WO2020050053A1 - Steel material for sliding members, and method for producing same - Google Patents

Steel material for sliding members, and method for producing same Download PDF

Info

Publication number
WO2020050053A1
WO2020050053A1 PCT/JP2019/032891 JP2019032891W WO2020050053A1 WO 2020050053 A1 WO2020050053 A1 WO 2020050053A1 JP 2019032891 W JP2019032891 W JP 2019032891W WO 2020050053 A1 WO2020050053 A1 WO 2020050053A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
steel
steel material
less
test
Prior art date
Application number
PCT/JP2019/032891
Other languages
French (fr)
Japanese (ja)
Inventor
和潔 來村
慎 宮島
松本 圭司
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019045999A external-priority patent/JP2020045557A/en
Priority claimed from JP2019093358A external-priority patent/JP2020041214A/en
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US17/273,012 priority Critical patent/US20210348247A1/en
Publication of WO2020050053A1 publication Critical patent/WO2020050053A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts

Definitions

  • the present invention relates to a steel material for a sliding part and a method for producing the same.
  • crankshafts for automobile engines are examples of parts that require sliding characteristics.
  • downsizing of engines, low viscosity of lubricating oils, and simplification of lubrication systems have been progressing for the purpose of fuel efficiency, and sliding parts used for crankshafts have been used from the viewpoint of dry start by intermittent operation.
  • Steel materials for use are required to have better seizure resistance.
  • the seizure phenomenon of steel materials is caused not only by physical factors such as abrasion powder generated at the time of sliding, but also by chemical factors generated at a sliding interface (for example, due to chemical reaction such as transfer and adhesion of a sliding partner material).
  • Generation of dissimilar materials that may be caused by In a dry environment, as a method of suppressing seizure, for example, measures such as DLC (diamond-like carbon) film formation on a steel material surface and coating with a PTFE-based fluororesin are taken.
  • Japanese Unexamined Patent Publication No. 7-18379 discloses a steel for machine structural use which has a compound layer formed by nitrocarburizing on the surface and has excellent seizure resistance and fatigue strength.
  • Japanese Patent Application Laid-Open No. 2007-238965 discloses a crankshaft having an induction hardening layer on the surface and having excellent seizure resistance.
  • Japanese Patent Application Laid-Open No. Sho 60-1424 discloses a sliding member composed of a base having irregularities on the surface and a solid lubricant held in a concave portion of the base.
  • Patent Documents 1 to 3 also have the following problems.
  • nitrocarburizing or carburizing is a technique for chemically modifying the surface of a steel component into a harder composition and structure. Since gas treatment is performed at a high temperature separately from a normal heat treatment process, the treatment time And the cost of the apparatus increases. In addition, it cannot be ignored that the steel component to be processed is restricted by the inner volume of the furnace of the gas processing apparatus.
  • An object of the present invention is to provide a steel material for sliding parts having excellent seizure resistance and a method for producing the same.
  • the steel material for a sliding part has a chemical composition containing mass%, In: 0.05 to 5.0%, and metal In particles or In-based oxide particles dispersed therein.
  • the number density of particles having a diameter of 50 nm to 5 ⁇ m among the metal In particles is 5000 particles / mm 2 or more, or 1 ⁇ m among the oxide-based particles mainly containing In.
  • the number density of the above particles is 30 particles / mm 2 or more.
  • the number density of particles having a diameter of 50 nm to 5 ⁇ m is 5000 / mm 2 or more.
  • a method for producing a steel material for a sliding component according to an embodiment of the present invention is a method for producing a steel material for a sliding component as described above, wherein the chemical composition contains 0.05 to 5.0% by mass of In. And a step of heating the material at 800 to 1200 ° C. for 5 to 30 minutes, and then subjecting the material to quenching treatment with water or oil cooling.
  • the chemical composition has an In content of 0.3 to 5.0% by mass%, and of the oxide particles mainly containing In.
  • the number density of particles having a diameter of 1 ⁇ m or more is 30 particles / mm 2 or more.
  • a method for manufacturing a steel material for a sliding component according to an embodiment of the present invention is a method for manufacturing a steel material for a sliding component as described above, wherein the chemical composition contains 0.3 to 5.0% by mass of In.
  • FIG. 1 is a graph showing a time change of each friction coefficient of a test material having a maximum friction coefficient exceeding 0.5 and a test material having a maximum friction coefficient of 0.5 or less in a friction test in a dry environment. is there.
  • FIG. 2 is a graph showing a time change of each friction coefficient of a test material having a maximum friction coefficient exceeding 0.5 and a test material having a maximum friction coefficient of 0.5 or less in a friction test in a wet environment. is there.
  • the present inventors have focused on metal elements added to steel materials and studied a method for improving seizure resistance more simply and effectively than in the past. As a result, they found that the addition of indium (In) was effective in improving seizure resistance.
  • In has a lower melting point (156 ° C.) than other metal elements and is soft (Mohs hardness is 1.2). In is used as a solid lubricant together with lead and graphite having similar properties (for example, see JP-A-2001-131684). However, the solid lubricant is consumed on the sliding surface, and if the supply is interrupted, there is a concern that the lubricating performance is significantly impaired.
  • a lubricating film can be formed on a sliding surface for a long time by finely dispersing metal In particles or In-based oxide particles in steel.
  • InIn which does not form a solid solution in steel exists as a precipitate.
  • the undissolved In diffuses into the steel surface even under a normal temperature environment to form a concentrated In layer, and the concentrated In layer serves as a lubricating film, thereby contributing to an improvement in sliding characteristics.
  • the lubricating film is consumed by sliding, the undissolved In in the steel rapidly diffuses to the steel surface to regenerate the lubricating film.
  • the precipitation form of In changes due to heat treatment at the time of manufacturing. Specifically, when passing through a temperature range of 650 to 100 ° C. at a cooling rate equal to or higher than air cooling, the number of In (metallic In) deposited as a single substance increases. On the other hand, when the temperature is kept in the same temperature range for a long time, or when the temperature is passed through the same temperature range at a low cooling rate such as furnace cooling, the number of Ins forming oxides increases.
  • the number density of metal In particles having a diameter of 50 nm to 5 ⁇ m is set to 5000 particles / mm 2 or more, or the number density of In-based oxide particles having a diameter of 1 ⁇ m or more is set to 30 particles / mm 2.
  • "diameter" means a circle equivalent diameter in an observation cross section.
  • the steel material for a sliding component according to the present embodiment has a chemical composition containing In: 0.05 to 5.0%.
  • Indium (In) forms a lubricating film on the surface of the steel material and improves the sliding characteristics of the steel material.
  • In content is 0.05 to 5.0%.
  • the lower limit of the In content is preferably 0.1%, more preferably 0.2%, and still more preferably 0.3%.
  • the upper limit of the In content is preferably 4.0%, and more preferably 3.0%.
  • the In content is more preferably 1.0% or less, further preferably 0.5% or less, and further preferably less than 0.3%.
  • the lower limit of the In content is preferably 0.3%, more preferably 0.6%, further preferably 0.8%, and further preferably 1.%. 0%.
  • the other chemical composition of the steel for sliding parts according to the present embodiment is not particularly limited.
  • Steel materials of various chemical compositions can be used as the steel materials for sliding parts according to the present embodiment, depending on the intended use.
  • the chemical composition of the steel material for a sliding part according to the present embodiment is not limited thereto, but is as follows, for example.
  • C 0.05-1.80% Carbon (C) enhances the hardenability of steel and contributes to improvement in hardness. If the C content is less than 0.05%, the hardenability of steel may be insufficient. On the other hand, if the C content exceeds 1.80%, the rollability and workability of the steel may decrease. Therefore, the C content is preferably 0.05 to 1.80%.
  • the lower limit of the C content is more preferably 0.15%, and still more preferably 0.25%. When importance is placed on the strength of steel, the lower limit of the C content is more preferably 0.30%, more preferably 0.35%, and still more preferably 0.40%.
  • the C content is preferably 1.50% or less when emphasizing the rollability and workability of steel, and is 1.00% or less when emphasizing machinability. Is preferred.
  • the upper limit of the C content is more preferably 0.60%, more preferably 0.55%, and further preferably 0.50%.
  • Si 1.5% or less
  • Silicon (Si) is an element used as a deoxidizing agent for steel.
  • the Si content is preferably 1.5% or less.
  • the upper limit of the Si content is more preferably 1.0%, more preferably 0.80%, more preferably 0.70%, and still more preferably 0.50%.
  • the Si content is preferably set to 0.05% or more, more preferably 0.10% or more.
  • Mn 2.0% or less
  • Manganese (Mn) is an element having an effect of improving the hardenability of steel. However, if the Mn content exceeds 2.0%, the thermal conductivity of the steel may decrease, and sufficient seizure resistance may not be obtained. Therefore, the Mn content is preferably 2.0% or less.
  • the upper limit of the Mn content is more preferably 1.8%, more preferably 1.6%, more preferably 1.5%, further preferably 1.0%, and still more preferably 0.5%.
  • the Mn content is preferably set to 0.05% or more, more preferably 0.10% or more, and further preferably 0.20% or more. .
  • P 0.10% or less Phosphorus (P) is contained in steel as an impurity. If the P content exceeds 0.10%, excessive P segregates at the grain boundaries, and the fatigue strength of the steel may be reduced. Therefore, the P content is preferably 0.10% or less.
  • the upper limit of the P content is more preferably 0.08%, further preferably 0.06%, further preferably 0.05%, and still more preferably 0.03%.
  • S 0.10% or less Sulfur (S) is contained as an impurity in steel. If the S content exceeds 0.10%, hot workability may be reduced. Therefore, the S content is preferably 0.10% or less.
  • the upper limit of the S content is more preferably 0.080%, more preferably 0.070%, and still more preferably 0.050%.
  • the S content is preferably set to 0.005% or more, and more preferably set to 0.010% or more.
  • Al 0.10% or less Aluminum (Al) is contained as a deoxidizing material. If the Al content exceeds 0.10%, the machinability of steel may decrease. Therefore, the Al content is preferably 0.10% or less. On the other hand, when Al is positively contained, it contributes to refinement of austenite grains by a pinning effect of nitride. In order to obtain the above effects remarkably, the Al content is preferably 0.005% or more, more preferably 0.010% or more, and still more preferably 0.020% or more. The upper limit of the Al content is more preferably 0.080%, more preferably 0.060%, more preferably 0.055%, and still more preferably 0.050%.
  • N 0.030% or less Nitrogen (N) is contained in steel as an impurity. If the N content exceeds 0.030%, the toughness of the steel may decrease. Therefore, the N content is preferably 0.030% or less. On the other hand, when N is positively contained, it contributes to refinement of austenite grains by a pinning effect of nitride. In order to obtain the above effects remarkably, the N content is preferably 0.001% or more, more preferably 0.0015% or more, and further preferably 0.002% or more. The upper limit of the N content is more preferably 0.020%, and still more preferably 0.015%.
  • Chromium (Cr) is an element having an effect of improving strength and wear resistance.
  • Cr is an element effective in suppressing the austenite structure from coarsening. Therefore, Cr may be contained as necessary. However, if the Cr content exceeds 15.0%, an imbalance between strength and toughness may occur. Therefore, the Cr content is preferably 15.0% or less.
  • the upper limit of the Cr content is more preferably 10.0%, and still more preferably 5.0%.
  • the lower limit of the Cr content is preferably 0.01%, more preferably 0.02%, further preferably 0.05%, and still more preferably 0.10%.
  • the Cr content is preferably set to 0.30% or less.
  • the Cr content when emphasizing machinability is more preferably 0.25% or less, and further preferably 0.20% or less.
  • Nickel (Ni) is an element having an effect of improving the strength and toughness of steel. Therefore, Ni may be contained as necessary. However, even if the Ni content exceeds 0.50%, the effect is saturated and the alloy cost is increased. Therefore, the Ni content is preferably 0.50% or less. The upper limit of the Ni content is more preferably 0.40%, and still more preferably 0.35%. When Ni is not positively contained, the Ni content is preferably set to 0.10% or less, more preferably 0.05% or less.
  • Cu 0 to 0.50% Copper (Cu) is an element having an effect of improving the strength and toughness of steel. Therefore, Cu may be contained as necessary. However, even if the Cu content exceeds 0.50%, the effect is saturated and the alloy cost is increased. Therefore, the Cu content is preferably 0.50% or less. The upper limit of the Cu content is more preferably 0.40%, and still more preferably 0.35%. When Cu is not positively contained, the Cu content is preferably set to 0.10% or less, more preferably 0.05% or less.
  • Ti 0 to 0.050% Titanium (Ti) forms nitrides and carbonitrides, and contributes to miniaturization of austenite grains by a pinning effect. Therefore, you may contain Ti as needed. However, if the Ti content exceeds 0.050%, the toughness of the steel may decrease. Therefore, the Ti content is preferably 0.050% or less.
  • the upper limit of the Ti content is more preferably 0.040%, and still more preferably 0.030%. Note that the lower limit of the Ti content is preferably 0.005%, more preferably 0.010%.
  • Nb 0 to 0.050%
  • Niobium (Nb) forms nitrides and carbonitrides and contributes to miniaturization of austenite grains by a pinning effect. Therefore, Nb may be contained as needed. However, if the Nb content exceeds 0.050%, the toughness of the steel may decrease. Therefore, the Nb content is preferably 0.050% or less.
  • the upper limit of the Nb content is more preferably 0.040%, and still more preferably 0.030%.
  • the lower limit of the Nb content is preferably 0.005%, and more preferably 0.010%.
  • V 0 to 2.5% Vanadium (V) forms nitrides and carbonitrides, and contributes to miniaturization of austenite grains by a pinning effect. Moreover, the strength of steel is improved by forming carbides. Therefore, V may be contained as needed. However, if the V content exceeds 2.5%, the toughness of the steel may decrease. Therefore, the V content is preferably 2.5% or less.
  • the upper limit of the V content is more preferably 2.0%, further preferably 1.5%, and particularly preferably 1.0%.
  • the lower limit of the V content is preferably 0.005%, and more preferably 0.010%.
  • Mo 0 to 3.0% Molybdenum (Mo) is an element having the effect of improving the hardenability of steel and improving the strength of steel. Therefore, Mo may be contained as needed. However, if the Mo content exceeds 3.0%, the machinability of the steel may decrease. Therefore, the Mo content is preferably 3.0% or less.
  • the upper limit of the Mo content is more preferably 2.5%, further preferably 2.0%, and particularly preferably 1.5%.
  • the lower limit of the Mo content is preferably 0.3%, more preferably 0.5%.
  • Mo content is preferably 0.10% or less, more preferably 0.05% or less.
  • W 0 to 6.0% Tungsten (W), like Mo, is an element having the effect of improving the hardenability of steel and improving the strength of steel. Therefore, W may be contained as needed. However, if the W content exceeds 6.0%, the machinability of the steel may decrease. Therefore, the W content is preferably 6.0% or less.
  • the upper limit of the W content is more preferably 4.0%, and still more preferably 2.0%. Note that the lower limit of the W content is preferably 0.01%, more preferably 0.1%, and still more preferably 0.5%.
  • B 0 to 0.005% Boron (B) contributes to improvement in toughness as a grain boundary strengthening element. Therefore, you may contain B as needed. However, if the content of B exceeds 0.005%, the toughness may be rather reduced. Therefore, the B content is preferably 0.005% or less.
  • the upper limit of the B content is more preferably 0.004%, and still more preferably 0.002%.
  • the lower limit of the B content is preferably 0.0003%, and more preferably 0.0005%.
  • N in steel is fixed by Ti.
  • the balance is Fe and impurities.
  • impurities are components that are mixed due to various factors in the ore, scrap and other raw materials, and the manufacturing process when steel is industrially manufactured, and are acceptable as long as they do not adversely affect the present invention. Means something.
  • elements that can be mixed into steel as impurities include, for example, Pb, Ca, Mg, Sb, Ta and REM. Even when these elements are contained, their contents are respectively Pb: 0.10% or less, Ca: 0.001% or less, Mg: 0.001% or less, Sb: 0.005% or less, If Ta: 0.10% or less and REM: 0.001% or less, the present invention can be practiced without any problem.
  • compositions of the above steels are the following five types.
  • (D) C: 1.40 to 1.60%, Si: less than 0.40%, Mn: less than 0.60%, P: 0.020% or less, S: less than 0.020%, Al: 0. 005 to 0.060%, N: 0.001 to 0.030%, In: 0.05 to 5.0%, Cr: 11.0 to 13.0%, Ni: 0 to 0.50%, Cu : Less than 0.40%, Ti: 0 to 0.050%, Nb: 0 to 0.050%, V: 0.20 to 0.50%, Mo: 0.80 to 1.20%, B: 0 0.005%, balance: Fe and steel as impurities.
  • the steel material for a sliding part according to the present embodiment has a structure in which particles of metal In or particles of an oxide mainly containing In are dispersed.
  • the solid solubility limit of In in the Fe—In binary system is about 0.57%, but since various other elements are dissolved in steel, the solid solubility limit of In in the steel is Fe—. It becomes lower than the solid solubility limit of In. In which does not form a solid solution in steel exists as a precipitate. The undissolved In diffuses into the steel surface even under a normal temperature environment to form a concentrated In layer, and the concentrated In layer serves as a lubricating film, thereby contributing to an improvement in sliding characteristics. In addition, when the lubricating film is consumed by sliding, the undissolved In in the steel rapidly diffuses to the steel surface to regenerate the lubricating film.
  • the number density of the In particles varies depending on the precipitation form of In. Specifically, the number density of metal In particles having a diameter of 50 nm to 5 ⁇ m is set to 5000 particles / mm 2 or more, or the density of oxide particles mainly composed of In having a diameter of 1 ⁇ m or more is set to 30 particles / mm 2. If it is two or more, excellent sliding characteristics can be obtained for a long time.
  • "diameter" means a circle equivalent diameter in an observation cross section.
  • the microstructure of the steel material for sliding parts is that the number density of particles having a diameter of 50 nm to 5 ⁇ m among the particles of metal In is 5,000 / mm 2 or more, and the diameter of oxide particles mainly containing In is 1 ⁇ m. It suffices if at least one of the above-mentioned number density of particles of 30 particles / mm 2 or more is satisfied. That is, as long as the number density of particles having a diameter of 50 nm to 5 ⁇ m among the metal In particles is 5000 / mm 2 or more, the number density of the oxide-based particles mainly containing In is arbitrary.
  • the number density of metal In particles is arbitrary as long as the number density of particles having a diameter of 1 ⁇ m or more among oxide particles mainly containing In is 30 particles / mm 2 or more.
  • the base (matrix) of the structure of the steel material for sliding parts is not particularly limited.
  • the base of the structure of the steel material for sliding parts is, for example, martensite, tempered martensite, ferrite perlite, perlite, and the like.
  • the number density of the metal In particles having a diameter of 50 nm to 5 ⁇ m is set to 5000 / mm 2 or more.
  • the number density of metal In particles having a diameter of 50 nm to 5 ⁇ m is preferably 10,000 particles / mm 2 or more, more preferably 15,000 particles / mm 2 or more, and further preferably 20,000 particles / mm 2 or more.
  • metal In means In which is not forming a compound such as an oxide and is precipitated as a single substance.
  • the number density of the metal In particles is measured as follows. From the vicinity of the surface of the steel material, a test piece is collected with a cross section perpendicular to the surface as an observation surface. After the observation surface is mirror-polished, it is magnified 5000 times using an electron beam microanalyzer (EPMA) to observe a composition image by a reflected electron image, and further from a mapping image of In by a wavelength dispersive spectrometer (WDS). Specifically, the metal In is specified, and the number of particles having a diameter of 50 nm to 5 ⁇ m is counted. The number of particles is divided by the area of the visual field to obtain a number density.
  • EPMA electron beam microanalyzer
  • WDS wavelength dispersive spectrometer
  • the structure of the steel material for a sliding part may be such that the number density of metal In particles having a diameter of 50 nm to 5 ⁇ m is at least 5000 / mm 2 , and in addition, metal In particles having a diameter of less than 50 nm or more than 5 ⁇ m are present. You may.
  • the number density of the metal In particles can be adjusted by the In content of the steel material and the conditions of the quenching treatment. Specifically, the higher the In content of the steel material, the higher the number density of metal In particles tends to be. On the other hand, as the holding temperature of the quenching process is increased or the holding time of the quenching process is increased, the number density of the metal In particles tends to decrease.
  • the steel material for a sliding component according to the present embodiment has a concentrated In layer on the surface.
  • the concentrated In layer is a layer in which the concentration of In obtained by Auger electron spectroscopy is 10 at% or more.
  • the concentrated layer of In functions as a lubricating film, and excellent sliding characteristics are obtained.
  • the In-concentrated layer preferably has a thickness of 3 nm or more, more preferably 5 nm or more.
  • the presence or absence and thickness of the In-concentrated layer can be measured by Auger electron spectroscopy. Specifically, by repeating elemental analysis while performing Ar sputtering from the surface of the steel material, the presence or absence and thickness of the In-enriched layer can be measured. The analysis depth is calculated based on the case where SiO 2 is used as a standard sample.
  • the number density of the oxide-based particles having a diameter of 1 ⁇ m or more is preferably 50 particles / mm 2 or more, and more preferably 100 particles / mm 2 or more.
  • an oxide mainly composed of In means an oxide whose In content in cations is 50% or more in atomic%.
  • the number density of oxide particles mainly composed of In is measured as follows. After placing the mirror-polished sample in an Auger electron spectrometer (AES), Ar ion sputtering is performed on the sample surface. Then, the surface immediately after the sputtering is analyzed by a SEM-EDS apparatus. In-k ⁇ rays and O-k ⁇ rays are detected, and particles containing both In and oxygen are extracted by mapping image processing, and are defined as oxides mainly containing In.
  • the above-described SEM-EDS analysis is performed at an observation magnification of 100 times, particles of oxides mainly composed of In having a circle equivalent diameter of 1 ⁇ m or more are counted, and the total number of the particles is defined as the number. The number of particles is divided by the area of the visual field to obtain a number density.
  • M in the above formula is the number density (particles / mm 2 ) of oxide particles mainly containing In contained in the steel, and In is the content (% by mass) of In contained in the steel. is there.
  • a material After melting steel containing 0.05 to 5.0%, a material is manufactured by hot forging. The material may be subjected to hot working or cold working as necessary. When an oxide mainly containing In is dispersed, the In content of the material is preferably set to 0.3 to 5.0%.
  • the material When dispersing the metal In particles, the material is subjected to a quenching treatment.
  • a quenching treatment for example, heating at 800 to 1200 ° C. for 5 to 30 minutes, followed by water cooling or oil cooling.
  • the holding temperature of the quenching treatment is preferably 1100 ° C. or lower, more preferably 1050 ° C. or lower.
  • the holding time of the quenching treatment is preferably 20 minutes or less, and more preferably 15 minutes or less.
  • a tempering treatment of heating at 150 to 650 ° C. for 5 to 60 minutes and then air cooling or water cooling may be performed.
  • the holding temperature of the tempering if the holding temperature of the tempering is too high, the holding time of the tempering is too long, or the temperature is gradually cooled (for example, furnace cooling) after the holding, the oxide In is formed by the supply of oxygen from the surface layer. The number density of metal In particles may decrease.
  • the cooling rate at this time is preferably 1 ° C./sec or more.
  • the holding temperature for tempering is preferably 500 ° C. or lower, more preferably 450 ° C. or lower.
  • the holding time for tempering is preferably 30 minutes or less, and more preferably 20 minutes or less.
  • the material is first subjected to a quenching treatment.
  • a quenching treatment for example, heating at 800 to 1200 ° C. for 5 to 30 minutes, followed by water cooling or oil cooling.
  • the holding temperature of the quenching treatment is preferably 850 to 1050 ° C.
  • the holding time of the quenching treatment is preferably 20 minutes or less, and more preferably 15 minutes or less.
  • a special heat treatment for example, a heat treatment of heating at 1000 to 1200 ° C. for 5 to 30 minutes and then slowly cooling at an average cooling rate of 300 ° C./h or less can be performed.
  • Example 1 Steel having the chemical composition shown in Table 1 was melted.
  • Steel types A to I in Table 1 are based on JIS G 4051 carbon steel S45C for machine structural use, with the addition amount of In and the like changed.
  • the steel types J to S in Table 1 are obtained by changing the amount of In and the like based on the steel of the alloy steel for machine structure SMn438 according to JIS G 4052.
  • "-" in the chemical composition indicates that the corresponding element is at an impurity level.
  • a test piece for measuring the In-enriched layer was collected from each test material, and the thickness of the In-enriched layer was measured according to the method described in the embodiment.
  • the Auger electron spectrometer used was SAM670 manufactured by ULVAC-PHI.
  • the surface of the test piece was roughly polished using # 800 abrasive grains, and was finally mirror-finished using 0.3 ⁇ m diamond slurry.
  • the ball was made of alumina having a diameter of 6 mm, and the friction test was performed under the following conditions: load: 10 N, test temperature: room temperature, rotational diameter: 6 mm, friction speed: 10 mm / sec, friction time: 200 seconds, lubricant: none. Carried out. As the coefficient of friction, a value provided from software of the testing machine was used.
  • FIG. 1 shows a test material having a maximum friction coefficient of more than 0.5 (No. 10 in Table 2) and a test material having a maximum friction coefficient of 0.5 or less (No. 15 in Table 2). 5 shows the change over time of the coefficient of friction.
  • Table 2 shows the heat treatment conditions and evaluation results for each test material.
  • the numerical value in the column of “the number of metal In” is the number density of metal In particles having a diameter of 50 nm to 5 ⁇ m.
  • the numerical value in the column of “In layer thickness” is the thickness of the In concentrated layer.
  • test materials 3 to 7 and 12 to 17 have a chemical composition containing 0.05 to 5.0% In, a structure in which particles of metal In are dispersed, and have a diameter of 50 nm to 5 ⁇ m. The number density of the particles was 5000 / mm 2 or more. These test materials had a maximum coefficient of friction of 0.5 or less and a duration of 100 seconds or more.
  • Example 2 Next, the same evaluation was performed on the test material in which tempering after quenching was omitted.
  • test material was produced in the same manner as in Example 1 except that tempering was omitted. As in Example 1, the number density, hardness, and In layer thickness of the metal In particles were measured. Each of the obtained test materials had a martensite structure.
  • Example 1 As a friction test, a friction test in a wet environment was performed instead of the friction test in the dry environment of Example 1. As in Example 1, a disc-shaped test piece having a diameter of 20 mm and a thickness of 3 mm was collected from each test material, and a ball-on-disk friction test was performed using the test piece.
  • the tester used was a Tribometer manufactured by CSM Instruments.
  • the surface of the test piece was roughly polished using # 800 abrasive grains, and was finally mirror-finished using 0.3 ⁇ m diamond slurry.
  • the ball used was made of SUJ2 having a diameter of 6 mm, load: 10 N, test temperature: 140 ° C., rotational diameter: 6 mm, friction speed: 0.5 m / sec, friction time: 60 minutes, lubricant: 2 ml of engine oil A friction test was performed under the conditions.
  • the engine oil used had a viscosity equivalent to 0 W-8 and contained an organic molybdenum complex, zinc dialkyldithiophosphate, and calcium sulfonate as additives.
  • As the coefficient of friction a value provided from software of the testing machine was used.
  • the seizure resistance was evaluated from the obtained “maximum coefficient of friction”.
  • the “maximum friction coefficient” means the maximum value of the friction coefficient from the start to the end of the friction (sliding distance 1800 m).
  • seizure was observed in the observation of sliding traces after the test.
  • the maximum friction coefficient was 0.5 or less, no seizure was observed in the observation of the sliding traces after the test. Therefore, when the maximum friction coefficient was 0.5 or less, it was determined that the seizure resistance was excellent.
  • FIG. 2 shows a test material having a maximum friction coefficient of more than 0.5 (No. 30 in Table 3) and a test material having a maximum friction coefficient of 0.5 or less (No. 35 in Table 3). 5 shows the change over time of the coefficient of friction.
  • Table 3 shows the processing conditions and evaluation results for each test material.
  • the numerical value in the column of “the number of metal In” is the number density of metal In particles having a diameter of 50 nm to 5 ⁇ m.
  • the numerical value in the column of “In layer thickness” is the thickness of the In concentrated layer.
  • test materials 23 to 27 and 32 to 37 have a chemical composition containing 0.05 to 5.0% of In, a structure in which particles of metal In are dispersed, and have a diameter of 50 nm to 5 ⁇ m. The number density of the particles was 5000 / mm 2 or more. These test materials had a maximum coefficient of friction of 0.5 or less and a duration of 60 minutes or more.
  • Example 3 Molten steel having the chemical composition shown in Table 4 was smelted by adding In to S45C steel, a carbon steel material for machine structure of JIS G 4051: 2016 standard (Test Nos. 1-1 to 1-7).
  • test materials Test Nos. 1-1, 1-3, 1-5 to 1-7.
  • Test No. Samples 1-2 and 1-4 were further heated at 1100 ° C. for 10 minutes, and then subjected to a special heat treatment of slow cooling at an average cooling rate of 100 ° C./h to obtain test materials. According to observation with an optical microscope, the test material without special heat treatment had a martensite structure, and the test material after special heat treatment had a ferrite-pearlite structure.
  • an evaluation test for seizure resistance and abrasion resistance was performed using each test material. Specifically, the friction characteristics were evaluated by a ball-on-disk type friction test (CSM Instruments Tribometer).
  • the test piece used for the abrasion test was a disk having a diameter of 15 mm and a thickness of 4 mm, and the evaluation surface was mirror-finished.
  • a friction test was performed using a ball made of alumina having a diameter of 6 mm, a load of 10 N, a test temperature of room temperature, a rotation diameter of 7 mm, a friction speed of 10 mm / sec, a friction time of 60 minutes, and no lubricant.
  • a value provided from software of the testing machine was used.
  • the seizure resistance is evaluated based on the “maximum initial friction coefficient” obtained by the above test.
  • the “maximum initial friction coefficient” means the maximum value of the friction coefficient from the start of friction until the sliding distance becomes 1.5 m.
  • the width of the wear mark after the test was measured, and when it was 400 ⁇ m or less, it was judged that the wear resistance was excellent.
  • Test No. satisfying the requirements of the present invention In the case of 1-1 to 1-4, the result was excellent in seizure resistance and wear resistance. On the other hand, Test Nos. In the cases of 1-5 to 1-7, both seizure resistance and abrasion resistance were inferior. In particular, the test No. In the cases of 1-2 and 1-4, the number density of the oxide particles mainly composed of In was high, and the above expression (i) was satisfied. And as a result, the test No. 2 having the same In content As a result, the sliding characteristics were extremely excellent as compared with 1-3 and 1-5, respectively.
  • Example 4 Molten steel having the chemical composition shown in Table 6 was smelted by adding In to a steel material with reference to the JIS G 4053: 2016 standard steel alloy material for machine structure, SMn438 steel (Test No. 2-1 to Test No. 2-1). 2-5).
  • test material (Test Nos. 2-1 and 2-4).
  • Test No. 2-2, 2-3 and 2-5 were further heated at 1100 ° C. for 10 minutes, and then subjected to a special heat treatment of slow cooling at an average cooling rate of 100 ° C./h to obtain test materials.
  • the test material without special heat treatment had a martensite structure
  • the test material after special heat treatment had a ferrite-pearlite structure.
  • Example 3 Thereafter, in the same manner as in Example 3, the number density of oxide-based particles was measured, and an evaluation test for seizure resistance and abrasion resistance was performed.
  • Test No. satisfying the requirements of the present invention In the cases of 2-1 to 2-3, the results were excellent in seizure resistance and wear resistance. On the other hand, Test Nos. In Nos. 2-4 and 2-5, at least one of seizure resistance and abrasion resistance was inferior. In particular, the test No. In 2-2 and 2-3, the number density of the oxide-based oxide particles was increased, thereby satisfying the expression (i). And as a result, the test No. 2 having the same In content 2-1 and Test No. 2-2, the test No. satisfying the expression (i). 2-2 resulted in more excellent sliding characteristics.
  • Example 5 By adding In to SUJ2 steel, a high carbon chromium bearing steel of JIS G 4805: 2008 standard, molten steel having the chemical composition shown in Table 8 was produced (Test Nos. 3-1 to 3-4).
  • test materials Test Nos. 3-1 and 3-4.
  • Test No. 3-2 and 3-3 were further heated at 1100 ° C. for 10 minutes, and then subjected to a special heat treatment of slow cooling at an average cooling rate of 100 ° C./h to obtain test materials.
  • Example 3 Thereafter, in the same manner as in Example 3, the number density of oxide-based particles was measured, and an evaluation test for seizure resistance and abrasion resistance was performed.
  • test Nos. In the cases of 3-1 to 3-3 the results were excellent in seizure resistance and wear resistance.
  • Test Nos. In No. 3-4 both seizure resistance and abrasion resistance were inferior.
  • the test No. In the cases of 3-2 and 3-3 the number density of the oxide mainly containing In was increased, and the above-mentioned formula (i) was satisfied.
  • the test No. 2 having the same In content 3-1 and Test No. 3-2, test No. 3 satisfying the expression (i). 3-2 resulted in more excellent sliding characteristics.
  • the steel material for sliding parts according to the present invention can be suitably used as a steel material for sliding parts used in transportation machines such as automobiles and ships, general industrial machines and the like.

