JP4869051B2 - Spring steel, spring manufacturing method using this steel, and spring obtained from this steel - Google Patents

Spring steel, spring manufacturing method using this steel, and spring obtained from this steel Download PDF

Info

Publication number
JP4869051B2
JP4869051B2 JP2006334660A JP2006334660A JP4869051B2 JP 4869051 B2 JP4869051 B2 JP 4869051B2 JP 2006334660 A JP2006334660 A JP 2006334660A JP 2006334660 A JP2006334660 A JP 2006334660A JP 4869051 B2 JP4869051 B2 JP 4869051B2
Authority
JP
Japan
Prior art keywords
steel
trace amount
spring
corrosion
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006334660A
Other languages
Japanese (ja)
Other versions
JP2007224413A (en
Inventor
直 吉原
和久 河田
ジュリー アンジェリク ムージャン
ジャック ランギルローム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of JP2007224413A publication Critical patent/JP2007224413A/en
Application granted granted Critical
Publication of JP4869051B2 publication Critical patent/JP4869051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Abstract

A spring steel has the following composition (by wt.%): (A) Carbon (C) = 0.45 - 0.70; (B) Silicon (Si) = 1.65 - 2.50; (C) Manganese (Mn) = 0.20 - 0.75; (D) Chromium (Cr) = 0.60 - 2; (E) Nickel (Ni) = 0.15 - 1; (F) Molybdenum (Mo) = traces - 1; (G) Vanadium (V) = 0.003 - 0.8; (H) Copper (Cu) = 0.10 - 1; (I) Titanium (Ti) = 0.020 - 0.2; (J) Niobium (Nb) = traces - 0.2; (K) Aluminum (Al) = 0.002 - 0.050; (L) Phosphorus (P) = traces - 0.015; (M) Sulfer (S) = traces - 0.015; (N) Oxygen (O) = traces - 0.0020; (O) Nitrogen (N) = 0.0020 - 0.0110; (P) Remainder iron (Fe) and production impurities; (Q) a calculated carbon equivalent (C eq). Independent claims are also included for: (1) the fabrication of this spring steel; (2) a spring made from this steel.

Description

技術分野:
一般的に言えば、ばねに加える疲労応力が増加するにつれて、ばねの硬さおよび引張強度は増加し続ける。その結果、欠陥(例えば介在物またはばね製造中に発生する表面欠陥)で起こる折損に対して感受性が増大し、疲労強度が限界に達する傾向がある。他方で、厳しい腐食環境下で使用されるばね、例えば懸架ばねは、硬さおよび引張強度がより高い鋼を使用したときに、少なくとも同等(およびより優れた)腐食疲労特性を示さなければならない。そうして、そのようなばねは、大気中での繰返し疲労または腐食媒体下での繰返しで直ぐに、欠陥上で折損し易くなる。例えば腐食疲労では、欠陥が腐食孔から生じ得る。さらに、腐食孔における、ばねのコイリング製造若しくは他の操作で発生し得るばねの表面欠陥における、または非金属介在物における応力集中の影響が、ばねの硬さが増大するほど、より決定的になることを考えれば、負荷応力が増加するほど、腐食疲労寿命を改善したり、同様のレベルに維持することは、より一層困難になる。
Technical field:
Generally speaking, as the fatigue stress applied to the spring increases, the spring hardness and tensile strength continue to increase. As a result, susceptibility to breakage caused by defects (such as inclusions or surface defects occurring during spring manufacture) increases and fatigue strength tends to reach its limit. On the other hand, springs used in severe corrosive environments, such as suspension springs, must exhibit at least equivalent (and better) corrosion fatigue properties when using steel with higher hardness and tensile strength. Thus, such springs are prone to breakage on defects immediately upon repeated fatigue in the atmosphere or repeated under corrosive media. For example, in corrosion fatigue, defects can arise from corrosion holes. Furthermore, the effect of stress concentration in corrosion holes, in spring surface defects that may occur during spring coiling or other operations, or in non-metallic inclusions becomes more critical as spring stiffness increases. Considering this, it is more difficult to improve the corrosion fatigue life or maintain it at the same level as the load stress increases.

以前の技術水準によれば、仏国特許第2740476号および(日本国)特許第3474373号は、良好な耐水素誘起脆性および耐疲労性を有するばね鋼種を記載しており、その中でTi、Nb、Zr、TaまたはHfの中の少なくとも1つの元素から構成される「炭窒硫化物」介在物は、平均粒度が直径で5μmよりも小さく、且つ非常に多数(切断面上で10000個以上)であるように制御される。   According to previous state of the art, French Patent No. 2740476 and (Japan) Patent No. 3474373 describe spring steel grades with good hydrogen-induced brittleness resistance and fatigue resistance, among which Ti, “Carbonitride sulfide” inclusions composed of at least one element of Nb, Zr, Ta or Hf have an average particle size smaller than 5 μm in diameter and very large number (more than 10,000 on the cut surface) ) To be controlled.

しかしこの種の鋼は、工業的なばね製造法による焼入れ焼戻し後に、たった50HRCか、それより少し大きい硬さ(これは、1700MPaか、それより少し大きい引張強度に対応する)レベルに到達するが、1900MPa、即ち53.5HRCを大きく超えない。この中程度の硬さレベルでは、この鋼は中程度の耐へたり性しか示さない。耐へたり性を向上させるためには、より高い引張強度を備えた鋼の解決策が必要である。そういうわけで、この特許出願の目的であるばねに対して要求されるような、2100MPaを超える高い強度と、55HRCを超える硬さと、大気中での高い耐疲労性と、少なくとも同等およびそれよりも良好な耐腐食疲労性との間の優れた調和は、前述の鋼では確保されていない。
仏国特許第2740476号 特許第3474373号
However, this type of steel, after quenching and tempering by an industrial spring manufacturing method, reaches a level of hardness of only 50 HRC or slightly higher (which corresponds to a tensile strength of 1700 MPa or slightly higher). It does not greatly exceed 1900 MPa, that is, 53.5 HRC. At this moderate hardness level, the steel exhibits only moderate sag resistance. In order to improve sag resistance, a steel solution with higher tensile strength is required. That is why, as required for the springs that are the object of this patent application, high strength exceeding 2100 MPa, hardness exceeding 55 HRC, high fatigue resistance in the atmosphere, at least equivalent and better A good balance between good corrosion fatigue resistance is not ensured with the aforementioned steels.
French Patent No. 2740476 Japanese Patent No. 3474373

技術課題:
この特許出願の目的は、ばねの硬さおよび引張強度、大気中でのより高い疲労特性、少なくとも同等およびそれよりも高い腐食疲労特性、より高いばねの耐へたり性、並びにばねのコイリングまたは他の操作中に発生し得る表面欠陥に対するより少ない感度をまとめて達成する手段を提案することである。
Technical problems:
The purpose of this patent application is to determine the stiffness and tensile strength of the spring, higher fatigue properties in the atmosphere, at least equivalent and higher corrosion fatigue properties, higher spring sag resistance, and spring coiling or other It is to propose a means to collectively achieve less sensitivity to surface defects that may occur during the operation.

この目的のために、予想外にも、質量%で正確に下記元素:
C :0.45〜0.7%、
Si:1.65〜2.5%、
Mn:0.20〜0.75%、
Cr:0.60〜2%、
Ni:0.15〜1%、
Mo:痕跡量〜1%、
V :0.003〜0.8%、
Cu:0.10〜1%、
Ti:0.020〜0.20%、
Nb:痕跡量〜0.2%、
Al:0.002〜0.050%、
P :痕跡量〜0.015%、
S :痕跡量〜0.015%、
O :痕跡量〜0.0020%、
N :0.0020〜0.0110%
を含有し、残部が実質的にFeおよび不可避不純物であるか、
または好ましくは:
C :0.45〜0.65%、
Si:1.65〜2.2%、
Mn:0.20〜0.65%、
Cr:0.8〜1.7%、
Ni:0.15〜0.80%、
Mo:痕跡量〜0.80%、
V :0.003〜0.5%、
Cu:0.10〜0.90%、
Ti:0.020〜0.15%、
Nb:痕跡量〜0.15%、
Al:0.002〜0.050%、
P :痕跡量〜0.010%、
S :痕跡量〜0.010%、
O :痕跡量〜0.0020%、
N :0.0020〜0.0110%
を含有し、残部が実質的にFeおよび不可避不純物であり、
次式:
Ceq.=[C]+0.12[Si]+0.17[Mn]−0.1[Ni]
+0.13[Cr]−0.24[V]
〔式中、括弧[X]中の量は、質量%での元素含有量を示す。〕
で示されるCeq含有量が0.8〜1%の間に含まれ、ばね用の棒鋼または線材の表面下1.5mm±0.5mmの位置の100mm2の切断面の全ての介在物を観察し、介在物の表面積の平方根を介在物サイズであるとしたとき、Ti窒化物(または場合により炭窒化物)である介在物の最大サイズが20μm未満であるばね鋼が、特定の製鋼、鋳造および圧延条件、次いで正確な焼入れ焼戻し処理で、55HRCを超える硬さを確保でき、一方、大気中での長寿命疲労と、腐食疲労と、耐へたり性と、ばねのコイリング製造または他の操作で生ずる表面欠陥で遭遇し得る表面応力集中に対する少ない感度との優れた調和を確保することを見出した。
For this purpose, unexpectedly, exactly the following elements in mass%:
C: 0.45-0.7%,
Si: 1.65 to 2.5%,
Mn: 0.20 to 0.75%,
Cr: 0.60 to 2%,
Ni: 0.15 to 1%,
Mo: Trace amount to 1%,
V: 0.003-0.8%,
Cu: 0.10 to 1%,
Ti: 0.020 to 0.20%,
Nb: Trace amount to 0.2%,
Al: 0.002 to 0.050%,
P: Trace amount to 0.015%,
S: Trace amount to 0.015%,
O: Trace amount to 0.0020%,
N: 0.0020 to 0.0110%
Or the balance is substantially Fe and inevitable impurities,
Or preferably:
C: 0.45-0.65%,
Si: 1.65 to 2.2%,
Mn: 0.20 to 0.65%,
Cr: 0.8 to 1.7%,
Ni: 0.15-0.80%,
Mo: Trace amount to 0.80%,
V: 0.003-0.5%,
Cu: 0.10-0.90%,
Ti: 0.020 to 0.15%,
Nb: Trace amount to 0.15%,
Al: 0.002 to 0.050%,
P: Trace amount to 0.010%,
S: Trace amount to 0.010%,
O: Trace amount to 0.0020%,
N: 0.0020 to 0.0110%
And the balance is substantially Fe and inevitable impurities,
The following formula:
Ceq. = [C] +0.12 [Si] +0.17 [Mn] -0.1 [Ni]
+0.13 [Cr] -0.24 [V]
[In the formula, the amount in parentheses [X] indicates the element content in mass%. ]
All the inclusions in the 100 mm 2 cut surface at a position of 1.5 mm ± 0.5 mm below the surface of the steel bar or wire rod for spring are included. and, when the square root of the surface area of the inclusions were considered inclusions size, Ti nitrides (or optionally carbonitrides) spring steel maximum size of inclusions is is less than 20μm is, certain steelmaking, Casting and rolling conditions, followed by precise quenching and tempering treatment, can ensure hardness exceeding 55HRC, while long life fatigue in the atmosphere, corrosion fatigue, sag resistance, coiling of springs or other It has been found to ensure excellent harmony with less sensitivity to surface stress concentrations that can be encountered with surface defects caused by operation.

