EP2164998B1 - Hardened martensitic steel having a low or zero content of cobalt, process for manufacturing a part from this steel, and part thus obtained - Google Patents

Hardened martensitic steel having a low or zero content of cobalt, process for manufacturing a part from this steel, and part thus obtained Download PDF

Info

Publication number
EP2164998B1
EP2164998B1 EP08806015A EP08806015A EP2164998B1 EP 2164998 B1 EP2164998 B1 EP 2164998B1 EP 08806015 A EP08806015 A EP 08806015A EP 08806015 A EP08806015 A EP 08806015A EP 2164998 B1 EP2164998 B1 EP 2164998B1
Authority
EP
European Patent Office
Prior art keywords
traces
ppm
steel
steel according
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08806015A
Other languages
German (de)
French (fr)
Other versions
EP2164998A1 (en
Inventor
Jacques Montagnon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aubert and Duval SA
Original Assignee
Aubert and Duval SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aubert and Duval SA filed Critical Aubert and Duval SA
Priority to SI200830116T priority Critical patent/SI2164998T1/en
Priority to PL08806015T priority patent/PL2164998T3/en
Publication of EP2164998A1 publication Critical patent/EP2164998A1/en
Application granted granted Critical
Publication of EP2164998B1 publication Critical patent/EP2164998B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils

Definitions

  • the invention relates to a martensitic steel hardened by a duplex system, that is to say by a precipitation of intermetallic compounds and carbides obtained by means of a suitable steel composition and heat aging treatment.
  • maraging steels contain quite consistently high levels of nickel, cobalt and molybdenum, all of which are expensive and subject to significant changes in their rating in the commodity market. They also contain titanium, used for its strong contribution to secondary hardening, but which is mainly involved in lowering the fatigue strength of maraging steels due to TiN nitride, which it is almost impossible to avoid training during the making of steels even contains only a few tenths of a percent.
  • This steel is said to be "duplex-hardening" because its hardening is achieved by simultaneous hardening precipitation of intermetallic compounds and M 2 C carbides.
  • the object of the invention is to provide a usable steel, in particular, for manufacturing mechanical parts such as transmission shafts, or structural elements, having a further improved mechanical resistance to heat but also fatigue properties and fragility. always adapted to these uses.
  • This steel should also have a lower production cost than the best performing steels currently known for these uses, thanks, in particular, to a significantly lower cobalt content.
  • It preferably contains C 0.20 - 0.25%.
  • It preferably contains Cr 2 - 4%.
  • It preferably contains Al 1 - 1.6%, better 1.4 - 1.6%.
  • It preferably contains Mo + W / 2 1 - 2%.
  • It preferably contains V 0.2 - 0.3%.
  • It preferably contains Ni 12-14%, with Ni ⁇ 7 + 3.5 Al.
  • Nb traces - 0.05%.
  • It preferably contains Si traces - 0.25%, better traces - 0.10%.
  • It preferably contains O traces - 10 ppm.
  • N traces - 10 ppm.
  • It preferably contains S traces - 10 ppm, better traces - 5 ppm.
  • It preferably contains P traces - 100 ppm.
  • Its measured martensitic transformation temperature Ms is preferably greater than or equal to 100 ° C.
  • Its martensitic transformation temperature Ms measured may be greater than or equal to 140 ° C.
  • It further preferably comprises a cryogenic treatment at -50 ° C or lower, preferably at -80 ° C or lower, to convert all the austenite to martensite, the temperature being lower by 150 ° C or more to Measured ms, at least one of said treatments lasting at least 4 hours and at most 50 hours.
  • It also preferably comprises a softening treatment of the rough quenching martensite carried out at 150-250 ° C for 4-16h, followed by cooling with still air.
  • the part also preferably undergoes carburizing or nitriding or carbonitriding.
  • Nitriding can be performed during an aging cycle.
  • Said nitriding or carburising or carbonitriding can be carried out during a thermal cycle prior to or simultaneously with said dissolution.
  • the invention also relates to a mechanical part or component for structural element, characterized in that it is manufactured according to the preceding method.
  • It may be in particular a motor transmission shaft, or a motor suspension device or a landing gear element or a gearbox element or a bearing axis.
  • the invention is based first of all on a steel composition which differs from the prior art represented by WO-2006/114499 in particular by a very low content of Co, not exceeding 1%, and can be typically limited to traces inevitably resulting from the elaboration.
  • the contents of the other most commonly present significant alloying elements are only slightly modified, but certain levels of impurities must be carefully controlled.
  • These steels have a plastic gap (gap between breaking strength R m and resistance to elongation R p0,2 ) intermediate between those carbon steels and maragings. For the latter, the difference is very small, providing a high elastic limit, but a quick break as soon as it is crossed.
  • the steels of the invention have, from this point of view, properties that can be adjusted by the proportion of hardening phases and / or carbon.
  • the steel of the invention can be machined in the quenched state, with tools adapted to a hardness of 45HRC. It is intermediate between the maragings (rough machining quench since they have a mild low carbon martensite) and carbon steels that must be machined essentially in the annealed state.
  • a "duplex" curing is carried out, that is to say obtained jointly by intermetallics of ⁇ -NiAl type and carbides of M 2 C type, in the presence of reversion austenite formed / stabilized by diffusion-enriched nickel enrichment during curing aging, which gives ductility to the structure by forming a sandwich structure (a few% of stable and ductile austenite between the slats of hardened martensite).
  • nitrides Ti, Zr and Al in particular, which are weakening: they deteriorate the tenacity and fatigue resistance. Since these nitrides can precipitate from 1 to a few ppm of N in the presence of Ti, Zr and / or Al, and the conventional elaboration means make it difficult to achieve less than 5 ppm of N, the steel of the invention respects the following rules.
  • any addition of Ti (maximum allowed: 100 ppm) is limited, and N is limited as much as possible.
  • the N content should not exceed 20 ppm and more preferably 10 ppm, and the Ti content should not exceed 10 times the N content.
  • Ti and Zr are to be regarded as impurities to be avoided, and the sum Ti + Zr / 2 must not exceed 150 ppm.
  • rare earths at the end of the process, can also help to fix a fraction of N, besides the S and O. In this case, it must be ensured that the residual rare earth content remains below 100. ppm, and preferably less than 50 ppm, because these elements weaken the steel when they are present beyond these values. It is believed that rare earth (eg La) oxynitrides are less harmful than Ti or Al nitrides because of their globular form which would make them less likely to constitute fatigue fracture primers. It is nevertheless advantageous to leave as few of these inclusions as possible in the steel, thanks to the classic techniques of careful elaboration.
  • Calcium treatment may be practiced to complete the deoxidation / desulfurization of the liquid metal. This treatment is preferably conducted with the possible additions of Ti, Zr or rare earths.
  • M 2 C carbide of Cr, Mo, W and V containing very little Fe is preferred for its hardening and non-embrittling properties.
  • M 2 C carbide is metastable with regard to equilibrium carbides M 7 C 3 and / or M 6 C and / or M 23 C 6 . It is stabilized by Mo and W.
  • Mo + W / 2 is between 1 and 2%. It is also to prevent the formation of non-hardening Ti carbides which may weaken the grain boundaries that a 100 ppm imperative limitation of the Ti content of the steels according to the invention is required.
  • Cr and V are elements that activate the formation of "metastable" carbides.
  • V also forms carbides of MC type, stable up to the dissolution temperatures, which "block" the grain boundaries and limit the magnification of grains during heat treatments at high temperatures.
  • V 0.3% must not be exceeded in order not to fix too much C in carbides of V, during the dissolution cycle, to the detriment of the M 2 C carbide of Cr, Mo, W, V which is sought precipitation during the subsequent aging cycle.
  • the V content is between 0.2 and 0.3%.
  • the presence of C favors the appearance of M 2 C with respect to the ⁇ phase.
  • an excessive content causes segregations, a lowering of Ms and causes difficulties in manufacturing on an industrial scale: sensitivity to the taps (superficial cracking during rapid cooling), difficult machinability of martensite too hard to l quenching condition ...
  • Its content must be between 0.20 and 0.30%, preferably 0.20-0.25% so as not to give the part too hard a hardness which could require machining in the annealed state.
  • the surface layer of the parts can be enriched in C by cementation, nitriding or carbonitriding if a very high surface hardness is required in the intended applications.
  • Co delays the restoration of dislocations and, therefore, slows the mechanisms of hot survivability in martensite. It was thought that this made it possible to maintain high tensile strength at high temperature. But on the other hand, it was suspected that, since the Co promotes the formation of the aforementioned ⁇ phase which is the one that hardens the maraging steels of the prior art to Fe-Ni-Co-Mo, its massive presence contributed to reducing the quantity of Mo and / or W available to form M 2 C carbides which contribute to the hardening according to the mechanism that is to be promoted.
  • the cobalt somewhat raises the ductile / brittle transition temperature, which is not favorable, particularly in compositions with low nickel contents, whereas, contrary to what could be found in cobalt does not clearly show the transformation point Ms of the compositions of the invention and therefore has no obvious interest either in this respect.
  • Ni and Al are bonded in the invention, where Ni must be ⁇ 7 + 3.5 Al.
  • These are the two essential elements which participate in a good part of aging hardening, thanks to the precipitation of the nanometric intermetallic phase of type B2 (NiAl for example). It is this phase which gives a large part of the mechanical strength when hot, up to about 400 ° C.
  • Nickel is also the element which reduces brittleness by cleavage because it lowers the ductile / brittle transition temperature of martensites. If Al is too high relative to Ni, the martensitic matrix is too strongly depleted of nickel as a result of the precipitation of the NiAl curing precipitate during aging.
  • martensitic transformation start temperature Ms which, according to the invention, should preferably remain equal to or greater than 140 ° C. if no cryogenic cycle is used, and should preferably be equal to or greater than 100 ° C. if we practice a cryogenic cycle.
  • this formula is only very approximate, in particular because the effects of Co and Al are highly variable type of steel to another. To know whether a steel is or not according to the invention, it is therefore necessary to rely on measurements of the actual temperature Ms, made for example by dilatometry as is conventional. Ni content is one of Ms.'s possible adjustment variables
  • the end-of-cooling temperature after quenching must be less than the actual Ms -150.degree. C., preferably less than the actual Ms -200.degree. to ensure a full martensitic transformation of steel.
  • this end-of-cooling temperature can be obtained as a result of a cryogenic treatment applied immediately following cooling to ambient temperature from the solution temperature. It is also possible to apply the cryogenic treatment not from ambient temperature, but after isothermal quenching ending at a temperature slightly greater than Ms, preferably between Ms and Ms + 50 ° C.