Abstract

Provided is a steel material for sliding members, which has excellent seizure resistance. The steel material for sliding members has a chemical composition containing, in % by mass, 0.05 to 5.0% of In and a texture having, dispersed therein, particles of metal In or particles of an oxide mainly composed of In, wherein the number density of particles each having a diameter of 50 nm to 5 μm among the particles of metal In is 5000 particles/mm2 or more or the number density of particles each having a diameter of 1 μm or more among the particles of the oxide mainly composed of In is 30 particles/mm2 or more.

Description

摺動部品用鋼材及びその製造方法Steel for sliding parts and method of manufacturing the same
 本発明は、摺動部品用鋼材及びその製造方法に関する。 The present invention relates to a steel material for a sliding part and a method for producing the same.
 摺動特性が要求される部品として、自動車エンジン用のクランクシャフトが挙げられる。近年、低燃費化を目的としてエンジンの小型化や、潤滑油の低粘度化、潤滑系統の簡素化が進んでおり、さらに間欠運転によるドライスタートの観点等から、クランクシャフトに用いられる摺動部品用鋼材にはより優れた耐焼付き性が求められている。 ク ラ ン ク Crankshafts for automobile engines are examples of parts that require sliding characteristics. In recent years, downsizing of engines, low viscosity of lubricating oils, and simplification of lubrication systems have been progressing for the purpose of fuel efficiency, and sliding parts used for crankshafts have been used from the viewpoint of dry start by intermittent operation. Steel materials for use are required to have better seizure resistance.
 鋼材の焼付き現象は、摺動時に発生する摩耗粉等の物理的要因に加えて、摺動界面で発生する化学的要因(例えば、摺動相手材の移着や凝着等、化学反応に起因すると思われる異種材の発生)に支配される。焼付きを抑制する方法として、ドライ環境では例えば、鋼材表面へのDLC(ダイヤモンド・ライク・カーボン)成膜や、PTFE系のフッ素樹脂によるコーティングによる対策が採られる。 The seizure phenomenon of steel materials is caused not only by physical factors such as abrasion powder generated at the time of sliding, but also by chemical factors generated at a sliding interface (for example, due to chemical reaction such as transfer and adhesion of a sliding partner material). Generation of dissimilar materials that may be caused by In a dry environment, as a method of suppressing seizure, for example, measures such as DLC (diamond-like carbon) film formation on a steel material surface and coating with a PTFE-based fluororesin are taken.
 クランクシャフトの場合、焼付きはクランクシャフトと軸受との接触箇所で発生する。クランクシャフトと軸受とは通常、潤滑油を介して摺動する流体潤滑状態にある。しかし、高速かつ高圧の摺動に伴って接触界面の温度が上昇することで、潤滑油が化学的に変質する場合がある。これによって、潤滑油が機能しなくなったり、潤滑油の濡れ性が損なわれたりすることで、クランクシャフトと軸受とが直接接触し、鋼材の組織が塑性変形して焼付きが発生すると考えられている。 In the case of a crankshaft, seizure occurs at the contact point between the crankshaft and the bearing. The crankshaft and the bearing are usually in a fluid lubricated state in which they slide through lubricating oil. However, the lubricating oil may be chemically degraded due to an increase in the temperature of the contact interface accompanying high-speed and high-pressure sliding. As a result, it is thought that the lubricating oil stops functioning or the wettability of the lubricating oil is impaired, so that the crankshaft and the bearing come into direct contact, and the structure of the steel material is plastically deformed and seizure occurs. I have.
 そのため、鋼材の機械的強度を引き上げて鋼材の摩耗量や塑性変形を抑制することや、潤滑油との濡れ性を向上させるために鋼材の表面性状を制御することが検討されている。例えば特開平7-18379号公報には、表面に軟窒化処理による化合物層を有する、耐焼付き性及び疲労強度に優れる機械構造用鋼が開示されている。特開2007-238965号公報には、表面に高周波焼入れ層を有する、耐焼付き性に優れたクランクシャフトが開示されている。 Therefore, studies are being made to increase the mechanical strength of the steel material to suppress the amount of wear and plastic deformation of the steel material, and to control the surface properties of the steel material in order to improve the wettability with lubricating oil. For example, Japanese Unexamined Patent Publication No. 7-18379 discloses a steel for machine structural use which has a compound layer formed by nitrocarburizing on the surface and has excellent seizure resistance and fatigue strength. Japanese Patent Application Laid-Open No. 2007-238965 discloses a crankshaft having an induction hardening layer on the surface and having excellent seizure resistance.
 上記とは異なるアプローチとして、固体潤滑材を用いた摺動部品が提案されている。例えば特開昭60-1424号公報には、表面に凹凸が形成された基体と、当該基体の凹部に保持された固体潤滑剤で構成された摺動部材が開示されている。 摺 動 As a different approach, sliding parts using solid lubricants have been proposed. For example, Japanese Patent Application Laid-Open No. Sho 60-1424 discloses a sliding member composed of a base having irregularities on the surface and a solid lubricant held in a concave portion of the base.
特開平7-18379号公報JP-A-7-18379 特開2007-238965号公報JP 2007-238965 A 特開昭60-1424号公報JP-A-60-1424 特開2001-131684号公報JP 2001-131684 A
 上述のDLC成膜を鋼材部品表面へ施した場合、良好な表面性状は得られる。しかし、摺動時の高温高圧環境では、不測の熱衝撃及び応力集中が懸念される。DLC成膜は、かかる環境に十分抗すると言えないのが現状である。また、上述のフッ素樹脂コーティングは利便性が高く、低コストの表面処理方法であるものの、フッ素樹脂の内部に形成されるピンホールが原因と思われる早期腐食劣化の他、高温環境下では毒性のある危険ガスが発生し易い等の環境的懸念がある。このように、上述の方法では、鋼材表面の焼付き現象を十分に抑制し、良好な摺動性能を維持するのには限界がある。 場合 When the above-mentioned DLC film is formed on the surface of a steel component, good surface properties can be obtained. However, in a high-temperature and high-pressure environment during sliding, unexpected thermal shock and stress concentration may occur. At present, DLC film formation cannot be said to be sufficiently resistant to such an environment. In addition, although the above-mentioned fluororesin coating is a highly convenient and low-cost surface treatment method, in addition to early corrosion deterioration considered to be caused by pinholes formed inside the fluororesin, it is toxic in a high-temperature environment. There are environmental concerns such as the generation of certain dangerous gases. As described above, in the above-described method, there is a limit in sufficiently suppressing the seizure phenomenon on the surface of the steel material and maintaining good sliding performance.
 また、上記の特許文献1~3に記載される技術にも、下記の問題点がある。 技術 The techniques described in Patent Documents 1 to 3 also have the following problems.
 上述の軟窒化又は浸炭等は、鋼材部品表面を化学的に、より硬質な組成・組織へと改質する手法であり、通常の熱処理プロセスとは別個に高温でガス処理を行うため、処理時間を余計に要し、装置コストが嵩むことになる。また、被処理鋼材部品は、当該ガス処理装置炉内容積の制約を受ける点も無視できない。 The above-mentioned nitrocarburizing or carburizing is a technique for chemically modifying the surface of a steel component into a harder composition and structure. Since gas treatment is performed at a high temperature separately from a normal heat treatment process, the treatment time And the cost of the apparatus increases. In addition, it cannot be ignored that the steel component to be processed is restricted by the inner volume of the furnace of the gas processing apparatus.
 上述した特開昭60-1424号公報には、基体の表面にショットブラストやエッチングによって凹凸を形成し、この凹部に固体潤滑剤を埋設させることが記載されている。この方法は製造工程が複雑になることに加えて、固体潤滑剤が摺動面で消耗し、供給が途絶えた場合には潤滑性能が著しく損なわれる懸念がある。 特 開 The above-mentioned Japanese Patent Application Laid-Open No. 60-1424 describes that irregularities are formed on the surface of a substrate by shot blasting or etching, and a solid lubricant is embedded in the concave portions. In this method, in addition to the complicated manufacturing process, there is a concern that the solid lubricant is consumed on the sliding surface and the lubricating performance is significantly impaired if the supply is interrupted.
 本発明の目的は、耐焼付き性に優れた摺動部品用鋼材及びその製造方法を提供することである。 目的 An object of the present invention is to provide a steel material for sliding parts having excellent seizure resistance and a method for producing the same.
 本発明の一実施形態による摺動部品用鋼材は、質量%、In:0.05~5.0%を含有する化学組成と、金属Inの粒子又はInを主体とする酸化物の粒子が分散した組織とを有し、前記金属Inの粒子のうち直径50nm~5μmの粒子の数密度が5000個/mm以上であるか、又は、前記Inを主体とする酸化物の粒子のうち直径1μm以上の粒子の数密度が30個/mm以上である。 The steel material for a sliding part according to one embodiment of the present invention has a chemical composition containing mass%, In: 0.05 to 5.0%, and metal In particles or In-based oxide particles dispersed therein. The number density of particles having a diameter of 50 nm to 5 μm among the metal In particles is 5000 particles / mm 2 or more, or 1 μm among the oxide-based particles mainly containing In. The number density of the above particles is 30 particles / mm 2 or more.
 本発明の一実施形態による摺動部品用鋼材は、前記金属Inの粒子のうち直径50nm~5μmの粒子の数密度が5000個/mm以上である。 In the sliding part steel material according to one embodiment of the present invention, among the particles of the metal In, the number density of particles having a diameter of 50 nm to 5 μm is 5000 / mm 2 or more.
 本発明の一実施形態による摺動部品用鋼材の製造方法は、上記の摺動部品用鋼材の製造方法であって、質量%で、In:0.05~5.0%を含有する化学組成を有する素材を準備する工程と、前記素材に、800~1200℃で5~30分間加熱し、その後水冷又は油冷する焼入れ処理を施す工程とを備える。 A method for producing a steel material for a sliding component according to an embodiment of the present invention is a method for producing a steel material for a sliding component as described above, wherein the chemical composition contains 0.05 to 5.0% by mass of In. And a step of heating the material at 800 to 1200 ° C. for 5 to 30 minutes, and then subjecting the material to quenching treatment with water or oil cooling.
 本発明の一実施形態による摺動部品用鋼材は、前記化学組成のIn含有量が、質量%で、0.3~5.0%であり、前記Inを主体とする酸化物の粒子のうち直径1μm以上の粒子の数密度が30個/mm以上である。 In the steel material for a sliding part according to one embodiment of the present invention, the chemical composition has an In content of 0.3 to 5.0% by mass%, and of the oxide particles mainly containing In. The number density of particles having a diameter of 1 μm or more is 30 particles / mm 2 or more.
 本発明の一実施形態による摺動部品用鋼材の製造方法は、上記の摺動部品用鋼材の製造方法であって、質量%で、In:0.3~5.0%を含有する化学組成を有する素材を準備する工程と、前記素材に、800~1200℃で5~30分間加熱し、その後水冷又は油冷する焼入れ処理を施す工程と、前記焼入れ処理された素材に、150~650℃で5~60分間加熱した後、炉冷する熱処理を施す工程とを備える。 A method for manufacturing a steel material for a sliding component according to an embodiment of the present invention is a method for manufacturing a steel material for a sliding component as described above, wherein the chemical composition contains 0.3 to 5.0% by mass of In. Preparing a material having the following characteristics: heating the material at 800 to 1200 ° C. for 5 to 30 minutes, and then subjecting the material to a quenching process to water cooling or oil cooling; Heating for 5 to 60 minutes, and then performing a heat treatment for furnace cooling.
 本発明によれば、耐焼付き性に優れた摺動部品用鋼材が得られる。 According to the present invention, a steel material for sliding parts having excellent seizure resistance can be obtained.
図1は、ドライ環境での摩擦試験における、最大摩擦係数が0.5を超えた試験材及び最大摩擦係数が0.5以下であった試験材のそれぞれの摩擦係数の時間変化を示すグラフである。FIG. 1 is a graph showing a time change of each friction coefficient of a test material having a maximum friction coefficient exceeding 0.5 and a test material having a maximum friction coefficient of 0.5 or less in a friction test in a dry environment. is there. 図2は、ウェット環境での摩擦試験における、最大摩擦係数が0.5を超えた試験材及び最大摩擦係数が0.5以下であった試験材のそれぞれの摩擦係数の時間変化を示すグラフである。FIG. 2 is a graph showing a time change of each friction coefficient of a test material having a maximum friction coefficient exceeding 0.5 and a test material having a maximum friction coefficient of 0.5 or less in a friction test in a wet environment. is there.
 本発明者らは、鋼材に添加する金属元素に着目し、従来よりも簡便かつ効果的に耐焼付き性を改善する方法を検討した。その結果、インジウム(In)の添加が耐焼付き性の改善に有効であることを見出した。 The present inventors have focused on metal elements added to steel materials and studied a method for improving seizure resistance more simply and effectively than in the past. As a result, they found that the addition of indium (In) was effective in improving seizure resistance.
 Inは他の金属元素よりも低融点(156℃)であり、軟質(モース硬度で1.2)である。Inは、同様の性質を有する鉛やグラファイトとともに、固体潤滑剤として用いられている(例えば、特開2001-131684号公報を参照。)。しかし、固体潤滑剤は摺動面で消耗し、供給が途絶えた場合には潤滑性能が著しく損なわれる懸念がある。 In has a lower melting point (156 ° C.) than other metal elements and is soft (Mohs hardness is 1.2). In is used as a solid lubricant together with lead and graphite having similar properties (for example, see JP-A-2001-131684). However, the solid lubricant is consumed on the sliding surface, and if the supply is interrupted, there is a concern that the lubricating performance is significantly impaired.
 本発明者らは、金属Inの粒子又はInを主体とする酸化物の粒子を鋼中に微細に分散させることで、摺動面に潤滑被膜を長時間にわたって形成できることを明らかにした。 The present inventors have clarified that a lubricating film can be formed on a sliding surface for a long time by finely dispersing metal In particles or In-based oxide particles in steel.
 鋼中に固溶しないInは、析出物として存在する。この未固溶Inは、常温環境下においても鋼表面に拡散してInの濃化層を形成し、このInの濃化層が潤滑被膜となって摺動特性の向上に寄与する。また、潤滑被膜が摺動によって消耗した場合、鋼中の未固溶Inが速やかに鋼表面に拡散して潤滑被膜を再生する。 InIn which does not form a solid solution in steel exists as a precipitate. The undissolved In diffuses into the steel surface even under a normal temperature environment to form a concentrated In layer, and the concentrated In layer serves as a lubricating film, thereby contributing to an improvement in sliding characteristics. In addition, when the lubricating film is consumed by sliding, the undissolved In in the steel rapidly diffuses to the steel surface to regenerate the lubricating film.
 Inの析出形態は、製造時の熱処理によって変化する。具体的には、650~100℃の温度範囲を空冷以上の冷却速度で通過させた場合には、単体析出したIn(金属In)の数が多くなる。一方、同温度範囲に長時間保持したり、同温度範囲を炉冷等の小さい冷却速度で通過させたりした場合には、酸化物を形成したInの数が多くなる。 The precipitation form of In changes due to heat treatment at the time of manufacturing. Specifically, when passing through a temperature range of 650 to 100 ° C. at a cooling rate equal to or higher than air cooling, the number of In (metallic In) deposited as a single substance increases. On the other hand, when the temperature is kept in the same temperature range for a long time, or when the temperature is passed through the same temperature range at a low cooling rate such as furnace cooling, the number of Ins forming oxides increases.
 潤滑被膜がより迅速に再生され、長時間にわたって優れた摺動特性を確保するためには、Inの粒子を微細に分散させる必要があるが、必要なInの粒子の数密度は、Inの析出形態によって異なる。具体的には、直径50nm~5μmの金属Inの粒子の数密度を5000個/mm以上にするか、直径1μm以上のInを主体とする酸化物の粒子の数密度を30個/mm以上にすれば、長時間にわたって優れた摺動特性が得られる。なお、「直径」は、粒子が球状ではない場合には、観察断面での円相当径を意味する。 In order to regenerate the lubricating film more quickly and to ensure excellent sliding characteristics over a long period of time, it is necessary to finely disperse the In particles. It depends on the form. Specifically, the number density of metal In particles having a diameter of 50 nm to 5 μm is set to 5000 particles / mm 2 or more, or the number density of In-based oxide particles having a diameter of 1 μm or more is set to 30 particles / mm 2. By doing so, excellent sliding characteristics can be obtained over a long period of time. In addition, when a particle is not spherical, "diameter" means a circle equivalent diameter in an observation cross section.
 本発明は、以上の知見に基づいて完成された。以下、本発明の一実施形態による摺動部品用鋼材について詳述する。以下の説明において、元素の含有量の「%」は、質量%を意味する。 The present invention has been completed based on the above findings. Hereinafter, a steel material for a sliding part according to an embodiment of the present invention will be described in detail. In the following description, “%” of the content of an element means mass%.
 [摺動部品用鋼材]
 [化学組成]
 本実施形態による摺動部品用鋼材は、In:0.05~5.0%を含有する化学組成を有する。
[Steel for sliding parts]
[Chemical composition]
The steel material for a sliding component according to the present embodiment has a chemical composition containing In: 0.05 to 5.0%.
 In:0.05~5.0%
 インジウム(In)は、鋼材の表面に潤滑被膜を形成し、鋼材の摺動特性を向上させる。一方、In含有量が過剰になると、粒界への偏析が顕著になり、脆性破壊や粒界腐食を招くおそれがある。したがって、In含有量は0.05~5.0%である。In含有量の下限は、好ましくは0.1%であり、さらに好ましくは0.2%であり、さらに好ましくは0.3%である。In含有量の上限は、好ましくは4.0%であり、さらに好ましくは3.0%である。
