JP5224424B1 - Steel with excellent rolling fatigue life - Google Patents

Steel with excellent rolling fatigue life Download PDF

Info

Publication number
JP5224424B1
JP5224424B1 JP2013005014A JP2013005014A JP5224424B1 JP 5224424 B1 JP5224424 B1 JP 5224424B1 JP 2013005014 A JP2013005014 A JP 2013005014A JP 2013005014 A JP2013005014 A JP 2013005014A JP 5224424 B1 JP5224424 B1 JP 5224424B1
Authority
JP
Japan
Prior art keywords
steel
less
mhz
inclusion
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013005014A
Other languages
Japanese (ja)
Other versions
JP2013253313A (en
Inventor
威史 藤松
典正 常陰
陽亮 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2013005014A priority Critical patent/JP5224424B1/en
Priority to KR1020147024344A priority patent/KR20150010697A/en
Priority to PCT/JP2013/062073 priority patent/WO2013168573A1/en
Priority to TW102115706A priority patent/TWI557237B/en
Application granted granted Critical
Publication of JP5224424B1 publication Critical patent/JP5224424B1/en
Publication of JP2013253313A publication Critical patent/JP2013253313A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Rolling Contact Bearings (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】 軸受、ギア、ハブユニット、トロイダル型CVT装置、等速ジョイント、クランクピン等の転がり疲労寿命に優れ、表面硬さが58HRC以上で機械部品や装置に使用される転がり疲労寿命に優れた鋼を提供する。
【解決手段】 表面硬さ58HRC以上の機械部品用鋼であり、母材の鋳塊に対する鋼材の鍛錬成形比が22.0以上、鋼中の酸素含有量が質量割合で6ppm以下、硫黄含有量が0.003質量%以下であり、探触子周波数が25MHz超〜125MHzの超音波探傷法により、鋼材の体積1000mm3当たりに検出の介在物径が20μm以上かつその介在物径20μm以上で、非金属介在物どうしの最近接距離が40μm未満で、非金属介在物対の個数が2.0個以下で、かつ探触子周波数が25MHz超〜125MHzの超音波探傷法により鋼材総体積3000mm3以上で検出される非金属介在物の最大径が100μm以下である、転がり疲労寿命に優れた鋼。
【選択図】 なし
PROBLEM TO BE SOLVED: To provide excellent rolling fatigue life for bearings, gears, hub units, toroidal type CVT devices, constant velocity joints, crank pins, etc., and for surface fatigue of 58HRC or more to be used for machine parts and devices. Provide steel.
SOLUTION: Steel for machine parts having a surface hardness of 58 HRC or more, a forging ratio of the steel material to the ingot of the base material is 22.0 or more, an oxygen content in the steel is 6 ppm or less, and a sulfur content. Is 0.003 mass% or less, and by the ultrasonic flaw detection method with a probe frequency of more than 25 MHz to 125 MHz, the detected inclusion diameter is 20 μm or more and the inclusion diameter is 20 μm or more per 1000 mm 3 of the steel material, The closest distance between non-metallic inclusions is less than 40 μm, the number of non-metallic inclusion pairs is 2.0 or less, and the total volume of steel is 3000 mm 3 by ultrasonic flaw detection with a probe frequency of 25 MHz to 125 MHz. A steel excellent in rolling fatigue life in which the maximum diameter of non-metallic inclusions detected above is 100 μm or less.
[Selection figure] None

Description

本発明は、軸受、ギア、ハブユニット、トロイダル型CVT装置、等速ジョイント、クランクピンなどの優れた転がり疲労寿命が要求される、表面硬さを58HRC以上に硬化させて使用される機械部品や装置として適用される鋼に関するものである。   The present invention relates to a mechanical component used for curing a surface hardness of 58 HRC or more, such as a bearing, a gear, a hub unit, a toroidal type CVT device, a constant velocity joint, a crankpin, etc. The present invention relates to steel applied as a device.

近年、各種機械装置の高性能化によって、転がり疲労寿命が求められる機械部品や装置の使用環境は過酷化している。それに伴い、これらの部品や装置の寿命向上ならびに信頼性向上に対する要求が高まっている。このような要求に対し、鋼材面の対策としては、鋼成分の適正化や転がり疲労寿命に有害な不純物元素の低減が行われており、寿命の向上ならびに信頼性の向上が図られている。   In recent years, due to the improvement in performance of various mechanical devices, the use environment of mechanical parts and devices that require a rolling fatigue life has become severe. Along with this, there are increasing demands for improving the life and reliability of these components and devices. In response to such demands, measures for steel surfaces include optimization of steel components and reduction of impurity elements that are harmful to rolling fatigue life, thereby improving life and improving reliability.

鋼組成に含有の不純物元素のうち、例えば、酸素はアルミナなどの破損の起点となりうる酸化物系介在物を構成する元素である。したがって、特に有害性が高い酸素に関しては、ppmオーダーへの低減が行われている。さらに高い品質が求められる場合には、VAR、ESRなどの特殊溶解によって、さらなる酸素量の低減が行われる場合もある。また、他の不純物元素に関しても、その含有量を0.01質量%オーダーまで低減することによって、それらの悪影響を防止する対策がとられている。   Among the impurity elements contained in the steel composition, for example, oxygen is an element that constitutes oxide inclusions that can be a starting point of damage such as alumina. Therefore, especially oxygen with high toxicity has been reduced to the ppm order. When higher quality is required, the oxygen amount may be further reduced by special dissolution such as VAR and ESR. In addition, measures are taken to prevent adverse effects of other impurity elements by reducing their content to the order of 0.01% by mass.

鋼中の酸素量が少ない高清浄度鋼については、種々提案されている。これらの提案の中で、鋼中酸素含有量が10ppm未満であり、かつ、電子ビーム溶融法により浮上させ、凝集させた酸化物系介在物の表面露出面積が1グラム当たり20μm2以下であることを特徴とする高清浄度軸受用鋼が提案されている(例えば、特許文献1参照。)。さらに、精錬のプロセス制約を受けず、製造コストの増加を招くことなく、汎用の長寿命の鋼が提案されている(例えば、特許文献2参照。)。さらに、疲労強度が要求される部品設計のために必要となる、所定体積中に存在が予測される最大介在物の大きさを保証した鋼が提案されている(例えば、特許文献3参照。)。また、最大介在物径が略100μm以下の介在物については極値統計法を適用し、最大介在物径が略100μm以上の介在物については探傷周波数を5〜25MHzとした超音波探傷法を適用するなどの両手法を併用する評価方法の提案がある(例えば、特許文献4参照。)。また、さらに径が100μm未満の介在物について探傷周波数を20〜125MHzとした超音波探傷法により評価することにより、転がり疲労寿命に優れた鋼としての介在物の個数と大きさを規定した鋼が提案されている(例えば、特許文献5参照)。 Various proposals have been made for high cleanliness steel with a low oxygen content in the steel. Among these proposals, the oxygen content in the steel is less than 10 ppm, and the exposed surface area of the oxide inclusions floated and aggregated by the electron beam melting method is 20 μm 2 or less per gram. Has been proposed (see, for example, Patent Document 1). Furthermore, a general-purpose long-life steel has been proposed without being subjected to refining process restrictions and without causing an increase in manufacturing cost (see, for example, Patent Document 2). Furthermore, steel that guarantees the size of the maximum inclusion that is expected to exist in a predetermined volume, which is necessary for designing parts that require fatigue strength, has been proposed (see, for example, Patent Document 3). . The extreme statistical method is applied to inclusions with a maximum inclusion diameter of approximately 100 μm or less, and the ultrasonic flaw detection method with a flaw detection frequency of 5 to 25 MHz is applied to inclusions with a maximum inclusion diameter of approximately 100 μm or more. There is a proposal of an evaluation method that uses both methods such as (see, for example, Patent Document 4). In addition, by evaluating the inclusion having a diameter of less than 100 μm by an ultrasonic flaw detection method with a flaw detection frequency of 20 to 125 MHz, a steel in which the number and size of inclusions as steel having excellent rolling fatigue life is specified. It has been proposed (see, for example, Patent Document 5).