  • the overall rate of cooling should be as high as possible to avoid the mechanisms of stabilization of the carbon-rich residual austenite.
  • the Ms value of the steel is greater than or equal to 100 ° C if a cryogenic cycle is applied, and greater than or equal to 140 ° C in the absence of this cryogenic cycle.
  • the duration of the cryogenic cycle is between 4 and 50 hours, preferably from 4 to 16 hours, and more preferably from 4 to 8 hours. It is possible to practice several cryogenic cycles, the essential being that at least one of them has the aforementioned characteristics.
  • the steels of the class of the invention prefer the presence of the hardening phases B2, in particular NiAl, in order to obtain a high mechanical strength when hot. Compliance with the conditions on Ni and Al that have been given ensures a sufficient potential content of reversion austenite to maintain ductility and toughness suitable for the intended applications.
  • Nb to control the grain size during forging or other hot processing, at a content not exceeding 0.1%, preferably not exceeding 0.05% for avoid segregations that may be excessive.
  • the steel according to the invention therefore accepts raw materials that can contain significant residual contents in Nb.
  • a characteristic of the steels of the class of the invention is also the possibility of replacing at least a portion of Mo by W.
  • W segregates less at solidification than Mo and provides an increase in mechanical strength when hot. It has the disadvantage of being expensive and we can optimize this cost by associating it with Mo.
  • Mo + W / 2 must be between 1 and 4%, preferably between 1 and 2% . It is preferred to maintain a minimum content of 1% Mo to limit the cost of steel, especially as the high temperature withstand is not a priority objective of the steel of the invention.
  • Cu can be up to 1%. It is likely to participate in the hardening with the help of its epsilon phase, and the presence of Ni makes it possible to limit its harmful effects, in particular the appearance of superficial cracks during the forging of the pieces, which one observes during additions of copper in steels not containing nickel. But its presence is not essential and it may be present only in the state of residual traces, resulting from the pollution of raw materials.
  • Manganese is not a priori useful for obtaining the properties of steel, but it has no recognized adverse effect; in addition, its low vapor pressure at the temperatures of the liquid steel makes it difficult to control its concentration in vacuum and vacuum remelting: its content may vary depending on the radial and axial location in a remelted ingot. As it is often present in the raw materials, and for the reasons above, its content will preferably be at most 0.25%, and in any case limited to 2% at the most because of too great variations of its concentration in a same product will interfere with the repeatability of the properties.
  • Silicon is known to have a hardening effect in solid solution of ferrite and, like cobalt, to decrease the solubility of some elements or certain phases in ferrite. Nevertheless, the steel of the invention requires a significant addition of cobalt, and the same is true of the addition of silicon, especially since, moreover, silicon generally promotes the precipitation of intermetallic phases. harmful in complex steels (Laves phase, silicides ). Its content will be limited to 1%, preferably less than 0.25% and still more preferably less than 0.1%.
  • S traces - 20ppm, preferably traces - 10ppm, better traces - 5ppm
  • P traces - 200ppm, preferably -100ppm traces, better traces-50ppm.
  • Ca can be used as a deoxidizer and as a sulfur sensor, finding it in the end ( ⁇ 20ppm).
  • rare earth residues may ultimately remain ( ⁇ 100ppm) following a refining treatment of the liquid metal where they would have been used to capture O, S and / or N.
  • the use of Ca and rare earths for these effects not being mandatory, these elements may be present only in the form of traces in the steels of the invention.
  • the acceptable oxygen content is 50 ppm maximum, preferably 10 ppm maximum.
  • Table 1 Composition and Measured Temperatures of the Samples Tested A (ref.) B (ref.) C (ref.) D (ref.) E (ref.) F (ref.) G (ref.) H (invention) VS% 0.233 0.247 0.239 0.244 0.247 0.19 0.22 0.21 Yes% 0.082 0.031 0.031 0,037 0,030 0.05 0.04 0.05 mn% 0,026 0,030 0.033 0.033 0,030 0.02 ⁇ 0.03 0.04 S ppm 1.0 7.3 3.8 6.1 6.7 7 7 6 P ppm 54 ⁇ 30 ⁇ 30 ⁇ 30 ⁇ 30 28 ⁇ 50 29 Or% 13,43 13,31 12.67 12.71 13.08 13,00 14.70 12.95 Cr% 2.76 3.08 3.38 3.38 3.29 3.66 3.19 3.17 Mo% 1.44 1.53 1.52 1.53 1.53 1.50 1.
  • Reference steel A corresponds to a steel according to US-A-5,393,488 , thus having a high Co content.
  • Reference steel B corresponds to a steel comparable to steel A, to which V was added without modifying the content of Co.
  • Reference steel C corresponds to a steel according to WO-2006/114499 especially in that, with respect to steels A and B, its Al content has been increased and its Co content decreased.
  • the reference steel D has undergone a C addition of B.
  • the reference steel E has undergone a Nb addition to C.
  • the reference steel F differs from C mainly by the absence of a significant addition of V, compensated by a lower C content, and a higher purity of residual elements.
  • the reference steel G is distinguished from F by a very low content of Co which would be in accordance with the invention, the presence of V at a level comparable to that of C, D and E, and a higher Ni content, but which, taken in isolation, would nonetheless conform to the invention. But its contents in Ti and N are slightly higher than the invention tolerates. Experience also shows that its measured temperature Ms is substantially too low compared to the requirements of the invention, the relatively high Ni content is not compensated by relatively low levels of Cr, Mo, Al and V.
  • the steel H is in accordance with the invention in all respects, in particular its very low Co content and its high N and Ti purity. Also, its O content is very low. Finally, its measured temperature Ms is entirely in accordance with the invention.
  • the samples were softened at a temperature of at least 600 ° C.
  • this softening income was carried out at 650 ° C. for 8 hours and followed by cooling in air. Thanks to this, the raw products of thermomechanical transformations can undergo without particular problems the finishing operations (straightening, peeling, machining ...) giving the piece its final form.
  • the reference samples C, D and E have a tensile strength that is much greater than that of the reference samples A and B.
  • the elastic limit is at least of the same order of magnitude.
  • the properties of ductility (necking and elongation at break), toughness and resilience are lowered, in the case of heat treatments described and applied.
  • the desired resistance / toughness compromise can be adjusted by changing the aging conditions.
  • Reference sample B shows that the mere addition of V to steel A gives only an improvement in certain properties, and in proportions that are often less important than in the case of steels with reduced or no Co content.
  • the increase of Al in steels C to H combined with the maintenance of a high Ni content, renders the NiAl hardening phase more present. and is an essential factor in improving the tensile strength or keeping it at a suitably high value.
  • Sample G shows that the large decrease, up to the total removal, of cobalt, can still allow to maintain a high tensile strength.
  • the ductility properties are also improved.
  • the elastic limit is, however, quite substantially deteriorated in the case of the sample G, in relation to a larger amount of austenite dispersed in the structure, due to the high Ni content of this sample. This contributes to an excessive lowering of the measured Ms which is not compensated by adjustments of the contents of the other elements.
  • N and Ti a little too high in the sample G compared to the requirements of the invention, and also its slightly higher oxygen content, also contribute in part to its poorer performance than that of the sample.
  • H Another factor to consider for this sample G is an S content which is not particularly low, and which tends to degrade toughness if it is not offset by other characteristics that would be favorable to this property.
  • this sample G has a fairly high Ni content (although remaining within the range of the invention), which lowers Ms and thus promotes the maintenance of a possibly too high residual austenite level. , even after the cryogenic treatment more particularly pushed (to -80 ° C and then -120 ° C) which was undergone by c and sample.
  • the sample H according to the invention which has been cryogenically treated only at -80 ° C., but which has a judiciously adjusted Ni content, minimum impurity contents in all points of view and a temperature Ms measured high enough, responds very well to the problems posed.
  • thermomechanical heat-forming treatments may be performed in addition to or in place of this forging, depending on the type of end product that is desired (stamped parts, bars, semi-finished products. ..).
  • the preferred applications of the steel according to the invention are the endurance parts for mechanics and structural elements, for which a tensile strength of between 2000 MPa and 2350 MPa or more must be cold, combined with values ductility and resilience at least equivalent to those of the best high strength and hot (400 ° C) steels a tensile strength of the order of 1800 MPa, as well as optimal fatigue properties.
  • the steel according to the invention also has the advantage of being cementable, nitrurable and carbonitrurable.
  • the parts that use it can therefore be given high abrasion resistance without affecting its core properties. This is particularly advantageous in the intended applications that have been cited.
  • Other surface treatments, such as mechanical treatments that limit the initiation of fatigue cracking from superficial defects, are conceivable. Shot peening is an example of such treatment.
  • nitriding is carried out, this can be carried out during the aging cycle, preferably at a temperature of 490 to 525 ° C and for a period of time ranging from 5 to 100 hours, the longest ages causing progressive structural softening and, as a result, a progressive decrease in the maximum tensile strength.
  • Another possibility is to perform carburizing, nitriding or carbonitriding during a thermal cycle prior to or simultaneously with the dissolution, the steel substrate of the invention retaining in this case all its potential mechanical properties.