本発明の効果:
この特許出願で述べた技術で与えられる手段によって、微量合金元素の添加、残留元素の低減および上述の鋼分析の厳密な制御、並びに製造経路を経て、改善された大気中での疲労およびへたり特性、少なくとも同等である(およびより一層良好な)腐食疲労特性、およびばねのコイリング製造または他の操作中に発生し得る表面欠陥によってもたらされる応力集中に対する少ない感度と共に、高く改善された硬さおよび引張強度を併せ持つばね鋼が得られる。
Effects of the present invention:
Through the means given in the technology described in this patent application, the addition of trace alloying elements, the reduction of residual elements and strict control of the steel analysis described above, and the manufacturing path, improved atmospheric fatigue and sag. Highly improved hardness, along with properties, at least equivalent (and better) corrosion fatigue properties, and less sensitivity to stress concentrations caused by surface defects that can occur during spring coiling or other operations Spring steel having both tensile strength is obtained.

本発明で正当とする鋼の化学分析の説明
・S:痕跡量〜最大0.015%まで
硫黄は、鋼の不可避不純物である。その含有量は、できるだけ少なく、痕跡量〜0.015%(好ましくは0.010%)までである。なぜなら本発明で記載する鋼の高い強度および硬さの値での耐腐食疲労性および大気中の耐疲労性に対して好ましくない硫化物を存在させないようにするためである。
Explanation of chemical analysis of steel justified in the present invention S: Trace amount up to a maximum of 0.015% Sulfur is an unavoidable impurity of steel. Its content is as small as possible, and is trace amount to 0.015% (preferably 0.010%). This is to prevent the presence of sulfides that are undesirable for the corrosion fatigue resistance and high atmospheric fatigue resistance of the steels described in the present invention.

・N:0.0020〜0.0110%
窒素は、0.0020〜0.011%の範囲に調整しなければならない。なぜならTi、Nb、AlまたはVと結合して、充分な数の非常に微細で超顕微鏡的であり、結晶粒を顕著に微細化させる窒化物、炭化物または炭窒化物を形成させるためである。従ってこの目的のために、最小含有量は0.0020%でなければならない。その最大含有量は、0.011%を超えてはならない。なぜなら、ばね製造に使用される棒鋼または線材の表面から1.5mm±0.5mm(この棒鋼または線材表面からの位置は、ばねの疲労荷重に関して重要な位置である。)で、前述のサイズ定義の20μmより大きな粗大で硬いTiおよび場合により(V,Ti)窒化物または炭窒化物が形成することを回避するためである。実際のところ、大気中または腐食媒体中の疲労試験では、前述のばね表面周辺にまさにそのような大きな介在物が存在する場合、そのような大きな介在物上でばねが折損することを考慮すると、本発明で記載する強度および硬さが高い鋼での大気中の耐疲労性および腐食疲労に対して、そのような大きな窒化物または炭窒化物は、非常に好ましくない。
N: 0.0020 to 0.0110%
Nitrogen must be adjusted in the range of 0.0020-0.011%. This is because, in combination with Ti, Nb, Al or V, a sufficient number of very fine and ultra-microscopic nitrides, carbides or carbonitrides are formed that significantly refine the crystal grains. Therefore, for this purpose, the minimum content must be 0.0020%. Its maximum content should not exceed 0.011%. This is because the size definition described above is 1.5 mm ± 0.5 mm from the surface of the steel bar or wire used for manufacturing the spring (the position from the surface of the steel bar or wire is an important position regarding the fatigue load of the spring). This is to avoid the formation of coarse and hard Ti larger than 20 μm and possibly (V, Ti) nitride or carbonitride. In fact, in a fatigue test in the atmosphere or in a corrosive medium, if such large inclusions are present around the spring surface, considering that the spring breaks on such large inclusions, Such large nitrides or carbonitrides are highly undesirable for atmospheric fatigue resistance and corrosion fatigue in the high strength and hardness steels described in this invention.

・V:0.003〜0.8%
バナジウムは、鋼の焼入性、焼入れ焼戻し後の引張応力および硬さを向上させることができる元素である。さらに窒素と結合してVは、結晶粒サイズを微細化し、構造硬化を通じて引張強度レベルおよび硬さを向上させる多くの微細で超顕微鏡的なVまたは(V,Ti)窒化物を形成できる。結晶粒微細化のために、微細で超顕微鏡的な(V,Ti)窒化物を形成させるために、バナジウムは、最低限0.003%で存在すべきである。しかしバナジウムは、高価な元素であるので、結晶粒微細化と共にコスト削減を考えると、この下限値近くにすべきである。他方バナジウムは、0.8%(好ましくは0.5%)を超えてはならない。これらの値を超えると、CrおよびMoと共に、粗くて非常に硬い特別なV含有炭化物の析出物が、焼入れの前に行われるオーステナイト化段階中に溶け残ることがあるからであり、これは、本発明で記載する強度および硬さの値が高い鋼では、大気中または腐食媒体中の疲労寿命に対して非常に好ましくない場合がある。最後に、0.8%を超えるVの余分な添加は、いたずらに鋼のコストを増大させる。
・ V: 0.003-0.8%
Vanadium is an element that can improve the hardenability of steel, the tensile stress and the hardness after quenching and tempering. Furthermore, in combination with nitrogen, V can form many fine and microscopic V or (V, Ti) nitrides that refine grain size and improve tensile strength levels and hardness through structural hardening. Vanadium should be present at a minimum of 0.003% to form fine and microscopic (V, Ti) nitrides for grain refinement. However, since vanadium is an expensive element, it should be close to this lower limit in consideration of cost reduction as well as crystal grain refinement. On the other hand, vanadium should not exceed 0.8% (preferably 0.5%). Beyond these values, the coarse and very hard special V-containing carbide precipitates, along with Cr and Mo, may remain undissolved during the austenitization stage performed prior to quenching, Steels with high strength and hardness values described in the present invention may be highly undesirable for fatigue life in air or in a corrosive medium. Finally, the extra addition of V above 0.8% unnecessarily increases the cost of the steel.

・C:0.45〜0.70%
炭素は、焼入れ焼戻し後に鋼の引張強度および硬さを向上させることができる。炭素含有量が0.45%未満である場合、ばね製造に通常使用される温度範囲での焼入れ焼戻し処理では、本発明で記載する強度および硬さの値が高い鋼は得られない。他方、C含有量が0.70%(好ましくは0.65%)を超える場合、Cr、MoおよびVと結合した粗くて非常に硬い特別な炭化物が、焼入れ前に行われるオーステナイト化処理中に溶け残ることがある。これは、大気中での疲労寿命、耐腐食疲労性、およびまた靱性に重大な影響を及ぼし得る。従ってC含有量は、0.70%を超えてはならない。
・ C: 0.45-0.70%
Carbon can improve the tensile strength and hardness of steel after quenching and tempering. When the carbon content is less than 0.45%, the steel having high strength and hardness values described in the present invention cannot be obtained by quenching and tempering treatment in the temperature range normally used for spring production. On the other hand, if the C content exceeds 0.70% (preferably 0.65%), the coarse and very hard special carbides combined with Cr, Mo and V are not treated during the austenitizing process before quenching. May melt away. This can have a significant impact on atmospheric fatigue life, corrosion fatigue resistance, and also toughness. Therefore, the C content should not exceed 0.70%.

・Si:1.65〜2.5%
ケイ素は、固溶することによって、高い抵抗性および硬さレベル、並びにCeq値および耐へたり性を確保できる重要な元素である。本発明で記載する鋼の引張強度および硬さの値のために、Si含有量は1.65%未満であってはならない。さらにケイ素は、少なくとも部分的に鋼の脱酸に寄与する。その含有量が2.5%(好ましくは2.2%)を超える場合、鋼の酸素含有量が、熱力学的反応によって0.0020%(またはさらに0.0025%)を超えることがあり(様々な組成の酸化物の形成を含む)、これは大気中での耐疲労性に有害である。さらに2.5%を超えるSi含有量では、Mn、Crまたはその他のような異なる組合せの元素が、鋳造後の凝固段階中に偏析し得る。これらの偏析は、大気中での疲労挙動および耐腐食疲労性にとって非常に有害である。最後に、2.5%を超えるSi含有量では、ばね用の棒鋼または線材表面での脱炭が、ばねの使用時の特性に対してあまりに重大になる。この理由から、Si含有量は、2.5%(好ましくは2.2%)を超えてはならない。
・ Si: 1.65 to 2.5%
Silicon is an important element that can ensure high resistance and hardness level, as well as Ceq value and sag resistance when dissolved. Due to the tensile strength and hardness values of the steel described in this invention, the Si content should not be less than 1.65%. Furthermore, silicon contributes at least partially to the deoxidation of the steel. If its content exceeds 2.5% (preferably 2.2%), the oxygen content of the steel may exceed 0.0020% (or even 0.0025%) by thermodynamic reaction ( Including the formation of oxides of various compositions), which is detrimental to fatigue resistance in the atmosphere. Furthermore, at Si contents above 2.5%, different combinations of elements such as Mn, Cr or others can segregate during the solidification stage after casting. These segregations are very detrimental to atmospheric fatigue behavior and corrosion fatigue resistance. Finally, at Si contents greater than 2.5%, decarburization on the steel bar or wire surface for the spring becomes too critical for the properties of the spring in use. For this reason, the Si content should not exceed 2.5% (preferably 2.2%).

