 (en) S-containing stainless steel with excellent surface properties and method for producing the same
JP7438436B1 (en) Ni-based alloy with excellent surface quality
JP7369266B1 (en) Fe-Cr-Ni alloy with excellent surface properties and its manufacturing method
JP5241185B2 (en) Steel manufacturing method with excellent rolling fatigue life
JP2024061291A (en) Ni-Cr-Fe-Mo-BASED ALLOY HAVING EXCELLENT SURFACE CHARACTERISTICS, AND METHOD FOR MANUFACTURING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170316

R150 Certificate of patent or registration of utility model

Ref document number: 6114118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250