Abstract

Steel, characterized in that the composition thereof is, in percentages by weight: C=0.20-0.30% Co=trace levels-1% Cr=2-5% Al=1-2% Mo+W/2=1-4% V=trace levels-0.3% Nb=trace levels-0.1% B=trace levels-30 ppm Ni=11-16% with Ni≧7+3.5 Al Si=trace levels-1.0% Mn=trace levels-2.0% Ca=trace levels-20 ppm rare earths=trace levels-100 ppm if N≰10 ppm, Ti+Zr/2=trace levels-100 ppm with Ti+Zr/2≰10 N if 10 ppm<N≰20 ppm, Ti+Zr/2=trace levels-150 ppm O=trace levels-50 ppm N=trace levels-20 ppm S=trace levels-20 ppm Cu=trace levels-1% P=trace levels-200 ppm the remainder being iron and inevitable impurities resulting from the production operation. Method of producing a component from this steel and a component obtained in this manner.

Description

L'invention concerne un acier martensitique durci par un système duplex, c'est-à-dire par une précipitation de composés intermétalliques et de carbures obtenue grâce à une composition de l'acier et un traitement thermique de vieillissement appropriés.The invention relates to a martensitic steel hardened by a duplex system, that is to say by a precipitation of intermetallic compounds and carbides obtained by means of a suitable steel composition and heat aging treatment.

Cet acier propose :

  • une très haute résistance mécanique, mais en même temps une ténacité et une ductilité élevées, autrement dit une faible sensibilité à la rupture fragile ; cette très haute résistance subsiste à chaud, jusqu'à des températures de l'ordre de 400°C ;
  • de bonnes propriétés en fatigue, ce qui implique notamment l'absence d'inclusions nocives telles que des nitrures et des oxydes ; cette caractéristique doit être obtenue par une composition appropriée et des conditions d'élaboration du métal liquide soignées.
This steel offers:
  • a very high mechanical strength, but at the same time a high tenacity and ductility, ie a low sensitivity to brittle fracture; this very high resistance remains hot, up to temperatures of the order of 400 ° C;
  • good fatigue properties, which notably implies the absence of harmful inclusions such as nitrides and oxides; this characteristic must be obtained by a suitable composition and conditions of preparation of the liquid metal treated.

De plus, il est cémentable, nitrurable ou carbonitrurable, de manière à pouvoir durcir sa surface pour lui conférer une bonne résistance à l'abrasion et en frottement lubrifié.In addition, it is cementable, nitrurable or carbonitrurable, so as to harden its surface to give it good resistance to abrasion and lubricated friction.

Les applications envisageables de cet acier concernent tous les domaines de la mécanique où sont requises des pièces de structure ou de transmission qui doivent combiner de très fortes charges, sous sollicitations dynamiques et en présence d'échauffement induit ou environnant. On citera, de manière non exhaustive, les arbres de transmission, les arbres de boîte de vitesse, les axes de roulements,...The possible applications of this steel concern all areas of mechanics where structural or transmission parts are required which must combine very high loads, under dynamic loads and in the presence of induced or surrounding heating. Non-exhaustive examples include transmission shafts, gear shafts, bearing shafts, etc.