・Al:0.002〜0.050%
アルミニウムは、鋼の脱酸を完了させるため、および、できるだけ低くて、本発明で記載する鋼のあらゆる場合で0.0020%未満の酸素含有量を達成するために、添加することができる。さらに窒素と結合してAlは、超顕微鏡的な窒化物の形成を通じて、結晶粒微細化に寄与する。これら2つの特性を確保するために、0.0020%以上のAl含有量が要求される。一方、0.05%を超えるAl含有量では、大きくて分離した酸化アルミニウムの介在物、またはより微細であるが長い細脈形態の硬くて角ばったアルミン酸塩の介在物が存在することがある。これらは、大気中の疲労寿命および鋼の清浄度に有害である。この理由から、Al含有量は0.05%を超えてはならない。
・ Al: 0.002 to 0.050%
Aluminum can be added to complete the deoxidation of the steel and to achieve an oxygen content of as low as 0.0020% in all cases of the steel described in the present invention as low as possible. Furthermore, Al combined with nitrogen contributes to crystal grain refinement through the formation of ultramicroscopic nitrides. In order to ensure these two characteristics, an Al content of 0.0020% or more is required. On the other hand, at an Al content greater than 0.05%, there may be large, separated aluminum oxide inclusions, or harder, angular aluminate inclusions in the form of finer but long veins. . These are detrimental to atmospheric fatigue life and steel cleanliness. For this reason, the Al content should not exceed 0.05%.

・Mn:0.20〜0.75%
マンガンは、痕跡量〜0.015%までの残留Sと結合して、鋼の圧延に極めて有害な硫化鉄の形成を回避するために、S含有量の少なくとも10倍の含有量で添加しなければならない。従って最小Mn含有量として、0.20%が必要である。さらにMnは、本発明で記載する鋼の高い引張強度および硬さ並びにCeq値を得るため、Ni、Cr、MoおよびVと同様に、鋼の焼入れ中での固溶体硬化に寄与する。0.75%(好ましくは0.65%)を超えるMn含有量では、Si含有量と組み合わさって、製鋼および鋼の鋳造後の凝固手順中に偏析が生じ得る。これらの偏析は、鋼の稼動特性および鋼の均質性にとって有害である。この理由から、Mn含有量は0.75%を超えてはならない。
・ Mn: 0.20 to 0.75%
Manganese must be added at a content of at least 10 times the S content in order to combine with trace amounts up to 0.015% residual S and avoid the formation of iron sulfide, which is extremely harmful to steel rolling. I must. Therefore, 0.20% is required as the minimum Mn content. Further, Mn contributes to solid solution hardening during quenching of the steel in the same manner as Ni, Cr, Mo and V in order to obtain the high tensile strength and hardness and Ceq value of the steel described in the present invention. At Mn content above 0.75% (preferably 0.65%), in combination with Si content, segregation can occur during steelmaking and post-casting solidification procedures. These segregations are detrimental to the operational properties of the steel and the homogeneity of the steel. For this reason, the Mn content should not exceed 0.75%.

・Cr:0.60%〜2%(好ましくは0.80〜1.70%)
Crは、オーステナイト化、焼入れ焼戻し後の固溶によって高い引張強度および硬さの値を得るため、およびCeq範囲に寄与するため、また耐腐食疲労性を向上させるために添加される。これらの特性を確保するためにCr含有量は、少なくとも0.60%(好ましくは0.80%)でなければならない。2%(好ましくは1.7%)を超えると、VおよびMoと共に、粗くて非常に硬い特別なCr炭化物が、焼入れ前に行われるオーステナイト化処理後に存在し得る。そのような炭化物は、大気中の耐疲労性に大きな影響を及ぼす。この理由から、Cr含有量は2%を超えてはならない。
Cr: 0.60% to 2% (preferably 0.80 to 1.70%)
Cr is added to obtain high tensile strength and hardness values by solid solution after austenitizing and quenching and tempering, and to contribute to the Ceq range, and to improve corrosion fatigue resistance. In order to ensure these properties, the Cr content should be at least 0.60% (preferably 0.80%). Beyond 2% (preferably 1.7%), together with V and Mo, coarse and very hard special Cr carbides may be present after the austenitizing treatment performed before quenching. Such carbides greatly affect the fatigue resistance in the atmosphere. For this reason, the Cr content should not exceed 2%.

・Ni:0.15〜1%
ニッケルは、鋼の焼入性、並びに焼入れ焼戻し後の引張強度および硬さを向上させるために添加される。炭化物を形成しないので、Niは鋼の硬化に寄与する。これは、焼入れ前に行われるオーステナイト化の際に溶解せずに、大気中での耐疲労性に有害であり得る、粗くて硬い特別な炭化物を形成しないCr、MoおよびVと同様である。またNiにより、本発明で記載する鋼で、0.8〜1%の間にCeqを調整できる。酸化されない元素と同様に、Niは、耐腐食疲労性を改善する。これらの作用の有効性を確保するために、Ni含有量は0.15%未満であってはならない。一方、1%(好ましくは0.80%)を超えると、Niは、過剰な残留オーステナイトを誘発させることがあり、その存在は、耐腐食疲労性にとって非常に有害である。さらに高いNi含有量は、鋼のコストをかなり増大させる。これら全ての理由から、Ni含有量は1%を超えてはならない。
・ Ni: 0.15 to 1%
Nickel is added to improve the hardenability of the steel and the tensile strength and hardness after quenching and tempering. Since no carbide is formed, Ni contributes to hardening of the steel. This is similar to Cr, Mo and V which do not dissolve during austenitization performed prior to quenching and do not form coarse, hard special carbides that can be detrimental to fatigue resistance in the atmosphere. Also, Ni can adjust Ceq between 0.8 and 1% in the steel described in the present invention. Like elements that are not oxidized, Ni improves corrosion fatigue resistance. In order to ensure the effectiveness of these actions, the Ni content should not be less than 0.15%. On the other hand, above 1% (preferably 0.80%), Ni can induce excessive retained austenite, the presence of which is very detrimental to corrosion fatigue resistance. The higher Ni content significantly increases the cost of the steel. For all these reasons, the Ni content should not exceed 1%.

・Mo:痕跡量〜1%
モリブデンは、クロムと同様に、鋼の焼入性、並びに焼入れ焼戻し後の鋼の強度および硬さを向上させる。さらにMoは、酸化電位が低い元素である。これら2つの理由からMoは、大気中での疲労および耐腐食疲労寿命に対して好ましい。一方1%(好ましくは0.80%)を超える値では、焼入れ前に行われるオーステナイト化処理後に、粗くて非常に硬い特別な炭化物が、単独で、またはVおよびCrと組み合わさって存在し得る。これらの特別な炭化物は、大気中での耐疲労性に非常に有害である。最後に、1%を超える含有量でのMoの余分な添加は、いたずらに鋼のコストを増大させる。この理由から、Moの含有量は1%を超えてはならない。
・ Mo: Trace amount ~ 1%
Molybdenum, like chromium, improves the hardenability of the steel and the strength and hardness of the steel after quenching and tempering. Furthermore, Mo is an element having a low oxidation potential. For these two reasons, Mo is preferred for atmospheric fatigue and corrosion fatigue life. On the other hand, at values above 1% (preferably 0.80%), special carbides that are coarse and very hard can be present alone or in combination with V and Cr after the austenitizing treatment performed before quenching. . These special carbides are very detrimental to fatigue resistance in the atmosphere. Finally, the extra addition of Mo with a content above 1% unnecessarily increases the cost of the steel. For this reason, the Mo content should not exceed 1%.

・Cu:0.10〜1%
銅は、焼入れ焼戻し処理後の固溶による鋼の硬化元素である。従って銅は、鋼の強度および硬さ向上に寄与する他の元素と共に添加できる。銅は、炭素と結合せず、大気中の耐疲労性に有害な硬くて粗い炭化物を形成しない場合、鋼を硬化させることができる。電気化学の観点から、その不動態電位は鉄よりも高く、その結果、鋼の耐腐食疲労性にとって好ましい。これらの作用の有効性を確保するために、Cu含有量は0.10%未満であってはならない。一方、1%(好ましくは0.9%)を超える含有量では、Cuは、熱間圧延特性に対して非常に有害な影響を及ぼす。この理由から、Cu含有量は1%を超えてはならない。
Cu: 0.10 to 1%
Copper is a hardening element of steel by solid solution after quenching and tempering treatment. Therefore, copper can be added together with other elements that contribute to improving the strength and hardness of the steel. Copper can harden steel if it does not bond with carbon and does not form hard and coarse carbides that are detrimental to fatigue resistance in the atmosphere. From an electrochemical point of view, its passive potential is higher than that of iron and as a result is preferred for the corrosion fatigue resistance of steel. In order to ensure the effectiveness of these actions, the Cu content should not be less than 0.10%. On the other hand, at a content exceeding 1% (preferably 0.9%), Cu has a very detrimental effect on hot rolling properties. For this reason, the Cu content should not exceed 1%.

