JP2001214239A - Steel for machine structural use excellent in partibility of chip and producing method thetrfor - Google Patents

Steel for machine structural use excellent in partibility of chip and producing method thetrfor

Info

Publication number
JP2001214239A
JP2001214239A JP2000020651A JP2000020651A JP2001214239A JP 2001214239 A JP2001214239 A JP 2001214239A JP 2000020651 A JP2000020651 A JP 2000020651A JP 2000020651 A JP2000020651 A JP 2000020651A JP 2001214239 A JP2001214239 A JP 2001214239A
Authority
JP
Japan
Prior art keywords
steel
oxide
oxides
less
chip breaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000020651A
Other languages
Japanese (ja)
Other versions
JP4264174B2 (en
Inventor
Takahiro Kudo
高裕 工藤
Moriyoshi Kanamaru
守賀 金丸
Hiroshi Kako
浩 家口
Takehiro Tsuchida
武広 土田
Katsuhiko Ozaki
勝彦 尾崎
Masami Somekawa
雅実 染川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000020651A priority Critical patent/JP4264174B2/en
Publication of JP2001214239A publication Critical patent/JP2001214239A/en
Application granted granted Critical
Publication of JP4264174B2 publication Critical patent/JP4264174B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide steel for machine structural use free from the anxiety about the occurrence of the problem of environmental contamination, moreover widely applicable without being provided with machining conditions and using limitation and particularly excellent in the partibility of chips extremely important for automating machining operation. SOLUTION: As to this steel for machine structural use in steel for machine structures containing, by mass, C of 0.1 to 0.6%, Si of 2.5% or less (not inclusive of 0%), Mn of 0.2 to 3.0%, S of <0.150% (not inclusive of 0%) and O of 0.001 to 0.015%, the number of inclusions with a length of 1 μm or more appearing in the longitudinal section is 50 to 1,000 pieces per mm2 of the cross section, the ratio of the number of oxides occupying in the total content if the inclusions is 10% or more, and also, in the oxides, the ratio of the number of the oxide of at least one kind of element selected from the group consisting of Na, Li and B or the multiple oxide of at least two kinds of elements selected from the group consisting of Na, Li, B and Si is 5% or more, and the method for producing the same is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は切屑分断性に優れた
機械構造用鋼とその製法に関し、より詳細には、鋼材中
に特定の金属酸化物を特定量含有させることによって、
切屑分断性を高めた機械構造用鋼とその製法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel for machine structural use having excellent chip breaking property and a method for producing the same. More specifically, the present invention relates to a steel material containing a specific metal oxide in a specific amount.
The present invention relates to steel for machine structural use with improved chip breaking properties and a method for producing the same.

【0002】[0002]

【従来の技術】鉄鋼材料は、様々の製品形状に加工する
ため切削加工されることが多いことから、これまでにも
多くの快削鋼が開発されてきた。そして切削加工性の中
でも、切削加工の自動化を支障なく円滑に進めるうえ
で、切削片が速やかに分断されて工具から離脱していく
切屑分断性は重要な特性とされている。
2. Description of the Related Art Many free-cutting steels have been developed since steel materials are often cut to form various product shapes. Among the cutting properties, the chip breaking property in which the cut piece is quickly cut and separated from the tool is regarded as an important property in order to smoothly perform the automation of the cutting processing without any trouble.

【0003】ところで従来から最も多用されてきた鉛快
削鋼は、鋼中に添加された低融点の鉛が切削加工時の被
削材の昇温により溶融して切屑分断性を高める作用を発
揮し、且つ機械的特性の劣化も比較的少ないことから、
機械構造用鋼として広く使用されてきた。しかし近年、
環境問題に対する認識が高まってくるにつれて、有害重
金属である鉛を被削性成分として含む鉛快削鋼は忌避さ
れる傾向にある。
[0003] By the way, lead free-cutting steel, which has been most frequently used in the past, exhibits the effect of increasing the chip breaking property by melting low-melting-point lead added to the steel by raising the temperature of the work material during cutting. And the deterioration of mechanical properties is relatively small,
It has been widely used as steel for machine structural use. However, in recent years,
With increasing awareness of environmental issues, lead free-cutting steels containing lead, which is a harmful heavy metal, as a machinable component tend to be repelled.

【0004】これに対し硫黄快削鋼は、鉛快削鋼に指摘
される公害問題を起こすことがなく、しかも工具寿命や
切屑分断性などにも優れていることから、鉛快削鋼に代
わる快削鋼としての需要が高まってきている。ところが
硫黄快削鋼は、圧延工程で鋼中の硫化物が圧延方向に伸
張する傾向があり、圧延方向に対して垂直方向(以下、
C方向と略記する)の機械的性質に悪影響を及ぼすばか
りでなく、熱間鍛造時に硫化物が起点となって割れを起
こし易くなるという問題があるため、S添加量には限界
があり、その適用範囲も自ずと制限される。
[0004] On the other hand, sulfur free-cutting steel does not cause the pollution problem pointed out by lead free-cutting steel, and is excellent in tool life and chip breaking performance. Demand for free-cutting steel is increasing. However, in free-cutting sulfur steel, sulfides in the steel tend to elongate in the rolling direction during the rolling process, and the sulphide in the direction perpendicular to the rolling direction (hereinafter, referred to as
In addition to adversely affecting the mechanical properties (abbreviated as the C direction), there is a problem that sulfides become a starting point during hot forging and cracks easily occur, so the amount of S added is limited. The scope of application is naturally limited.

【0005】更にCa快削鋼は、Si,A1,Caの複
合酸化物を制御することにより切削工具表面にベラーグ
と呼ばれる保護膜を形成させるものであるが、これらの
酸化物は融点が1400℃前後と非常に高く、超硬工具
を用いた高切削速度領域での工具寿命の改善には有効で
あるが、低切削速度領域では満足のいく被削性改善効果
を示さず、また切屑分断性も良好とはいえない。
[0005] Further, Ca free-cutting steel forms a protective film called Belague on the surface of a cutting tool by controlling a complex oxide of Si, A1, and Ca. These oxides have a melting point of 1400 ° C. It is very high before and after, and is effective for improving tool life in high cutting speed region using carbide tools, but does not show satisfactory machinability improvement effect in low cutting speed region, and chip breaking performance Is not good either.