La demande d'une excellente résistance mécanique à chaud empêche d'utiliser, dans certaines applications, les aciers au carbone ou les aciers dits « faiblement alliés » dont la résistance se dégrade à partir de 200°C. En outre, la ténacité de ces aciers n'est généralement plus satisfaisante lorsqu'ils sont traités pour des niveaux de résistance mécanique supérieurs à 2000 MPa, et, d'une manière générale, leur limite élastique « vraie » est bien inférieure à leur résistance maximale mesurée à l'essai de traction : la limite élastique est donc un critère dimensionnant qui devient pénalisant dans ce cas. On peut alors utiliser les aciers maraging, dont la limite élastique est notablement plus proche de leur valeur maximale de résistance à la traction, qui ont une résistance satisfaisante jusqu'à 350-400°C, et qui offrent encore une bonne ténacité pour les très hauts niveaux de résistance mécanique. Mais ces aciers maraging contiennent assez systématiquement des teneurs élevées en nickel, cobalt et molyybdène, tous éléments qui sont coûteux et sujets à des variations notables de leur cote sur le marché des matières premières. Ils contiennent aussi du titane, utilisé pour sa forte contribution au durcissement secondaire, mais qui est principalement en cause dans l'abaissement de la tenue en fatigue des aciers maraging dû au nitrure TiN, dont il est quasiment impossible d'éviter la formation lors de l'élaboration d'aciers n'en contenant même seulement que quelques dixièmes de pourcents.The demand for excellent mechanical resistance to hot prevents the use in some applications of carbon steels or so-called "low alloyed" steels whose resistance deteriorates from 200 ° C. In addition, the toughness of these steels is generally no longer satisfactory when treated for mechanical strength levels greater than 2000 MPa, and, in general, their "true" elastic limit is much lower than their resistance. maximum measured at the tensile test: the elastic limit is therefore a dimensioning criterion which becomes penalizing in this case. We can then use the steels maraging, whose elastic limit is significantly closer to their maximum value of tensile strength, which have satisfactory strength up to 350-400 ° C, and which still offer good toughness for the very high levels of mechanical strength. But these maraging steels contain quite consistently high levels of nickel, cobalt and molybdenum, all of which are expensive and subject to significant changes in their rating in the commodity market. They also contain titanium, used for its strong contribution to secondary hardening, but which is mainly involved in lowering the fatigue strength of maraging steels due to TiN nitride, which it is almost impossible to avoid training during the making of steels even contains only a few tenths of a percent.

Il a été proposé dans le document US-A-5,393,388 une composition d'acier à durcissement secondaire sans addition de titane, visant à améliorer la tenue à chaud et surtout à améliorer les propriétés en fatigue, la ductilité et la ténacité. Cette composition a l'inconvénient d'exiger une teneur en Co élevée (8 à 16%), ce qui rend l'acier très coûteux. (NB : dans le présent texte, toutes les teneurs des différents éléments sont exprimées en % pondéraux).It was proposed in the document US Patent 5,393,388 a secondary hardening steel composition without addition of titanium, aimed at improving the heat resistance and especially to improve the fatigue properties, ductility and toughness. This composition has the disadvantage of requiring a high Co content (8 to 16%), which makes the steel very expensive. (NB: in the present text, all the contents of the various elements are expressed in% by weight).

Dans le document WO-A-2006/114499 , on a proposé une composition d'acier martensitique durci et une suite de traitements thermiques optimisée adaptée à cette composition qui, par rapport à l'art antérieur représenté par US-A-5,393,488 , présentait l'avantage de n'exiger qu'une teneur plus réduite en cobalt, soit entre 5 et 7%. En ajustant les teneurs des autres éléments et les paramètres des traitements thermiques en conséquence, il a été possible d'obtenir des pièces proposant un ensemble de propriétés mécaniques très satisfaisantes, notamment pour les applications aéronautiques. Ce sont, notamment, une résistance à la traction à froid comprise entre 2200 MPa et 2350 MPa, une ductilité et une résilience au moins égales à celles des meilleurs aciers à haute résistance, et à chaud (400°C) une résistance à la traction de l'ordre de 1800 MPa, ainsi que des propriétés de fatigue optimales.In the document WO-2006/114499 , a hardened martensitic steel composition and an optimized heat treatment suite adapted to this composition have been proposed which, with respect to the prior art represented by US Patent 5,393,488 , had the advantage of requiring a lower cobalt content of between 5 and 7%. By adjusting the contents of the other elements and the parameters of the heat treatments accordingly, it has been possible to obtain parts offering a very satisfactory set of mechanical properties, in particular for aeronautical applications. These include, in particular, a cold tensile strength of between 2200 MPa and 2350 MPa, ductility and resilience at least equal to those of the best high-strength steels, and hot (400 ° C.) tensile strength. of the order of 1800 MPa, as well as optimal fatigue properties.

Cet acier est dit « à durcissement duplex », car son durcissement est obtenu par la précipitation durcissante simultanée de composés intermétalliques et de carbures de type M2C.This steel is said to be "duplex-hardening" because its hardening is achieved by simultaneous hardening precipitation of intermetallic compounds and M 2 C carbides.

Toutefois, cet acier contient toujours des quantités de cobalt relativement importantes. Cet élément étant de toute façon onéreux et son prix étant susceptible de subir des fluctuations importantes sur le marché des matières premières, il serait important de trouver des moyens de réduire encore très sensiblement sa présence, notamment dans les matériaux destinés à des applications mécaniques plus courantes que les applications aéronautiques.However, this steel still contains relatively large amounts of cobalt. As this element is in any case expensive and its price is likely to undergo significant fluctuations on the raw materials market, it would be important to find ways to reduce its presence even more significantly, particularly in materials intended for more common mechanical applications. than aeronautical applications.