In: 0.05-5.0%
Indium (In) forms a lubricating film on the surface of the steel material and improves the sliding characteristics of the steel material. On the other hand, when the In content is excessive, segregation at the grain boundary becomes remarkable, which may cause brittle fracture or grain boundary corrosion. Therefore, the In content is 0.05 to 5.0%. The lower limit of the In content is preferably 0.1%, more preferably 0.2%, and still more preferably 0.3%. The upper limit of the In content is preferably 4.0%, and more preferably 3.0%.
 Inを金属Inとして析出させる場合、Inを酸化物として析出させる場合と比較して、In含有量を少なくしても、所期の摺動特性を確保することができる。製造コストの観点からは、In含有量はできるだけ少なくすることが好ましい。そのため、Inを金属Inとして析出させる場合のIn含有量は、より好ましくは1.0%以下であり、さらに好ましくは0.5%以下であり、さらに好ましくは0.3%未満である。 In the case where In is deposited as metal In, compared with the case where In is deposited as oxide, the desired sliding characteristics can be ensured even if the In content is reduced. From the viewpoint of manufacturing cost, it is preferable to reduce the In content as much as possible. Therefore, when In is deposited as metal In, the In content is more preferably 1.0% or less, further preferably 0.5% or less, and further preferably less than 0.3%.
 一方、Inを酸化物として析出させる場合、Inを金属Inとして析出させる場合と比較して、In含有量を高くすることが好ましい。Inを酸化物として析出させる場合のIn含有量の下限は、好ましくは0.3%であり、さらに好ましくは0.6%であり、さらに好ましくは0.8%であり、さらに好ましくは1.0%である。 On the other hand, when In is deposited as an oxide, it is preferable to increase the In content as compared with the case where In is deposited as metal In. When In is deposited as an oxide, the lower limit of the In content is preferably 0.3%, more preferably 0.6%, further preferably 0.8%, and further preferably 1.%. 0%.
 本実施形態による摺動部品用鋼材の他の化学組成は、特に限定されない。本実施形態による摺動部品用鋼材は、供される用途に応じて、種々の化学組成の鋼材を用いることができる。本実施形態による摺動部品用鋼材の化学組成は、これに限定されないが、例示すれば下記のとおりである。 の 他 The other chemical composition of the steel for sliding parts according to the present embodiment is not particularly limited. Steel materials of various chemical compositions can be used as the steel materials for sliding parts according to the present embodiment, depending on the intended use. The chemical composition of the steel material for a sliding part according to the present embodiment is not limited thereto, but is as follows, for example.
 C:0.05~1.80%
 炭素(C)は、鋼の焼入れ性を高め、硬さの向上に寄与する。C含有量が0.05%未満では、鋼の焼入れ性が不足する場合がある。一方、C含有量が1.80%を超えると、鋼の圧延性及び加工性が低下するおそれがある。したがって、C含有量は0.05~1.80%であることが好ましい。C含有量の下限は、より好ましくは0.15%であり、さらに好ましくは0.25%である。なお、鋼の強度を重視したい場合には、C含有量の下限は、より好ましくは0.30%であり、より好ましくは0.35%であり、さらに好ましくは0.40%である。一方、C含有量は、鋼の圧延性及び加工性を重視したい場合には、1.50%以下であるのが好ましく、さらに被削性を重視したい場合には、1.00%以下であるのが好ましい。被削性を重視する場合のC含有量の上限は、さらに好ましくは0.60%であり、さらに好ましくは0.55%であり、さらに好ましくは0.50%である。
C: 0.05-1.80%
Carbon (C) enhances the hardenability of steel and contributes to improvement in hardness. If the C content is less than 0.05%, the hardenability of steel may be insufficient. On the other hand, if the C content exceeds 1.80%, the rollability and workability of the steel may decrease. Therefore, the C content is preferably 0.05 to 1.80%. The lower limit of the C content is more preferably 0.15%, and still more preferably 0.25%. When importance is placed on the strength of steel, the lower limit of the C content is more preferably 0.30%, more preferably 0.35%, and still more preferably 0.40%. On the other hand, the C content is preferably 1.50% or less when emphasizing the rollability and workability of steel, and is 1.00% or less when emphasizing machinability. Is preferred. When the machinability is emphasized, the upper limit of the C content is more preferably 0.60%, more preferably 0.55%, and further preferably 0.50%.
 Si:1.5%以下
 シリコン(Si)は、鋼の脱酸剤として用いられる元素である。しかしながら、Si含有量が1.5%を超えると、鋼の熱伝導率が低下して十分な耐焼付き性が得られなくなるおそれがある。したがって、Si含有量は1.5%以下であるのが好ましい。Si含有量の上限は、より好ましくは1.0%であり、より好ましくは0.80%であり、より好ましくは0.70%であり、さらに好ましくは0.50%である。一方、Siを積極的に含有させると、粗大なセメンタイトの生成を抑制する効果がある。上記の効果を顕著に得るためには、Si含有量は、0.05%以上とすることが好ましく、0.10%以上とすることがより好ましい。
Si: 1.5% or less Silicon (Si) is an element used as a deoxidizing agent for steel. However, if the Si content exceeds 1.5%, the thermal conductivity of the steel may decrease, and sufficient seizure resistance may not be obtained. Therefore, the Si content is preferably 1.5% or less. The upper limit of the Si content is more preferably 1.0%, more preferably 0.80%, more preferably 0.70%, and still more preferably 0.50%. On the other hand, when Si is positively contained, there is an effect of suppressing generation of coarse cementite. In order to obtain the above effects remarkably, the Si content is preferably set to 0.05% or more, more preferably 0.10% or more.
 Mn:2.0%以下
 マンガン(Mn)は、鋼の焼入れ性を高める効果を有する元素である。しかしながら、Mn含有量が2.0%を超えると、鋼の熱伝導率が低下して十分な耐焼付き性が得られなくなるおそれがある。したがって、Mn含有量は2.0%以下であるのが好ましい。Mn含有量の上限は、より好ましくは1.8%であり、より好ましくは1.6%であり、より好ましくは1.5%であり、さらに好ましくは1.0%であり、さらに好ましくは0.5%である。一方、Mnを積極的に含有させると、焼入れ性の向上効果に加えて、転位の回復を抑制する効果がある。上記の効果を顕著に得るためには、Mn含有量は、0.05%以上とすることが好ましく、0.10%以上とすることがより好ましく、0.20%以上とすることがさらに好ましい。
Mn: 2.0% or less Manganese (Mn) is an element having an effect of improving the hardenability of steel. However, if the Mn content exceeds 2.0%, the thermal conductivity of the steel may decrease, and sufficient seizure resistance may not be obtained. Therefore, the Mn content is preferably 2.0% or less. The upper limit of the Mn content is more preferably 1.8%, more preferably 1.6%, more preferably 1.5%, further preferably 1.0%, and still more preferably 0.5%. On the other hand, when Mn is positively contained, there is an effect of suppressing recovery of dislocations in addition to an effect of improving hardenability. In order to obtain the above effects remarkably, the Mn content is preferably set to 0.05% or more, more preferably 0.10% or more, and further preferably 0.20% or more. .
 P:0.10%以下
 リン(P)は、不純物として鋼に含有される。P含有量が0.10%を超えると、過剰なPが粒界に偏析して、鋼の疲労強度が低下するおそれがある。したがって、P含有量は0.10%以下であるのが好ましい。P含有量の上限は、より好ましくは0.08%であり、さらに好ましくは0.06%であり、さらに好ましくは0.05%であり、さらに好ましくは0.03%である。
P: 0.10% or less Phosphorus (P) is contained in steel as an impurity. If the P content exceeds 0.10%, excessive P segregates at the grain boundaries, and the fatigue strength of the steel may be reduced. Therefore, the P content is preferably 0.10% or less. The upper limit of the P content is more preferably 0.08%, further preferably 0.06%, further preferably 0.05%, and still more preferably 0.03%.
 S:0.10%以下
 硫黄(S)は、不純物として鋼に含有される。S含有量が0.10%を超えると、熱間加工性が低下するおそれがある。したがって、S含有量は0.10%以下であるのが好ましい。S含有量の上限は、より好ましくは0.080%であり、より好ましくは0.070%であり、さらに好ましくは0.050%である。一方、Sを積極的に含有させると、硫化物系介在物を形成し、鋼の被削性を向上させる。上記の効果を顕著に得るためには、S含有量は、0.005%以上とすることが好ましく、0.010%以上とすることがより好ましい。
S: 0.10% or less Sulfur (S) is contained as an impurity in steel. If the S content exceeds 0.10%, hot workability may be reduced. Therefore, the S content is preferably 0.10% or less. The upper limit of the S content is more preferably 0.080%, more preferably 0.070%, and still more preferably 0.050%. On the other hand, when S is positively contained, sulfide-based inclusions are formed and the machinability of steel is improved. In order to remarkably obtain the above effects, the S content is preferably set to 0.005% or more, and more preferably set to 0.010% or more.
 Al:0.10%以下
 アルミニウム(Al)は、脱酸材として含有される。Al含有量が0.10%を超えると、鋼の被削性が低下するおそれがある。したがって、Al含有量は0.10%以下であるのが好ましい。一方、Alを積極的に含有させると、窒化物のピンニング効果によってオーステナイト粒の微細化に寄与する。上記の効果を顕著に得るためには、Al含有量は、0.005%以上とすることが好ましく、より好ましくは0.010%以上であり、さらに好ましくは0.020%以上である。Al含有量の上限は、より好ましくは0.080%であり、より好ましくは0.060%であり、より好ましくは0.055%であり、さらに好ましくは0.050%である。
Al: 0.10% or less Aluminum (Al) is contained as a deoxidizing material. If the Al content exceeds 0.10%, the machinability of steel may decrease. Therefore, the Al content is preferably 0.10% or less. On the other hand, when Al is positively contained, it contributes to refinement of austenite grains by a pinning effect of nitride. In order to obtain the above effects remarkably, the Al content is preferably 0.005% or more, more preferably 0.010% or more, and still more preferably 0.020% or more. The upper limit of the Al content is more preferably 0.080%, more preferably 0.060%, more preferably 0.055%, and still more preferably 0.050%.
 N:0.030%以下
 窒素(N)は、不純物として鋼に含有される。N含有量が0.030%を超えると、鋼の靱性が低下するおそれがある。したがって、N含有量は0.030%以下であるのが好ましい。一方、Nを積極的に含有させると、窒化物のピンニング効果によってオーステナイト粒の微細化に寄与する。上記の効果を顕著に得るためには、N含有量は、0.001%以上にすることが好ましく、より好ましくは0.0015%以上であり、さらに好ましくは0.002%以上である。N含有量の上限は、より好ましくは0.020%であり、さらに好ましくは0.015%である。
N: 0.030% or less Nitrogen (N) is contained in steel as an impurity. If the N content exceeds 0.030%, the toughness of the steel may decrease. Therefore, the N content is preferably 0.030% or less. On the other hand, when N is positively contained, it contributes to refinement of austenite grains by a pinning effect of nitride. In order to obtain the above effects remarkably, the N content is preferably 0.001% or more, more preferably 0.0015% or more, and further preferably 0.002% or more. The upper limit of the N content is more preferably 0.020%, and still more preferably 0.015%.
 鋼の化学組成においては、上記の元素に加えて、さらに以下に示す元素から選択される1種以上を含有させてもよい。各元素の限定理由について、以下に説明する。 In the chemical composition of steel, one or more elements selected from the following elements may be further contained in addition to the above elements. The reasons for limiting each element will be described below.
 Cr:0~15.0%
 クロム(Cr)は、強度及び耐摩耗性を向上させる効果を有する元素である。加えて、Crはオーステナイト組織の粗大化を抑制するのに有効な元素である。そのため、必要に応じてCrを含有してもよい。しかしながら、Cr含有量が15.0%を超えると、強度と靱性とのアンバランスが生じるおそれがある。したがって、Cr含有量は15.0%以下であるのが好ましい。Cr含有量の上限は、より好ましくは10.0%であり、さらに好ましくは5.0%である。なお、Cr含有量の下限は、好ましくは0.01%であり、より好ましくは0.02%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%である。なお、被削性を重視する場合、Cr含有量は0.30%以下とすることが好ましい。被削性を重視する場合のCr含有量は、より好ましくは0.25%以下であり、さらに好ましくは0.20%以下である。
Cr: 0 to 15.0%
Chromium (Cr) is an element having an effect of improving strength and wear resistance. In addition, Cr is an element effective in suppressing the austenite structure from coarsening. Therefore, Cr may be contained as necessary. However, if the Cr content exceeds 15.0%, an imbalance between strength and toughness may occur. Therefore, the Cr content is preferably 15.0% or less. The upper limit of the Cr content is more preferably 10.0%, and still more preferably 5.0%. Note that the lower limit of the Cr content is preferably 0.01%, more preferably 0.02%, further preferably 0.05%, and still more preferably 0.10%. When emphasis is placed on machinability, the Cr content is preferably set to 0.30% or less. The Cr content when emphasizing machinability is more preferably 0.25% or less, and further preferably 0.20% or less.
 Ni:0~0.50%
 ニッケル(Ni)は、鋼の強度及び靱性を向上させる効果を有する元素である。そのため、必要に応じてNiを含有してもよい。しかしながら、Ni含有量が0.50%を超えてもその効果は飽和する上に、合金コストの上昇を招く結果となる。したがって、Ni含有量は0.50%以下であるのが好ましい。Ni含有量の上限は、より好ましくは0.40%であり、さらに好ましくは0.35%である。Niを積極的に含有させない場合には、Ni含有量は0.10%以下にすることが好ましく、0.05%以下にすることがより好ましい。
Ni: 0 to 0.50%
Nickel (Ni) is an element having an effect of improving the strength and toughness of steel. Therefore, Ni may be contained as necessary. However, even if the Ni content exceeds 0.50%, the effect is saturated and the alloy cost is increased. Therefore, the Ni content is preferably 0.50% or less. The upper limit of the Ni content is more preferably 0.40%, and still more preferably 0.35%. When Ni is not positively contained, the Ni content is preferably set to 0.10% or less, more preferably 0.05% or less.
 Cu:0~0.50%
 銅(Cu)は、鋼の強度及び靱性を向上させる効果を有する元素である。そのため、必要に応じてCuを含有してもよい。しかしながら、Cu含有量が0.50%を超えてもその効果は飽和する上に、合金コストの上昇を招く結果となる。したがって、Cu含有量は0.50%以下であるのが好ましい。Cu含有量の上限は、より好ましくは0.40%であり、さらに好ましくは0.35%である。Cuを積極的に含有させない場合には、Cu含有量は0.10%以下にすることが好ましく、0.05%以下にすることがより好ましい。
Cu: 0 to 0.50%
Copper (Cu) is an element having an effect of improving the strength and toughness of steel. Therefore, Cu may be contained as necessary. However, even if the Cu content exceeds 0.50%, the effect is saturated and the alloy cost is increased. Therefore, the Cu content is preferably 0.50% or less. The upper limit of the Cu content is more preferably 0.40%, and still more preferably 0.35%. When Cu is not positively contained, the Cu content is preferably set to 0.10% or less, more preferably 0.05% or less.
 Ti:0~0.050%
 チタン(Ti)は、窒化物及び炭窒化物を形成し、ピンニング効果によってオーステナイト粒の微細化に寄与する。そのため、必要に応じてTiを含有してもよい。しかしながら、Ti含有量が0.050%を超えると、鋼の靱性が低下するおそれがある。したがって、Ti含有量は0.050%以下であるのが好ましい。Ti含有量の上限は、より好ましくは0.040%であり、さらに好ましくは0.030%である。なお、Ti含有量の下限は、好ましくは0.005%であり、より好ましくは0.010%である。
Ti: 0 to 0.050%
Titanium (Ti) forms nitrides and carbonitrides, and contributes to miniaturization of austenite grains by a pinning effect. Therefore, you may contain Ti as needed. However, if the Ti content exceeds 0.050%, the toughness of the steel may decrease. Therefore, the Ti content is preferably 0.050% or less. The upper limit of the Ti content is more preferably 0.040%, and still more preferably 0.030%. Note that the lower limit of the Ti content is preferably 0.005%, more preferably 0.010%.
 Nb:0~0.050%
 ニオブ(Nb)は、窒化物及び炭窒化物を形成し、ピンニング効果によってオーステナイト粒の微細化に寄与する。そのため、必要に応じてNbを含有してもよい。しかしながら、Nb含有量が0.050%を超えると、鋼の靱性が低下するおそれがある。したがって、Nb含有量は0.050%以下であるのが好ましい。Nb含有量の上限は、より好ましくは0.040%であり、さらに好ましくは0.030%である。なお、Nb含有量の下限は、好ましくは0.005%であり、より好ましくは0.010%である。
Nb: 0 to 0.050%
Niobium (Nb) forms nitrides and carbonitrides and contributes to miniaturization of austenite grains by a pinning effect. Therefore, Nb may be contained as needed. However, if the Nb content exceeds 0.050%, the toughness of the steel may decrease. Therefore, the Nb content is preferably 0.050% or less. The upper limit of the Nb content is more preferably 0.040%, and still more preferably 0.030%. The lower limit of the Nb content is preferably 0.005%, and more preferably 0.010%.
 V:0~2.5%
 バナジウム(V)は、窒化物及び炭窒化物を形成し、ピンニング効果によってオーステナイト粒の微細化に寄与する。また、炭化物を形成することにより鋼の強度を向上させる。そのため、必要に応じてVを含有してもよい。しかしながら、V含有量が2.5%を超えると、鋼の靱性が低下するおそれがある。したがって、V含有量は2.5%以下であるのが好ましい。V含有量の上限は、より好ましくは2.0%であり、さらに好ましくは1.5%であり、特に好ましくは1.0%である。なお、V含有量の下限は、好ましくは0.005%であり、より好ましくは0.010%である。
V: 0 to 2.5%
Vanadium (V) forms nitrides and carbonitrides, and contributes to miniaturization of austenite grains by a pinning effect. Moreover, the strength of steel is improved by forming carbides. Therefore, V may be contained as needed. However, if the V content exceeds 2.5%, the toughness of the steel may decrease. Therefore, the V content is preferably 2.5% or less. The upper limit of the V content is more preferably 2.0%, further preferably 1.5%, and particularly preferably 1.0%. The lower limit of the V content is preferably 0.005%, and more preferably 0.010%.
 Mo:0~3.0%
 モリブデン(Mo)は、鋼の焼入れ性を高め、鋼の強度を向上させる効果を有する元素である。そのため、必要に応じてMoを含有してもよい。しかしながら、Mo含有量が3.0%を超えると、鋼の被削性が低下するおそれがある。したがって、Mo含有量は3.0%以下であるのが好ましい。Mo含有量の上限は、より好ましくは2.5%であり、さらに好ましくは2.0%であり、特に好ましくは1.5%である。なお、Moを積極的に含有させる場合のMo含有量の下限は、好ましくは0.3%であり、さらに好ましくは0.5%である。Moを積極的に含有させない場合には、Mo含有量は0.10%以下にすることが好ましく、0.05%以下にすることがより好ましい。
Mo: 0 to 3.0%