【0006】[0006]

【発明が解決しようとする課題】上記の様に従来の快削
鋼は、環境問題から使用が忌避されたり、あるいは切削
条件等の制限を受けるなど、更なる改善が求められる。
本発明はこの様な実状に鑑みてなされたもので、環境汚
染の問題を起こす恐れがなく、しかも切削条件や用途制
限などを受けることなく幅広く適用することができ、特
に切削作業を自動化するうえで極めて重要な切屑分断性
に優れた機械構造用鋼を提供することにある。
As described above, the conventional free-cutting steel is required to be further improved, for example, the use thereof is evaded due to environmental problems, or the cutting conditions are limited.
The present invention has been made in view of such circumstances, has no risk of causing environmental pollution, and can be widely applied without being subjected to cutting conditions and application restrictions. Another object of the present invention is to provide a steel for machine structural use which is extremely important in chip breaking.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すること
のできた本発明にかかる切屑分断性に優れた機械構造用
鋼とは、質量%で C :0.1〜0.6% Si:2.5%以下(0%を含まない) Mn:0.2〜3.0% S :0.150%未満(0%を含まない) O :0.001〜0.015% を含む機械構造用鋼において、縦断面に現われる長径1
μm以上の介在物が断面積1mm2当たり50〜150
0個で、該介在物の全量中に占める酸化物の個数の割合
が10%以上で、且つ、該酸化物のうち、Na,Liお
よびBよりなる群から選択される少なくとも1種の元素
の酸化物の個数が5%以上であり、あるいは上記酸化物
のうち、Na,Li,BおよびSiよりなる群から選択
される少なくとも2種の元素の酸化物からなる複合酸化
物の個数割合が5%であるところに要旨を有している。
Means for Solving the Problems The steel for machine structural use according to the present invention, which can solve the above problems and has excellent chip breaking property, is C: 0.1 to 0.6% by mass% Si: 2 0.5% or less (excluding 0%) Mn: 0.2 to 3.0% S: less than 0.150% (excluding 0%) O: 0.001 to 0.015% In steel, major axis 1 appearing in a longitudinal section
Inclusions of μm or more are 50 to 150 per 1 mm 2 in cross-sectional area.
0, the proportion of the number of oxides in the total amount of the inclusions is 10% or more, and among the oxides, at least one element selected from the group consisting of Na, Li and B The number of oxides is 5% or more, or the number ratio of composite oxides composed of oxides of at least two elements selected from the group consisting of Na, Li, B and Si is 5%. % Has a gist where it is.

【0008】また本発明に係る製法の構成は、上記切屑
分断性に優れた機械構造用鋼を製造する方法であって、
Na,LiおよびSiよりなる群から選択される少なく
とも1種の元素の酸化物からなる融点が1000℃以下
の酸化物を、溶鋼中に100ppm以上添加し、あるい
はNa,Li,BおよびSiよりなる群から選択される
少なくとも2種の元素の酸化物からなる融点が1000
℃以下の複合酸化物を、溶鋼中に100ppm以上添加
するところに特徴を有している。これら融点が1000
℃以下である上記酸化物は、レードル、タンディッシュ
および鋳型の少なくとも1個所で溶鋼に添加することに
より、鋼中に均一に混入・分散させることができる。
[0008] The manufacturing method according to the present invention is a method for manufacturing a steel for machine structural use having excellent chip breaking property.
100 ppm or more of an oxide of at least one element selected from the group consisting of Na, Li and Si and having a melting point of 1000 ° C. or less is added to the molten steel, or is composed of Na, Li, B and Si. A melting point of at least two oxides selected from the group consisting of oxides of 1000
It is characterized by adding a composite oxide of 100 ° C. or less to molten steel at 100 ppm or more. These melting points are 1000
The above-mentioned oxide having a temperature of not more than ° C. can be uniformly mixed and dispersed in steel by adding it to molten steel in at least one of a ladle, a tundish and a mold.

【0009】[0009]

【発明の実施の形態】本発明者らは前述した様な課題の
下で、従来の鉛や硫黄、Ca酸化物などに代わる快削成
分を模索し、特に切屑分断性の向上を期して鋭意研究を
進めてきた。その結果、機械構造用鋼中にNa,Liお
よびSiよりなる群から選択される少なくとも1種の元
素の酸化物、あるいは、Na,Li,BおよびSiより
なる群から選択される少なくとも2種の元素の複合酸化
物を適量含有させたものは、安定して優れた切屑分断性
を示すことを確認し、上記本発明に想到したものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Under the above-mentioned problems, the present inventors have sought a free-cutting component to replace conventional lead, sulfur, Ca oxide and the like, and have particularly sought to improve the chip breaking performance. Research has been advanced. As a result, an oxide of at least one element selected from the group consisting of Na, Li and Si, or at least two types of oxides selected from the group consisting of Na, Li, B and Si in the steel for machine structural use Those containing an appropriate amount of the compound oxide of the element were confirmed to exhibit excellent and excellent chip breaking properties, and the present invention was conceived.

【0010】切屑分断性を高めるには、当然のことなが
ら切屑を分断するための起点が必要となる。その起点
は、鉛快削鋼においては鋼中に分散した鉛による金属溶
融脆化であり、鉛は低融点(約327℃)であるため、
切削加工中の被削材の温度上昇に伴う鉛の溶融によって
切屑が脆化し、切屑分断性が向上すると考えられてい
る。
[0010] In order to enhance the chip breaking property, it is needless to say that a starting point for cutting the chips is required. The starting point is the metal melting embrittlement by lead dispersed in steel in lead free-cutting steel, and since lead has a low melting point (about 327 ° C),
It is considered that the chips are embrittled by the melting of lead accompanying the temperature rise of the work material during the cutting process, and the chip breaking property is improved.

【0011】一方硫黄快削鋼では、特に伸展したMnS
が切屑分断の起点となるが、一般に硫黄量の増加に伴っ
てMnS量は増大するので、切屑分断性も向上すると考
えられている。
On the other hand, in the case of sulfur free-cutting steel, particularly, the expanded MnS
Is the starting point of chip breaking, but it is generally considered that the chip breaking property is also improved because the amount of MnS increases with an increase in the amount of sulfur.

【0012】しかしながら、前述の如く鉛は環境汚染の
観点から今後その使用は回避される傾向にあり、また硫
黄は、C方向の機械的性質劣化の観点からその使用量が
制限されるため、被削性の一層の改善が求められる。
However, as described above, the use of lead tends to be avoided in the future from the viewpoint of environmental pollution, and the amount of sulfur used is limited from the viewpoint of deterioration of the mechanical properties in the C direction. Further improvement in machinability is required.