特開平6−192790号公報JP-A-6-192790 特開2002−220638号公報JP 2002-220638 A 特開平11−194121号公報JP-A-11-194121 特開2006−317192号公報JP 2006-317192 A 特開2008−121035号公報JP 2008-121035 A

発明者らは、優れた転がり疲労寿命が求められる機械部品における計算寿命に対して極めて早期の破損を抑えるために、その信頼性の目安としてL1寿命(同一ロットの試験片を同じ条件で試験した場合に、そのうちの99%の試験片がはく離することなく回転するcycle数)に注目し、その向上を目指して超音波探傷法による鋼中非金属介在物の評価結果を客観的な指標として鋭意研究を行った。先ず、超音波探傷法による鋼中の非金属介在物の検出に関し、非金属介在物のうち、酸化物は冷間から熱間のいずれの加工温度域においても、母相の鋼より著しく硬質な介在物であり、圧延や鍛造時に母相に追従して変形しにくいために、加工後に母相と密着していない部分を有する場合があり、そのため、超音波探傷法にて比較的容易に検出することが可能である。ところで、転がり疲労寿命に対する酸化物系介在物の悪影響を軽減するためには、少なくとも鋼中の酸素含有量を6ppm以下とする必要があることが分かった。 In order to suppress extremely early damage to the calculated life of mechanical parts that require excellent rolling fatigue life, the inventors have used L 1 life (test specimens of the same lot under the same conditions) as a measure of reliability. In this case, 99% of the specimens are cycled without peeling, and the objective is to evaluate the evaluation results of non-metallic inclusions in steel by ultrasonic flaw detection with the aim of improving the number of specimens. We conducted intensive research. First, regarding the detection of non-metallic inclusions in steel by ultrasonic flaw detection, among non-metallic inclusions, oxides are significantly harder than the parent phase steel in any processing temperature range from cold to hot. Since it is an inclusion and does not easily deform following the parent phase during rolling or forging, it may have a part that is not in close contact with the parent phase after processing, so it can be detected relatively easily by ultrasonic flaw detection. Is possible. By the way, in order to reduce the adverse effect of oxide inclusions on the rolling fatigue life, it has been found that at least the oxygen content in the steel needs to be 6 ppm or less.

一方で、発明者らは、非金属介在物のうちで、硫化物は、熱間や冷間での圧延や鍛造時において、比較的母相の鋼に良く追従して変形しやすい軟質の介在物であり、この母相との密着性が良好な特徴により、硫化物は酸化物に比べて超音波探傷法では検出しにくい介在物であることを見出した。そして、実際には鋼中に存在しているものの超音波探傷法により検出できない一部の硫化物系介在物の存在が、転がり疲労寿命低下の一因となる場合があることが分かった。そこで、鋼中の硫黄含有量について検討した結果、鋼中の硫黄含有量は少なくとも0.003質量%以下に規制する必要があることを見出した。   On the other hand, among the non-metallic inclusions, the inventors have found that the sulfide is a soft inclusion that tends to deform relatively well following the parent phase steel during hot or cold rolling or forging. It was found that sulfides are inclusions that are difficult to detect by ultrasonic flaw detection compared to oxides due to the characteristics of good adhesion to the matrix. It has been found that the presence of some sulfide inclusions that are actually present in steel but cannot be detected by the ultrasonic flaw detection method may contribute to a reduction in rolling fatigue life. Then, as a result of examining the sulfur content in the steel, it was found that the sulfur content in the steel needs to be regulated to at least 0.003% by mass or less.

さらに発明者らの鋭意研究によれば、転がり疲労寿命(L1寿命)の優れた鋼とするためには、上記したように鋼中の酸素含有量を6ppm以下とし、かつ鋼中の硫黄含有量を0.003質量%以下に規制するのに加えて、探触子周波数25MHzを超え、125MHz以下での超音波探傷により、3000mm3以上の鋼材体積を探傷した場合において、介在物径が20μm以上で、かつその介在物径が20μm以上の非金属介在物どうしの最近接距離が40μm未満である非金属介在物対の個数を鋼材体積1000mm3当たりに2.0個以下であるように規制すれば良いことが分かった。介在物径が20μm程度の介在物は、それ単独では極めて短寿命でのはく離をもたらす大きさのものではないが、たとえ20μm程度の介在物であっても、そのような大きさを持つ非金属介在物どうしの最近接距離が40μm未満である場合には、あたかも大型の介在物であるように振る舞い、極めて短寿命でのはく離をもたらすので、そのような非金属介在物対の鋼中の存在頻度を1000mm3当たりに2.0個以下であるようにすれば、実用的に転がり疲労寿命(L1寿命)の優れた鋼を得ることが可能となることを見出した。 Furthermore, according to the earnest study by the inventors, in order to obtain a steel having an excellent rolling fatigue life (L 1 life), the oxygen content in the steel is set to 6 ppm or less and the sulfur content in the steel is as described above. In addition to restricting the amount to 0.003 mass% or less, in the case where a steel material volume of 3000 mm 3 or more is detected by ultrasonic flaw detection at a probe frequency exceeding 25 MHz and 125 MHz or less, the inclusion diameter is 20 μm. The number of non-metallic inclusion pairs in which the closest distance between non-metallic inclusions whose inclusion diameter is 20 μm or more is less than 40 μm is 2.0 or less per 1000 mm 3 of steel volume. I knew that I should do it. Inclusions having an inclusion diameter of about 20 μm are not large enough to cause separation with an extremely short life, but even non-metallic inclusions having a size of about 20 μm have such a size. When the closest distance between inclusions is less than 40 μm, it behaves as if it is a large inclusion, resulting in separation with a very short life, so the presence of such non-metallic inclusion pairs in steel It has been found that if the frequency is 2.0 or less per 1000 mm 3, it is possible to obtain a steel having an excellent rolling fatigue life (L 1 life).

また、介在物径が100μmを超えるような非金属介在物は、それ単独であっても極めて短寿命でのはく離をもたらす原因となるので、探触子周波数25MHzを超え、125MHz以下での超音波探傷法によって、3000mm3以上の鋼材体積を探傷した場合に検出される非金属介在物の最大径が100μm以下である必要がある。また、超音波探傷法によって検出することが比較的困難な硫化物系介在物に対して、転がり疲労寿命に対して有害な近接した介在物分散状態を回避するために、鋼材の鍛錬成形比(=母材鋳塊の断面積/鋼材の断面積)は少なくとも22.0以上確保する必要がある。 In addition, non-metallic inclusions whose inclusion diameter exceeds 100 μm may cause separation with an extremely short life even if they are used alone. Therefore, an ultrasonic wave having a probe frequency exceeding 25 MHz and not exceeding 125 MHz. The maximum diameter of non-metallic inclusions detected when a steel material volume of 3000 mm 3 or more is detected by the flaw detection method needs to be 100 μm or less. In addition, for sulfide inclusions that are relatively difficult to detect by ultrasonic flaw detection, in order to avoid the proximity inclusion dispersion state that is harmful to the rolling fatigue life, = Cross sectional area of base material ingot / cross sectional area of steel material) must be at least 22.0 or more.

上記した、引用文献1〜3に記載の鋼では、発生頻度は稀であるものの実用上有害な極めて短寿命でのはく離を抑制した、転がり疲労寿命に優れる鋼を安定して提供する際に、転がり疲れが要求される部品における計算寿命に対して、極めて早期のアクシデンタルなはく離を引き起こす原因となる、介在物径が20μm以上で、かつその20μm以上の径の介在物どうしの最近接距離が40μm未満であるような非金属介在物対は、極めて低い確率で鋼中に存在しているため、それらの有無を検出することは非常に困難である。また、2次元観察を主体とする従来技術によっては、被検面積が小さいために、鋼材の大体積を検査しようとすると多大な時間を要し、鋼材の良否を判断することができない。また、引用文献1に記載の鋼では、介在物の融解および凝集が起こるため、正確な介在物径や介在物どうしの間隔を評価することはできない。   In the steels described in the above cited references 1 to 3, when the occurrence frequency is rare, it is possible to stably provide a steel excellent in rolling fatigue life, which is suppressed in practical use and has an extremely short life, and is excellent in rolling fatigue life. The inclusion diameter is 20 μm or more, and the closest distance between the inclusions having a diameter of 20 μm or more is 40 μm, which causes an extremely early accidental peeling for the calculated life in a part requiring rolling fatigue. Such non-metallic inclusion pairs that are less than are present in steel with a very low probability, so it is very difficult to detect their presence or absence. In addition, depending on the conventional technique mainly based on two-dimensional observation, since the test area is small, it takes a lot of time to inspect a large volume of the steel material, and the quality of the steel material cannot be determined. Further, in the steel described in Patent Document 1, since inclusions melt and aggregate, the exact inclusion diameter and the interval between the inclusions cannot be evaluated.