Le but de l'invention est de proposer un acier utilisable, notamment, pour fabriquer des pièces mécaniques telles que des arbres de transmission, ou des éléments de structure, présentant une résistance mécanique à chaud encore améliorée mais aussi des propriétés en fatigue et une fragilité toujours adaptées à ces usages. Cet acier devrait également avoir un coût de production plus faible que les aciers les plus performants connus actuellement pour ces usages, grâce, en particulier, à une teneur en cobalt significativement plus réduite.The object of the invention is to provide a usable steel, in particular, for manufacturing mechanical parts such as transmission shafts, or structural elements, having a further improved mechanical resistance to heat but also fatigue properties and fragility. always adapted to these uses. This steel should also have a lower production cost than the best performing steels currently known for these uses, thanks, in particular, to a significantly lower cobalt content.

A cet effet, l'invention a pour objet un acier caractérisé en ce que sa composition est, en pourcentages pondéraux :

  • C = 0,20 - 0,30%
  • Co = traces - 1 %
  • Cr = 2 - 5%
  • Al = 1 - 2%
  • Mo + W/2 = 1 - 4%
  • V = traces - 0,3%
  • Nb = traces - 0,1%
  • B = traces - 30 ppm
  • Ni = 11 - 16% avec Ni ≥ 7+3,5 Al
  • Si = traces - 1,0%
  • Mn = traces - 2,0%
  • Ca = traces - 20 ppm
  • Terres rares = traces - 100 ppm
  • si N ≤ 10 ppm, Ti + Zr/2 = traces -100 ppm avec Ti + Zr/2 ≤ 10 N
  • si 10 ppm < N ≤ 20 ppm, Ti + Zr/2 = traces - 150 ppm
  • O = traces - 50 ppm
  • N = traces - 20 ppm
  • S = traces - 20 ppm
  • Cu = traces - 1%
  • P = traces - 200 ppm
For this purpose, the invention relates to a steel characterized in that its composition is, in percentages by weight:
  • C = 0.20 - 0.30%
  • Co = traces - 1%
  • Cr = 2 - 5%
  • Al = 1 - 2%
  • Mo + W / 2 = 1 - 4%
  • V = traces - 0.3%
  • Nb = traces - 0,1%
  • B = traces - 30 ppm
  • Ni = 11 - 16% with Ni ≥ 7 + 3.5 Al
  • If = traces - 1.0%
  • Mn = traces - 2.0%
  • Ca = traces - 20 ppm
  • Rare earth = traces - 100 ppm
  • if N ≤ 10 ppm, Ti + Zr / 2 = traces -100 ppm with Ti + Zr / 2 ≤ 10 N
  • if 10 ppm <N ≤ 20 ppm, Ti + Zr / 2 = traces - 150 ppm
  • O = traces - 50 ppm
  • N = traces - 20 ppm
  • S = traces - 20 ppm
  • Cu = traces - 1%
  • P = traces - 200 ppm

le reste étant du fer et des impuretés inévitables résultant de l'élaboration.the rest being iron and unavoidable impurities resulting from the elaboration.

Il contient de préférence C = 0,20 - 0,25%.It preferably contains C = 0.20 - 0.25%.

Il contient de préférence Cr = 2 - 4%.It preferably contains Cr = 2 - 4%.

Il contient de préférence Al = 1 - 1,6%, mieux 1,4 - 1,6%.It preferably contains Al = 1 - 1.6%, better 1.4 - 1.6%.

Il contient de préférence Mo ≥ 1 %.It preferably contains Mo ≥ 1%.

Il contient de préférence Mo + W/2 = 1 - 2%.It preferably contains Mo + W / 2 = 1 - 2%.

Il contient de préférence V = 0,2 - 0,3%.It preferably contains V = 0.2 - 0.3%.

Il contient de préférence Ni = 12 - 14%, avec Ni ≥ 7 + 3,5 Al.It preferably contains Ni = 12-14%, with Ni ≥ 7 + 3.5 Al.

Il contient de préférence Nb = traces - 0,05%.It preferably contains Nb = traces - 0.05%.

Il contient de préférence Si = traces - 0,25%, mieux traces - 0,10%.It preferably contains Si = traces - 0.25%, better traces - 0.10%.

Il contient de préférence O = traces - 10 ppm.It preferably contains O = traces - 10 ppm.

Il contient de préférence N = traces - 10 ppm.It preferably contains N = traces - 10 ppm.

Il contient de préférence S = traces - 10 ppm, mieux traces - 5 ppm.It preferably contains S = traces - 10 ppm, better traces - 5 ppm.

Il contient de préférence P = traces - 100 ppm.It preferably contains P = traces - 100 ppm.

Sa température de transformation martensitique Ms mesurée est de préférence supérieure ou égale à 100°C.Its measured martensitic transformation temperature Ms is preferably greater than or equal to 100 ° C.

Sa température de transformation martensitique Ms mesurée peut être supérieure ou égale à 140°C.Its martensitic transformation temperature Ms measured may be greater than or equal to 140 ° C.