【0013】そこで本発明者らは、これら鉛や硫黄に代
わる切屑分断性向上成分を見出すべく、特に、切削時の
工具刃先の温度上昇による介在物の脆化作用により切屑
分断性を高める成分について模索した。その結果、上記
の様にNa,LiおよびSiよりなる群から選択される
少なくとも1種の元素の酸化物、あるいは、Na,L
i,BおよびSiよりなる群から選択される少なくとも
2種の元素の複合酸化物は、機械構造用鋼の切屑分断性
を著しく高める作用を有していることが確認された。
Therefore, the present inventors have found a component for improving the chip breaking property in place of lead and sulfur, and in particular, for a component for increasing the chip breaking property by embrittlement of inclusions due to a rise in the temperature of the tool edge during cutting. I sought. As a result, as described above, an oxide of at least one element selected from the group consisting of Na, Li and Si, or Na, L
It has been confirmed that a composite oxide of at least two elements selected from the group consisting of i, B and Si has an effect of significantly increasing the chip breaking property of steel for machine structural use.

【0014】金属酸化物は一般に硬質であり、これまで
は被削性を劣化させるものと考えられており、金属酸化
物を被削性向上成分として積極的に利用するといったこ
とはあまり考えられなかった。ところが、機械構造用鋼
中にNa,LiおよびSiよりなる群から選択される少
なくとも1種の元素の酸化物、あるいは、Na,Li,
BおよびSiよりなる群から選択される少なくとも2種
の元素の複合酸化物[以下、これらをまとめて(複合)
酸化物ということがある]を適量含有させると、これら
の(複合)酸化物が高速切削加工中の刃先温度域で溶融
・軟化し、それに伴う溶融脆化によって切屑分断性が著
しく改善されることを見出したのである。
[0014] Metal oxides are generally hard and have been considered to deteriorate machinability. It is unlikely that metal oxides will be actively used as a machinability improving component. Was. However, oxides of at least one element selected from the group consisting of Na, Li, and Si, or Na, Li,
Composite oxide of at least two elements selected from the group consisting of B and Si [hereinafter collectively referred to as (composite)
Oxide may be contained in an appropriate amount, these (composite) oxides melt and soften in the temperature range of the cutting edge during high-speed cutting, and the resulting melt embrittlement significantly improves chip breaking. Was found.

【0015】本発明では、上記の如く機械構造用鋼中
に、切屑分断性改善成分として前記(複合)酸化物を適
量含有させるところに特徴を有しているが、その前提と
して、鋼材の縦断面に現われる長径1〜15μmの介在
物が、断面積1mm2当たり50〜1500個、より好
ましくは150〜1000個分散していることが必要と
なる。ちなみに、鋼中に存在し得る介在物としては、酸
化物、硫化物、窒化物などが挙げられるが、それら介在
物の中でも長径が1μm未満の微細なものは、切屑分断
性や機械的特性に及ぼす影響は少ない。一方、長径が1
5μmを超える介在物が鋼中に多数存在すると、機械構
造用鋼としての機械的特性、特に靭性や延性等に顕著な
悪影響を及ぼす可能性もあるが、現実的にはその様な大
サイズの介在物は少ない。
The present invention is characterized in that a suitable amount of the above (composite) oxide is contained in the steel for machine structural use as a chip breaking improving component as described above. It is necessary that 50 to 1500, more preferably 150 to 1000, inclusions having a major axis of 1 to 15 μm appearing on the surface are dispersed per 1 mm 2 of cross-sectional area. Incidentally, the inclusions that may be present in steel include oxides, sulfides, nitrides, and the like. Among these inclusions, fine inclusions having a major axis of less than 1 μm may have poor chip breaking properties and mechanical properties. The effect is small. On the other hand, if the major axis is 1
If a large number of inclusions exceeding 5 μm are present in the steel, the mechanical properties of the steel for machine structural use, particularly toughness and ductility, may be significantly adversely affected. There are few inclusions.

【0016】そして本発明で意図する優れた切屑分断性
を確保するには、上記介在物のサイズと個数を満たす要
件の下で、長径が1μm以上である全介在物中に占める
酸化物の個数の占める比率が10%以上であり、且つ、
該酸化物中の前記(複合)酸化物の占める個数の割合が
5%以上であることが必須の要件となる。
In order to secure the excellent chip breaking property intended in the present invention, the number of oxides occupying in all the inclusions having a major axis of 1 μm or more is required under the condition that the size and the number of the inclusions are satisfied. Is 10% or more, and
It is essential that the ratio of the number of the (composite) oxide in the oxide is 5% or more.

【0017】即ち本発明では、基本的に鋼材中に分散し
ている介在物のうち酸化物の個数を特定することに加え
て、該酸化物中の前記(複合)酸化物の占める個数の割
合を特定することによって、従来の快削鋼に優るとも劣
ることのない優れた切屑分断性を確保することに成功し
たものである。
That is, in the present invention, basically, in addition to specifying the number of oxides among the inclusions dispersed in the steel material, the ratio of the number occupied by the (composite) oxide in the oxides By specifying the above, it has succeeded in securing excellent chip breaking performance which is not inferior to conventional free-cutting steel.

【0018】ちなみに、鋼断面に現われる全介在物の中
には、酸化物、硫化物、窒化物、炭化物、およびそれら
の複合物などが含まれ、また酸化物の中にはアルミナ、
シリカ、酸化マンガン、酸化クロム、およびそれらの複
合物、などが含まれるが、本発明で意図するレベルの優
れた切屑分断性を確保するには、全介在物中に占める長
径1μm以上の酸化物個数の比率が10%以上で、且つ
該酸化物のうち、前記(複合)酸化物の占める個数の割
合が5%以上であることが必須となる。
Incidentally, all inclusions appearing in the steel cross section include oxides, sulfides, nitrides, carbides, and composites thereof, and among oxides, alumina,
Although silica, manganese oxide, chromium oxide, and composites thereof are included, oxides having a major axis of 1 μm or more occupying in all the inclusions are required to secure the excellent level of chip breaking intended in the present invention. It is essential that the ratio of the number is 10% or more, and the ratio of the number occupied by the (composite) oxide in the oxide is 5% or more.