Molybdenum (Mo) is an element having the effect of improving the hardenability of steel and improving the strength of steel. Therefore, Mo may be contained as needed. However, if the Mo content exceeds 3.0%, the machinability of the steel may decrease. Therefore, the Mo content is preferably 3.0% or less. The upper limit of the Mo content is more preferably 2.5%, further preferably 2.0%, and particularly preferably 1.5%. In addition, when Mo is positively contained, the lower limit of the Mo content is preferably 0.3%, more preferably 0.5%. When Mo is not positively contained, the Mo content is preferably 0.10% or less, more preferably 0.05% or less.
 W:0~6.0%
 タングステン(W)は、Moと同様に、鋼の焼入れ性を高め、鋼の強度を向上させる効果を有する元素である。そのため、必要に応じてWを含有してもよい。しかしながら、W含有量が6.0%を超えると、鋼の被削性が低下するおそれがある。したがって、W含有量は6.0%以下であるのが好ましい。W含有量の上限は、より好ましくは4.0%であり、さらに好ましくは2.0%である。なお、W含有量の下限は、好ましくは0.01%であり、より好ましくは0.1%であり、さらに好ましくは0.5%である。
W: 0 to 6.0%
Tungsten (W), like Mo, is an element having the effect of improving the hardenability of steel and improving the strength of steel. Therefore, W may be contained as needed. However, if the W content exceeds 6.0%, the machinability of the steel may decrease. Therefore, the W content is preferably 6.0% or less. The upper limit of the W content is more preferably 4.0%, and still more preferably 2.0%. Note that the lower limit of the W content is preferably 0.01%, more preferably 0.1%, and still more preferably 0.5%.
 B:0~0.005%
 ホウ素(B)は、粒界強化元素として靱性向上に寄与する。そのため、必要に応じてBを含有してもよい。しかし、Bの含有量が0.005%を超えると、かえって靱性が低下するおそれがある。したがって、B含有量は0.005%以下であるのが好ましい。B含有量の上限は、より好ましくは0.004%であり、さらに好ましくは0.002%である。なお、B含有量の下限は、好ましくは0.0003%であり、より好ましくは0.0005%である。なお、Bの効果を有効に活用するためには、鋼中のNがTiにより固定されていることが好ましい。
B: 0 to 0.005%
Boron (B) contributes to improvement in toughness as a grain boundary strengthening element. Therefore, you may contain B as needed. However, if the content of B exceeds 0.005%, the toughness may be rather reduced. Therefore, the B content is preferably 0.005% or less. The upper limit of the B content is more preferably 0.004%, and still more preferably 0.002%. The lower limit of the B content is preferably 0.0003%, and more preferably 0.0005%. In order to effectively use the effect of B, it is preferable that N in steel is fixed by Ti.
 鋼の化学組成において、残部はFe及び不純物である。ここで「不純物」とは、鋼を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。 In the steel chemical composition, the balance is Fe and impurities. Here, the "impurities" are components that are mixed due to various factors in the ore, scrap and other raw materials, and the manufacturing process when steel is industrially manufactured, and are acceptable as long as they do not adversely affect the present invention. Means something.
 なお、不純物として鋼中に混入し得る元素として、例えば、Pb、Ca、Mg、Sb、Ta及びREMが挙げられる。これらの元素を含む場合であっても、その含有量が、それぞれ、Pb:0.10%以下、Ca:0.001%以下、Mg:0.001%以下、Sb:0.005%以下、Ta:0.10%以下、及びREM:0.001%以下であれば、問題なく本発明を実施することができる。 元素 Note that elements that can be mixed into steel as impurities include, for example, Pb, Ca, Mg, Sb, Ta and REM. Even when these elements are contained, their contents are respectively Pb: 0.10% or less, Ca: 0.001% or less, Mg: 0.001% or less, Sb: 0.005% or less, If Ta: 0.10% or less and REM: 0.001% or less, the present invention can be practiced without any problem.
 上記鋼の組成として代表的なものは、以下の5種類である。 組成 Typical compositions of the above steels are the following five types.
 (a)C:0.35~0.60%、Si:0.50%以下、Mn:0.80%以下、P:0.10%以下、S:0.050%以下、Al:0.005~0.060%、N:0.001~0.020%、In:0.05~5.0%、Cr:0~0.30%、Ni:0~0.20%、Cu:0~0.10%、Nb:0~0.050%、Mo:0~3.0%、残部:Fe及び不純物である鋼。 (A) C: 0.35 to 0.60%, Si: 0.50% or less, Mn: 0.80% or less, P: 0.10% or less, S: 0.050% or less, Al: 0. 005 to 0.060%, N: 0.001 to 0.020%, In: 0.05 to 5.0%, Cr: 0 to 0.30%, Ni: 0 to 0.20%, Cu: 0 0.10%, Nb: 0 to 0.050%, Mo: 0 to 3.0%, balance: Fe and steel as impurities.
 (b)C:0.35~0.40%、Si:0.80%以下、Mn:1.00~1.80%、P:0.10%以下、S:0.070%以下、Al:0.005~0.060%、N:0.001~0.020%、In:0.05~5.0%、Cr:0~0.25%、Ni:0~0.15%、Cu:0~0.25%、Ti:0~0.050%、Nb:0~0.050%、Mo:0~0.10%、残部:Fe及び不純物である鋼。 (B) C: 0.35 to 0.40%, Si: 0.80% or less, Mn: 1.00 to 1.80%, P: 0.10% or less, S: 0.070% or less, Al : 0.005 to 0.060%, N: 0.001 to 0.020%, In: 0.05 to 5.0%, Cr: 0 to 0.25%, Ni: 0 to 0.15%, Cu: 0 to 0.25%, Ti: 0 to 0.050%, Nb: 0 to 0.050%, Mo: 0 to 0.10%, balance: Fe and steel as impurities.
 (c)C:0.95~1.10%、Si:0.15~0.30%、Mn:0.40%未満、P:0.020%以下、S:0.020%未満、Al:0.005~0.060%、N:0.001~0.020%、In:0.05~5.0%、Cr:1.30%~1.60%、Ni:0~0.15%、Cu:0.20%未満、Ti:0~0.050%、Nb:0~0.050%、V:0~2.5%、Mo:0~3.0%、B:0~0.005%、残部:Fe及び不純物である鋼。 (C) C: 0.95 to 1.10%, Si: 0.15 to 0.30%, Mn: less than 0.40%, P: 0.020% or less, S: less than 0.020%, Al : 0.005 to 0.060%, N: 0.001 to 0.020%, In: 0.05 to 5.0%, Cr: 1.30% to 1.60%, Ni: 0 to 0. 15%, Cu: less than 0.20%, Ti: 0 to 0.050%, Nb: 0 to 0.050%, V: 0 to 2.5%, Mo: 0 to 3.0%, B: 0 0.005%, balance: Fe and steel as impurities.
 (d)C:1.40~1.60%、Si:0.40%未満、Mn:0.60%未満、P:0.020%以下、S:0.020%未満、Al:0.005~0.060%、N:0.001~0.030%、In:0.05~5.0%、Cr:11.0~13.0%、Ni:0~0.50%、Cu:0.40%未満、Ti:0~0.050%、Nb:0~0.050%、V:0.20~0.50%、Mo:0.80~1.20%、B:0~0.005%、残部:Fe及び不純物である鋼。 (D) C: 1.40 to 1.60%, Si: less than 0.40%, Mn: less than 0.60%, P: 0.020% or less, S: less than 0.020%, Al: 0. 005 to 0.060%, N: 0.001 to 0.030%, In: 0.05 to 5.0%, Cr: 11.0 to 13.0%, Ni: 0 to 0.50%, Cu : Less than 0.40%, Ti: 0 to 0.050%, Nb: 0 to 0.050%, V: 0.20 to 0.50%, Mo: 0.80 to 1.20%, B: 0 0.005%, balance: Fe and steel as impurities.
 (e)C:0.05~0.60%、Si:1.5%以下、Mn:2.0%以下、Cr:0.3%以下、In:0.05~5.0%、P:0.10%以下、S:0.10%以下、Al:0.10%以下、Cu:0.10%以下、Ni:0.10%以下、Mo:0.10%以下、N:0.03%以下、残部:Fe及び不純物である鋼。 (E) C: 0.05 to 0.60%, Si: 1.5% or less, Mn: 2.0% or less, Cr: 0.3% or less, In: 0.05 to 5.0%, P : 0.10% or less, S: 0.10% or less, Al: 0.10% or less, Cu: 0.10% or less, Ni: 0.10% or less, Mo: 0.10% or less, N: 0 0.03% or less, balance: Fe and steel as impurities.
 [組織]
 本実施形態による摺動部品用鋼材は、金属Inの粒子又はInを主体とする酸化物の粒子が分散した組織を有する。
[Organization]
The steel material for a sliding part according to the present embodiment has a structure in which particles of metal In or particles of an oxide mainly containing In are dispersed.
 Fe-In二元系におけるInの固溶限は0.57%程度であるが、鋼には他にも様々な元素が固溶しているため、鋼中におけるInの固溶限はFe-Inの固溶限よりも低くなる。鋼中に固溶しないInは、析出物として存在する。この未固溶Inは、常温環境下においても鋼表面に拡散してInの濃化層を形成し、このInの濃化層が潤滑被膜となって摺動特性の向上に寄与する。また、潤滑被膜が摺動によって消耗した場合、鋼中の未固溶Inが速やかに鋼表面に拡散して潤滑被膜を再生する。 The solid solubility limit of In in the Fe—In binary system is about 0.57%, but since various other elements are dissolved in steel, the solid solubility limit of In in the steel is Fe—. It becomes lower than the solid solubility limit of In. In which does not form a solid solution in steel exists as a precipitate. The undissolved In diffuses into the steel surface even under a normal temperature environment to form a concentrated In layer, and the concentrated In layer serves as a lubricating film, thereby contributing to an improvement in sliding characteristics. In addition, when the lubricating film is consumed by sliding, the undissolved In in the steel rapidly diffuses to the steel surface to regenerate the lubricating film.
 潤滑被膜がより迅速に再生され、長時間にわたって優れた摺動特性を確保するためには、金属Inの粒子又はInを主体とする酸化物の粒子を微細に分散させる必要があるが、必要なInの粒子の数密度は、Inの析出形態によって異なる。具体的には、直径50nm~5μmの金属Inの粒子の数密度を5000個/mm以上にするか、又は、直径1μm以上のInを主体とする酸化物の粒子の密度を30個/mm以上にすれば、長時間にわたって優れた摺動特性が得られる。なお、「直径」は、粒子が球状ではない場合には、観察断面での円相当径を意味する。 In order to ensure that the lubricating coating is regenerated more quickly and to ensure excellent sliding properties over a long period of time, it is necessary to finely disperse the metal In particles or the In-based oxide particles. The number density of the In particles varies depending on the precipitation form of In. Specifically, the number density of metal In particles having a diameter of 50 nm to 5 μm is set to 5000 particles / mm 2 or more, or the density of oxide particles mainly composed of In having a diameter of 1 μm or more is set to 30 particles / mm 2. If it is two or more, excellent sliding characteristics can be obtained for a long time. In addition, when a particle is not spherical, "diameter" means a circle equivalent diameter in an observation cross section.
 摺動部品用鋼材の組織は、金属Inの粒子のうち直径50nm~5μmの粒子の数密度が5000個/mm以上であること、及び、Inを主体とする酸化物の粒子のうち直径1μm以上の粒子の数密度が30個/mm以上であることの、少なくとも一方を満たしていればよい。すなわち、金属Inの粒子のうち直径50nm~5μmの粒子の数密度が5000個/mm以上であれば、Inを主体とする酸化物の粒子の数密度は任意である。また、Inを主体とする酸化物の粒子のうち直径1μm以上の粒子の数密度が30個/mm以上であれば、金属Inの粒子の数密度は任意である。 The microstructure of the steel material for sliding parts is that the number density of particles having a diameter of 50 nm to 5 μm among the particles of metal In is 5,000 / mm 2 or more, and the diameter of oxide particles mainly containing In is 1 μm. It suffices if at least one of the above-mentioned number density of particles of 30 particles / mm 2 or more is satisfied. That is, as long as the number density of particles having a diameter of 50 nm to 5 μm among the metal In particles is 5000 / mm 2 or more, the number density of the oxide-based particles mainly containing In is arbitrary. The number density of metal In particles is arbitrary as long as the number density of particles having a diameter of 1 μm or more among oxide particles mainly containing In is 30 particles / mm 2 or more.
 摺動部品用鋼材の組織の基地(マトリクス)は、特に限定されない。摺動部品用鋼材の組織の基地は例えば、マルテンサイト、焼戻しマルテンサイト、フェライト・パーライト、パーライト等である。 基地 The base (matrix) of the structure of the steel material for sliding parts is not particularly limited. The base of the structure of the steel material for sliding parts is, for example, martensite, tempered martensite, ferrite perlite, perlite, and the like.
 [金属In]
 金属Inによって摺動特性を確保する場合、直径50nm~5μmの金属Inの粒子の数密度を5000個/mm以上にする。直径50nm~5μmの金属Inの粒子の数密度は、好ましくは10000個/mm以上であり、さらに好ましくは15000個/mm以上であり、さらに好ましくは20000個/mm以上である。
[Metal In]
When the sliding characteristics are ensured by the metal In, the number density of the metal In particles having a diameter of 50 nm to 5 μm is set to 5000 / mm 2 or more. The number density of metal In particles having a diameter of 50 nm to 5 μm is preferably 10,000 particles / mm 2 or more, more preferably 15,000 particles / mm 2 or more, and further preferably 20,000 particles / mm 2 or more.
 ここで、「金属In」とは、酸化物等の化合物を形成せず、単体析出しているInを意味する。 Here, “metal In” means In which is not forming a compound such as an oxide and is precipitated as a single substance.
 金属Inの粒子の数密度は、次の様に測定する。鋼材の表面近傍から、表面と垂直な断面を観察面として試験片を採取する。観察面を鏡面研磨した後、電子線マイクロアナライザ(EPMA)を用いて5000倍に拡大して反射電子像による組成像を観察し、さらに波長分散型分光器(WDS)によるInのマッピング像から総合的に金属Inを特定し、直径50nm~5μmの粒子の数を数える。粒子の数を視野の面積で除して数密度とする。 数 The number density of the metal In particles is measured as follows. From the vicinity of the surface of the steel material, a test piece is collected with a cross section perpendicular to the surface as an observation surface. After the observation surface is mirror-polished, it is magnified 5000 times using an electron beam microanalyzer (EPMA) to observe a composition image by a reflected electron image, and further from a mapping image of In by a wavelength dispersive spectrometer (WDS). Specifically, the metal In is specified, and the number of particles having a diameter of 50 nm to 5 μm is counted. The number of particles is divided by the area of the visual field to obtain a number density.
 計数の対象とする金属Inの直径を50nm~5μmに限定しているのは、測定の便宜のためである。すなわち、50nm未満のものはノイズとの判別が困難であり、5μmを超えるものは観察視野からはみ出して正確に計数できないためである。摺動部品用鋼材の組織は、直径50nm~5μmの金属Inの粒子の数密度が5000個/mm以上であればよく、これに加えて50nm未満又は5μm超の金属Inの粒子が存在してもよい。 The reason why the diameter of the metal In to be counted is limited to 50 nm to 5 μm is for convenience of measurement. That is, it is difficult to discriminate noise having a diameter of less than 50 nm from the observation visual field if it has a diameter of more than 5 μm. The structure of the steel material for a sliding part may be such that the number density of metal In particles having a diameter of 50 nm to 5 μm is at least 5000 / mm 2 , and in addition, metal In particles having a diameter of less than 50 nm or more than 5 μm are present. You may.
 金属Inの粒子の数密度は、鋼材のIn含有量、及び、焼入れ処理の条件によって調整することができる。具体的には、鋼材のIn含有量が高いほど、金属Inの粒子の数密度は大きくなる傾向がある。一方、焼入れ処理の保持温度を高くするほど、又は焼入れ処理の保持時間を長くするほど、金属Inの粒子の数密度は小さくなる傾向がある。 数 The number density of the metal In particles can be adjusted by the In content of the steel material and the conditions of the quenching treatment. Specifically, the higher the In content of the steel material, the higher the number density of metal In particles tends to be. On the other hand, as the holding temperature of the quenching process is increased or the holding time of the quenching process is increased, the number density of the metal In particles tends to decrease.
 本実施形態による摺動部品用鋼材は、表面にInの濃化層を有することが好ましい。Inの濃化層は、オージェ電子分光によって得られるInの濃度が10at%以上である層とする。本実施形態による摺動部品用鋼材は、このInの濃化層が潤滑皮膜として機能し、優れた摺動特性が得られる。Inの濃化層は、3nm以上の厚さを有することが好ましく、5nm以上の厚さを有することがさらに好ましい。 摺 動 It is preferable that the steel material for a sliding component according to the present embodiment has a concentrated In layer on the surface. The concentrated In layer is a layer in which the concentration of In obtained by Auger electron spectroscopy is 10 at% or more. In the steel material for sliding parts according to the present embodiment, the concentrated layer of In functions as a lubricating film, and excellent sliding characteristics are obtained. The In-concentrated layer preferably has a thickness of 3 nm or more, more preferably 5 nm or more.
 Inの濃化層の有無及び厚さは、オージェ電子分光によって測定することができる。具体的には、鋼材の表面からArスパッタしながら、元素の分析を繰り返すことで、Inの濃化層の有無及び厚さを測定することができる。分析深さは、SiOを標準試料とした場合を基準に算出するものとする。 The presence or absence and thickness of the In-concentrated layer can be measured by Auger electron spectroscopy. Specifically, by repeating elemental analysis while performing Ar sputtering from the surface of the steel material, the presence or absence and thickness of the In-enriched layer can be measured. The analysis depth is calculated based on the case where SiO 2 is used as a standard sample.
 [Inを主体とする酸化物]
 Inを主体とする酸化物によって摺動特性を確保する場合、直径1μm以上のInを主体とする酸化物の粒子の数密度を30個/mm以上にすれば、長時間にわたって優れた摺動特性が得られる。直径1μm以上のInを主体とする酸化物の粒子の数密度は、好ましくは50個/mm以上であり、さらに好ましくは100個/mm以上である。
[Oxide mainly composed of In]
When the sliding characteristics are secured by an oxide mainly composed of In, if the number density of particles of the oxide mainly composed of In having a diameter of 1 μm or more is set to 30 particles / mm 2 or more, excellent sliding properties can be obtained for a long time. Characteristics are obtained. The number density of the oxide-based particles having a diameter of 1 μm or more is preferably 50 particles / mm 2 or more, and more preferably 100 particles / mm 2 or more.
 ここで、「Inを主体とする酸化物」とは、カチオンに占めるIn含有量が、原子%で、50%以上である酸化物を意味する。 Here, “an oxide mainly composed of In” means an oxide whose In content in cations is 50% or more in atomic%.
 Inを主体とする酸化物の粒子の数密度は、次の様に測定する。鏡面研磨した試料をオージェ電子分光装置(AES)内に設置した後、試料表面に対してArイオンスパッタを施す。そして、スパッタ直後の表面をSEM-EDS装置にて分析する。In-kα線及びO-kα線を各々検出し、Inと酸素との双方が存在する粒子をマッピング画像処理で抽出し、Inを主体とする酸化物と定義する。上述のSEM-EDS分析は、観察倍率100倍で行い、Inを主体とする酸化物の円相当径が1μm以上の粒子を数え上げ、それらの合計数量を以て、個数と定義する。粒子の数を視野の面積で除して数密度とする。 The number density of oxide particles mainly composed of In is measured as follows. After placing the mirror-polished sample in an Auger electron spectrometer (AES), Ar ion sputtering is performed on the sample surface. Then, the surface immediately after the sputtering is analyzed by a SEM-EDS apparatus. In-kα rays and O-kα rays are detected, and particles containing both In and oxygen are extracted by mapping image processing, and are defined as oxides mainly containing In. The above-described SEM-EDS analysis is performed at an observation magnification of 100 times, particles of oxides mainly composed of In having a circle equivalent diameter of 1 μm or more are counted, and the total number of the particles is defined as the number. The number of particles is divided by the area of the visual field to obtain a number density.