L'invention a aussi pour objet un procédé de fabrication d'une pièce en acier, caractérisé en ce qu'il comporte les étapes suivantes précédant le parachèvement de la pièce lui procurant sa forme définitive :

  • la préparation d'un acier ayant la composition précédente ;
  • au moins une opération de mise en forme de cet acier ;
  • un revenu d'adoucissement à 600-675°C pendant 4 à 20h suivi d'un refroidissement à l'air ;
  • une mise en solution à 900-1000°C pendant au moins 1h, suivie par un refroidissement à l'huile ou à l'air suffisamment rapide pour éviter la précipitation de carbures intergranulaires dans la matrice d'austénite ;
  • un vieillissement de durcissement à 475-600°C, de préférence de 490-525°C pendant 5-20h.
The invention also relates to a method for manufacturing a steel part, characterized in that it comprises the following steps preceding the completion of the part giving it its final shape:
  • the preparation of a steel having the preceding composition;
  • at least one shaping operation of this steel;
  • softening income at 600-675 ° C for 4 to 20 hours followed by cooling in the air;
  • solution at 900-1000 ° C for at least 1 hour, followed by cooling with oil or air fast enough to avoid the precipitation of intergranular carbides in the austenite matrix;
  • curing aging at 475-600 ° C, preferably 490-525 ° C for 5-20h.

Il comporte en outre de préférence un traitement cryogénique à -50°C ou plus bas, de préférence à -80°C ou plus bas, pou r transformer toute l'austénite en martensite, la température étant inférieure de 150°C ou davantage à Ms mesurée, au moins un desdits traitements durant au moins 4h et au plus 50h.It further preferably comprises a cryogenic treatment at -50 ° C or lower, preferably at -80 ° C or lower, to convert all the austenite to martensite, the temperature being lower by 150 ° C or more to Measured ms, at least one of said treatments lasting at least 4 hours and at most 50 hours.

Il comporte en outre de préférence un traitement d'adoucissement de la martensite brute de trempe effectué à 150-250°C pendant 4-16h, suivi par un refroidissement à l'air calme.It also preferably comprises a softening treatment of the rough quenching martensite carried out at 150-250 ° C for 4-16h, followed by cooling with still air.

La pièce subit également de préférence une cémentation ou une nitruration ou une carbonitruration.The part also preferably undergoes carburizing or nitriding or carbonitriding.

La nitruration peut être effectuée lors d'un cycle de vieillissement.Nitriding can be performed during an aging cycle.

De préférence elle est alors effectuée entre 490 et 525°C pendant 5 à 100h.Preferably it is then carried out between 490 and 525 ° C for 5 to 100h.

Ladite nitruration ou cémentation ou carbonitruration peut être effectuée lors d'un cycle thermique préalablement ou simultanément à ladite mise en solution.Said nitriding or carburising or carbonitriding can be carried out during a thermal cycle prior to or simultaneously with said dissolution.

L'invention a également pour objet une pièce mécanique ou pièce pour élément de structure, caractérisée en ce qu'elle est fabriquée selon le procédé précédent.The invention also relates to a mechanical part or component for structural element, characterized in that it is manufactured according to the preceding method.

Il peut s'agir notamment d'un arbre de transmission de moteur, ou d'un dispositif de suspension de moteur ou d'un élément d'atterrisseur ou d'un élément de boîte de vitesses ou d'un axe de roulement.It may be in particular a motor transmission shaft, or a motor suspension device or a landing gear element or a gearbox element or a bearing axis.

Comme on l'aura compris, l'invention repose d'abord sur une composition d'acier qui se distingue de l'art antérieur représenté par WO-A-2006/114499 notamment par une teneur en Co très faible, ne dépassant pas 1%, et pouvant être typiquement limitée aux traces résultant inévitablement de l'élaboration. Les teneurs des autres éléments d'alliage significativement présents les plus courants ne sont que peu modifiées, mais certaines teneurs en impuretés doivent être maîtrisées avec soin.As will be understood, the invention is based first of all on a steel composition which differs from the prior art represented by WO-2006/114499 in particular by a very low content of Co, not exceeding 1%, and can be typically limited to traces inevitably resulting from the elaboration. The contents of the other most commonly present significant alloying elements are only slightly modified, but certain levels of impurities must be carefully controlled.

Cette possibilité de se passer totalement de l'habituelle addition de cobalt dans des aciers martensitiques de la classe de ceux de l'invention est un résultat particulièrement surprenant. L'acier selon l'invention ne contient donc plus de quantités importantes d'éléments d'addition coûteux, mis à part le nickel dont la teneur n'est cependant pas augmentée par rapport à l'art antérieur. Il est seulement nécessaire d'apporter un soin particulier lors de l'élaboration à une limitation de la teneur en azote à 20 ppm au maximum pour éviter autant que possible la formation de nitrures d'aluminium. Les teneurs maximales en titane et zirconium doivent aussi être limitées en conséquence pour éviter qu'ils ne forment des nitrures avec l'azote résiduel.This possibility of completely dispensing with the usual addition of cobalt in martensitic steels of the class of those of the invention is a particularly surprising result. The steel according to the invention therefore no longer contains significant quantities of expensive additive elements, apart from nickel, the content of which, however, is not increased with respect to the prior art. It is only Special care must be taken when preparing to limit the nitrogen content to not more than 20 ppm to avoid as much as possible the formation of aluminum nitrides. The maximum levels of titanium and zirconium must also be limited accordingly to prevent nitrides from forming with residual nitrogen.

Ces aciers ont un écart plastique (écart entre résistance à la rupture Rm et résistance à l'allongement Rp0,2) intermédiaire entre ceux des aciers au carbone et des maragings. Pour ces derniers, l'écart est très faible, procurant une limite élastique élevée, mais une rupture rapide dès qu'elle est franchie. Les aciers de l'invention ont, de ce point de vue, des propriétés ajustables par la proportion des phases durcissantes et/ou du carbone.These steels have a plastic gap (gap between breaking strength R m and resistance to elongation R p0,2 ) intermediate between those carbon steels and maragings. For the latter, the difference is very small, providing a high elastic limit, but a quick break as soon as it is crossed. The steels of the invention have, from this point of view, properties that can be adjusted by the proportion of hardening phases and / or carbon.