【0019】そして、全介在物中に占める酸化物の個数
割合が10%未満で、しかも該酸化物中に占める前記
(複合)酸化物の占める個数割合が5%未満では、これ
ら特定の(複合)酸化物に期待される切屑分断性改善効
果が有効に発揮されない。即ちこれら特定の(複合)酸
化物は、融点が1000℃以下であり、好ましくは、後
述する方法によって溶鋼中に添加されるそれら(複合)
酸化物の成分組成を融点が800℃以下となる様に調整
し、長径が1μm以上である該特定(複合)酸化物の個
数が上記要件を満たす様にコントロールすれば、切削加
工時の加工発熱による該特定(複合)酸化物の溶融脆化
作用によって切屑分断性が大幅に高められる。
If the number ratio of the oxide in the total inclusions is less than 10% and the number ratio of the (composite) oxide in the oxide is less than 5%, the specific (composite) oxide ) The chip breaking improvement effect expected from oxides is not effectively exhibited. That is, these specific (composite) oxides have a melting point of 1000 ° C. or less, and preferably those (composite) oxides added to molten steel by a method described later.
If the component composition of the oxide is adjusted to have a melting point of 800 ° C. or less and the number of the specific (composite) oxides having a major axis of 1 μm or more is controlled so as to satisfy the above requirements, the heat generated during the cutting process can be reduced. Owing to the melting embrittlement action of the specific (composite) oxide, the chip breaking property is greatly improved.

【0020】しかも、上記(複合)酸化物の多くは球状
であるため、機械的特性を劣化させることはなく、酸化
物の存在形態によってはむしろ機械的特性の向上に寄与
する。
Moreover, since most of the above (composite) oxides are spherical, the mechanical properties do not deteriorate, and rather contribute to the improvement of the mechanical properties depending on the form of the oxide.

【0021】尚、上記酸化物による切屑分断性改善作用
は、Na,LiおよびBの各酸化物については、それぞ
れ単独で有効に発揮される他、2種もしくは3種の複合
酸化物としても有効に発揮されるが、Siの酸化物につ
いては、単独酸化物として所定量存在していても本発明
の意図する様な切屑分断性を得ることはできず、前記N
a,Li,Bの少なくとも1種の酸化物との複合酸化物
として存在させることが必須となる。これは、Siの単
独酸化物はNa酸化物、Li酸化物、B酸化物に比べて
融点が高いため、高速切削時の昇温による溶融脆化作用
が有効に発揮されないからである。
The chip breaking improvement effect of the above oxides is effectively exerted independently on each of Na, Li and B oxides, and also effective as two or three kinds of composite oxides. However, with respect to the oxide of Si, even if it is present as a single oxide in a predetermined amount, it is not possible to obtain the chip breaking property as intended by the present invention,
It is essential that the compound is present as a composite oxide with at least one oxide of a, Li, and B. This is because the single oxide of Si has a higher melting point than the Na oxide, the Li oxide, and the B oxide, so that the melt embrittlement effect due to the temperature rise during high-speed cutting is not effectively exhibited.

【0022】尚、切屑分断性の向上に寄与する前記N
a,Li,Bの酸化物源となるNa,Li,Bは、通常
の溶鋼中には殆ど含まれていない。従って本発明の上記
目的を果たすには、溶鋼中にNa酸化物、Li酸化物、
B酸化物あるいはそれらの複合酸化物を添加することが
必要であり、具体的には、レードル、タンディッシュお
よび鋳型の少なくとも1個所で、溶鋼中にそれらの酸化
物、もしくはSiとの複合酸化物を添加し、これらを溶
鋼中に含有させる方法が採用される。
The above-mentioned N, which contributes to the improvement of the chip breaking property,
Na, Li, and B, which are oxide sources of a, Li, and B, are hardly contained in ordinary molten steel. Therefore, in order to achieve the above object of the present invention, Na oxide, Li oxide,
It is necessary to add a B oxide or a composite oxide thereof. Specifically, at least one of a ladle, a tundish and a mold, the oxide or the composite oxide with Si in molten steel. Is added and these are contained in molten steel.

【0023】この時、添加される上記酸化物や複合酸化
物は、添加前の状態で融点が1000℃以下、より好ま
しくは800℃以下となる様に成分調整しておくことが
望ましい。溶鋼内に添加された上記酸化物や複合酸化物
は高温の溶鋼中で形態変化を起こすが、前述した位置で
添加する方法を採用すれば、最終的に得られる鋼材内に
おいても、溶融温度1200℃程度以下の(複合)酸化
物として存在させることができる。
At this time, it is desirable to adjust the components of the oxide or composite oxide to be added so that the melting point before the addition is 1000 ° C. or less, more preferably 800 ° C. or less. The above oxides and composite oxides added in the molten steel cause a morphological change in the molten steel at a high temperature. However, if the method of adding at the above-mentioned position is adopted, the melting temperature of 1200 may be obtained even in the finally obtained steel material. It can be present as a (composite) oxide having a temperature of about ° C or lower.

【0024】尚上記酸化物または複合酸化物の添加量
は、溶鋼に対して100ppm以上、より好ましくは3
00ppm以上とすべきであり、100ppm未満で
は、最終的に得られる鋼中に、十分なサイズ(長径1μ
m以上)と量(個数)の(複合)酸化物を存在させるこ
とができず、本発明で意図する優れた切屑処理性が得ら
れ難くなる。上記酸化物や複合酸化物は過剰量添加して
も、その大部分は溶鋼中に歩留まることなくスラグとな
って湯面上に浮上分離されるので実害は生じないが、そ
の効果は2000ppm程度で飽和するので、それ以上
の添加は経済的に無駄であり、好ましくは1000pp
m程度以下で十分である。尚これらの酸化物は、単体酸
化物として添加するよりも複合酸化物として溶鋼に添加
した方が、鋼中に歩留まり易いので有利である。添加す
る酸化物の融点は、状態図の値を基準にして予め決めて
おけばよい。
The amount of the oxide or composite oxide added is 100 ppm or more, more preferably 3 ppm, based on the molten steel.
The content should be at least 00 ppm, and if it is less than 100 ppm, a sufficient size (1 μm in major axis) can be obtained in the finally obtained steel.
m or more) and the amount (number) of (composite) oxides cannot be present, making it difficult to obtain the excellent chip disposability intended in the present invention. Even if the above oxides and composite oxides are added in an excessive amount, most of the oxides and slag are floated and separated on the molten metal surface without yield in the molten steel, so that no actual harm is caused, but the effect is about 2000 ppm. And further addition is economically useless, preferably at 1000 pp.
m or less is sufficient. In addition, it is advantageous to add these oxides to the molten steel as a composite oxide rather than as a single oxide, since the yield in the steel is easy. The melting point of the oxide to be added may be determined in advance based on the values in the phase diagram.