 Inが鋼中に多量に含有されると、脆性破壊及び粒界腐食などを招くおそれがある。そのため、鋼中のIn含有量を低く抑えつつ、上記酸化物の粒子の数密度を増加させることが望ましい。具体的には、上記酸化物の数密度が、In含有量との関係において、下記(i)式を満足するような量であることが好ましい。後述する特殊熱処理を施すことによって、上記酸化物の析出が促進され、下記(i)式を満足させることが可能になる。
 M>80×In  ・・・(i)
 但し、上記式中のMは鋼中に含まれるInを主体とする酸化物の粒子の数密度(個/mm)であり、Inは鋼中に含まれるInの含有量(質量%)である。
If a large amount of In is contained in steel, brittle fracture and intergranular corrosion may be caused. Therefore, it is desirable to increase the number density of the oxide particles while keeping the In content in the steel low. Specifically, it is preferable that the number density of the oxide satisfy the following expression (i) in relation to the In content. By performing the special heat treatment described below, the precipitation of the oxide is promoted, and the following formula (i) can be satisfied.
M> 80 × In (i)
Here, M in the above formula is the number density (particles / mm 2 ) of oxide particles mainly containing In contained in the steel, and In is the content (% by mass) of In contained in the steel. is there.
 [摺動部品用鋼材の製造方法]
 以下、本実施形態による摺動部品用鋼材の製造方法の一例を説明する。以下に説明する製造方法はあくまでも例示であり、本実施形態による摺動部品用鋼材の製造方法はこれに限定されない。
[Method of manufacturing steel for sliding parts]
Hereinafter, an example of the method for manufacturing a steel material for a sliding component according to the present embodiment will be described. The manufacturing method described below is merely an example, and the manufacturing method of the steel material for a sliding component according to the present embodiment is not limited thereto.
 In:0.05~5.0%を含有する鋼を溶製した後、熱間鍛造によって素材を製造する。素材に対して、必要に応じて熱間加工や冷間加工を施してもよい。なお、Inを主体とする酸化物を分散させる場合、素材のIn含有量は0.3~5.0%とすることが好ましい。 In: After melting steel containing 0.05 to 5.0%, a material is manufactured by hot forging. The material may be subjected to hot working or cold working as necessary. When an oxide mainly containing In is dispersed, the In content of the material is preferably set to 0.3 to 5.0%.
 以下、金属Inの粒子を分散させる場合と、Inを主体とする酸化物を分散させる場合とを分けて説明する。 Hereinafter, the case where the metal In particles are dispersed and the case where the oxide mainly containing In is dispersed will be described separately.
 金属Inの粒子を分散させる場合、素材に対して焼入れ処理を施す。焼入れ処理として例えば、800~1200℃で5~30分間加熱し、その後水冷又は油冷することができる。 When dispersing the metal In particles, the material is subjected to a quenching treatment. As the quenching treatment, for example, heating at 800 to 1200 ° C. for 5 to 30 minutes, followed by water cooling or oil cooling.
 金属Inの粒子の数密度は、焼入れ処理の保持温度を高くするほど、又は、保持時間を長くするほど、小さくなる傾向がある。そのため、焼入れ処理の保持温度は、好ましくは1100℃以下であり、さらに好ましくは1050℃以下である。焼入れ処理の保持時間は、好ましくは20分間以下であり、さらに好ましくは15分間以下である。 数 The number density of the metal In particles tends to decrease as the holding temperature in the quenching process is increased or as the holding time is increased. Therefore, the holding temperature of the quenching treatment is preferably 1100 ° C. or lower, more preferably 1050 ° C. or lower. The holding time of the quenching treatment is preferably 20 minutes or less, and more preferably 15 minutes or less.
 焼入れ処理後、必要に応じて、150~650℃で5~60分間加熱した後空冷又は水冷する焼戻し処理を施してもよい。焼戻しをする場合、焼戻しの保持温度が高すぎたり、焼戻しの保持時間が長すぎたり、あるいは保持後に徐冷(例えば炉冷)をしたりすると、表層からの酸素の供給によって酸化Inが形成され、金属Inの粒子の数密度が減少する可能性がある。このときの冷却速度は、好ましくは1℃/秒以上である。焼戻しの保持温度は、好ましくは500℃以下であり、さらに好ましくは450℃以下である。焼戻しの保持時間は、好ましくは30分間以下であり、さらに好ましくは20分間以下である。 (4) After the quenching treatment, if necessary, a tempering treatment of heating at 150 to 650 ° C. for 5 to 60 minutes and then air cooling or water cooling may be performed. In the case of tempering, if the holding temperature of the tempering is too high, the holding time of the tempering is too long, or the temperature is gradually cooled (for example, furnace cooling) after the holding, the oxide In is formed by the supply of oxygen from the surface layer. The number density of metal In particles may decrease. The cooling rate at this time is preferably 1 ° C./sec or more. The holding temperature for tempering is preferably 500 ° C. or lower, more preferably 450 ° C. or lower. The holding time for tempering is preferably 30 minutes or less, and more preferably 20 minutes or less.
 Inを主体とする酸化物を分散させる場合も、素材に対してまず焼入れ処理を施す。焼入れ処理として例えば、800~1200℃で5~30分間加熱し、その後水冷又は油冷することができる。焼入れ処理の保持温度は、好ましくは850~1050℃である。焼入れ処理の保持時間は、好ましくは20分間以下であり、さらに好ましくは15分間以下である。 Also in the case of dispersing an oxide mainly composed of In, the material is first subjected to a quenching treatment. As the quenching treatment, for example, heating at 800 to 1200 ° C. for 5 to 30 minutes, followed by water cooling or oil cooling. The holding temperature of the quenching treatment is preferably 850 to 1050 ° C. The holding time of the quenching treatment is preferably 20 minutes or less, and more preferably 15 minutes or less.
 Inを主体とする酸化物を分散させる場合、焼入れ処理後、150~650℃で5~60分間加熱した後、炉冷をする熱処理を施す。これによって、冷却中にInを主体とする酸化物が形成される。このときの冷却速度は、好ましくは2℃/分以下である。 In the case of dispersing an oxide mainly composed of 後 In, after quenching treatment, after heating at 150 to 650 ° C. for 5 to 60 minutes, heat treatment for furnace cooling is performed. Thereby, an oxide mainly composed of In is formed during cooling. The cooling rate at this time is preferably 2 ° C./min or less.
 また、上記の析出物の数密度を増加させるためには、さらに特殊熱処理を行うことが好ましい。特殊熱処理では、例えば、1000~1200℃で5~30分間加熱した後、300℃/h以下の平均冷却速度で緩冷却する熱処理を行うことができる。 特殊 Further, in order to increase the number density of the precipitates, it is preferable to further perform a special heat treatment. In the special heat treatment, for example, a heat treatment of heating at 1000 to 1200 ° C. for 5 to 30 minutes and then slowly cooling at an average cooling rate of 300 ° C./h or less can be performed.
 以上、本発明の一実施形態による摺動部品用鋼材及びその製造方法の一例を説明した。本実施形態によれば、耐焼付き性に優れた摺動部品用鋼材が得られる。 As described above, an example of the steel material for a sliding part and the method of manufacturing the same according to the embodiment of the present invention has been described. According to the present embodiment, a steel material for a sliding component having excellent seizure resistance can be obtained.
 以下、実施例によって本発明をより具体的に説明する。本発明はこれらの実施例に限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples.
 [実施例1]
 表1に示す化学組成を有する鋼を溶製した。表1の鋼種A~Iは、JIS G 4051の機械構造用炭素鋼S45Cの鋼をベースに、Inの添加量等を変えたものである。表1の鋼種J~Sは、JIS G 4052の機械構造用合金鋼SMn438の鋼をベースに、Inの添加量等を変えたものである。なお、表1の化学組成の「-」は、該当する元素が不純物レベルであることを示す。
[Example 1]
Steel having the chemical composition shown in Table 1 was melted. Steel types A to I in Table 1 are based on JIS G 4051 carbon steel S45C for machine structural use, with the addition amount of In and the like changed. The steel types J to S in Table 1 are obtained by changing the amount of In and the like based on the steel of the alloy steel for machine structure SMn438 according to JIS G 4052. In Table 1, "-" in the chemical composition indicates that the corresponding element is at an impurity level.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各鋼を1200℃で1時間加熱した後、熱間鍛造を実施して素材を製造した。この素材を1200℃で1時間加熱した後、950℃から1000℃で熱間圧延を実施して所定の大きさに成形した。その後、表2に示す条件で焼入れ及び焼戻しを実施した。具体的には、1000℃で10分間保持した後水冷する焼入れ処理を実施した後、さらに400℃で15分間加熱後空冷する焼戻し処理を実施して硬度をHV450程度にした。なお、No.8及び18は、焼入れ処理として1000℃で10分間の保持に代えて、1200℃で20分間の保持を行った。また、No.9及び19は、焼入れ処理として1000℃で10分間の保持に代えて、850℃で10分間の保持を行った。得られた試験材は、いずれもマルテンサイト組織を有していた。 After heating each steel at 1200 ° C for 1 hour, hot forging was performed to produce a raw material. This material was heated at 1200 ° C. for 1 hour, and then hot-rolled at 950 ° C. to 1000 ° C. to be formed into a predetermined size. Thereafter, quenching and tempering were performed under the conditions shown in Table 2. Specifically, after performing a quenching treatment of holding at 1000 ° C. for 10 minutes and then cooling with water, a tempering treatment of heating at 400 ° C. for 15 minutes and air cooling was further performed to make the hardness about HV450. In addition, No. In Nos. 8 and 18, quenching was performed at 1200 ° C. for 20 minutes instead of 1000 ° C. for 10 minutes. In addition, No. Nos. 9 and 19 were held at 850 ° C. for 10 minutes instead of holding at 1000 ° C. for 10 minutes as a quenching treatment. Each of the obtained test materials had a martensite structure.
 [金属Inの数密度]
 各試験材から析出物観察用の試験片を採取し、実施形態で説明した方法にしたがって直径50nm~5μmの金属Inの粒子の数密度を測定した。
[Number density of metal In]
A test piece for observing a precipitate was collected from each test material, and the number density of metal In particles having a diameter of 50 nm to 5 μm was measured according to the method described in the embodiment.
 [硬度測定]
 各試験材から、圧延方向と垂直な面を測定面とする硬度測定用の試験片を採取した。肉厚方向に沿って1mm間隔で4点のビッカース硬さを測定した。ビッカース硬さは、JIS Z 2244(2009)に準拠して測定した。試験力は300gf(2.942N)とした。4点の平均を当該試験材の硬度とした。
[Hardness measurement]
From each test material, a test piece for hardness measurement having a surface perpendicular to the rolling direction as a measurement surface was collected. The Vickers hardness at four points was measured at 1 mm intervals along the thickness direction. Vickers hardness was measured according to JIS Z 2244 (2009). The test force was 300 gf (2.942 N). The average of the four points was taken as the hardness of the test material.
 [In濃化層の測定]
 各試験材からIn濃化層測定用の試験片を採取し、実施形態で説明した方法にしたがってIn濃化層の厚みを測定した。オージェ電子分光装置は、アルバック・ファイ社製SAM670を使用した。
[Measurement of In concentrated layer]
A test piece for measuring the In-enriched layer was collected from each test material, and the thickness of the In-enriched layer was measured according to the method described in the embodiment. The Auger electron spectrometer used was SAM670 manufactured by ULVAC-PHI.
 [摩擦試験」
 各試験材から直径20mm、厚さ3mmの円板状の試験片を採取し、この試験片を用いてボール・オン・ディスク方式の摩擦試験を実施した。試験機は、CSM Instruments社製Tribometerを使用した。
[Friction test]
A disc-shaped test piece having a diameter of 20 mm and a thickness of 3 mm was collected from each test material, and a ball-on-disk friction test was performed using this test piece. The tester used was a Tribometer manufactured by CSM Instruments.
 試験片の表面は#800の砥粒を用いて粗研磨し、最終的には0.3μmのダイヤモンドスラリーを用いて鏡面仕上げを行った。ボールは直径6mmのアルミナ製のものを使用し、荷重:10N、試験温度:室温、回転直径:6mm、摩擦速度:10mm/秒、摩擦時間:200秒、潤滑剤:なしの条件で摩擦試験を実施した。摩擦係数は、試験機のソフトウェアから提供される値を用いた。 (4) The surface of the test piece was roughly polished using # 800 abrasive grains, and was finally mirror-finished using 0.3 μm diamond slurry. The ball was made of alumina having a diameter of 6 mm, and the friction test was performed under the following conditions: load: 10 N, test temperature: room temperature, rotational diameter: 6 mm, friction speed: 10 mm / sec, friction time: 200 seconds, lubricant: none. Carried out. As the coefficient of friction, a value provided from software of the testing machine was used.
 耐焼付き性は、上記試験によって得られた「最大摩擦係数」から評価した。「最大摩擦係数」とは、摩擦開始から終了まで(摺動距離2.0m)の間の摩擦係数の最大値を意味する。最大摩擦係数が0.5を超えた場合には、試験後の摺動痕跡観察において焼付きが認められた。一方、最大摩擦係数が0.5以下の場合には、試験後の摺動痕跡観察において焼付きが認められなかった。そのため、最大摩擦係数が0.5以下である場合に、耐焼付き性に優れると判断した。図1に、最大摩擦係数が0.5を超えた試験材(後掲表2のNo.10)及び最大摩擦係数が0.5以下であった試験材(後掲表2のNo.15)のそれぞれの摩擦係数の時間変化を示す。 焼 Seizure resistance was evaluated from the “maximum coefficient of friction” obtained in the above test. “Maximum friction coefficient” means the maximum value of the friction coefficient from the start to the end of the friction (the sliding distance is 2.0 m). When the maximum coefficient of friction exceeded 0.5, seizure was observed in the observation of sliding traces after the test. On the other hand, when the maximum coefficient of friction was 0.5 or less, no seizure was observed in the observation of sliding traces after the test. Therefore, when the maximum friction coefficient was 0.5 or less, it was determined that the seizure resistance was excellent. FIG. 1 shows a test material having a maximum friction coefficient of more than 0.5 (No. 10 in Table 2) and a test material having a maximum friction coefficient of 0.5 or less (No. 15 in Table 2). 5 shows the change over time of the coefficient of friction.
 摩擦係数が0.4を超えるまでの時間を「持続時間」として評価し、持続時間が100秒以上の場合に持続性に優れると評価した。 時間 The time until the coefficient of friction exceeded 0.4 was evaluated as “duration”, and when the duration was 100 seconds or more, it was evaluated as having excellent durability.
 各試験材の熱処理条件及び評価結果を表2に示す。「金属In個数」の欄の数値は、直径50nm~5μmの金属Inの粒子の数密度である。「In層厚み」の欄の数値は、In濃化層の厚さである。 Table 2 shows the heat treatment conditions and evaluation results for each test material. The numerical value in the column of “the number of metal In” is the number density of metal In particles having a diameter of 50 nm to 5 μm. The numerical value in the column of “In layer thickness” is the thickness of the In concentrated layer.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 No.3~7、及び12~17の試験材は、0.05~5.0%のInを含有する化学組成と、金属Inの粒子が分散した組織とを有し、かつ、直径50nm~5μmの粒子の数密度が5000個/mm以上であった。これらの試験材は、最大摩擦係数が0.5以下であり、持続時間が100秒以上であった。 No. The test materials 3 to 7 and 12 to 17 have a chemical composition containing 0.05 to 5.0% In, a structure in which particles of metal In are dispersed, and have a diameter of 50 nm to 5 μm. The number density of the particles was 5000 / mm 2 or more. These test materials had a maximum coefficient of friction of 0.5 or less and a duration of 100 seconds or more.
 No.1、2、8~11、18及び19の試験材では、試験後に焼付きが認められた。No.1、2、10及び11の試験材で焼付きが発生したのは、In含有量が少なく、金属Inの粒子の数密度も低かったためと考えられる。No.8及び18の試験材で焼付きが発生したのは、金属Inの粒子の数密度が低かったためと考えられる。No.9及び19の試験材で焼付きが発生したのは、In含有量が少なかったためと考えられる。 No. In the test materials of 1, 2, 8 to 11, 18 and 19, seizure was observed after the test. No. It is considered that the reason why seizure occurred in the test materials 1, 2, 10 and 11 was that the In content was small and the number density of the metal In particles was low. No. It is considered that the seizure occurred in the test materials Nos. 8 and 18 because the number density of the metal In particles was low. No. It is considered that seizure occurred in the test materials 9 and 19 because the In content was small.
 [実施例2]
 次に、焼入れ後の焼戻しを省略した試験材について、同様の評価を実施した。
[Example 2]
Next, the same evaluation was performed on the test material in which tempering after quenching was omitted.
 試験材は、焼戻しを省略した他は実施例1と同様にして作製した。実施例1と同様に、金属Inの粒子の数密度、硬度、及びIn層厚みを測定した。得られた試験材は、いずれもマルテンサイト組織を有していた。 The test material was produced in the same manner as in Example 1 except that tempering was omitted. As in Example 1, the number density, hardness, and In layer thickness of the metal In particles were measured. Each of the obtained test materials had a martensite structure.
 [摩擦試験]
 摩擦試験として、実施例1のドライ環境での摩擦試験に代えて、ウェット環境での摩擦試験を実施した。実施例1と同様に、各試験材から直径20mm、厚さ3mmの円板状の試験片を採取し、この試験片を用いてボール・オン・ディスク方式の摩擦試験を実施した。試験機は、CSM Instruments社製Tribometerを使用した。
[Friction test]
As a friction test, a friction test in a wet environment was performed instead of the friction test in the dry environment of Example 1. As in Example 1, a disc-shaped test piece having a diameter of 20 mm and a thickness of 3 mm was collected from each test material, and a ball-on-disk friction test was performed using the test piece. The tester used was a Tribometer manufactured by CSM Instruments.