・P:痕跡量〜0.015%
リンは鋼の不可避不純物である。リンは、焼入れ焼戻し処理中に、前のオーステナイト系結晶粒界で、CrまたはMnまたはその他のような元素と共に偏析する。この結果、結晶粒界の凝集が低下し、靱性および大気中での耐疲労性に対して非常に有害な結晶粒間の脆化が生ずる。これらの作用は、本発明で記載する引張強度および硬さの値が高い鋼に対して、より一層有害である。ばね鋼における高い引張強度および硬さ、並びに良好な耐大気疲労性および耐腐食疲労性を同時に得るために、P含有量はできるかぎり低くあるべきであり、0.015%(好ましくは0.010%)を超えてはならない。
・ P: Trace amount to 0.015%
Phosphorus is an inevitable impurity in steel. Phosphorus segregates with elements such as Cr or Mn or others at the previous austenitic grain boundaries during the quenching and tempering process. As a result, the agglomeration of crystal grain boundaries is reduced, and embrittlement between crystal grains that is extremely harmful to toughness and fatigue resistance in the atmosphere occurs. These effects are even more detrimental to steels with high tensile strength and hardness values as described in the present invention. In order to simultaneously obtain high tensile strength and hardness in spring steel and good atmospheric fatigue resistance and corrosion fatigue resistance, the P content should be as low as possible, 0.015% (preferably 0.010 %) Must not be exceeded.

・酸素:痕跡量〜0.0020%
酸素も鋼の不可避不純物である。脱酸元素と結合して酸素は、分離して粗い形態、または微細であるが長い細脈形態の非常に硬くて角ばった介在物を生じることがある。これらは、大気中での耐疲労性にとって非常に有害である。これらの作用は、本発明で記載する鋼の引張強度および硬さの値が高い場合に、より一層有害である。これらの理由から、本発明で記載する鋼において、高強度/高い硬さと、耐大気疲労性および耐腐食疲労性との間で良好な調和を確保するために、酸素含有量は0.0020%を超えてはならない。
・ Oxygen: Trace amount ~ 0.0020%
Oxygen is also an inevitable impurity in steel. In combination with the deoxidizing element, oxygen can separate to yield very hard and angular inclusions in a coarse form or fine but long vein form. These are very detrimental to fatigue resistance in the atmosphere. These effects are even more detrimental when the steels described in the present invention have high tensile strength and hardness values. For these reasons, in the steel described in the present invention, the oxygen content is 0.0020% in order to ensure a good balance between high strength / high hardness and resistance to atmospheric fatigue and corrosion fatigue. Must not be exceeded.

・Ti:0.020〜0.2%
チタンは、窒素および/または炭素および/またはバナジウムと共に、微細で超顕微鏡的な窒化物または炭化物を形成するために添加され、これらは、焼入れ前に行われるオーステナイト化処理中にオーステナイト系結晶粒サイズを微細化できる。そのことにより、鋼中の結晶粒界面積は増大し、そうしてこれは、結晶粒界で偏析する不可避不純物(例えばP)量の削減につながる。そのような結晶粒間の偏析は、結晶粒界の単位面積あたりに高濃度で存在する場合、靱性および大気中での耐疲労性にとって非常に有害である。さらにチタンは、CおよびNと結合して、場合によりVおよびNbと共に、他の微細な窒化物または炭窒化物を形成でき、これは、耐腐食疲労性にとって極めて有害であり得るいくつかの元素(例えば腐食反応中に形成される水素)をトラップする不可逆作用をもたらす。良好な効力のために、Ti含有量は0.020%未満であってはならない。一方0.2%(好ましくは0.15%)を超えるTiでは、大気中での耐疲労性にとって非常に有害な粗くて硬い窒化物または炭窒化物が形成され得る。この後者の作用は、本発明で記載する引張強度および硬さが高レベルである鋼に対して、より一層有害である。これらの理由から、Ti含有量は0.2%を超えてはならない。
Ti: 0.020 to 0.2%
Titanium is added with nitrogen and / or carbon and / or vanadium to form fine, microscopic nitrides or carbides, which are austenitic grain sizes during the austenitizing process performed prior to quenching. Can be refined. This increases the grain boundary area in the steel, which in turn leads to a reduction in the amount of inevitable impurities (eg P) that segregate at the grain boundaries. Such segregation between grains is very detrimental to toughness and fatigue resistance in the atmosphere when present at high concentrations per unit area of grain boundaries. In addition, titanium can combine with C and N, optionally with V and Nb, to form other fine nitrides or carbonitrides, which are some elements that can be extremely detrimental to corrosion fatigue resistance It causes an irreversible action to trap (eg hydrogen formed during the corrosion reaction). For good efficacy, the Ti content should not be less than 0.020%. On the other hand, Ti exceeding 0.2% (preferably 0.15%) can form coarse and hard nitrides or carbonitrides that are very detrimental to fatigue resistance in the atmosphere. This latter action is even more detrimental to steels with high levels of tensile strength and hardness as described in the present invention. For these reasons, the Ti content should not exceed 0.2%.

・Nb:痕跡量〜0.2%
ニオブは、CおよびNと結合して極めて微細で超顕微鏡的な窒化物および/または炭化物および/または炭窒化物析出物を形成するために添加される。これらは、特にAl含有量が低い場合(例えば0.002%)、焼入れ前に行われるオーステナイト化処理中にオーステナイト系結晶粒サイズの微細化を完了させることができる。従ってNbは、Tiと同様に、鋼中での結晶粒界面積を増大させ、Pのような不可避不純物による結晶粒界脆化(その作用は靱性および耐腐食疲労性にとって有害である)に関する好ましい作用に寄与する。さらに極めて微細なNb窒化物または炭窒化物析出物は、構造硬化による鋼の硬化に寄与し得る。しかしオーステナイト系結晶粒サイズの微細化を確保するため、および熱間圧延中の亀裂または裂け形成を回避するために、窒化物または炭窒化物が非常に微細なままでいるように、Nb含有量は0.2%(好ましくは0.15%)を超えてはならない。これらの理由から、Nb含有量は0.2%を超えてはならない。
Nb: Trace amount to 0.2%
Niobium is added to combine with C and N to form very fine and microscopic nitrides and / or carbides and / or carbonitride precipitates. In particular, when the Al content is low (for example, 0.002%), the austenite crystal grain size can be refined during the austenitizing treatment performed before quenching. Therefore, Nb, like Ti, increases the grain boundary area in steel and is preferable for grain boundary embrittlement due to inevitable impurities such as P (its action is harmful to toughness and corrosion fatigue resistance). Contributes to action. Furthermore, very fine Nb nitrides or carbonitride precipitates can contribute to the hardening of the steel by structural hardening. However, the Nb content is kept so that the nitride or carbonitride remains very fine to ensure refinement of the austenitic grain size and to avoid cracking or crack formation during hot rolling. Should not exceed 0.2% (preferably 0.15%). For these reasons, the Nb content should not exceed 0.2%.

本発明によるプロセス経路の説明
本発明による製鋼プロセスおよび実施の非限定的な説明を、以下に記載する。
Process Path Description According to the Invention A non-limiting description of the steel making process and implementation according to the invention is described below.