【0025】本発明は、上記の様に機械構造用鋼に含ま
れる(複合)酸化物のサイズと量を規定したところに特
徴を有するもので、鋼材の種類には特に制限がなく、例
えばJIS G4051に規定される機械構造用炭素
鋼、JIS G4102に規定されるニッケル・クロム
鋼、JIS G4103に規定されるニッケル・クロム
・モリブデン鋼、JIS G4106に適用されている
機械構造用マンガン鋼、マンガン・クロム鋼などに幅広
く適用することができ、その他の元素を適宜含有させた
全ての機械構造用鋼に適用できるが、本発明の特徴が最
も有効に発揮される機械構造用鋼の標準的な化学成分を
例示すると下記の通りである。
The present invention is characterized in that the size and amount of the (composite) oxide contained in the steel for machine structural use are specified as described above, and the type of the steel material is not particularly limited. Carbon steel for machine structure specified in G4051; nickel-chromium steel specified in JIS G4102; nickel-chromium-molybdenum steel specified in JIS G4103; manganese steel for machine structure applied in JIS G4106; It can be widely applied to chrome steel, etc., and can be applied to all mechanical structural steels containing other elements as appropriate, but the standard chemical of mechanical structural steel in which the features of the present invention are most effectively exhibited. Examples of the components are as follows.

【0026】C:0.1〜0.6% Cは鋼の強度向上元素として重要な元素であるが、反
面、延性を低下させる元素でもあり、その含有量が極め
て低い低炭素鋼領域では、鋼の延性を適度に低下させて
切屑分断性を高める作用を発揮する。そのため機械構造
用鋼として用いるにはC量を0.1%以上、より好まし
くは0.2%以上とすべきであるが、C量が多くなり過
ぎると、鋼が高質化して工具寿命を低下させる原因にな
るので0.6%以下、より好ましくは0.5%以下に抑
えるのがよい。するので、0.1〜0.6%とした。
C: 0.1-0.6% C is an important element as an element for improving the strength of steel, but on the other hand, it is also an element that reduces ductility, and in a low-carbon steel region where its content is extremely low, It has the effect of appropriately reducing the ductility of steel and increasing the chip breaking performance. Therefore, the C content should be 0.1% or more, more preferably 0.2% or more for use as steel for machine structural use. However, if the C content is too large, the steel becomes high quality and the tool life is shortened. Since it causes a reduction, the content is preferably suppressed to 0.6% or less, more preferably 0.5% or less. Therefore, it was set to 0.1 to 0.6%.

【0027】Si:2.5%以下(0%を含まない) Siは通常、溶製時に使用する脱酸剤として混入してく
るが、Siは酸素との反応性が非常に速く、2.5%を
超えると、鋼中の必要酸素量を確保することが困難にな
るばかりでなく、Na,Li,B酸化物の酸素を奪って
切屑分断性改質作用を発現し難くすることがあるので、
2.5%以下、より好ましくは1.5%以下に抑えるこ
とが望ましい。
Si: 2.5% or less (excluding 0%) Si is usually mixed in as a deoxidizing agent used during melting, but Si has a very high reactivity with oxygen. If it exceeds 5%, it becomes difficult not only to secure the required oxygen content in the steel, but also to deprive the oxygen of Na, Li, and B oxides to exert the chip breaking property improving effect. So
It is desirable to keep it at 2.5% or less, more preferably at 1.5% or less.

【0028】Mn:0.2〜3.0% Mnは、切屑分断性の向上に有効なMnSを生成させる
他、熱間加工性を高める上でも有効に作用する元素であ
り、これらの作用を有効に発揮させるには0.2%以
上、より好ましくは0.5%以上含有させることが望ま
しい。しかし、Mn含有量が多過ぎると鋼材の加工硬化
が顕著になり、工具寿命を短縮させる原因になるので
3.0%以下、より好ましくは2.5%以下に抑えるこ
とが望ましい。
Mn: 0.2-3.0% Mn is an element which effectively produces MnS which is effective for improving the chip breaking property and also effectively acts for improving the hot workability. It is desirable that the content be 0.2% or more, more preferably 0.5% or more, in order to exert the effect effectively. However, if the Mn content is too large, the work hardening of the steel material becomes remarkable, and the tool life is shortened. Therefore, it is desirable to suppress the content to 3.0% or less, more preferably 2.5% or less.

【0029】S:0.150%未満(0%を含まない) Sは、切屑分断性を含めた被削性全般の向上に有効なM
nSを形成する元素であるが、0.150%を超えると
熱間加工性や延性を著しく劣化させる。よって、S含有
量は0.150%未満に抑えることが望ましく、特に機
械的特性が重視される機械構造用部品として適用する際
には、S量は0.12%以下、より好ましくは0.08
%以下に抑えることが望まれる。
S: less than 0.150% (excluding 0%) S is an effective M for improving the overall machinability including the chip breaking property.
Although it is an element forming nS, if it exceeds 0.150%, hot workability and ductility are significantly deteriorated. Therefore, the S content is desirably suppressed to less than 0.150%. In particular, when the S content is applied as a component for a mechanical structure in which mechanical characteristics are emphasized, the S content is 0.12% or less, more preferably 0.1% or less. 08
% Is desired.

【0030】O:0.001〜0.015% Oは、前記(複合)酸化物の析出形態を左右する重要な
元素であり、トータル酸素量が0.001%未満では、
本発明で定める前記サイズと量の(複合)酸化物を存在
させることができず、本発明で意図するレベルの切屑分
断性を確保するには0.001%以上のOを必須とす
る。しかしO量が多過ぎると、溶製時に酸化鉄の生成を
促して溶製炉の内張り耐火物を損傷し炉寿命の短縮を招
く。従って、Oの含有量は、炉寿命の観点から0.01
5%以下、より好ましくは0.010%以下に抑えるこ
とが望ましい。
O: 0.001 to 0.015% O is an important element that affects the form of the (composite) oxide deposited. When the total oxygen content is less than 0.001%,
The (composite) oxide of the size and amount defined in the present invention cannot be present, and O of 0.001% or more is essential to secure the level of chip breaking intended in the present invention. However, if the amount of O is too large, the production of iron oxide is promoted during smelting, which damages the refractory lining of the smelting furnace and shortens the life of the furnace. Therefore, the content of O is 0.01% from the viewpoint of furnace life.
It is desirable to keep the content to 5% or less, more preferably 0.010% or less.