 試験片の表面は#800の砥粒を用いて粗研磨し、最終的には0.3μmのダイヤモンドスラリーを用いて鏡面仕上げを行った。ボールは直径6mmのSUJ2製のものを使用し、荷重:10N、試験温度:140℃、回転直径:6mm、摩擦速度:0.5m/秒、摩擦時間:60分、潤滑剤:エンジンオイル2mlの条件で摩擦試験を実施した。エンジンオイルは、粘度が0W-8相当であり、添加剤として有機モリブデン錯体、ジアルキルジチオリン酸亜鉛、カルシウムスルホネートが含まれているものを使用した。摩擦係数は、試験機のソフトウェアから提供される値を用いた。 (4) The surface of the test piece was roughly polished using # 800 abrasive grains, and was finally mirror-finished using 0.3 μm diamond slurry. The ball used was made of SUJ2 having a diameter of 6 mm, load: 10 N, test temperature: 140 ° C., rotational diameter: 6 mm, friction speed: 0.5 m / sec, friction time: 60 minutes, lubricant: 2 ml of engine oil A friction test was performed under the conditions. The engine oil used had a viscosity equivalent to 0 W-8 and contained an organic molybdenum complex, zinc dialkyldithiophosphate, and calcium sulfonate as additives. As the coefficient of friction, a value provided from software of the testing machine was used.
 実施例1と同様に、耐焼付き性は、得られた「最大摩擦係数」から評価した。「最大摩擦係数」とは、摩擦開始から終了まで(摺動距離1800m)の間の摩擦係数の最大値を意味する。最大摩擦係数が0.5を超えた場合には、試験後の摺動痕跡観察において焼付きが認められた。一方、最大摩擦係数が0.5以下の場合には、試験後の摺動痕跡観察において焼付きが認められなかった。そのため、最大摩擦係数が0.5以下である場合に、耐焼付き性に優れると判断した。図2に、最大摩擦係数が0.5を超えた試験材(後掲表3のNo.30)及び最大摩擦係数が0.5以下であった試験材(後掲表3のNo.35)のそれぞれの摩擦係数の時間変化を示す。 焼 Similar to Example 1, the seizure resistance was evaluated from the obtained “maximum coefficient of friction”. The “maximum friction coefficient” means the maximum value of the friction coefficient from the start to the end of the friction (sliding distance 1800 m). When the maximum coefficient of friction exceeded 0.5, seizure was observed in the observation of sliding traces after the test. On the other hand, when the maximum friction coefficient was 0.5 or less, no seizure was observed in the observation of the sliding traces after the test. Therefore, when the maximum friction coefficient was 0.5 or less, it was determined that the seizure resistance was excellent. FIG. 2 shows a test material having a maximum friction coefficient of more than 0.5 (No. 30 in Table 3) and a test material having a maximum friction coefficient of 0.5 or less (No. 35 in Table 3). 5 shows the change over time of the coefficient of friction.
 摩擦係数が0.4を超えるまでの時間を「持続時間」として評価し、持続時間が60分以上の場合に持続性に優れると評価した。 時間 The time until the coefficient of friction exceeded 0.4 was evaluated as “duration”, and when the duration was 60 minutes or more, it was evaluated as having excellent durability.
 各試験材の処理条件及び評価結果を表3に示す。「金属In個数」の欄の数値は、直径50nm~5μmの金属Inの粒子の数密度である。「In層厚み」の欄の数値は、In濃化層の厚さである。 Table 3 shows the processing conditions and evaluation results for each test material. The numerical value in the column of “the number of metal In” is the number density of metal In particles having a diameter of 50 nm to 5 μm. The numerical value in the column of “In layer thickness” is the thickness of the In concentrated layer.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 No.23~27、及び32~37の試験材は、0.05~5.0%のInを含有する化学組成と、金属Inの粒子が分散した組織とを有し、かつ、直径50nm~5μmの粒子の数密度が5000個/mm以上であった。これらの試験材は、最大摩擦係数が0.5以下であり、持続時間が60分以上であった。 No. The test materials 23 to 27 and 32 to 37 have a chemical composition containing 0.05 to 5.0% of In, a structure in which particles of metal In are dispersed, and have a diameter of 50 nm to 5 μm. The number density of the particles was 5000 / mm 2 or more. These test materials had a maximum coefficient of friction of 0.5 or less and a duration of 60 minutes or more.
 No.21、22、28~31、38及び39の試験材では、試験後に焼付きが認められた。No.21、22、30及び31の試験材で焼付きが発生したのは、In含有量が少なく、金属Inの粒子の数密度も低かったためと考えられる。No.28及び38の試験材で焼付きが発生したのは、金属Inの粒子の数密度が低かったためと考えられる。No.29及び39の試験材で焼付きが発生したのは、In含有量が少なかったためと考えられる。 No. In the test materials 21, 22, 28 to 31, 38 and 39, seizure was observed after the test. No. It is considered that seizure occurred in the test materials 21, 22, 30, and 31 because the In content was small and the number density of the metal In particles was low. No. It is considered that seizure occurred in the test materials Nos. 28 and 38 because the number density of the metal In particles was low. No. It is considered that seizure occurred in the test materials Nos. 29 and 39 because the In content was small.
 [実施例3]
 JIS G 4051:2016規格の機械構造用炭素鋼鋼材のS45C鋼にInを添加することによって、表4に示す化学組成を有する溶鋼を溶製した(試験No.1-1~1-7)。
[Example 3]
Molten steel having the chemical composition shown in Table 4 was smelted by adding In to S45C steel, a carbon steel material for machine structure of JIS G 4051: 2016 standard (Test Nos. 1-1 to 1-7).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 その後、熱間鍛造を行い、続いて、900℃で15分加熱した後、水冷を行う条件で焼入れ処理を施した。さらに、600℃で30分加熱した後、炉冷を行う条件で熱処理を行い、試験材を得た(試験No.1-1、1-3、1-5~1-7)。試験No.1-2及び1-4については、さらに1100℃で10分加熱した後、100℃/hの平均冷却速度で緩冷却する特殊熱処理を施し、試験材とした。なお、光学顕微鏡観察によると、特殊熱処理しない試験材はマルテンサイト組織を有しており、特殊熱処理した試験材はフェライト-パーライト組織を有していた。 (5) Thereafter, hot forging was performed, followed by heating at 900 ° C. for 15 minutes, followed by quenching under the condition of water cooling. Further, after heating at 600 ° C. for 30 minutes, heat treatment was performed under the condition of furnace cooling to obtain test materials (Test Nos. 1-1, 1-3, 1-5 to 1-7). Test No. Samples 1-2 and 1-4 were further heated at 1100 ° C. for 10 minutes, and then subjected to a special heat treatment of slow cooling at an average cooling rate of 100 ° C./h to obtain test materials. According to observation with an optical microscope, the test material without special heat treatment had a martensite structure, and the test material after special heat treatment had a ferrite-pearlite structure.
 その後、各試験材から析出物測定用の試験片を切り出し、表面を鏡面研磨した後、AES(アルバック・ファイ社製SAM670)内に設置した。その後、鏡面研磨した表面に対してArイオンスパッタを施した。そして、スパッタ直後に表面を分析することによって、Inを主体とする酸化物を特定し、その数密度を求めた。 Thereafter, a test piece for measuring precipitates was cut out from each test material, the surface was mirror-polished, and then placed in AES (SAM670 manufactured by ULVAC-PHI). Then, Ar ion sputtering was performed on the mirror-polished surface. Then, by analyzing the surface immediately after sputtering, an oxide mainly composed of In was specified, and its number density was determined.
 続いて、各試験材を用いて、耐焼付き性及び耐摩耗性の評価試験を行った。具体的には、ボール・オン・ディスク方式の摩擦試験(CSM Instruments社製Tribometer)により、摩擦特性の評価を行った。摩耗試験に用いた試験片は、直径15mm、厚さ4mmの円盤状であり、評価面は鏡面仕上げとした。 Subsequently, an evaluation test for seizure resistance and abrasion resistance was performed using each test material. Specifically, the friction characteristics were evaluated by a ball-on-disk type friction test (CSM Instruments Tribometer). The test piece used for the abrasion test was a disk having a diameter of 15 mm and a thickness of 4 mm, and the evaluation surface was mirror-finished.
 また、ボールは直径6mmのアルミナ製の球を用い、荷重10N、試験温度:室温、回転直径:7mm、摩擦速度10mm/秒、摩擦時間60分、潤滑剤なしの条件で摩擦試験を実施した。摩擦係数は、試験機のソフトウェアから提供される値を用いた。 ボ ー ル Further, a friction test was performed using a ball made of alumina having a diameter of 6 mm, a load of 10 N, a test temperature of room temperature, a rotation diameter of 7 mm, a friction speed of 10 mm / sec, a friction time of 60 minutes, and no lubricant. As the coefficient of friction, a value provided from software of the testing machine was used.
 なお、本実施例においては、上記試験によって得られた「最大初期摩擦係数」により、耐焼付き性を評価する。本実施例において、「最大初期摩擦係数」とは、摩擦開始から摺動距離が1.5mとなるまでの摩擦係数の最大値を意味する。 In this example, the seizure resistance is evaluated based on the “maximum initial friction coefficient” obtained by the above test. In the present embodiment, the “maximum initial friction coefficient” means the maximum value of the friction coefficient from the start of friction until the sliding distance becomes 1.5 m.
 最大初期摩擦係数が0.5を超える場合には、試験後の摺動痕跡観察にて、焼付きが認められた。一方、最大初期摩擦係数が0.5以下の場合には、試験後の摺動痕跡観察にて、焼付きが認められなかった。したがって、本実施例においては最大初期摩擦係数が0.5以下である場合に、耐焼付き性に優れると判断した。 焼 When the maximum initial coefficient of friction exceeds 0.5, seizure was observed in the observation of sliding traces after the test. On the other hand, when the maximum initial coefficient of friction was 0.5 or less, seizure was not observed in the observation of sliding traces after the test. Therefore, in this example, it was determined that the seizure resistance was excellent when the maximum initial friction coefficient was 0.5 or less.
 また、試験後の摩耗痕跡の幅を計測し、400μm以下であった場合に、耐摩耗性に優れると判断した。 Also, the width of the wear mark after the test was measured, and when it was 400 μm or less, it was judged that the wear resistance was excellent.
 それらの結果を表5にまとめて示す。 The results are summarized in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5から本発明の規定を満足する試験No.1-1~1-4では、耐焼付き性及び耐摩耗性に優れる結果となった。それらに対して、本発明の規定を満足しない試験No.1-5~1-7では、耐焼付き性及び耐摩耗性のいずれも劣る結果となった。特に、特殊熱処理を施した試験No.1-2及び1-4では、Inを主体とする酸化物の粒子の数密度が高くなり、上記(i)式を満足した。そしてその結果、同じIn含有量を有する試験No.1-3及び1-5と比較して、それぞれ摺動特性が極めて優れる結果となった。 か ら From Table 5, Test No. satisfying the requirements of the present invention. In the case of 1-1 to 1-4, the result was excellent in seizure resistance and wear resistance. On the other hand, Test Nos. In the cases of 1-5 to 1-7, both seizure resistance and abrasion resistance were inferior. In particular, the test No. In the cases of 1-2 and 1-4, the number density of the oxide particles mainly composed of In was high, and the above expression (i) was satisfied. And as a result, the test No. 2 having the same In content As a result, the sliding characteristics were extremely excellent as compared with 1-3 and 1-5, respectively.
 [実施例4]
 JIS G 4053:2016規格の機械構造用合金鋼鋼材のSMn438鋼を参考とする鋼材にInを添加することによって、表6に示す化学組成を有する溶鋼を溶製した(試験No.2-1~2-5)。
[Example 4]
Molten steel having the chemical composition shown in Table 6 was smelted by adding In to a steel material with reference to the JIS G 4053: 2016 standard steel alloy material for machine structure, SMn438 steel (Test No. 2-1 to Test No. 2-1). 2-5).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 その後、熱間鍛造を行い、続いて、900℃で15分加熱した後、水冷を行う条件で焼入れ処理を施した。さらに、600℃で30分加熱した後、炉冷を行う条件で熱処理を行い、試験材を得た(試験No.2-1、2-4)。試験No.2-2、2-3及び2-5については、さらに1100℃で10分加熱した後、100℃/hの平均冷却速度で緩冷却する特殊熱処理を施し、試験材とした。なお、光学顕微鏡観察によると、特殊熱処理しない試験材はマルテンサイト組織を有しており、特殊熱処理した試験材はフェライト-パーライト組織を有していた。 (5) Thereafter, hot forging was performed, followed by heating at 900 ° C. for 15 minutes, followed by quenching under the condition of water cooling. Further, after heating at 600 ° C. for 30 minutes, heat treatment was performed under the condition of furnace cooling to obtain test materials (Test Nos. 2-1 and 2-4). Test No. 2-2, 2-3 and 2-5 were further heated at 1100 ° C. for 10 minutes, and then subjected to a special heat treatment of slow cooling at an average cooling rate of 100 ° C./h to obtain test materials. According to observation with an optical microscope, the test material without special heat treatment had a martensite structure, and the test material after special heat treatment had a ferrite-pearlite structure.
 その後、実施例3と同様に、Inを主体とする酸化物の粒子の数密度の測定ならびに耐焼付き性及び耐摩耗性の評価試験を行った。 (4) Thereafter, in the same manner as in Example 3, the number density of oxide-based particles was measured, and an evaluation test for seizure resistance and abrasion resistance was performed.
 それらの結果を表7にまとめて示す。 7The results are summarized in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7から本発明の規定を満足する試験No.2-1~2-3では、耐焼付き性及び耐摩耗性に優れる結果となった。それらに対して、本発明の規定を満足しない試験No.2-4及び2-5では、耐焼付き性及び耐摩耗性の少なくともいずれかが劣る結果となった。特に、特殊熱処理を施した試験No.2-2及び2-3では、Inを主体とする酸化物の粒子の数密度が高くなり、上記(i)式を満足した。そしてその結果、同じIn含有量を有する試験No.2-1と試験No.2-2とを比較すると、(i)式を満足する試験No.2-2の方が摺動特性が優れる結果となった。 か ら From Table 7, Test No. satisfying the requirements of the present invention. In the cases of 2-1 to 2-3, the results were excellent in seizure resistance and wear resistance. On the other hand, Test Nos. In Nos. 2-4 and 2-5, at least one of seizure resistance and abrasion resistance was inferior. In particular, the test No. In 2-2 and 2-3, the number density of the oxide-based oxide particles was increased, thereby satisfying the expression (i). And as a result, the test No. 2 having the same In content 2-1 and Test No. 2-2, the test No. satisfying the expression (i). 2-2 resulted in more excellent sliding characteristics.
 [実施例5]
 JIS G 4805:2008規格の高炭素クロム軸受鋼鋼材のSUJ2鋼にInを添加することによって、表8に示す化学組成を有する溶鋼を溶製した(試験No.3-1~3-4)。
[Example 5]
By adding In to SUJ2 steel, a high carbon chromium bearing steel of JIS G 4805: 2008 standard, molten steel having the chemical composition shown in Table 8 was produced (Test Nos. 3-1 to 3-4).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 その後、熱間鍛造を行い、続いて、900℃で15分加熱した後、油冷を行う条件で焼入れ処理を施した。さらに、150℃で30分加熱した後、炉冷を行う条件で熱処理を行い、試験材を得た(試験No.3-1、3-4)。試験No.3-2及び3-3については、さらに1100℃で10分加熱した後、100℃/hの平均冷却速度で緩冷却する特殊熱処理を施し、試験材とした。 (5) Thereafter, hot forging was performed, followed by heating at 900 ° C. for 15 minutes, followed by quenching under oil cooling conditions. Further, after heating at 150 ° C. for 30 minutes, heat treatment was performed under conditions of furnace cooling to obtain test materials (Test Nos. 3-1 and 3-4). Test No. 3-2 and 3-3 were further heated at 1100 ° C. for 10 minutes, and then subjected to a special heat treatment of slow cooling at an average cooling rate of 100 ° C./h to obtain test materials.
 その後、実施例3と同様に、Inを主体とする酸化物の粒子の数密度の測定ならびに耐焼付き性及び耐摩耗性の評価試験を行った。 (4) Thereafter, in the same manner as in Example 3, the number density of oxide-based particles was measured, and an evaluation test for seizure resistance and abrasion resistance was performed.
 それらの結果を表9にまとめて示す。 9The results are summarized in Table 9.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9から本発明の規定を満足する試験No.3-1~3-3では、耐焼付き性及び耐摩耗性に優れる結果となった。それらに対して、本発明の規定を満足しない試験No.3-4では、耐焼付き性及び耐摩耗性のいずれも劣る結果となった。特に、特殊熱処理を施した試験No.3-2及び3-3では、Inを主体とする酸化物の数密度が高くなり、上記(i)式を満足した。そしてその結果、同じIn含有量を有する試験No.3-1と試験No.3-2とを比較すると、(i)式を満足する試験No.3-2の方が摺動特性が優れる結果となった。 か ら From Table 9, test Nos. In the cases of 3-1 to 3-3, the results were excellent in seizure resistance and wear resistance. On the other hand, Test Nos. In No. 3-4, both seizure resistance and abrasion resistance were inferior. In particular, the test No. In the cases of 3-2 and 3-3, the number density of the oxide mainly containing In was increased, and the above-mentioned formula (i) was satisfied. And as a result, the test No. 2 having the same In content 3-1 and Test No. 3-2, test No. 3 satisfying the expression (i). 3-2 resulted in more excellent sliding characteristics.
 以上、本発明の一実施形態を説明したが、上述した実施形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施形態を適宜変形して実施することが可能である。 Although one embodiment of the present invention has been described above, the above-described embodiment is merely an example for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.
 本発明によれば、耐焼付き性及び摺動特性に優れる摺動部品用鋼材を得ることが可能である。したがって、本発明に係る摺動部品用鋼材は、自動車、船舶等の輸送機械、一般産業機械等に使用される摺動部品用鋼材として好適に用いることができる。 According to the present invention, it is possible to obtain a steel material for sliding parts having excellent seizure resistance and sliding characteristics. Therefore, the steel material for sliding parts according to the present invention can be suitably used as a steel material for sliding parts used in transportation machines such as automobiles and ships, general industrial machines and the like.