鋼は、転炉または電気アーク炉のいずれかで製造され、次いで取鍋精錬段階(その間に合金元素の添加が行われる)、およびまた脱酸処理、およびより一般的には、あらゆる二次精錬操作が行われる。こうして本発明による正確な鋼分析を達成し、Tiおよび/またはNbおよび/またはVのような元素の大きくて複雑な硫化物あるいは「炭窒硫化物」の液中での形成を回避できる。そのような粗い析出物を上記製鋼プロセス中で形成させないためには、予想外にも、全ての元素含有量、およびとりわけTi、N、VおよびSの含有量は、先行技術水準によるおそらく現行の鋼分析に比べて、この特許出願の上述の組成限定中で入念に制御しなければならないことを見出した。上記の製鋼プロセス後に本発明の鋼は、次いで、ブルーム若しくはブルーム−ビレットの形態にする連続鋳造を経るか、またはインゴット経路を経て鋳造される。しかし粗いチタン窒化物(場合によりチタン炭窒化物)の形成、または凝固段階中およびその後に形成されるこれら生産物(ブルーム、ブルーム−ビレットまたはインゴット)の微細なチタン窒化物若しくは炭窒化物の凝集を完全に回避するか、またはできるだけ削減するために、鋳造後のこれら生産物の平均冷却速度を、1450〜1300℃の正確な温度範囲で、0.3℃/sと少なくとも等しいか、またはそれ以上であるようにしなければならないことを見出した。凝固および冷却段階中のこれらの条件で操作した場合、予想外にも、ばねで観察されるチタン窒化物または炭窒化物の最大サイズが、常に20μmよりも微細であることを見出した。これらTi析出物の位置およびサイズは、この後で記載する。室温まで戻した後、本発明で記載する正確な鋼種分析と一致する生産物(ブルーム、ブルーム−ビレットまたはインゴット)を、シングルまたはダブル加熱および圧延列で、1200/800℃の範囲で再加熱および圧延し、線材または棒鋼の形態にする。次いで本発明で記載する鋼の特殊な特性を得るために、これらの線材または棒鋼から製造されるロッド、バー若しくはスラグまたは場合によりばねを、850〜1000℃の間の温度範囲でオーステナイト化し、次いで水またはポリマーまたはオイル焼入れに供する。なぜならASTM結晶粒サイズスケールのN°9よりも粗大ないくつかの結晶粒が無い微細オーステナイト系結晶粒サイズを達成するためである。この焼入れ処理の後に、明確に300〜550℃の間で焼戻し処理が行われる。なぜなら高レベルの引張強度および硬さを得るため、および一方で焼戻しマルテンサイト脆化につながる微細構造、且つ他方で過剰な残留オーステナイトを回避するためである。焼戻しマルテンサイト脆化および過剰な残留オーステナイトの存在は、本発明で記載する鋼の耐腐食疲労性に対して極めて有害であることが見出された。これらの棒鋼または線材から得られる非熱処理の棒鋼または線材またはスラグからばねが製造される場合、前述の処理(焼入れ焼戻し)は、前述の同じ条件で、ばね自体に対して行われなければならない。ばねが冷間成形を経て製造される場合、これらの熱処理は、ばね製造前に、これらの棒鋼または線材から得られる棒鋼、線材またはスラグに対して行わなければならない。   Steel is produced in either a converter or an electric arc furnace, followed by a ladle refining stage during which alloying elements are added, and also deoxidation, and more generally any secondary refining The operation is performed. Thus, accurate steel analysis according to the invention can be achieved and the formation of large and complex sulfides or “carbonitride sulfides” of elements such as Ti and / or Nb and / or V in the liquid can be avoided. In order to prevent such coarse precipitates from forming in the steelmaking process, unexpectedly all elemental contents, and especially Ti, N, V and S contents, are probably current levels according to the state of the art. It has been found that compared to steel analysis, it must be carefully controlled within the above-mentioned compositional limitations of this patent application. After the steel making process described above, the steel of the present invention is then either continuously cast in the form of a bloom or bloom-billet or cast via an ingot path. However, formation of coarse titanium nitride (optionally titanium carbonitride) or agglomeration of fine titanium nitride or carbonitride of these products (bloom, bloom-billette or ingot) formed during and after the solidification stage In order to avoid or reduce as much as possible, the average cooling rate of these products after casting is at least equal to 0.3 ° C./s over the exact temperature range of 1450 to 1300 ° C. I found out that this should be the case. When operating at these conditions during the solidification and cooling phase, it was unexpectedly found that the maximum size of titanium nitride or carbonitride observed in the spring was always finer than 20 μm. The location and size of these Ti precipitates will be described later. After returning to room temperature, the product (bloom, bloom-billet or ingot) consistent with the exact steel grade analysis described in the present invention is reheated in the range of 1200/800 ° C. in single or double heating and rolling rows and Roll to form wire or bar. The rods, bars or slags or optionally springs made from these wires or bars are then austenitized in the temperature range between 850 and 1000 ° C. in order to obtain the special properties of the steels described in this invention, Subject to water or polymer or oil quenching. This is to achieve a fine austenitic grain size without some grains coarser than the ASTM grain size scale N ° 9. After this quenching treatment, a tempering treatment is clearly performed between 300 and 550 ° C. This is to obtain a high level of tensile strength and hardness, and on the one hand to avoid the microstructure leading to tempered martensite embrittlement and on the other hand excessive residual austenite. It has been found that the presence of tempered martensite embrittlement and excess retained austenite is extremely detrimental to the corrosion fatigue resistance of the steels described in the present invention. When springs are manufactured from non-heat treated steel bars or wires or slag obtained from these bars or wires, the aforementioned treatment (quenching and tempering) must be carried out on the springs under the same conditions as described above. If the springs are manufactured via cold forming, these heat treatments must be performed on the steel bars, wires or slugs obtained from these bars or wires prior to spring manufacture.

手段:
以下の表および図面に従う。
means:
Follow the table and drawings below.

Figure 0004869051
Figure 0004869051

Figure 0004869051
Figure 0004869051

Ti窒化物または炭窒化物サイズの測定
Ti窒化物または炭窒化物である介在物の最大サイズは、以下のように測定される:
Measurement of Ti Nitride or Carbonitride Size The maximum size of inclusions that are Ti nitride or carbonitride is measured as follows:

所定の鋼加熱から得られる棒鋼または線材の切断面の表面積100mm2で、棒鋼または線材表面下の1.5mm±0.5mmの位置で、観察を行う。これらの観察後に、介在物は正方形であり、且つ最大の表面積を有する介在物を含むこれら介在物の各サイズは、それらの表面積の平方根に等しいとみなして、最大の表面積を有するTi窒化物または炭窒化物である介在物のサイズを定めた。ばね用の棒鋼または切断面の100mm2で介在物を全て観察する。表面下1.5mm±0.5mmでの100mm2における上述の介在物の最大サイズが20μmよりも小さい場合、その鋼加熱は本発明と一致する。本発明および比較鋼でそのようにして得られた対応結果を、表3に示す。 Observation is performed at a position of 1.5 mm ± 0.5 mm below the surface of the steel bar or wire, with a surface area of 100 mm 2 of the cut surface of the steel bar or wire obtained from predetermined steel heating. After these observations, the inclusions are square and each size of these inclusions including inclusions with the largest surface area is considered to be equal to the square root of their surface area and Ti nitrides with the largest surface area or The size of inclusions, which are carbonitrides, was determined. Observe all inclusions at 100 mm 2 of spring bar or cut surface. If the maximum size of the above-mentioned inclusions at 100 mm 2 at 1.5 mm ± 0.5 mm below the surface is less than 20 μm, the steel heating is consistent with the present invention. The corresponding results thus obtained with the present invention and comparative steel are shown in Table 3.

Figure 0004869051
Figure 0004869051

疲労試験:
疲労試験の試験片は棒で得られ、試験片のゲージ断面の最終直径は11mmであった。
Fatigue test:
The specimen for the fatigue test was obtained with a rod, and the final diameter of the gauge cross section of the specimen was 11 mm.

疲労試験の試験片を製造するプロセスは、粗い機械加工、オーステナイト化、油焼入れ、焼戻し、研磨およびショットピーニングから構成される。これらの試験片で、大気中でねじり疲労試験が行われた。加えた剪断応力は856±494MPaであり、折損までのサイクル数を数えた。試験片が破壊されない場合、試験を2×106サイクルで停止した。 The process of manufacturing a specimen for fatigue testing consists of rough machining, austenitizing, oil quenching, tempering, polishing and shot peening. These specimens were subjected to torsional fatigue tests in the atmosphere. The applied shear stress was 856 ± 494 MPa, and the number of cycles until breakage was counted. If the specimen was not broken, the test was stopped at 2 × 10 6 cycles.

腐食疲労試験
腐食疲労試験の試験片は棒で得られ、試験片のゲージ断面の最終直径は11mmであった。腐食疲労試験の試験片を製造するプロセスは、粗い機械加工、オーステナイト化、油焼入れ、焼戻し、研磨およびショットピーニングから構成される。これらの試験片に対して、疲労荷重と同じ時間で腐食が加えられる腐食疲労試験を行った。疲労荷重は、856±300MPaと等しい剪断応力であった。加えた腐食は、2つの交互段階での繰返し腐食であった:
−第1段階は、5%のNaClを含有する塩溶液の噴霧による、35℃で5分間の湿潤段階である
−第2段階は、噴霧無しで、継続時間が30分であり、温度が35℃で維持される乾燥段階である。
破損までのサイクル数は、腐食疲労寿命のように折損まで数えた。
Corrosion fatigue test The specimen of the corrosion fatigue test was obtained as a rod, and the final diameter of the gauge cross section of the test piece was 11 mm. The process for producing corrosion fatigue test specimens consists of rough machining, austenitizing, oil quenching, tempering, polishing and shot peening. These specimens were subjected to a corrosion fatigue test in which corrosion was applied in the same time as the fatigue load. The fatigue load was a shear stress equal to 856 ± 300 MPa. The added corrosion was repeated corrosion in two alternating stages:
The first stage is a wet stage for 5 minutes at 35 ° C. by spraying with a salt solution containing 5% NaCl. The second stage is without spraying, has a duration of 30 minutes and a temperature of 35 A drying stage maintained at 0C.
The number of cycles until breakage was counted up to breakage like the corrosion fatigue life.

へたり試験:
耐へたり性は、円筒ピンでサイクル圧縮試験を用いて測定した。ピンの直径は7mmであり、その高さは12mmであった。それらは、棒鋼で得られた。
Sag test:
The sag resistance was measured using a cycle compression test with a cylindrical pin. The pin had a diameter of 7 mm and a height of 12 mm. They were obtained from steel bars.

へたり試験の試験片を製造するプロセスは、粗い機械加工、オーステナイト化、油焼入れ、焼戻し、および最終の精研磨から構成される。ピンの高さを、試験を開始する前に、コンパレータを用いて1μmの精度で正確に測定した。ばねのプレセットを模擬するために、2200MPaの圧縮応力である前荷重を加えた。   The process of making a test piece for sag testing consists of rough machining, austenitizing, oil quenching, tempering, and final fine polishing. The pin height was accurately measured with 1 μm accuracy using a comparator before the test was started. In order to simulate a spring preset, a preload of 2200 MPa compressive stress was applied.

次いでサイクル疲労荷重を加えた。この応力は1270±730MPaであった。ピンの高さ損失を、100万サイクルまでの荷重中に測定した。試験終了後に、初期高さと比べて残留高さを正確に測定することにより、全へたりを求めた。初期高さからの高さ減少(%)が大きいものほど、耐へたり性は低いとみなした。   A cycle fatigue load was then applied. This stress was 1270 ± 730 MPa. Pin height loss was measured during loads up to 1 million cycles. After the test was completed, the total height was determined by accurately measuring the residual height compared to the initial height. The greater the decrease in height (%) from the initial height, the lower the sag resistance.

大気中での疲労、腐食疲労およびへたり試験の結果
本発明および比較鋼での疲労、腐食疲労およびへたり試験の結果を、表4に示す。
Table 4 shows the results of fatigue, corrosion fatigue, and sag test in the present invention and comparative steel.

Figure 0004869051
Figure 0004869051

表4および図1〜3についてのコメント
耐へたり性は、図1で示されるように比較鋼よりも本発明鋼で高い。表4から、上述のへたり測定によれば、へたり値は、比較鋼の最良の場合(比較鋼1)と比べて本発明鋼の最悪の場合(本発明鋼1)で、少なくとも32%低いことが明らかである。
Comments on Table 4 and FIGS. 1-3 As shown in FIG. 1, the sag resistance is higher in the steel of the present invention than in the comparative steel. From Table 4, according to the sag measurement described above, the sag value is at least 32% in the worst case of the steel of the present invention (invention steel 1) compared to the best case of the comparative steel (comparative steel 1). Clearly low.