また、引用文献4に記載の方法では、最大介在物径が100μm未満である非金属介在物については極値統計法を適用し、介在物径が100μm以上である非金属介在物については探傷周波数を5〜25MHzとした超音波探傷法を適用するなどの併用による評価方法を提案している。しかしながら、極値統計法は2次元観察による評価方法であるため、上述と同様に被検面積が小さく、鋼中の存在頻度が低い介在物径が20μm以上の非金属介在物について見た場合の鋼材の良否を十分に判断できるとは言い難い。一方、探傷周波数を5〜25MHzとした超音波探傷法では、検出可能な介在物径は100μm以上の程度のものであるため、介在物径が20μm以上で、かつその介在物径が20μm以上の非金属介在物どうしの間隔が40μm未満であるような非金属介在物対の個数については、上記の探傷周波数の帯域の超音波ビームでは評価困難であることから、L1寿命に優れた鋼を安定して提供できる評価方法とは言い難い。 In the method described in the cited document 4, the extreme value statistical method is applied to nonmetallic inclusions whose maximum inclusion diameter is less than 100 μm, and the flaw detection frequency is used for nonmetallic inclusions whose inclusion diameter is 100 μm or more. An evaluation method based on a combination of, for example, applying an ultrasonic flaw detection method with a frequency of 5 to 25 MHz is proposed. However, since the extreme value statistical method is an evaluation method based on two-dimensional observation, as in the case described above, the non-metallic inclusions having a small test area and a low inclusion frequency in steel with a diameter of 20 μm or more are observed. It is hard to say that the quality of steel can be judged sufficiently. On the other hand, in the ultrasonic flaw detection method with a flaw detection frequency of 5 to 25 MHz, since the detectable inclusion diameter is about 100 μm or more, the inclusion diameter is 20 μm or more, and the inclusion diameter is 20 μm or more. the number of non-metallic inclusions pairs as spacing nonmetallic inclusions each other is less than 40 [mu] m, since the ultrasonic beam band of the flaw detection frequency is difficult evaluation, excellent steel L 1 life It is hard to say that the evaluation method can be provided stably.

また、引用文献5に記載の方法では、硫黄含有量が0.008質量%以下で、かつ、超音波探傷法により鋼材体積300mm3当たりに検出される介在物径が20μm以上である非金属介在物の個数を300mm3当たりに12個以下であるように規定した、転がり疲労寿命に優れた鋼(スラスト型転がり疲労試験にて、最大ヘルツ応力Pmax=5.3GPaでL10寿命>1.0×107cycleが得られる鋼)およびその評価方法を提案している。ただし、硫黄含有量の規制が十分では無く、また、使用中の軸受が計算寿命より極めて早期にアクシデンタルに破損することに対する信頼性の指標となる介在物径が20μm以上で、かつその20μm以上の径の介在物どうしの最近接距離が40μm未満であるような非金属介在物対の個数を評価していないため、L1寿命に優れた鋼を安定して提供できる鋼とは言い難い。 Further, in the method described in the cited document 5, the non-metallic inclusions having a sulfur content of 0.008 mass% or less and an inclusion diameter detected per 300 mm 3 of steel material volume by an ultrasonic flaw detection method is 20 μm or more. Steel having an excellent rolling fatigue life specified to be 12 or less per 300 mm 3 (in a thrust type rolling fatigue test, the maximum hertz stress P max = 5.3 GPa and the L 10 life> 1. A steel capable of obtaining 0 × 10 7 cycle) and its evaluation method are proposed. However, the regulation of the sulfur content is not sufficient, and the inclusion diameter is 20 μm or more, and the inclusion diameter is 20 μm or more, which is an index of reliability against accidental damage to the bearing in use extremely early than the calculated life. since the closest distance of inclusions each other in diameter is not evaluated the number of nonmetallic inclusions pairs as less than 40 [mu] m, it is hard to say that the steel which can stably provide an excellent steel L 1 life.

本発明は、このような従来の問題を解決するためになされたもので、本発明が解決しようとする課題は、鋼材の鍛錬成形比を一定値以上に確保し、かつ鋼中の酸素含有量と硫黄含有量を規制するとともに超音波探傷法により鋼中の非金属介在物を大体積で検出し、かつ一定大きさ以上の介在物径を有する非金属介在物どうしの最近接距離が一定距離以下となるような非金属介在物対の個数を制限し、かつ超音波探傷法による鋼中非金属介在物の最大大きさを制限することにより、転がり疲労寿命に優れた機械用部品に使用される鋼を提供することである。   The present invention has been made in order to solve such a conventional problem, and the problem to be solved by the present invention is to secure a forging ratio of the steel material at a certain value or more, and the oxygen content in the steel. In addition, the non-metallic inclusions in steel are detected in a large volume by ultrasonic flaw detection, and the closest distance between non-metallic inclusions with inclusion diameters of a certain size or more is constant. It is used for machine parts with excellent rolling fatigue life by limiting the number of non-metallic inclusion pairs as follows and limiting the maximum size of non-metallic inclusions in steel by ultrasonic flaw detection. Is to provide steel.

上記の課題を解決するための本発明の手段は、第1の手段では、表面硬さを58HRC以上とする機械部品に用いる鋼であって、母材鋳塊に対する鋼材の鍛錬成形比が22.0以上であり、鋼中の酸素含有量が質量割合で6ppm以下、硫黄含有量が0.003質量%以下であり、探触子周波数25MHzを超え、125MHz以下である超音波探傷法により、鋼材の体積1000mm3当たりに検出される介在物径が20μm以上で、かつその20μm以上の径の非金属介在物どうしの最近接距離が40μm未満である非金属介在物対の個数が2.0個以下であり、かつ、探触子周波数25MHzを超え、125MHz以下の超音波探傷法により鋼材総体積3000mm3以上で検出される非金属介在物の最大径が100μm以下である、転がり疲労寿命に優れた鋼である。 The means of the present invention for solving the above-mentioned problems is a steel used for a machine part having a surface hardness of 58 HRC or higher in the first means, wherein the steel material has a forging ratio of 22.2. Steel material by an ultrasonic flaw detection method in which the oxygen content in steel is 6 ppm or less, the sulfur content is 0.003 mass% or less, the probe frequency exceeds 25 MHz and is 125 MHz or less. The number of inclusions detected per volume of 1000 mm 3 is 20 μm or more, and the number of non-metallic inclusion pairs in which the closest distance between nonmetallic inclusions having a diameter of 20 μm or more is less than 40 μm is 2.0. less and, and, beyond the probe frequency 25 MHz, the maximum diameter of nonmetallic inclusions detected by 125MHz following ultrasonic flaw detection method of steel total volume 3000 mm 3 or more is 100μm or less, rolling is It is an excellent steel in fatigue life.