Claims (11)

  1.  質量%で、In:0.05~5.0%を含有する化学組成と、
     金属Inの粒子又はInを主体とする酸化物の粒子が分散した組織とを有し、
     前記金属Inの粒子のうち直径50nm~5μmの粒子の数密度が5000個/mm以上であるか、又は、前記Inを主体とする酸化物の粒子のうち直径1μm以上の粒子の数密度が30個/mm以上である、摺動部品用鋼材。
    A chemical composition containing, by mass%, In: 0.05-5.0%;
    Having a structure in which metal In particles or In-based oxide particles are dispersed,
    The number density of the particles having a diameter of 50 nm to 5 μm among the particles of the metal In is 5000 / mm 2 or more, or the number density of the particles having a diameter of 1 μm or more among the particles of the oxide mainly containing In is A steel material for a sliding part having 30 pieces / mm 2 or more.
  2.  請求項1に記載の摺動部品溶鋼材であって、
     前記化学組成は、質量%で、
     C :0.05~1.80%、
     Si:1.5%以下、
     Mn:2.0%以下、
     P :0.10%以下、
     S :0.10%以下、
     Al:0.10%以下、
     N :0.030%以下、
     In:0.05~5.0%、
     Cr:0~15.0%、
     Ni:0~0.50%、
     Cu:0~0.50%、
     Ti:0~0.050%、
     Nb:0~0.050%、
     V :0~2.5%、
     Mo:0~3.0%、
     W :0~6.0%、
     B :0~0.005%、
     残部:Fe及び不純物である、摺動部品用鋼材。
    It is a sliding part molten steel material of Claim 1, Comprising:
    The chemical composition is in mass%,
    C: 0.05 to 1.80%,
    Si: 1.5% or less,
    Mn: 2.0% or less,
    P: 0.10% or less,
    S: 0.10% or less,
    Al: 0.10% or less,
    N: 0.030% or less,
    In: 0.05-5.0%,
    Cr: 0 to 15.0%,
    Ni: 0 to 0.50%,
    Cu: 0 to 0.50%,
    Ti: 0 to 0.050%,
    Nb: 0 to 0.050%,
    V: 0 to 2.5%,
    Mo: 0 to 3.0%,
    W: 0 to 6.0%,
    B: 0 to 0.005%,
    The balance: Fe and impurities, steel materials for sliding parts.
  3.  請求項1又は2に記載の摺動部品用鋼材であって、
     前記金属Inの粒子のうち直径50nm~5μmの粒子の数密度が5000個/mm以上である、摺動部品用鋼材。
    It is a steel material for sliding parts according to claim 1 or 2,
    A steel material for sliding parts, wherein the number density of particles having a diameter of 50 nm to 5 μm among the particles of the metal In is 5000 / mm 2 or more.
  4.  請求項3に記載の摺動部品用鋼材であって、
     表層部にInの濃化層を有する、摺動部品用鋼材。
    It is a steel material for sliding parts according to claim 3,
    A steel material for a sliding component having a concentrated In layer on the surface.
  5.  請求項3又は4に記載の摺動部品用鋼材の製造方法であって、
     質量%で、In:0.05~5.0%を含有する化学組成を有する素材を準備する工程と、
     前記素材に、800~1200℃で5~30分間加熱し、その後水冷又は油冷する焼入れ処理を施す工程とを備える、摺動部品用鋼材の製造方法。
    It is a manufacturing method of the steel material for sliding parts of Claim 3 or 4, Comprising:
    Preparing a material having a chemical composition containing 0.05 to 5.0% by mass of In:
    A step of heating the material at 800 to 1200 ° C. for 5 to 30 minutes, and then subjecting the material to quenching treatment with water cooling or oil cooling.
  6.  請求項5に記載の摺動部品用鋼材の製造方法であって、
     前記焼入れ処理された素材に、150~650℃で5~60分間加熱した後空冷又は水冷する焼戻し処理を施す工程をさらに備える、摺動部品用鋼材の製造方法。
    It is a manufacturing method of the steel material for sliding parts of Claim 5, Comprising:
    A method for producing a steel material for a sliding part, further comprising a step of subjecting the quenched material to a tempering treatment of heating at 150 to 650 ° C. for 5 to 60 minutes and then air cooling or water cooling.
  7.  請求項5に記載の摺動部品用鋼材の製造方法であって、
     前記焼入れ処理後、焼戻し処理を施さない、摺動部品用鋼材の製造方法。
    It is a manufacturing method of the steel material for sliding parts of Claim 5, Comprising:
    A method for producing a steel material for a sliding part, wherein a tempering treatment is not performed after the quenching treatment.
  8.  請求項1又は2に記載の摺動部品用鋼材であって、
     前記化学組成のIn含有量が、質量%で、0.3~5.0%であり、
     前記Inを主体とする酸化物の粒子のうち直径1μm以上の粒子の数密度が30個/mm以上である、摺動部品用鋼材。
    It is a steel material for sliding parts according to claim 1 or 2,
    The chemical composition has an In content of 0.3 to 5.0% by mass,
    A steel material for sliding parts, wherein the number density of particles having a diameter of 1 μm or more among the oxide particles mainly containing In is 30 particles / mm 2 or more.
  9.  請求項8に記載の摺動部品用鋼材であって、
     前記Inを主体とする酸化物の粒子のうち直径1μm以上の粒子の数密度が、下記(i)式を満足する、摺動部品用鋼材。
     M>80×In  ・・・(i)
     但し、上記式中のMは前記Inを主体とする酸化物の粒子のうち直径1μm以上の粒子の数密度(個/mm)であり、Inは鋼中に含まれるInの含有量(質量%)である。
    It is a steel material for sliding parts according to claim 8,
    A steel material for a sliding part, wherein the number density of particles having a diameter of 1 μm or more among the particles of the oxide mainly containing In satisfies the following expression (i).
    M> 80 × In (i)
    Here, M in the above formula is the number density (particles / mm 2 ) of particles having a diameter of 1 μm or more among the oxide particles mainly containing In, and In is the content (mass) of In contained in the steel. %).
  10.  請求項8又は9に記載の摺動部品用鋼材の製造方法であって、
     質量%で、In:0.3~5.0%を含有する化学組成を有する素材を準備する工程と、
     前記素材に、800~1200℃で5~30分間加熱し、その後水冷又は油冷する焼入れ処理を施す工程と、
     前記焼入れ処理された素材に、150~650℃で5~60分間加熱した後、炉冷する熱処理を施す工程とを備える、摺動部品用鋼材の製造方法。
    It is a manufacturing method of the steel material for sliding parts of Claim 8 or 9, Comprising:
    Preparing a material having a chemical composition containing 0.3 to 5.0% by mass of In:
    Heating the material at 800 to 1200 ° C. for 5 to 30 minutes, and then subjecting the material to a quenching treatment with water cooling or oil cooling;
    Heating the quenched material at 150 to 650 ° C. for 5 to 60 minutes, and then subjecting the material to furnace cooling.
  11.  請求項10に記載の摺動部品用鋼材の製造方法であって、
     前記焼戻し処理された素材に、1000~1200℃で5~30分間加熱した後、300℃/h以下の平均冷却速度で冷却する工程をさらに備える、摺動部品用鋼材の製造方法。
    It is a manufacturing method of the steel material for sliding parts of Claim 10, Comprising:
    A method for producing a steel material for a sliding part, further comprising a step of heating the tempered material at 1000 to 1200 ° C. for 5 to 30 minutes and then cooling it at an average cooling rate of 300 ° C./h or less.
PCT/JP2019/032891 2018-09-07 2019-08-22 Steel material for sliding members, and method for producing same WO2020050053A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/273,012 US20210348247A1 (en) 2018-09-07 2019-08-22 Steel material for sliding members and method of manufacturing the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018-167735 2018-09-07
JP2018167735 2018-09-07
JP2018-173073 2018-09-14
JP2018173073 2018-09-14
JP2019045999A JP2020045557A (en) 2018-03-20 2019-03-13 Slide member
JP2019-045999 2019-03-13
JP2019-093358 2019-05-17
JP2019093358A JP2020041214A (en) 2018-09-07 2019-05-17 Steel for slide component and method for producing the same