【0031】本発明で使用される切屑分断性に優れた機
械構造用鋼の好ましい含有元素は上記の通りであり、残
部成分は実質的にFeであるが、該構造用鋼中には微量
の不可避不純物の含有が許容されることは勿論のこと、
前記本発明の作用に悪影響を与えない範囲で更に他の元
素を積極的に含有させた鋼を使用することも可能であ
る。積極添加が許容される他の元素の例としては、切屑
分断性改善効果を有するPb,Bi,Teなどが挙げら
れ、それらは1種又は2種以上を含有させることができ
るが、それらは通常合計で0.5%程度以下に抑えるこ
とが望ましい。
The preferred elements contained in the steel for machine structural use excellent in chip breaking property used in the present invention are as described above, and the balance is substantially Fe, but a trace amount is contained in the structural steel. Needless to say that the inclusion of unavoidable impurities is allowed,
It is also possible to use steel in which other elements are positively contained as long as the effect of the present invention is not adversely affected. Examples of other elements that can be positively added include Pb, Bi, Te, and the like, which have an effect of improving the chip breaking property, and they can contain one or more kinds, but they are usually used. It is desirable to suppress the total to about 0.5% or less.

【0032】次に、前記(複合)酸化物の分析法につい
て説明する。供試材は、155mm×155mmの鋳片
を1200℃にて直径50mmの丸棒状に鍛造した後、
850℃×1hr油冷→500℃×2hr水冷にて焼入
れ焼戻し処理を施し、ビッカース硬さで270±15に
揃えた。該鍛造材の鍛造方向に平行な断面のD/4位置
を研磨した後、供試材の観察位置を特定するため荷重5
kgで圧痕を打った。
Next, a method for analyzing the (composite) oxide will be described. The test material was prepared by forging a 155 mm x 155 mm slab into a 50 mm diameter round bar at 1200 ° C.
A quenching and tempering treatment was performed at 850 ° C. × 1 hr oil cooling → 500 ° C. × 2 hr water cooling, and the Vickers hardness was adjusted to 270 ± 15. After polishing the D / 4 position of the cross section parallel to the forging direction of the forged material, a load of 5% was applied to specify the observation position of the test material.
Indentations were made with kg.

【0033】そして介在物の個数測定は、光学顕微鏡を
用いて圧痕近傍を倍率100倍で1視野当たり0.5m
m×0.5mmの面積を4視野づつ観察し、長径が1μ
m以上の介在物について画像解析した。次いで、日本電
子製「JXA−8800RL」のEPMAにより加速電
圧15kV、倍率500倍で4視野を観察して介在物の
組成を特定した。この観察では、Na,Li,B,S
i,OおよびMn,S,Crのマッピングを行なって各
元素の存在を確認した。ただしEPMAでは、LiやB
などの軽元素は検出し難いので、EPMA観察と同じ領
域をCAMECA−imsf5fのSIMSにより一次
イオン条件O2 +−8keV−1nAで倍率500倍にて
4視野を観察した。ただし、SIMSでは一次イオンと
してO2 +を用いており、Oの存在がはっきりしないが、
EPMAでOが観察されたものは酸化物と判断した。E
PMAおよびSIMS観察で、Na,Li,B,Siか
ら選択される1種以上および酸素Oの存在が確認できた
ものを(複合)酸化物とした。この観察で、長径1μm
以上の全介在物のうち観察された酸化物および(複合)
酸化物の数からそれらの割合を求めた。酸化物とMnS
とからなる介在物は酸化物としてカウントした。
Then, the number of inclusions was measured using an optical microscope in the vicinity of the indentation at a magnification of 100 × 0.5 m per visual field.
Observe the area of mx 0.5mm by 4 visual fields, and the major axis is 1μ.
Image analysis was performed for inclusions of m or more. Next, the composition of the inclusions was identified by observing four visual fields at an accelerating voltage of 15 kV and a magnification of 500 times using EPMA of “JXA-8800RL” manufactured by JEOL Ltd. In this observation, Na, Li, B, S
The presence of each element was confirmed by mapping i, O and Mn, S, Cr. However, in EPMA, Li and B
Since it is difficult to detect such light elements, the same region as in EPMA observation was observed in four fields at a magnification of 500 times under SIMS of CAMECA-imsf5f under primary ion conditions of O 2 + -8 keV-1 nA. However, in SIMS, O 2 + is used as a primary ion, and although the existence of O is not clear,
Those in which O was observed in EPMA were judged to be oxides. E
Oxides of which at least one selected from Na, Li, B, and Si and the presence of oxygen O were confirmed by PMA and SIMS observations were defined as (composite) oxides. In this observation, the major axis was 1 μm
Oxides and (composite) observed among all the above inclusions
Their proportion was determined from the number of oxides. Oxide and MnS
The inclusion consisting of was counted as oxide.

【0034】次に評価法について説明すると、評価項目
は切屑分断性と横目靱性値の2つとし、切屑分断性は超
硬旋削試験により評価した。試験条件は、表1に示す如
く、切削速度150(m/min)で、送りを0.0
5,0.5,0.2,0.3(mm/rev)の4水
準、切込みを0.5,1.0,2.0(mm)の3水準
に変化させ、各鋼種につき12条件で行なった。そし
て、図1に示す評価点を基準に各切削条件における切屑
を配分し、その基準の評価点と切屑の配分割合を掛け合
わせ、12条件の合計を切屑処理性指数とした。仮に全
条件で表2右端の最も細かい切屑状態であったとする
と、切屑処理性指数は100(正確には99.96)と
なる。
Next, the evaluation method will be described. The evaluation items were two, namely, chip breaking property and transverse grain toughness value, and the chip breaking property was evaluated by a carbide turning test. As shown in Table 1, the test conditions were a cutting speed of 150 (m / min) and a feed of 0.0.
Twelve conditions for each steel type by changing four levels of 5, 0.5, 0.2, 0.3 (mm / rev) and three levels of notch to 0.5, 1.0, 2.0 (mm) Performed in Then, the chips under each cutting condition were distributed based on the evaluation points shown in FIG. 1, and the standard evaluation points were multiplied by the distribution ratio of the chips. The total of the 12 conditions was defined as the chip disposability index. Assuming that the chip is in the finest state at the right end of Table 2 under all conditions, the chip disposability index is 100 (accurately, 99.96).

【0035】[0035]

【表1】 [Table 1]

【0036】横目靱性値はJIS 3号の衝撃試験によ
り行った。衝撃試験片は鍛伸方向と直角の方向から切り
出して試験に供した。
The transverse grain toughness was measured by an impact test according to JIS No. 3. The impact test piece was cut out from a direction perpendicular to the forging direction and used for the test.

【0037】[0037]

【実施例】以下、実施例を挙げて本発明の構成と作用効
果をより具体的に説明するが、本発明はもとより下記実
施例によって制限を受けるものではなく、前・後記の趣
旨に適合し得る範囲で適当に変更を加えて実施すること
も可能であり、それらはいずれも本発明の技術的範囲に
包含される。
EXAMPLES Hereinafter, the structure and operation and effect of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention is applicable to the above and following points. It is also possible to carry out the present invention with appropriate modifications as far as possible, and all of them are included in the technical scope of the present invention.