第2の手段では、表面硬さを58HRC以上とする機械部品に用いる鋼であって、母材鋳塊に対する鋼材の鍛錬成形比が22.0以上であり、鋼中の酸素含有量が質量割合で6ppm以下、硫黄含有量が0.003質量%以下であり、探触子周波数25MHzを超え、125MHz以下の超音波探傷法により、鋼材の体積1000mm3当たりに検出される介在物径が20μm以上で、かつその20μm以上の径の非金属介在物どうしの最近接距離が40μm未満である非金属介在物対の個数が2.0個以下であり、かつ、探触子周波数25MHzを超え、125MHz以下の超音波探傷法により鋼材総体積3000mm3以上で検出される非金属介在物の最大径が100μm以下であり、前記の介在物径が20μm以上で、かつその20μm以上の径の非金属介在物どうしの最近接距離が40μm未満である非金属介在物対の個数は、超音波探傷法により総体積3000mm3以上で、かつ300000mm3以下である鋼材を探傷することにより評価されたものであり、かつ、前記の非金属介在物の最大径が100μm以下であることを評価するための超音波探傷においては総体積300000mm3以下の鋼材を探傷することにより評価されたものである、転がり疲労寿命に優れた鋼である。 In the second means, steel used for machine parts having a surface hardness of 58 HRC or higher, the forging ratio of the steel to the base metal ingot is 22.0 or higher, and the oxygen content in the steel is a mass ratio. 6 ppm or less, the sulfur content is 0.003 mass% or less, the inclusion diameter detected per volume of 1000 mm 3 of steel is 20 μm or more by an ultrasonic flaw detection method with a probe frequency exceeding 25 MHz and 125 MHz or less. And the number of non-metallic inclusion pairs whose closest distance between non-metallic inclusions having a diameter of 20 μm or more is less than 40 μm is 2.0 or less, and the probe frequency exceeds 25 MHz, and 125 MHz. The maximum diameter of non-metallic inclusions detected at a steel material total volume of 3000 mm 3 or more by the following ultrasonic flaw detection method is 100 μm or less, and the inclusion diameter is 20 μm or more, and 20 μm or more thereof. The number of non-metallic inclusions pair closest distance is less than 40μm of non-metallic inclusions each other in diameter, in a total volume of 3000 mm 3 or more by ultrasonic flaw detection, and by testing the steel is 300000Mm 3 or less What was evaluated and evaluated by testing a steel material having a total volume of 300,000 mm 3 or less in ultrasonic testing for evaluating that the maximum diameter of the non-metallic inclusions is 100 μm or less. It is a steel excellent in rolling fatigue life.

第3の手段では、前述した転がり疲労寿命に優れた鋼としては、JIS規格において規定される高炭素クロム軸受鋼鋼材(SUJ)、ならびにSAE規格またはASTM規格A295において規定される52100、ならびにDIN規格において規定される100Cr6、ならびにJIS規格において規定される機械構造用炭素鋼鋼材(SC)、ならびに機械構造用合金鋼鋼材のうちのクロム鋼(SCr)およびクロムモリブデン鋼(SCM)およびニッケルクロムモリブデン鋼(SNCM)から選択したいずれか1種の鋼が挙げられる。   In the third means, the steel having excellent rolling fatigue life as described above includes high carbon chromium bearing steel (SUJ) defined in JIS standard, 52100 defined in SAE standard or ASTM standard A295, and DIN standard. Among the steels for mechanical structure defined in JIS, carbon steel (SC) for mechanical structure (SC), and alloy steel for mechanical structure, chromium steel (SCr), chromium molybdenum steel (SCM) and nickel chromium molybdenum steel Any one kind of steel selected from (SNCM) is mentioned.

本発明の転がり疲労寿命に優れた鋼では、このような従来の問題を解決するためになされたもので、鋼材の鍛錬成形比を規制し、かつ鋼中の酸素含有量と硫黄含有量を規制するとともに超音波探傷法により鋼中の非金属介在物を大体積で検出して、一定大きさ以上の介在物径を有する非金属介在物どうしの最近接距離が一定距離以下であるような非金属介在物対の個数を制限し、かつ超音波探傷法による鋼中非金属介在物の最大大きさを制限することにより、転がり疲労寿命に優れた機械用部品に使用される鋼を提供することが可能となる。   The steel excellent in rolling fatigue life of the present invention was made to solve such a conventional problem, and regulates the forging ratio of the steel material and regulates the oxygen content and sulfur content in the steel. In addition, non-metallic inclusions in steel are detected in a large volume by ultrasonic flaw detection, and the closest distance between non-metallic inclusions having inclusion diameters greater than a certain size is less than a certain distance. To provide steel used for machine parts with excellent rolling fatigue life by limiting the number of metal inclusion pairs and limiting the maximum size of nonmetallic inclusions in steel by ultrasonic flaw detection. Is possible.

本発明の実施の形態である転がり疲労寿命に優れた鋼について、以下に表を参照して詳細に説明をする。   The steel excellent in rolling fatigue life according to the embodiment of the present invention will be described in detail with reference to the following table.

本発明の実施の形態である転がり疲労寿命に優れた鋼は、表面硬さを58HRC以上とする機械部品に用いる鋼であって、母材である鋳塊に対する鋼材の鍛錬成形比が22.0以上であり、鋼中の酸素含有量が質量割合で6ppm以下で、硫黄含有量が0.003質量%以下である。さらに、探触子周波数25MHzを超え、125MHz以下の超音波探傷法により、鋼材の体積1000mm3当たりに検出される介在物径が20μm以上で、かつその20μm以上の径の非金属介在物どうしの最近接距離が40μm未満である、非金属介在物対の個数が2.0個以下であり、かつ、探触子周波数25MHzを超え、125MHz以下の超音波探傷法により、鋼材総体積3000mm3以上で検出される非金属介在物の最大径が100μm以下である鋼である。 The steel excellent in rolling fatigue life according to the embodiment of the present invention is steel used for machine parts having a surface hardness of 58 HRC or more, and has a forging ratio of 22.0 to the ingot as a base material. Thus, the oxygen content in the steel is 6 ppm or less by mass and the sulfur content is 0.003 mass% or less. Furthermore, by the ultrasonic flaw detection method exceeding the probe frequency 25 MHz and 125 MHz or less, the inclusion diameter detected per 1000 mm 3 of the steel material is 20 μm or more, and the nonmetallic inclusions having a diameter of 20 μm or more are used. The closest distance is less than 40 μm, the number of non-metallic inclusion pairs is 2.0 or less, and the total frequency of steel is 3000 mm 3 or more by ultrasonic flaw detection with a probe frequency exceeding 25 MHz and 125 MHz or less. The maximum diameter of non-metallic inclusions detected in (1) is 100 μm or less.

転がり疲労を受ける部品においては、鋼からある大きさ以上の非金属介在物を少なくすることが特性向上に対して重要である。軸受の転走面下に有害な大きさの非金属介在物が存在すれば、はく離を発生させることから、軸受の転走面下の危険部位に出現する非金属介在物の大きさを小さくすることが軸受の寿命向上に対して極めて重要である。計算寿命に達することなく、極めて早期にはく離を引き起こす介在物径としては、介在物径が20μm級の非金属介在物はそれ単独では有害性は低い。ただし、20μm級の非金属介在物であっても、それと同等以上の大きさを有する別の非金属介在物との3次元的な最近接距離が40μm未満である場合には、早期はく離を引き起こす有害介在物として振舞う。また、100μmを超えるような非金属介在物はそれ単独でも早期はく離の原因となる。したがって、介在物径が20μm以上で、かつその20μm以上の非金属介在物どうしの最近接距離が40μm未満である非金属介在物対の個数と、介在物径が100μmを超える非金属介在物の存在頻度を極めて少なく、かつそれが評価保証されている鋼を用いることにより、部品の転送面下の危険部位(すなわち、転がり疲労を強く受ける部分)に介在物が存在する確率を極めて低くすることが可能となり、早期はく離を抑制することができる。   In parts subjected to rolling fatigue, it is important to improve properties to reduce non-metallic inclusions of a certain size or more from steel. If non-metallic inclusions with a detrimental size exist under the rolling surface of the bearing, separation will occur, so the size of non-metallic inclusions that appear in the hazardous area under the rolling surface of the bearing will be reduced. This is extremely important for improving the life of the bearing. As inclusion diameters that cause separation very early without reaching the calculated life, non-metallic inclusions having an inclusion diameter of 20 μm are not harmful by themselves. However, even if it is a non-metallic inclusion of a 20 μm class, if the three-dimensional closest distance to another non-metallic inclusion having a size equal to or larger than that is less than 40 μm, it causes early separation. Act as a harmful inclusion. In addition, non-metallic inclusions exceeding 100 μm alone cause early peeling. Therefore, the number of nonmetallic inclusion pairs whose inclusion diameter is 20 μm or more and the closest distance between the nonmetallic inclusions of 20 μm or more is less than 40 μm, and the nonmetallic inclusions whose inclusion diameter exceeds 100 μm. By using steel that has a very low existence frequency and is guaranteed to be evaluated, the probability that inclusions will be present in dangerous parts (that is, parts that are subject to rolling fatigue) under the transfer surface of parts is extremely low. This makes it possible to suppress early peeling.