Publications (1)

Publication Number Publication Date
WO2020050053A1 true WO2020050053A1 (en) 2020-03-12

Family

ID=69722607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032891 WO2020050053A1 (en) 2018-09-07 2019-08-22 Steel material for sliding members, and method for producing same

Country Status (1)

Country Link
WO (1) WO2020050053A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7410392B2 (en) 2020-03-23 2024-01-10 日本製鉄株式会社 Machine structural steel, machine structural parts and their manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5186007A (en) * 1975-01-24 1976-07-28 Sumitomo Electric Industries TAIMASEISHUDOBUZAI
CN107083517A (en) * 2017-03-24 2017-08-22 合肥羿振电力设备有限公司 A kind of engine rotation shaft material and preparation method thereof
CN107447166A (en) * 2017-07-26 2017-12-08 合肥尚强电气科技有限公司 A kind of dynamo bearing material and preparation method thereof
JP2019137897A (en) * 2018-02-13 2019-08-22 日本製鉄株式会社 Slide member and method for producing the same
JP2019151913A (en) * 2018-03-02 2019-09-12 日本製鉄株式会社 Sliding member and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5186007A (en) * 1975-01-24 1976-07-28 Sumitomo Electric Industries TAIMASEISHUDOBUZAI
CN107083517A (en) * 2017-03-24 2017-08-22 合肥羿振电力设备有限公司 A kind of engine rotation shaft material and preparation method thereof
CN107447166A (en) * 2017-07-26 2017-12-08 合肥尚强电气科技有限公司 A kind of dynamo bearing material and preparation method thereof
JP2019137897A (en) * 2018-02-13 2019-08-22 日本製鉄株式会社 Slide member and method for producing the same
JP2019151913A (en) * 2018-03-02 2019-09-12 日本製鉄株式会社 Sliding member and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7410392B2 (en) 2020-03-23 2024-01-10 日本製鉄株式会社 Machine structural steel, machine structural parts and their manufacturing method

Similar Documents

Publication Publication Date Title
US5427457A (en) Rolling bearing
KR102386638B1 (en) Steel for carburized bearing parts
JP3918787B2 (en) Low carbon free cutting steel
JP2007162128A (en) Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component
JP5886119B2 (en) Case-hardened steel
JPWO2020138458A1 (en) Carburized nitride bearing parts
JP4923776B2 (en) Rolling and sliding parts and manufacturing method thereof
JP7095116B2 (en) Steel material used as a material for carburized nitriding bearing parts
JP5260032B2 (en) Induction hardened steel excellent in cold workability, rolling member made of the steel, and linear motion device using the rolling member
JP4206112B2 (en) Pulley for continuously variable transmission
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP3713975B2 (en) Steel for bearing
WO2020050053A1 (en) Steel material for sliding members, and method for producing same
JP6007562B2 (en) Rolling bearing
JPH07110988B2 (en) Rolling bearing
JP6225613B2 (en) Case-hardened steel
WO2018212196A1 (en) Steel and component
JP2020041214A (en) Steel for slide component and method for producing the same
JP2006176863A (en) Steel for rolling bearing
JP2020045557A (en) Slide member
JP6639839B2 (en) Bearing steel with excellent whitening resistance and exfoliation life
JPH11229032A (en) Production of steel for soft-nitriding and soft-nitrided parts using the steel
JP2002256384A (en) Steel for crank shaft having excellent machinability and wear resistance
US20210348247A1 (en) Steel material for sliding members and method of manufacturing the same
JP3353698B2 (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized parts using the steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858080

Country of ref document: EP

Kind code of ref document: A1