本発明の鋼の大気中での疲労寿命は、比較鋼と比べてかなり長い(図2)。それは、(図2で示されるように)硬さの増加が原因である。しかし硬さ増加だけではない。実のところ一般的に言えば、硬さが高い鋼では硬さがより高くなるにつれて、欠陥(例えば介在物、表面欠陥、・・・)に対する感受性が、より一層高まる。それで、本発明ではそのような粗大な介在物発生を回避していることを考慮すると(表3)、本発明による鋼は、欠陥に対して、およびとりわけTi窒化物または炭窒化物のような大きな介在物に対して、より感受性が低い。表3で示されるように、本発明鋼で見出される最大介在物のサイズは14.1μmを超えないが、比較鋼2では20μmよりも大きい介在物が見出される。さらに、(本発明による鋼を使用する場合にばねのコイリング製造または他の操作中に発生し得るような)表面欠陥に対して感受性が低いことは、55HRC以上の硬さのために熱処理された本発明および比較鋼で行われた衝撃試験を通じて、説明できる(図3)。本発明鋼で測定されたシャルピーUノッチ衝撃値は、比較鋼で測定されるものよりも高い(図3)(なお、シャルピーUノッチ衝撃値におけるノッチは、ばねのコイリング製造または他の操作中に生み出される表面欠陥で遭遇し得る他の応力集中のような応力集中をシミュレートするためのものである)。このことにより本発明鋼が、先行技術水準による比較鋼よりも、欠陥でのそのような表面応力集中に対して感受性が低いということが際立つ。   The fatigue life in the air of the steel of the present invention is considerably longer than that of the comparative steel (FIG. 2). It is due to increased hardness (as shown in FIG. 2). But it's not just about increasing hardness. In fact, generally speaking, higher hardness steels are more sensitive to defects (eg, inclusions, surface defects,...) As the hardness increases. So, considering that the present invention avoids such coarse inclusion generation (Table 3), the steel according to the present invention is resistant to defects, and especially Ti nitride or carbonitride such as Less sensitive to large inclusions. As shown in Table 3, the size of the maximum inclusion found in the steel of the present invention does not exceed 14.1 μm, but in the comparative steel 2, inclusions larger than 20 μm are found. Furthermore, the low susceptibility to surface defects (as may occur during spring coiling or other operations when using steel according to the present invention) has been heat treated for hardness above 55 HRC. This can be explained through an impact test performed on the present invention and comparative steel (FIG. 3). The Charpy U-notch impact value measured with the steel of the present invention is higher than that measured with the comparative steel (FIG. 3). (Note that the notch in the Charpy U-notch impact value is measured during coiling of the spring or other operations. For simulating stress concentrations like other stress concentrations that may be encountered with the surface defects created). This highlights that the inventive steel is less sensitive to such surface stress concentrations at the defects than the comparative steel according to the prior art.

硬さの増加は、耐腐食疲労性を減少させることが知られている。従って明らかに、本発明による本発明鋼の利点は、その耐腐食疲労性が、とりわけ55HRcよりも高い硬さで、先行技術水準による比較鋼のものよりも高いことである(図2)。   Increasing hardness is known to reduce corrosion fatigue resistance. Clearly, therefore, the advantage of the steel according to the invention is that its corrosion fatigue resistance is higher than that of the comparative steel according to the state of the art, in particular with a hardness higher than 55HRc (FIG. 2).

従って本発明は、大気中での疲労寿命と、強く増加される耐へたり性と、先行技術水準による比較鋼よりも良好な腐食疲労寿命(図2)との間で良好な調和と共に、より高い硬さを達成することができる。さらに、とりわけばねコイリング製造または他の操作中に発生し得る表面欠陥に対して低い感受性も得られる(図3)。   Thus, the present invention provides a better balance between fatigue life in the atmosphere, strongly increased sag resistance, and better corrosion fatigue life (Figure 2) than the comparative steel according to the prior art, and more High hardness can be achieved. In addition, a low sensitivity to surface defects that can occur, inter alia, during spring coiling or other operations is also obtained (FIG. 3).

−Mn、Ni、Cr、TiおよびS含有量が、本発明による鋼の正確な組成範囲外である、
−S含有量が、大気中での疲労と、腐食疲労と、起こり得るばね表面欠陥に対する感度との間の良好な調和を確保するためには高すぎる、
−Mn含有量は、高すぎて、鋼の均質性、大気中での疲労および腐食疲労特性に対して有害である偏析を生じさせる、
−Tiは、高い疲労腐食特性を確保するためには低すぎる
から比較鋼1は、本発明と適合しない。
The Mn, Ni, Cr, Ti and S content is outside the exact composition range of the steel according to the invention,
-S content is too high to ensure a good balance between atmospheric fatigue, corrosion fatigue and sensitivity to possible spring surface defects,
-Mn content is too high, causing segregation that is detrimental to steel homogeneity, atmospheric fatigue and corrosion fatigue properties,
Since -Ti is too low to ensure high fatigue corrosion properties, Comparative Steel 1 is not compatible with the present invention.

−CおよびMn含有量が、本発明による鋼の正確な組成範囲外であり、Ceq.が明らかに低い、
−C含有量およびCeq.が、高い硬さおよび引張強度が得られることを確保するためには低すぎる、
−引張強度が、大気中での良好な耐疲労性を得るためには低すぎる、
−化学分析が、良好な耐へたり性のために適切ではない、
−見出されるTi窒化物または炭窒化物の最大サイズが、耐疲労性および耐腐食疲労性を確保するためには高すぎる
から比較鋼2は、本発明と適合しない。
-C and Mn contents are outside the exact composition range of the steel according to the invention, Ceq. Is obviously low,
-C content and Ceq. Is too low to ensure that high hardness and tensile strength are obtained,
The tensile strength is too low to obtain good fatigue resistance in the atmosphere,
-Chemical analysis is not appropriate for good sag resistance,
The comparative steel 2 is not compatible with the present invention because the maximum size of Ti nitride or carbonitride found is too high to ensure fatigue resistance and corrosion fatigue resistance.

−Si、Mn、Cr、NiおよびTi含有量が、本発明による鋼の正確な組成範囲外である、
−Si含有量が、要求される高い硬さ、良好な耐へたり性およびまた大気中での良好な疲労挙動を得るためには低すぎる、
−Tiが、高い腐食疲労特性を確保するためには低すぎる
から比較鋼3は、本発明と適合しない。
The Si, Mn, Cr, Ni and Ti content is outside the exact composition range of the steel according to the invention,
The Si content is too low to obtain the required high hardness, good sag resistance and also good fatigue behavior in the atmosphere,
Since -Ti is too low to ensure high corrosion fatigue properties, comparative steel 3 is not compatible with the present invention.

必要に応じて議論される他の論証は、3つの比較鋼の特性で、言及できる。   Other arguments that are discussed as needed can be mentioned in the properties of the three comparative steels.

本発明および比較鋼の耐へたり性のまとめ。Summary of sag resistance of the present invention and comparative steel. 本発明および比較鋼の疲労および腐食疲労の結果(破損までのサイクル数)。Results of fatigue and corrosion fatigue of the present invention and comparative steel (number of cycles to failure). 硬さに対する本発明と比較鋼と間の靱性比較(Uノッチ試験片で測定したシャルピー衝撃値)。Comparison of toughness between the present invention and the comparative steel for hardness (Charpy impact value measured with U-notch specimen).

Claims (9)