【0038】実施例 本発明鋼は、500kg高周波溶解炉で溶解した低炭素
鋼に、組成調整した(複合)酸化物を添加し、155m
mに鋳造した。表2に本発明鋼(No.1〜11)およ
び比較鋼(No.12〜20)の主成分、添加酸化物の
組成、添加量、融点を示す。なお、No.12,13は
現用の鉛快削鋼、No.14はべース鋼、No.15,
16はS添加量を変えたものである。
Example The steel of the present invention was prepared by adding a composition-adjusted (composite) oxide to a low-carbon steel melted in a 500 kg high-frequency melting furnace.
m. Table 2 shows the main components of the steels of the present invention (Nos. 1 to 11) and comparative steels (Nos. 12 to 20), the compositions of the added oxides, the added amounts, and the melting points. In addition, No. Nos. 12 and 13 are current lead free-cutting steels. No. 14 is a base steel. 15,
Numeral 16 indicates the amount of S added.

【0039】表3および図2〜4に供試材の評価結果を
示す。表4にベース鋼(No.14)の切屑分断性判定
の結果を示す。図2に見られる様に、(複合)酸化物の
割合が5%を超えると切屑分断性が大幅に向上し、鉛快
削鋼や硫黄快削鋼以上となっている。図3に示す通り、
切屑分断性を向上させるには、(複合)酸化物を100
ppm以上添加しなければならないことが分かる。図4
に示す通り本発明鋼は、ベース鋼やS減量もしくはS増
量鋼などに比べれば、切屑分断性と横目衝撃値が大きく
改善され、鉛快削鋼並の特性が得られている。
Table 3 and FIGS. 2 to 4 show the evaluation results of the test materials. Table 4 shows the results of the chip breaking judgment of the base steel (No. 14). As can be seen from FIG. 2, when the proportion of the (composite) oxide exceeds 5%, the chip breaking property is greatly improved, and is higher than that of lead free cutting steel or sulfur free cutting steel. As shown in FIG.
In order to improve the chip breaking property, the (composite) oxide should be 100
It turns out that it is necessary to add more than ppm. FIG.
As shown in the figure, the steel of the present invention has significantly improved chip breaking performance and grain impact value as compared with base steel, S-reduced or S-increased steel, and has properties equivalent to those of lead free-cutting steel.

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【発明の効果】本発明は以上の様に構成されており、縦
断面の長径1μm以上の全介在物に占める酸化物の個数
の割合が10%以上であり、かつ、その酸化物のうちN
a,LiおよびBよりなる群から選択される少なくとも
1種の元素の酸化物、もしくはNa,Li,BおよびS
iよりなる群から選択される少なくとも2種の元素の複
合酸化物の個数の割合が5%以上である本発明鋼によれ
ば、C方向の機械的性質も低下せずに切屑分断性に優れ
た機械構造用を提供することができる。
According to the present invention, the ratio of the number of oxides to all the inclusions having a major axis of 1 μm or more in the longitudinal section is 10% or more, and N of the oxides is N.
oxides of at least one element selected from the group consisting of a, Li and B, or Na, Li, B and S
According to the steel of the present invention in which the ratio of the number of composite oxides of at least two elements selected from the group consisting of i is 5% or more, the chip breaking property is excellent without lowering the mechanical properties in the C direction. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実験で採用した切屑処理性の評価基準を示す図
である。
FIG. 1 is a diagram showing evaluation criteria for chip disposability adopted in an experiment.

【図2】供試鋼中の(複合)酸化物の割合と切屑分断性
指数の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a ratio of a (composite) oxide in a test steel and a chip breaking index.

【図3】鋼への酸化物の添加量と切屑分断性指数の関係
を示すグラフである。
FIG. 3 is a graph showing the relationship between the amount of oxide added to steel and the chip breaking index.

【図4】供試鋼のうち、本発明の規定要件を満たす鋼と
比較鋼の横目靭性値と切屑分断性指数を示すグラフであ
る。
FIG. 4 is a graph showing the transverse grain toughness value and the chip breaking index of a test steel and a steel satisfying the requirements of the present invention.