そこで、本発明の第1の手段の実施の形態の転がり疲労寿命に優れた鋼では、その特性を保証する評価方法として、超音波探傷法が適用される。この超音波探傷法では、探触子周波数25MHzを超え、125MHz以下の超音波探傷法により、鋼材の体積1000mm3当たりに検出される非金属介在物の介在物径が20μm以上で、かつその20μm以上の非金属介在物どうしの最近接距離が40μm未満である、非金属介在物対の個数が2.0個以下であり、かつ探触子周波数25MHzを超え、125MHz以下の超音波探傷法により、鋼材総体積3000mm3以上で検出される非金属介在物の最大径が100μm以下に規制されている。 Therefore, the ultrasonic flaw detection method is applied as an evaluation method for assuring the characteristics of the steel having excellent rolling fatigue life according to the first embodiment of the present invention. In this ultrasonic flaw detection method, the inclusion diameter of the nonmetallic inclusion detected per 1000 mm 3 of the volume of the steel material is 20 μm or more by the ultrasonic flaw detection method exceeding the probe frequency 25 MHz and 125 MHz or less, and 20 μm. The closest distance between the non-metallic inclusions is less than 40 μm, the number of non-metallic inclusion pairs is 2.0 or less, and the probe frequency exceeds 25 MHz and the ultrasonic flaw detection method is 125 MHz or less. The maximum diameter of non-metallic inclusions detected with a steel material total volume of 3000 mm 3 or more is regulated to 100 μm or less.

さらに、第2の手段の実施の形態の転がり疲労寿命に優れた鋼では、その特性を保証する方法として適用した超音波探傷法における、非金属介在物の介在物径が20μm以上で、かつその20μm以上の非金属介在物どうしの最近接距離が40μm未満である非金属介在物対の個数、ならびに本実施の形態の非金属介在物における、最大径が100μm以下である点は、超音波探傷法により総体積3000mm3以上で、かつ300000mm3以下を探傷することにより評価されたものである。 Further, in the steel having an excellent rolling fatigue life according to the embodiment of the second means, the inclusion diameter of the nonmetallic inclusion in the ultrasonic flaw detection method applied as a method for guaranteeing the characteristics is 20 μm or more, and The number of non-metallic inclusion pairs in which the closest distance between non-metallic inclusions of 20 μm or more is less than 40 μm, and the point that the maximum diameter of the non-metallic inclusion of the present embodiment is 100 μm or less are ultrasonic flaw detection in a total volume of 3000 mm 3 or more by law, and those that have been evaluated by testing the 300000Mm 3 below.

又さらに、第3の手段の実施の形態の転がり疲労寿命に優れた鋼としては、軸受をはじめとする転がり疲労寿命が要求される用途に用いられる鋼種であることが望ましい。具体的には、JIS規格において規定される高炭素クロム軸受鋼鋼材(SUJ)、ならびにSAE規格またはASTM規格A295において規定される52100、ならびにDIN規格において規定される100Cr6、ならびにJIS規格において規定される機械構造用炭素鋼鋼材(SC)、ならびに機械構造用合金鋼鋼材のうちのクロム鋼(SCr)およびクロムモリブデン鋼(SCM)およびニッケルクロムモリブデン鋼(SNCM)から選択したものである鋼が挙げられる。また、例えば、SAE規格の4320、5120、4140、1053、1055などのようにJIS規格に対応した外国規格鋼について本発明の適用が可能である。   Still further, the steel excellent in rolling fatigue life according to the embodiment of the third means is preferably a steel type used for applications requiring rolling fatigue life such as bearings. Specifically, high carbon chromium bearing steel (SUJ) specified in JIS standard, 52100 specified in SAE standard or ASTM standard A295, 100Cr6 specified in DIN standard, and specified in JIS standard Carbon steel for machine structure (SC), and steel selected from chrome steel (SCr), chrome molybdenum steel (SCM) and nickel chrome molybdenum steel (SNCM) among alloy steels for machine structure . For example, the present invention can be applied to foreign standard steels corresponding to JIS standards such as SAE standards 4320, 5120, 4140, 1053, and 1055.

なお、超音波探傷法においては、既に様々な種類の超音波探傷装置や探触子が実用化されており、本発明ではこれらのものを利用することができる。好ましい探触子としては、焦点型高周波探触子などが挙げられる。フラット型探触子の検出能は1/2波長といわれているが、焦点型探触子では1/4波長であり、したがって、精度の良い評価に対しては焦点型探触子が好適である。なお、本実施の形態における探触子周波数は25MHzを超え、125MHz以下のものが良く、特に好ましくは30〜100MHz程度である。   In the ultrasonic flaw detection method, various types of ultrasonic flaw detectors and probes have already been put into practical use, and these can be used in the present invention. As a preferred probe, a focus type high frequency probe and the like can be cited. The detection capability of the flat probe is said to be ½ wavelength, but the focus probe is ¼ wavelength. Therefore, the focus probe is suitable for accurate evaluation. is there. Note that the probe frequency in this embodiment is preferably greater than 25 MHz and not greater than 125 MHz, and particularly preferably about 30 to 100 MHz.

本実施の形態の転がり疲労寿命に優れた鋼においては、非金属介在物の介在物径が20μm以上で、かつその20μm以上の非金属介在物どうしの最近接距離が40μm未満である非金属介在物対の個数、ならびに非金属介在物の最大径が100μm以下であることは、既に上記したように、超音波探傷法により総体積3000mm3以上で、300000mm3以下を探傷し、非金属介在物を検出することが好ましい。 In the steel having an excellent rolling fatigue life according to the present embodiment, the nonmetallic inclusions whose nonmetallic inclusions have an inclusion diameter of 20 μm or more and the closest distance between the nonmetallic inclusions of 20 μm or more is less than 40 μm. the number of objects pair, and the maximum diameter of the nonmetallic inclusions is 100μm or less, as already described above, the ultrasonic flaw detection method in a total volume of 3000 mm 3 or more, and testing the 300000Mm 3 below, non-metallic inclusions Is preferably detected.

超音波探傷において、介在物径が20μm以上で、かつその20μm以上の非金属介在物どうしの最近接距離が40μm未満である非金属介在物対の個数、ならびに非金属介在物最大径が100μm以下であることを確認するための探傷総体積を3000mm3以上で、かつ300000mm3以下とした理由は、L1寿命を性能指標とする極めて短寿命でのはく離を抑制可能な転がり疲労寿命に優れる鋼を提供する上で、評価精度の点から満足できる評価結果を得るために必要なためである。なおかつ、本実施の形態の超音波探傷法における評価体積は、従来の顕微鏡観察を主体とする評価方法では、処理時間が膨大となるので、現実的には評価不可能なものである。さらに汎用的な手段として、超音波探傷法以外の方法では、大体積の鋼材中に存在する介在物どうしの最近接距離を3次元的に評価することは不可能である。超音波探傷を行なうに当たっては、試験片の表面から探触子の周波数に応じた深さまでの不感帯領域を評価体積から除外し、必要に応じて熱処理等による組織異常や超音波探傷における測定ノイズの影響を受けやすい試験片の端部を焦点位置での超音波ビームの探傷範囲から除外した上で、探触子の周波数、性能に応じた水中焦点距離範囲に基づいて、超音波探傷における評価体積を3000mm3以上で、かつ300000mm3以下を確保する必要がある。また、40μmをしきい値とする介在物どうしの間隔を識別できるように適切な探傷ピッチを設定する必要がある。 In ultrasonic flaw detection, the number of nonmetallic inclusion pairs whose inclusion diameter is 20 μm or more and the closest distance between the nonmetallic inclusions of 20 μm or more is less than 40 μm, and the maximum nonmetallic inclusion diameter is 100 μm or less. flaw detection total volume to ensure that it is in 3000 mm 3 or more, and the reason for the 300000Mm 3 or less, the steel is excellent in rolling fatigue life can be suppressed peeling at very short life for the L 1 life and performance index This is because it is necessary to obtain a satisfactory evaluation result in terms of evaluation accuracy. In addition, the evaluation volume in the ultrasonic flaw detection method of the present embodiment cannot be evaluated practically because the processing time is enormous in the conventional evaluation method mainly based on microscopic observation. Furthermore, as a general-purpose means, it is impossible to three-dimensionally evaluate the closest distance between inclusions existing in a large volume steel material by a method other than the ultrasonic flaw detection method. In performing ultrasonic flaw detection, the dead zone region from the surface of the specimen to the depth corresponding to the probe frequency is excluded from the evaluation volume, and if necessary, tissue abnormalities due to heat treatment etc. and measurement noise in ultrasonic flaw detection are detected. Evaluation volume in ultrasonic flaw detection based on the underwater focal length range according to the frequency and performance of the probe after excluding the end of the sensitive specimen from the flaw detection range of the ultrasonic beam at the focal position the need to ensure at 3000 mm 3 or more, and 300000Mm 3 below. In addition, it is necessary to set an appropriate flaw detection pitch so that the interval between inclusions having a threshold value of 40 μm can be identified.