正確に質量%で、
C :0.45〜0.70%、
Si:1.65〜2.50%、
Mn:0.20〜0.75%、
Cr:0.60〜2%、
Ni:0.15〜1%、
Mo:痕跡量〜1%、
V :0.003〜0.8%、
Cu:0.10〜1%、
Ti:0.020〜0.2%、
Nb:痕跡量〜0.2%、
Al:0.002〜0.050%、
P :痕跡量〜0.015%、
S :痕跡量〜0.015%、
O :痕跡量〜0.0020%、
N :0.0020〜0.0110%
を含み、残部がFeおよび不可避不純物であり、
下記式:
Ceq.=[C]+0.12[Si]+0.17[Mn]−0.1[Ni]+0.13[Cr]−0.24[V]
〔式中、[C]、[Si]、[Mn]、[Ni]、[Cr]および[V]は、これら各元素の質量%での量を示す。〕
で表される炭素当量Ceq.が0.80〜1.00%であり、
焼入れ焼戻し後のロックウェル硬さHRCが55以上であり、腐食および非腐食条件下での疲労特性並びに耐へたり性に優れたばね鋼。
Exactly mass%,
C: 0.45-0.70%,
Si: 1.65 to 2.50%,
Mn: 0.20 to 0.75%,
Cr: 0.60 to 2%,
Ni: 0.15 to 1%,
Mo: Trace amount to 1%,
V: 0.003-0.8%,
Cu: 0.10 to 1%,
Ti: 0.020 to 0.2%,
Nb: Trace amount to 0.2%,
Al: 0.002 to 0.050%,
P: Trace amount to 0.015%,
S: Trace amount to 0.015%,
O: Trace amount to 0.0020%,
N: 0.0020 to 0.0110%
And the balance is Fe and inevitable impurities,
Following formula:
Ceq. = [C] +0.12 [Si] +0.17 [Mn] -0.1 [Ni] +0.13 [Cr] -0.24 [V]
[In the formula, [C], [Si], [Mn], [Ni], [Cr] and [V] indicate amounts of these elements in mass%. ]
Carbon equivalent Ceq. Is 0.80 to 1.00%,
A spring steel having a Rockwell hardness HRC of 55 or more after quenching and tempering and excellent fatigue characteristics and sag resistance under corrosive and non-corrosive conditions.
ばね用の棒鋼または線材の表面下1.5mm±0.5mmの位置の100mm2の切断面の全ての介在物を観察し、介在物の表面積の平方根を介在物サイズであるとしたとき、Ti窒化物または炭窒化物である介在物の最大サイズが20μm未満である請求項1に記載の腐食および非腐食条件下での疲労特性並びに耐へたり性に優れたばね鋼。 When all the inclusions on the 100 mm 2 cut surface at a position of 1.5 mm ± 0.5 mm below the surface of the steel bar or wire for the spring are observed and the square root of the surface area of the inclusion is the inclusion size, Ti The spring steel excellent in fatigue characteristics and sag resistance under corrosive and non-corrosive conditions according to claim 1, wherein the maximum size of inclusions which are nitrides or carbonitrides is less than 20 µm. 正確に質量%で、
C :0.45〜0.65%、
Si:1.65〜2.20%、
Mn:0.20〜0.65%、
Cr:0.80〜1.7%、
Ni:0.15〜0.80%、
Mo:痕跡量〜0.80%、
V :0.003〜0.5%、
Cu:0.10〜0.90%、
Ti:0.020〜0.15%、
Nb:痕跡量〜0.15%、
Al:0.002〜0.050%、
P :痕跡量〜0.010%、
S :痕跡量〜0.010%、
O :痕跡量〜0.0020%、
N :0.0020〜0.0110%
を含み、残部がFeおよび不可避不純物である、請求項1または2に記載のばね鋼。
Exactly mass%,
C: 0.45-0.65%,
Si: 1.65 to 2.20%,
Mn: 0.20 to 0.65%,
Cr: 0.80 to 1.7%,
Ni: 0.15-0.80%,
Mo: Trace amount to 0.80%,
V: 0.003-0.5%,
Cu: 0.10-0.90%,
Ti: 0.020 to 0.15%,
Nb: Trace amount to 0.15%,
Al: 0.002 to 0.050%,
P: Trace amount to 0.010%,
S: Trace amount to 0.010%,
O: Trace amount to 0.0020%,
N: 0.0020 to 0.0110%
The spring steel according to claim 1, wherein the balance is Fe and inevitable impurities.
転炉または電気炉で製造した鋼を、次いで精錬に供することによって、質量%で正確に下記元素:
C :0.45〜0.70%、
Si:1.65〜2.5%、
Mn:0.20〜0.75%、
Cr:0.60〜2%、
Ni:0.15〜1%、
Mo:痕跡量〜1%、
V :0.003〜0.8%、
Cu:0.10〜1%、
Ti:0.020〜0.2%、
Nb:痕跡量〜0.2%、
Al:0.002〜0.050%、
P :痕跡量〜0.015%、
S :痕跡量〜0.015%、
O :痕跡量〜0.0020%、
N :0.0020〜0.0110%
を含み、残部がFeおよび不可避不純物である鋼であって、
下記式:
Ceq.=[C]+0.12[Si]+0.17[Mn]−0.1[Ni]
+0.13[Cr]−0.24[V]
〔式中、[C]、[Si]、[Mn]、[Ni]、[Cr]および[V]は、これら各元素の質量%での量を示す。〕
で表される炭素当量Ceq.が0.80〜1.00である鋼を得る、55HRC以上の硬さを有し、腐食および非腐食条件下での疲労特性並びに耐へたり性に優れたばね鋼の製造方法。
The converter or steel produced in an electric furnace, by subjecting the smelting fine is then exactly following elements in mass percent:
C: 0.45-0.70%,
Si: 1.65 to 2.5%,
Mn: 0.20 to 0.75%,
Cr: 0.60 to 2%,
Ni: 0.15 to 1%,
Mo: Trace amount to 1%,
V: 0.003-0.8%,
Cu: 0.10 to 1%,
Ti: 0.020 to 0.2%,
Nb: Trace amount to 0.2%,
Al: 0.002 to 0.050%,
P: Trace amount to 0.015%,
S: Trace amount to 0.015%,
O: Trace amount to 0.0020%,
N: 0.0020 to 0.0110%
Steel with the balance being Fe and unavoidable impurities,
Following formula:
Ceq. = [C] +0.12 [Si] +0.17 [Mn] -0.1 [Ni]
+0.13 [Cr] -0.24 [V]
[In the formula, [C], [Si], [Mn], [Ni], [Cr] and [V] indicate amounts of these elements in mass%. ]
Carbon equivalent Ceq. A method for producing a spring steel having a hardness of 55 HRC or more, excellent in fatigue characteristics under corrosion and non-corrosion conditions, and sag resistance.
ブルーム若しくはブルーム−ビレットの形態にする連続鋳造経路を経るか、またはインゴット経路を経て鋼を鋳造し、この様にして得られた生産物は、凝固段階またはその後、1450〜1300℃の範囲の平均冷却速度が0.3℃/s以上となるように冷却され、室温まで冷却した後に、シングルまたはダブル再加熱および圧延列により、1200800℃の範囲で再加熱および圧延してばね用の棒鋼または線材の形態にする請求項4に記載の方法。 Steel is cast via a continuous casting path in the form of a bloom or bloom-billet or via an ingot path, and the product thus obtained has an average in the solidification stage or thereafter in the range of 1450-1300 ° C. After cooling to a cooling rate of 0.3 ° C./s or more, after cooling to room temperature, it is reheated and rolled in the range of 1200 to 800 ° C. by single or double reheating and rolling train, and is used as a spring steel bar Or the method of Claim 4 made into the form of a wire. 線材または棒鋼から生じたワイヤ、バーまたはばねを、850〜1000℃の範囲でのオーステナイト化処理である熱処理に供し、次いで水、油またはポリマー媒体で焼入れし、正確に300〜550℃の範囲で行われる焼戻し処理に供する請求項4又は5に記載の方法。 Wire resulting from wire or bar steel, bar Ma et spring, subjected to heat treatment is austenitizing in the range of 850 to 1000 ° C., then quenched with water, oil or polymer medium, exactly 300 to 550 ° C. The method according to claim 4 or 5, which is subjected to a tempering treatment performed in a range of. ばね用の棒鋼または線材の表面下1.5mm±0.5mmの位置の100mm2の切断面の全ての介在物を観察し、介在物の表面積の平方根を介在物サイズであるとしたとき、Ti窒化物または炭窒化物である介在物の最大サイズが20μm未満である請求項4〜6のいずれかに記載のばね鋼の製造方法。 When all the inclusions on the 100 mm 2 cut surface at a position of 1.5 mm ± 0.5 mm below the surface of the steel bar or wire for the spring are observed and the square root of the surface area of the inclusion is the inclusion size, Ti The method for producing spring steel according to any one of claims 4 to 6, wherein the maximum size of inclusions that are nitrides or carbonitrides is less than 20 µm. 質量%で正確に下記元素:
C :0.45〜0.65%、
Si:1.65〜2.2%、
Mn:0.20〜0.65%、
Cr:0.80〜1.7%、
Ni:0.15〜0.80%、
Mo:痕跡量〜0.80%、
V:0.003〜0.5%、
Cu:0.10〜0.90%、
Ti:0.020〜0.15%、
Nb:痕跡量〜0.15%、
Al:0.002〜0.050%、
P :痕跡量〜0.010%、
S :痕跡量〜0.010%、
O :痕跡量〜0.002%、
N :0.0020〜0.0110%
を含み、残部がFeおよび不可避不純物である鋼組成になる、請求項4〜7のいずれかに記載の腐食および非腐食条件下での疲労特性並びに耐へたり性に優れたばね鋼の製造方法。
The following elements exactly in% by mass:
C: 0.45-0.65%,
Si: 1.65 to 2.2%,
Mn: 0.20 to 0.65%,
Cr: 0.80 to 1.7%,
Ni: 0.15-0.80%,
Mo: Trace amount to 0.80%,
V: 0.003-0.5%,
Cu: 0.10-0.90%,
Ti: 0.020 to 0.15%,
Nb: Trace amount to 0.15%,
Al: 0.002 to 0.050%,
P: Trace amount to 0.010%,
S: Trace amount to 0.010%,
O: Trace amount to 0.002%,
N: 0.0020 to 0.0110%
A method for producing spring steel having excellent fatigue characteristics and sag resistance under corrosive and non-corrosive conditions according to any one of claims 4 to 7, wherein the balance is Fe and Fe is an inevitable impurity steel composition. .
請求項4〜8のいずれかにより製造された腐食および非腐食条件下での疲労特性並びに耐へたり性に優れた鋼から製造されたばねであり、該鋼の硬さが55HRC以上であり、疲労試験の結果、折損までのサイクル数が1742967以上であることを特徴とするばね。 A spring manufactured from a steel having excellent fatigue characteristics and corrosion resistance under corrosion and non-corrosion conditions manufactured according to any one of claims 4 to 8, wherein the hardness of the steel is 55 HRC or more, and fatigue. As a result of the test, the number of cycles until breakage is 1742967 or more .
JP2006334660A 2005-12-15 2006-12-12 Spring steel, spring manufacturing method using this steel, and spring obtained from this steel Active JP4869051B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0512775 2005-12-15
FR0512775A FR2894987B1 (en) 2005-12-15 2005-12-15 SPRING STEEL, AND METHOD OF MANUFACTURING A SPRING USING THE SAME, AND SPRING REALIZED IN SUCH A STEEL

Publications (2)

Publication Number Publication Date
JP2007224413A JP2007224413A (en) 2007-09-06
JP4869051B2 true JP4869051B2 (en) 2012-02-01

Family

ID=36933407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006334660A Active JP4869051B2 (en) 2005-12-15 2006-12-12 Spring steel, spring manufacturing method using this steel, and spring obtained from this steel

Country Status (18)