フロントページの続き (72)発明者 家口 浩 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 土田 武広 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 尾崎 勝彦 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 染川 雅実 神戸市灘区灘浜東町2番地 株式会社神戸 製鋼所神戸製鉄所内Continuing on the front page (72) Inventor Hiroshi Ieguchi 1-5-5 Takatsudai, Nishi-ku, Kobe City Inside Kobe Research Institute, Kobe Steel Ltd. (72) Inventor Takehiro Tsuchida 1-5-5, Takatsukadai, Nishi-ku, Kobe City No. Kobe Steel, Ltd.Kobe Research Institute (72) Katsuhiko Ozaki 1-5-5 Takatsukadai, Nishi-ku, Kobe, Japan Kobe Research Institute, Kobe Steel Co., Ltd. (72) Inventor Masami Somegawa Kobe 2 Nadahama-Higashi-cho, Nada-ku Kobe Steel Works, Ltd.Kobe Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量%で C :0.1〜0.6% Si:2.5%以下(0%を含まない) Mn:0.2〜3.0% S :0.150%未満(0%を含まない) O :0.001〜0.015% を含む機械構造用鋼において、該鋼の縦断面に現われる
長径1μm以上の介在物が断面積1mm2当たり50〜
1500個で、該介在物の全量中に占める酸化物の個数
の割合が10%以上で、且つ、該酸化物のうち、Na,
LiおよびBよりなる群から選択される少なくとも1種
の元素の酸化物の個数が5%以上であることを特徴とす
る切屑分断性に優れた機械構造用鋼。
C: 0.1 to 0.6% by mass% Si: 2.5% or less (excluding 0%) Mn: 0.2 to 3.0% S: less than 0.150% ( 0%) O: 0.001 to 0.015% containing steel for machine structural use, inclusions having a major axis of 1 μm or more appearing in a longitudinal section of the steel are 50 to 50 / mm 2.
When the number of oxides is 1500% or more in the total amount of the inclusions, the number of oxides is 10% or more.
A steel for machine structural use excellent in chip breaking, wherein the number of oxides of at least one element selected from the group consisting of Li and B is 5% or more.
【請求項2】 質量%で C :0.1〜0.6% Si:2.5%以下(0%を含まない) Mn:0.2〜3.0% S :0.150%未満(0%を含まない) O :0.001〜0.015% を含む機械構造用鋼において、該鋼の縦断面に現われる
長径1μm以上の介在物が断面積1mm2当たり50〜
1500個で、該介在物の全量中に占める酸化物の個数
の割合が10%以上であり、且つ、該酸化物のうち、N
a,Li,BおよびSiよりなる群から選択される少な
くとも2種の元素の酸化物からなる複合酸化物の個数割
合が5%以上であることを特徴とする切屑分断性に優れ
た機械構造用鋼。
2. C: 0.1 to 0.6% by mass% Si: 2.5% or less (excluding 0%) Mn: 0.2 to 3.0% S: less than 0.150% ( 0%) O: 0.001 to 0.015% containing steel for machine structural use, inclusions having a major axis of 1 μm or more appearing in a longitudinal section of the steel are 50 to 50 / mm 2.
The number of oxides in the total amount of the inclusions is 1500% or more, and among the oxides,
a for a mechanical structure excellent in chip breaking, characterized in that the number ratio of a composite oxide composed of oxides of at least two elements selected from the group consisting of a, Li, B and Si is 5% or more. steel.
【請求項3】 請求項1に記載の機械構造用鋼を製造す
る方法であって、Na,LiおよびSiよりなる群から
選択される少なくとも1種の元素の酸化物からなる融点
が1000℃以下の酸化物を、溶鋼中に100ppm以
上添加することを特徴とする切屑分断性に優れた機械構
造用鋼の製法。
3. The method according to claim 1, wherein the melting point of an oxide of at least one element selected from the group consisting of Na, Li, and Si is 1000 ° C. or less. A method for producing steel for machine structural use having excellent chip breaking properties, characterized by adding 100 ppm or more of the oxide of (1) to molten steel.
【請求項4】 請求項2に記載の機械構造用鋼を製造す
る方法であって、Na,Li,BおよびSiよりなる群
から選択される少なくとも2種の元素の酸化物からなる
融点が1000℃以下の複合酸化物を、溶鋼中に100
ppm以上添加することを特徴とする切屑分断性に優れ
た機械構造用鋼の製法。
4. The method for producing a steel for machine structural use according to claim 2, wherein the melting point of an oxide of at least two elements selected from the group consisting of Na, Li, B and Si is 1000. 100 ° C or less complex oxide in molten steel
A method for producing steel for machine structural use having excellent chip breaking properties, characterized by adding at least ppm.
【請求項5】 融点が1000℃以下である前記酸化物
を、レードル、タンディッシュおよび鋳型の少なくとも
1個所で溶鋼に添加する請求項3または4に記載の製
法。
5. The method according to claim 3, wherein the oxide having a melting point of 1000 ° C. or less is added to molten steel at at least one of a ladle, a tundish and a mold.
JP2000020651A 2000-01-28 2000-01-28 Steel bar for machine structure with excellent chip separation and its manufacturing method Expired - Lifetime JP4264174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000020651A JP4264174B2 (en) 2000-01-28 2000-01-28 Steel bar for machine structure with excellent chip separation and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000020651A JP4264174B2 (en) 2000-01-28 2000-01-28 Steel bar for machine structure with excellent chip separation and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2001214239A true JP2001214239A (en) 2001-08-07
JP4264174B2 JP4264174B2 (en) 2009-05-13

Family

ID=18547178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000020651A Expired - Lifetime JP4264174B2 (en) 2000-01-28 2000-01-28 Steel bar for machine structure with excellent chip separation and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4264174B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001644A1 (en) * 2007-06-28 2008-12-31 Kabushiki Kaisha Kobe Seiko Sho Steel with excellent machinability for mechanical structure
WO2009096260A1 (en) * 2008-01-28 2009-08-06 Kabushiki Kaisha Kobe Seiko Sho Steel for machine structural use with excellent machinability
CN104449679A (en) * 2014-12-25 2015-03-25 英特美光电(苏州)有限公司 LED (light-emitting diode) fluorescent powder cosolvent and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001644A1 (en) * 2007-06-28 2008-12-31 Kabushiki Kaisha Kobe Seiko Sho Steel with excellent machinability for mechanical structure
JP2009007643A (en) * 2007-06-28 2009-01-15 Kobe Steel Ltd Steel for machine structure having excellent machinability
WO2009096260A1 (en) * 2008-01-28 2009-08-06 Kabushiki Kaisha Kobe Seiko Sho Steel for machine structural use with excellent machinability
US8273292B2 (en) 2008-01-28 2012-09-25 Kobe Steel, Ltd. Steel for machine and structural use having excellent machinability
CN104449679A (en) * 2014-12-25 2015-03-25 英特美光电(苏州)有限公司 LED (light-emitting diode) fluorescent powder cosolvent and application thereof

Also Published As

Publication number Publication date
JP4264174B2 (en) 2009-05-13

Similar Documents

Publication Publication Date Title
JP2005054227A (en) Low carbon free cutting steel
JPWO2006129531A1 (en) Low carbon sulfur free cutting steel
TW200302872A (en) Low-carbon free cutting steel
WO2019240209A1 (en) Martensitic s free-cutting stainless steel
JP2002069569A (en) Free cutting steel for machine structure having excellent mechanical property
EP1270757A1 (en) Machine structural steel being free of lead, excellent in machinability and reduced in strength anisotropy
JP2001131684A (en) Steel for machine structure excellent in treatment of chip
KR101044176B1 (en) Low-carbon resulfurized free-cutting steel material
JP5092578B2 (en) Low carbon sulfur free cutting steel
KR100554429B1 (en) Sulfur-containing free-cutting steel
JP2011052299A (en) Bn free-cutting steel having excellent cutting chip treatability
JP2000087179A (en) Steel for machine structural use, excellent in machinability
JP4264174B2 (en) Steel bar for machine structure with excellent chip separation and its manufacturing method
JP2004068128A (en) Steel for machine structural use having excellent chip crushability
JP4023196B2 (en) Machine structural steel with excellent machinability
JP4264175B2 (en) Free-cutting steel bar with excellent machinability and its manufacturing method
JP7469612B2 (en) Steel bar for machine structure and cutting method thereof
JPH07173573A (en) Free-cutting steel excellent in machinability by carbide tool and internal quality
JP2001220645A (en) Lead-free steel for machine structure excellent in machinability and small in anisotropy of strength
JP3901582B2 (en) Free cutting steel for mold
JP5837837B2 (en) High-hardness BN free cutting steel with a tool life of 300HV10 or higher
JP2000319753A (en) Low carbon sulfur base free-cutting steel
JP2001152279A (en) Free cutting steel
TWI747777B (en) Free-cutting steel and its manufacturing method
JPS62103340A (en) Ca free cutting steel for mechanical structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4264174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

EXPY Cancellation because of completion of term