以上、説明したように、本実施の形態の転がり疲労寿命に優れた鋼によれば、鋼材の鍛錬成形比を規制し、かつ鋼中の酸素含有量と硫黄含有量を規制すると共に、超音波探傷法により鋼中の非金属介在物を大体積で検出し、一定大きさ以上の介在物径を有する非金属介在物どうしの最近接距離が一定距離以下であるような非金属介在物対の個数を制限し、かつ超音波探傷法による鋼中非金属介在物の最大大きさを制限することにより、転がり疲労寿命に優れた機械用部品に使用される鋼を提供することが可能となる。   As described above, according to the steel having an excellent rolling fatigue life according to the present embodiment, the forging and forming ratio of the steel material is regulated, and the oxygen content and the sulfur content in the steel are regulated, and the ultrasonic wave Detecting non-metallic inclusions in steel in a large volume by flaw detection method, and the non-metallic inclusion pairs whose non-metallic inclusions having inclusion diameters above a certain size are less than a certain distance By limiting the number and limiting the maximum size of non-metallic inclusions in steel by ultrasonic flaw detection, it is possible to provide steel used for machine parts having excellent rolling fatigue life.

次に、実施例として供試材1〜25および比較例として供試材26〜36を表1および表2に挙げて、本発明の転がり疲労寿命に優れた鋼について、より具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。   Next, the specimens 1 to 25 as examples and the specimens 26 to 36 as comparative examples are listed in Tables 1 and 2, and the steel excellent in rolling fatigue life of the present invention will be described more specifically. . However, the present invention is not limited to these examples.

表1に実施例と比較例の各供試材の成分組成を示す。表1の供試材1〜7および供試材26〜33については高炭素クロム軸受鋼であるJISのSUJ2鋼を、供試材8および34についてはJISのSCr420鋼を、供試材9についてはJISのSNCM420鋼を、供試材10についてはJISのS53C鋼を、供試材11、供試材35および供試材36についてはJISのSCM420鋼を、供試材12および供試材13についてはSAEの52100を、供試材14および供試材15についてはASTMの52100を、供試材16および供試材17についてはDINの100Cr6を、供試材18はJISのSUJ3鋼を、供試材19はJISのSUJ5鋼を、供試材20はSAEの4320鋼を、供試材21はSAEの5120鋼を、供試材22はJISのSCM435鋼を、供試材23はSAEの4140鋼を、供試材24はJISのS55C鋼を、供試材25はSAEの1053鋼を用いた。供試材1〜5、供試材8〜9、供試材12、供試材14、供試材16、供試材18、供試材20〜30、供試材36については、アーク溶解炉で溶製し、続いて取鍋精錬し、さらに真空脱ガス装置で脱ガスを行い連続鋳造により鋳塊を製造したものである。   Table 1 shows the component composition of each sample material of the example and the comparative example. For Specimens 1 to 7 and Specimens 26 to 33 in Table 1, JIS SUJ2 steel, which is a high carbon chromium bearing steel, for Specimens 8 and 34, JIS SCr420 steel, for Specimen 9 Is JIS SNCM420 steel, JIS S53C steel is used for specimen 10, JIS SCM420 steel is used for specimen 11, specimen 35 and specimen 36, specimen 12 and specimen 13 SAE 52100, for specimens 14 and 15, ASTM 52100, for specimens 16 and 17, DIN 100Cr6, for specimen 18 JIS SUJ3 steel, Specimen 19 is JIS SUJ5 steel, Specimen 20 is SAE 4320 steel, Specimen 21 is SAE 5120 steel, Specimen 22 is JIS SCM435 steel. Material 23 to 4140 steel SAE, test materials 24 to S55C steel JIS, test material 25 was used 1053 steel SAE. For specimens 1-5, specimens 8-9, specimen 12, specimen 14, 14, specimen 16, specimen 18, specimens 20-30, specimen 36, arc melting The ingot is smelted in a furnace, then smelted in a ladle, and further degassed with a vacuum degassing apparatus to produce an ingot by continuous casting.

供試材6、供試材7、供試材10、供試材11、供試材13、供試材15、供試材17、供試材19、供試材31〜35については、アーク溶解炉で溶製し、続いて取鍋精錬し、さらに真空脱ガス装置で脱ガスを行いインゴットにより鋳塊を製造したものである。   Specimen 6, Specimen 7, Specimen 10, Specimen 11, Specimen 13, Specimen 15, Specimen 17, Specimen 19, Specimen 31-35 It is made by melting in a melting furnace, then refining a ladle, and degassing with a vacuum degassing device to produce an ingot with an ingot.

Figure 0005224424
Figure 0005224424

上記で得られた鋳塊に、熱間加工を施して鋼材の鍛錬成形比22.0以上を確保した直径65mmの鋼材とした。   The ingot obtained above was hot-worked to obtain a steel material having a diameter of 65 mm in which a steel forging ratio of 22.0 or more was ensured.

(スラスト型転がり疲労試験)
供試材1〜7と供試材12〜19と供試材26〜33の鋼材は、800℃にて球状化焼鈍を施し、鋼材の長手方向に対し垂直に、外径が60mm、内径が20mm、厚さが5.8mmである円盤からなる試験片を作製した。この試験片を835℃で20分保持した後、油冷により焼入れし、次いで170℃で90分の焼戻し処理を行い、所望の58HRC以上の硬さを得て、その後に、表面研磨を行ってスラスト型転がり疲労試験を行った。供試材8、供試材9、供試材11、供試材20、供試材21、供試材34〜36の鋼材は、925℃にて焼ならしを施した後、また、供試材22、23の鋼材は、870℃で焼ならしを施した後、鋼材の長手方向に対し垂直に外径が60mm、内径が20mm、厚さが8.3mmである円盤からなる試験片を作製した。この試験片を930℃で浸炭処理した後、油冷により焼入れし、次いで180℃で90分の焼戻し処理を行い、所望の58HRC以上の硬さを得て、その後に、表面研磨を行ってスラスト型転がり疲労試験を行った。供試材10、供試材24、供試材25の鋼材は870℃で焼ならしを施し、鋼材長手方向に対し垂直に外径が60mm、内径が20mm、厚さが8.3mmの円盤からなる試験片を作製した。この試験片を高周波焼入れした後、次いで180℃で90分の焼戻し処理を行い、所望の58HRC以上の硬さを得て、その後に、表面研磨を行ってスラスト型転がり疲労試験を行った。スラスト型転がり疲労試験は最大ヘルツ応力Pmax:5.3GPaで行った。なお、L1寿命を求めるうえで1.5×107cycle程度での打ち切り試験とし、試験評価時間の短縮を図った。
(Thrust type rolling fatigue test)
The steel materials of the test materials 1 to 7, the test materials 12 to 19, and the test materials 26 to 33 are subjected to spheroidizing annealing at 800 ° C., and the outer diameter is 60 mm and the inner diameter is perpendicular to the longitudinal direction of the steel materials. A test piece made of a disk having a thickness of 20 mm and a thickness of 5.8 mm was produced. After holding this test piece at 835 ° C. for 20 minutes, it was quenched by oil cooling, and then tempered at 170 ° C. for 90 minutes to obtain a desired hardness of 58 HRC or higher, and then subjected to surface polishing. A thrust type rolling fatigue test was conducted. The steel materials of Specimen 8, Specimen 9, Specimen 11, Specimen 20, Specimen 21, and Specimens 34 to 36 were subjected to normalization at 925 ° C. The steel materials of the test materials 22 and 23 were subjected to normalization at 870 ° C., and then a test piece made of a disk having an outer diameter of 60 mm, an inner diameter of 20 mm, and a thickness of 8.3 mm perpendicular to the longitudinal direction of the steel material. Was made. This test piece was carburized at 930 ° C., then quenched by oil cooling, and then tempered at 180 ° C. for 90 minutes to obtain a desired hardness of 58 HRC or higher, followed by surface polishing and thrust. A mold rolling fatigue test was conducted. The steel material of the test material 10, the test material 24, and the test material 25 is subjected to normalization at 870 ° C., and is a disk having an outer diameter of 60 mm, an inner diameter of 20 mm, and a thickness of 8.3 mm perpendicular to the longitudinal direction of the steel material. A test piece consisting of: After this test piece was induction-quenched, tempering was then performed at 180 ° C. for 90 minutes to obtain the desired hardness of 58 HRC or higher, and then surface polishing was performed to perform a thrust type rolling fatigue test. The thrust type rolling fatigue test was performed at a maximum hertz stress P max of 5.3 GPa. In order to obtain the L 1 life, a censoring test with about 1.5 × 10 7 cycles was used to shorten the test evaluation time.