Country Link
US (1) US20080308195A1 (en)
EP (1) EP1966407B1 (en)
JP (1) JP4869051B2 (en)
KR (1) KR101048946B1 (en)
CN (1) CN101400818B (en)
AT (1) ATE445026T1 (en)
BR (1) BRPI0619892B1 (en)
CA (1) CA2633153C (en)
DE (1) DE602006009705D1 (en)
ES (1) ES2331539T3 (en)
FR (1) FR2894987B1 (en)
ME (1) ME01062B (en)
NO (1) NO341748B1 (en)
PL (1) PL1966407T3 (en)
RS (1) RS51070B (en)
RU (1) RU2397270C2 (en)
SI (1) SI1966407T1 (en)
WO (1) WO2007080256A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2084179B1 (en) 2006-11-22 2013-05-22 Novo Nordisk A/S Method for making activated carboxypeptidases
CN102268604A (en) * 2007-07-20 2011-12-07 株式会社神户制钢所 Steel wire material for spring and its producing method
JP4694537B2 (en) * 2007-07-23 2011-06-08 株式会社神戸製鋼所 Spring wire with excellent fatigue characteristics
US8349095B2 (en) * 2009-09-29 2013-01-08 Chuo Hatsujo Kabushiki Kaisha Spring steel and spring having superior corrosion fatigue strength
JP5653022B2 (en) * 2009-09-29 2015-01-14 中央発條株式会社 Spring steel and spring with excellent corrosion fatigue strength
CN102151693B (en) * 2010-12-02 2012-01-11 大冶特殊钢股份有限公司 Method for rolling low-hardness small-sized spring steel
JP5711539B2 (en) 2011-01-06 2015-05-07 中央発條株式会社 Spring with excellent corrosion fatigue strength
CN103014533B (en) * 2011-10-19 2015-02-04 宝钢集团新疆八一钢铁有限公司 Technique for prolonging fatigue life of 50CrVA plate spring
KR101353649B1 (en) 2011-12-23 2014-01-20 주식회사 포스코 Wire rod and steel wire having high corrosion resistance, method of manufacturing spring and steel wire for spring
MX363411B (en) * 2012-01-11 2019-03-22 Kobe Steel Ltd Steel for bolts, bolt, and method for producing bolt.
CN102735749A (en) * 2012-06-28 2012-10-17 吴江市宏达探伤器材有限公司 Magnetic particle inspection test block and preparation method thereof
JP2015034324A (en) * 2013-08-08 2015-02-19 山陽特殊製鋼株式会社 Steel excellent in rolling fatigue life
CN103499595B (en) * 2013-10-17 2016-01-13 武汉钢铁(集团)公司 Spring steel clip foreign material chemical composition microcell method for quantitative measuring
KR101446135B1 (en) 2013-12-26 2014-10-02 주식회사 세아베스틸 Steel for suspension spring with high strength and excellent fatigue and method producing the same
JP6282571B2 (en) * 2014-10-31 2018-02-21 株式会社神戸製鋼所 Manufacturing method of high strength hollow spring steel
CN105112799A (en) * 2015-09-01 2015-12-02 广西南宁智翠科技咨询有限公司 Special spring wire for vehicle engine
CN105178224B (en) * 2015-10-09 2017-05-03 耿志斌 Road and bridge collision avoidance protective device
KR101745192B1 (en) 2015-12-04 2017-06-09 현대자동차주식회사 Ultra high strength spring steel
KR101776462B1 (en) * 2015-12-04 2017-09-20 현대자동차주식회사 Coil spring steel
KR101745196B1 (en) * 2015-12-07 2017-06-09 현대자동차주식회사 Ultra high strength spring steel
KR101776491B1 (en) * 2016-04-15 2017-09-20 현대자동차주식회사 High strength spring steel having excellent corrosion resistance
KR101776490B1 (en) * 2016-04-15 2017-09-08 현대자동차주식회사 High strength spring steel having excellent corrosion resistance
JP6356309B1 (en) 2016-10-19 2018-07-11 三菱製鋼株式会社 High-strength spring, method for manufacturing the same, steel for high-strength spring, and method for manufacturing the same
DE102017107487A1 (en) 2017-04-07 2018-10-11 Schaeffler Technologies AG & Co. KG Method for producing a torsion bar spring and stabilizer for a chassis of a motor vehicle
CN110621798B (en) * 2017-05-25 2021-08-27 住友电气工业株式会社 Inclined coil spring and connector
MX2019014873A (en) * 2017-06-15 2020-02-07 Nippon Steel Corp Rolled wire for spring steel.
CN107550124A (en) * 2017-09-07 2018-01-09 南通通联海绵塑料有限公司 A kind of sponges spring mattress manufacture method
EP3796101A1 (en) * 2019-09-20 2021-03-24 Nivarox-FAR S.A. Hairspring for clock movement
CN114134431B (en) * 2021-05-10 2022-12-30 江阴兴澄特种钢铁有限公司 2000 Mpa-grade high-strength high-toughness high-hardenability spring steel by square billet continuous casting and rolling and manufacturing method thereof
CN113930680B (en) * 2021-09-29 2023-03-17 武汉钢铁有限公司 Low-temperature-resistant high-strength spring flat steel and production method thereof
JP2023120677A (en) 2022-02-18 2023-08-30 日本発條株式会社 Inclusion evaluation method
CN115125450B (en) * 2022-06-29 2023-03-21 浙江伊思灵双第弹簧有限公司 Microalloyed spring and manufacturing process thereof
CN114990451A (en) * 2022-08-05 2022-09-02 山东联美弹簧科技股份有限公司 Microalloyed steel for automobile spring stabilizer bar and preparation method thereof
CN115961215A (en) * 2022-12-09 2023-04-14 铜陵有色金神耐磨材料有限责任公司 High-wear-resistance Cr-Mo steel lining plate for light semi-autogenous mill and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776267A (en) * 1995-10-27 1998-07-07 Kabushiki Kaisha Kobe Seiko Sho Spring steel with excellent resistance to hydrogen embrittlement and fatigue
JP3474373B2 (en) * 1995-10-27 2003-12-08 株式会社神戸製鋼所 Spring steel with excellent hydrogen embrittlement resistance and fatigue properties
JPH09324219A (en) * 1996-06-05 1997-12-16 Kobe Steel Ltd Production of high strength spring excellent in hydrogen embrittlement resistance
JPH10121201A (en) * 1996-10-14 1998-05-12 Kobe Steel Ltd High strength spring excellent in delayed fracture resistance
JPH10299803A (en) * 1997-04-22 1998-11-13 Kobe Steel Ltd High strength spring favourable in environmental brittleness resistance
JP3577411B2 (en) * 1997-05-12 2004-10-13 新日本製鐵株式会社 High toughness spring steel
JP3246733B2 (en) * 1999-10-29 2002-01-15 三菱製鋼室蘭特殊鋼株式会社 High strength spring steel
JP4476846B2 (en) * 2005-03-03 2010-06-09 株式会社神戸製鋼所 High strength spring steel with excellent cold workability and quality stability
JP4476863B2 (en) * 2005-04-11 2010-06-09 株式会社神戸製鋼所 Steel wire for cold forming springs with excellent corrosion resistance

Also Published As

Publication number Publication date
ATE445026T1 (en) 2009-10-15
DE602006009705D1 (en) 2009-11-19
FR2894987A1 (en) 2007-06-22
SI1966407T1 (en) 2009-12-31
CA2633153C (en) 2013-05-07
CN101400818A (en) 2009-04-01
RU2008128865A (en) 2010-01-20
ES2331539T3 (en) 2010-01-07
KR101048946B1 (en) 2011-07-12
RS51070B (en) 2010-10-31
PL1966407T3 (en) 2010-04-30
WO2007080256A1 (en) 2007-07-19
CN101400818B (en) 2012-08-29
ME01062B (en) 2012-10-20
CA2633153A1 (en) 2007-07-19
NO341748B1 (en) 2018-01-15
BRPI0619892A2 (en) 2011-10-25
EP1966407A1 (en) 2008-09-10
NO20082766L (en) 2008-07-14
RU2397270C2 (en) 2010-08-20
EP1966407B1 (en) 2009-10-07
BRPI0619892B1 (en) 2016-06-07
FR2894987B1 (en) 2008-03-14
JP2007224413A (en) 2007-09-06
US20080308195A1 (en) 2008-12-18
KR20080090424A (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP4869051B2 (en) Spring steel, spring manufacturing method using this steel, and spring obtained from this steel
AU2014243611B2 (en) High-toughness, low-alloy, wear-resistant steel sheet and method of manufacturing the same
CA3035162C (en) Austenitic stainless steel
JP5880788B2 (en) High strength oil well steel and oil well pipe
WO2005017222A1 (en) High strength stainless steel pipe excellent in corrosion resistance for use in oil well and method for production thereof
WO2013132829A1 (en) Spring steel
KR20190045314A (en) Surface hardened steel, method of manufacturing the same, and method of manufacturing gear parts
JP2010121191A (en) High-strength thick steel plate having superior delayed fracture resistance and weldability, and method for manufacturing the same
JP5154122B2 (en) High strength stainless steel and high strength stainless steel wire using the same
JP5655627B2 (en) High strength spring steel with excellent hydrogen embrittlement resistance
KR20210091774A (en) Hot rolled steel and its manufacturing method
JP6433341B2 (en) Age-hardening bainite non-tempered steel
JPWO2018061101A1 (en) steel
JP6621419B2 (en) Duplex stainless steel
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP6210112B2 (en) High strength steel material with excellent fatigue characteristics and method for producing the same
JP4515347B2 (en) Method for determining fatigue resistance of spring steel wires and spring steel wires
KR101443445B1 (en) Non-heated type high strength hot-rolled steel sheet and method of manufacturing the same
WO2023189563A1 (en) Martensite stainless steel for high-pressure hydrogen component, high-pressure hydrogen component using same, and method for producing same
JP3398552B2 (en) High-strength austenitic stainless steel sheet for flapper valve with excellent fatigue properties and method for producing the same
WO2024003593A1 (en) Forged part of steel and a method of manufacturing thereof
KR20230078799A (en) Steel for rail and manufacturing method of the rail
KR101443446B1 (en) Non-heated type hot-rolled steel sheet and method of manufacturing the same
MX2008007563A (en) Spring steel, method for producing a spring using said steel and a spring made from such steel
KR20150049660A (en) High strength steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4869051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3