(超音波試験)
非金属介在物の介在物径が20μm以上で、かつその20μm以上の非金属介在物どうしの最近接距離が40μm未満である非金属介在物対の個数、ならびに非金属介在物の最大径が100μm以下であることを評価するに当たり、供試材1〜7と供試材12〜19と供試材26〜33の鋼材については800℃にて球状化焼鈍を施し、L断面試験片を切り出し、焼入焼戻し処理を行った後、供試材8、供試材9、供試材11、供試材20、供試材21、供試材34〜36の鋼材については925℃にて焼ならしを施し、L断面試験片を切り出し、焼入焼戻し処理を行った後、供試材10、供試材22〜25の鋼材は870℃で焼ならしを施し、L断面試験片を切り出し、焼入れ焼戻し処理を行った後、いずれに対しても、超音波の伝達損失を軽減する目的で、平面研磨を行った。平面研磨により、いずれの試験片も厚さ10mmに仕上げて、超音波探傷試験を行った。超音波探傷には、焦点型高周波探触子(50MHz)を備えた超音波探傷装置を用いた。また、超音波探傷の体積は4000mm3とした。得られた介在物による反射波のデータから、鋼材の体積1000mm3当たりの非金属介在物の20μm以上で、かつその20μm以上の非金属介在物どうしの最近接距離が40μm未満である非金属介在物対の検出個数、ならびに最大径が100μmを超える非金属介在物の検出有無を求めた。
(Ultrasonic test)
The number of nonmetallic inclusion pairs whose nonmetallic inclusions have a diameter of 20 μm or more and the closest distance between the nonmetallic inclusions of 20 μm or more is less than 40 μm, and the maximum diameter of the nonmetallic inclusions is 100 μm. In evaluating the following, the steel materials of Specimens 1-7, Specimens 12-19, and Specimens 26-33 were subjected to spheroidizing annealing at 800 ° C., and L-section test pieces were cut out. After quenching and tempering, the steel materials of the test material 8, the test material 9, the test material 11, the test material 20, the test material 21, and the test materials 34 to 36 are tempered at 925 ° C. After the L section test piece was cut out and quenched and tempered, the steel materials of the test material 10 and the test materials 22 to 25 were subjected to normalization at 870 ° C., and the L cross section test piece was cut out. After performing quenching and tempering treatment, reduce ultrasonic transmission loss In order to decrease, it was surface grinding. Each test piece was finished to a thickness of 10 mm by surface polishing, and an ultrasonic flaw detection test was performed. For ultrasonic flaw detection, an ultrasonic flaw detector equipped with a focus type high-frequency probe (50 MHz) was used. The volume of ultrasonic flaw detection was set to 4000 mm 3 . From the data of the reflected wave by the obtained inclusions, the nonmetallic inclusions whose non-metallic inclusions per volume of 1000 mm 3 of the steel material are 20 μm or more and the closest distance between the nonmetallic inclusions of 20 μm or more is less than 40 μm. The number of detected object pairs and the presence / absence of non-metallic inclusions having a maximum diameter exceeding 100 μm were determined.

これらの供試材の各試験片について、表面硬さ、50MHzの焦点型高周波探触子で評価した超音波探傷による鋼材の体積1000mm3当たりの非金属介在物対の検出個数、100μmを超える介在物の検出有無、およびスラスト型転がり疲労試験によるL1寿命を表2に示す。 About each test piece of these specimens, the surface hardness, the number of detected non-metallic inclusion pairs per 1000 mm 3 of steel volume by ultrasonic flaw evaluation evaluated with a 50 MHz focal high-frequency probe, the interposition exceeding 100 μm Table 2 shows the presence / absence of detection of the object and the L 1 life by the thrust type rolling fatigue test.

Figure 0005224424
Figure 0005224424

表2において、比較例の供試材26〜36は鋼材体積1000mm3当たりに検出される20μm以上で、かつその20μm以上の非金属介在物どうしの最近接距離が40μm未満である非金属介在物対の個数が2.0個を超え、かつ最大径が100μmを超える非金属介在物の検出が見られるもので、本発明の範囲外のものである。しかもこれらの比較例の供試材26〜36のL1寿命は、比較例の供試材33のL1寿命を1としたときの3倍以下である。これら比較例の供試材26〜36に対し、本発明における実施例の供試材1〜25は超音波探傷法により鋼材体積1000mm3当たりに検出される介在物径が20μm以上、かつその20μm以上の非金属介在物どうしの最近接距離が40μm未満である非金属介在物対の個数が2.0個以下であり、かつ最大径が100μmを超える非金属介在物の検出が無く、本発明の第1の手段すなわち請求項1に係る発明および第2の手段のすなわち請求項2に係る発明および第3の手段のすなわち請求項3に係る発明を満足するものであり、いずれも比較例の供試材33のL1寿命の4倍以上であり、L1寿命に優れている。 In Table 2, the test materials 26 to 36 of the comparative example are 20 μm or more detected per 1000 mm 3 of steel material volume, and the closest distance between the nonmetallic inclusions of 20 μm or more is less than 40 μm. The detection of non-metallic inclusions with the number of pairs exceeding 2.0 and the maximum diameter exceeding 100 μm can be seen, which is outside the scope of the present invention. Moreover, the L 1 life of the test materials 26 to 36 of these comparative examples is three times or less when the L 1 life of the test material 33 of the comparative example is 1. In contrast to the test materials 26 to 36 of these comparative examples, the test materials 1 to 25 of the examples in the present invention have an inclusion diameter of 20 μm or more and 20 μm of the inclusion diameter detected per 1000 mm 3 of steel material volume by the ultrasonic flaw detection method. The number of non-metallic inclusion pairs in which the closest distance between the non-metallic inclusions is less than 40 μm is 2.0 or less, and there is no detection of non-metallic inclusions having a maximum diameter exceeding 100 μm. The first means of the present invention, that is, the invention according to claim 1, the second means, ie, the invention according to claim 2, and the third means, ie, the invention according to claim 3, are satisfied. It is four times or more the L 1 life of the specimen 33 and is excellent in the L 1 life.

Claims (3)

表面硬さを58HRC以上とする機械部品に用いる鋼であって、母材である鋳塊に対する鋼材の鍛錬成形比が22.0以上であり、鋼中の酸素含有量が質量割合で6ppm以下、硫黄含有量が0.003質量%以下であり、探触子周波数25MHzを超え、125MHz以下の超音波探傷法により鋼材の体積1000mm3当たりに検出される介在物径が20μm以上で、かつその20μm以上の非金属介在物どうしの最近接距離が40μm未満である、非金属介在物対の個数が2.0個以下であり、かつ、探触子周波数25MHzを超え、125MHz以下の超音波探傷法により鋼材総体積3000mm3以上で検出される非金属介在物の最大径が100μm以下であることを特徴とする転がり疲労寿命に優れた鋼。 Steel used for machine parts having a surface hardness of 58 HRC or more, wherein the forging ratio of the steel material to the ingot as a base material is 22.0 or more, and the oxygen content in the steel is 6 ppm or less by mass ratio, The sulfur content is 0.003 mass% or less, the probe frequency exceeds 25 MHz, and the inclusion diameter detected per 1000 mm 3 of the volume of the steel material by an ultrasonic flaw detection method of 125 MHz or less is 20 μm or more and 20 μm The ultrasonic flaw detection method in which the closest distance between the nonmetallic inclusions is less than 40 μm, the number of nonmetallic inclusion pairs is 2.0 or less, the probe frequency exceeds 25 MHz, and the frequency is 125 MHz or less. A steel having excellent rolling fatigue life, wherein the maximum diameter of non-metallic inclusions detected at a total volume of 3000 mm 3 or more is 100 μm or less. 介在物径が20μm以上で、かつその20μm以上の非金属介在物どうしの最近接距離が40μm未満である非金属介在物対の個数が2.0個以下、ならびに非金属介在物の最大径が100μm以下は、超音波探傷法により総体積3000mm3以上かつ300000mm3以下を探傷することにより評価されたものであることを特徴とする請求項1に記載の転がり疲労寿命に優れた鋼。 The number of non-metallic inclusion pairs whose inclusion diameter is 20 μm or more and the closest distance between the non-metallic inclusions of 20 μm or more is less than 40 μm is 2.0 or less, and the maximum diameter of non-metallic inclusions is 100μm or less, excellent steel rolling fatigue life according to claim 1, characterized in that which is evaluated by testing the total volume 3000 mm 3 or more and 300000Mm 3 below by ultrasonic flaw detection method. 転がり疲労寿命に優れた鋼は、JIS規格において規定される高炭素クロム軸受鋼鋼材、ならびにSAE規格またはASTM規格A295において規定される52100、ならびにDIN規格において規定される100Cr6、ならびにJIS規格において規定される機械構造用炭素鋼鋼材、ならびにJIS規格において規定される機械構造用合金鋼鋼材のうちのクロム鋼およびクロムモリブデン鋼およびニッケルクロムモリブデン鋼から選択したいずれか1種の鋼であることを特徴とする請求項1又は2に記載の転がり疲労寿命に優れた鋼。   Steels with excellent rolling fatigue life are specified in high carbon chromium bearing steels specified in JIS standards, 52100 specified in SAE standards or ASTM standards A295, and 100Cr6 specified in DIN standards, and in JIS standards. Carbon steel material for machine structure and alloy steel material for machine structure specified in JIS standard, any one steel selected from chrome steel, chrome molybdenum steel and nickel chrome molybdenum steel A steel excellent in rolling fatigue life according to claim 1 or 2.
JP2013005014A 2012-05-07 2013-01-15 Steel with excellent rolling fatigue life Active JP5224424B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013005014A JP5224424B1 (en) 2012-05-07 2013-01-15 Steel with excellent rolling fatigue life
KR1020147024344A KR20150010697A (en) 2012-05-07 2013-04-24 Steel having excellent rolling fatigue life
PCT/JP2013/062073 WO2013168573A1 (en) 2012-05-07 2013-04-24 Steel having excellent rolling fatigue life
TW102115706A TWI557237B (en) 2012-05-07 2013-05-02 Rolling fatigue life of excellent steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012105955 2012-05-07
JP2012105955 2012-05-07
JP2013005014A JP5224424B1 (en) 2012-05-07 2013-01-15 Steel with excellent rolling fatigue life

Publications (2)

Publication Number Publication Date
JP5224424B1 true JP5224424B1 (en) 2013-07-03
JP2013253313A JP2013253313A (en) 2013-12-19

Family

ID=48913876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013005014A Active JP5224424B1 (en) 2012-05-07 2013-01-15 Steel with excellent rolling fatigue life

Country Status (4)

Country Link
JP (1) JP5224424B1 (en)
KR (1) KR20150010697A (en)
TW (1) TWI557237B (en)
WO (1) WO2013168573A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105452510A (en) * 2013-08-08 2016-03-30 山阳特殊制钢株式会社 Steel having superior rolling fatigue life

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5848187B2 (en) * 2012-04-26 2016-01-27 山陽特殊製鋼株式会社 Steel sorting method with excellent rolling fatigue life

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317192A (en) * 2005-05-10 2006-11-24 Sanyo Special Steel Co Ltd Reliability evaluating method of steel
JP2008121035A (en) * 2006-11-09 2008-05-29 Sanyo Special Steel Co Ltd Steel superior in rolling fatigue life and method for evaluating the same
JP2010070812A (en) * 2008-09-19 2010-04-02 Nippon Steel & Sumikin Stainless Steel Corp Free-cutting austenitic stainless steel wire rod excellent in cold forgeability, and manufacturing method therefor
WO2010116555A1 (en) * 2009-04-06 2010-10-14 新日本製鐵株式会社 Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1235703C (en) * 2004-04-20 2006-01-11 南京钢铁联合有限公司 Technique for manufacturing bearing steel
CN100334245C (en) * 2005-06-30 2007-08-29 宝山钢铁股份有限公司 Smelting production method of extra pure high carbon chromium bearing steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317192A (en) * 2005-05-10 2006-11-24 Sanyo Special Steel Co Ltd Reliability evaluating method of steel
JP2008121035A (en) * 2006-11-09 2008-05-29 Sanyo Special Steel Co Ltd Steel superior in rolling fatigue life and method for evaluating the same
JP2010070812A (en) * 2008-09-19 2010-04-02 Nippon Steel & Sumikin Stainless Steel Corp Free-cutting austenitic stainless steel wire rod excellent in cold forgeability, and manufacturing method therefor
WO2010116555A1 (en) * 2009-04-06 2010-10-14 新日本製鐵株式会社 Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105452510A (en) * 2013-08-08 2016-03-30 山阳特殊制钢株式会社 Steel having superior rolling fatigue life
US10060013B2 (en) 2013-08-08 2018-08-28 Sanyo Special Steel Co., Ltd. Steel having superior rolling fatigue life

Also Published As

Publication number Publication date
TW201410875A (en) 2014-03-16
KR20150010697A (en) 2015-01-28
WO2013168573A1 (en) 2013-11-14
JP2013253313A (en) 2013-12-19
TWI557237B (en) 2016-11-11

Similar Documents

Publication Publication Date Title
JP5139667B2 (en) Steel evaluation method with excellent rolling fatigue life
Hashimoto et al. Effect of inclusion/matrix interface cavities on internal-fracture-type rolling contact fatigue life
JP2006063402A5 (en)
Dengo et al. Experimental analysis of bending fatigue strength of plain and notched case-hardened gear steels
JP2006063402A (en) Steel used in parts for machinery superior in rolling fatigue life
JP5260032B2 (en) Induction hardened steel excellent in cold workability, rolling member made of the steel, and linear motion device using the rolling member
JP5224424B1 (en) Steel with excellent rolling fatigue life
JP6376725B2 (en) Steel member with excellent rolling fatigue life
JP5848187B2 (en) Steel sorting method with excellent rolling fatigue life
JP5283788B1 (en) Steel with excellent rolling fatigue life
Rossino et al. Surface contact fatigue failure of a case hardened pinion shaft
CN105452510B (en) Steel with excellent rolling fatigue life
JP2013227633A (en) Steel excellent in rolling fatigue life
WO2020050053A1 (en) Steel material for sliding members, and method for producing same
JP2024059023A (en) Steel sliding part and manufacturing method for steel sliding part
WO2023026621A1 (en) Roller bearing
JP2009052111A (en) Steel having excellent rolling fatigue life
JP2015090207A (en) Rolling bearing
JP2023178642A (en) Steel for bearings having improved fatigue life
JP2015110831A (en) Roller bearing
JP2015232156A (en) Rolling shaft bearing
Gnanamoorthy et al. Rolling contact fatigue behavior of sintered and hardened steels
Kramer et al. Rolling-Sliding Contact Fatigue of Gear Steels Subject to Various Carburizing Treatments
JP2005114149A (en) Rolling bearing
JP2005133923A (en) Steel machine part and rolling bearing

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130306

R150 Certificate of patent or registration of utility model

Ref document number: 5224424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250