L'acier de l'invention peut être usiné à l'état trempé, avec des outils adaptés à une dureté de 45HRC. Il est intermédiaire entre les maragings (usinables bruts de trempe puisqu'ils ont une martensite douce à bas carbone) et les aciers au carbone qui doivent être usinés essentiellement à l'état recuit.The steel of the invention can be machined in the quenched state, with tools adapted to a hardness of 45HRC. It is intermediate between the maragings (rough machining quench since they have a mild low carbon martensite) and carbon steels that must be machined essentially in the annealed state.

Dans les aciers de la classe de ceux de l'invention, on réalise un durcissement « duplex », c'est-à-dire obtenu conjointement par des intermétalliques de type β-NiAl et par des carbures de type M2C, en présence d'austénite de réversion formée/stabilisée par un enrichissement en nickel obtenu par diffusion lors du vieillissement de durcissement, qui donne de la ductilité à la structure par formation d'une structure sandwich (quelques % d'austénite stable et ductile entre les lattes de la martensite durcie).In the steels of the class of those of the invention, a "duplex" curing is carried out, that is to say obtained jointly by intermetallics of β-NiAl type and carbides of M 2 C type, in the presence of reversion austenite formed / stabilized by diffusion-enriched nickel enrichment during curing aging, which gives ductility to the structure by forming a sandwich structure (a few% of stable and ductile austenite between the slats of hardened martensite).

Il faut éviter de former des nitrures, de Ti, de Zr et d'Al notamment, qui sont fragilisants : ils détériorent la ténacité et la tenue en fatigue. Comme ces nitrures peuvent précipiter dès des teneurs de 1 à quelques ppm de N en présence de Ti, Zr et/ou Al, et que les moyens d'élaboration conventionnels permettent difficilement d'atteindre moins de 5 ppm de N, l'acier de l'invention respecte les règles suivantes.It is necessary to avoid forming nitrides, Ti, Zr and Al in particular, which are weakening: they deteriorate the tenacity and fatigue resistance. Since these nitrides can precipitate from 1 to a few ppm of N in the presence of Ti, Zr and / or Al, and the conventional elaboration means make it difficult to achieve less than 5 ppm of N, the steel of the invention respects the following rules.

On limite en principe toute addition de Ti (maximum autorisé : 100 ppm), et on limite N autant que possible. Selon l'invention, la teneur en N ne doit pas dépasser 20 ppm et, mieux, 10 ppm, et la teneur en Ti ne doit pas dépasser 10 fois la teneur en N.In principle, any addition of Ti (maximum allowed: 100 ppm) is limited, and N is limited as much as possible. According to the invention, the N content should not exceed 20 ppm and more preferably 10 ppm, and the Ti content should not exceed 10 times the N content.

Néanmoins, une addition proportionnée de titane en fin d'élaboration au four sous vide est envisageable en vue de fixer l'azote résiduel et, ainsi, éviter la précipitation nocive du nitrure AIN. Comme il faut, toutefois, éviter la formation du nitrure TiN en phase liquide, car il devient grossier (de 5 à 10 µm ou davantage), l'addition de titane ne peut être pratiquée que pour une teneur résiduelle maximale en azote de 10 ppm dans le métal liquide, et toujours sans dépasser 10 fois cette valeur résiduelle en azote. Par exemple, pour une teneur finale de 8 ppm de N en fin d'élaboration, la teneur limite de l'addition éventuelle en titane est de 80 ppm.Nevertheless, a proportionate addition of titanium at the end of elaboration in a vacuum furnace is conceivable with a view to fixing the residual nitrogen and thus avoiding the harmful precipitation of the nitride AlN. As it is necessary, however, to avoid the formation of nitride TiN in the liquid phase, since it becomes coarse (from 5 to 10 μm or more), the addition of titanium can be practiced only for a residual maximum nitrogen content of 10 ppm in the liquid metal, and still not exceed 10 times this residual value of nitrogen. For example, for a final content of 8 ppm of N at the end of processing, the limiting content of the optional addition of titanium is 80 ppm.

On peut remplacer partiellement ou totalement Ti par Zr, ces deux éléments se comportant de façon assez comparable. Leurs masses atomiques étant dans un rapport de 2, si du Zr est ajouté en plus ou à la place du Ti il faut raisonner sur la somme Ti + Zr/2 et dire que, en même temps que N ≤ 10 ppm,

  • Ti + Zr/2 doit toujours être ≤ 100 ppm ;
  • et que Ti + Zr/2 doit être ≤ 10 N.
It is possible to replace partially or totally Ti by Zr, these two elements behaving quite similarly. Their atomic masses being in a ratio of 2, if Zr is added in addition to or in place of the Ti it is necessary to reason on the sum Ti + Zr / 2 and to say that, at the same time as N ≤ 10 ppm,
  • Ti + Zr / 2 should always be ≤ 100 ppm;
  • and that Ti + Zr / 2 should be ≤ 10 N.

Dans le cas où la teneur en N est supérieure à 10 ppm et inférieure ou égale à 20 ppm, Ti et Zr sont à considérer comme des impuretés à éviter, et la somme Ti + Zr/2 ne doit pas dépasser 150 ppm.In the case where the N content is greater than 10 ppm and less than or equal to 20 ppm, Ti and Zr are to be regarded as impurities to be avoided, and the sum Ti + Zr / 2 must not exceed 150 ppm.

L'addition éventuelle de terres rares, en fin d'élaboration, peut aussi contribuer à fixer une fraction de N, outre le S et O. Dans ce cas, il faut s'assurer que la teneur résiduelle en terres rares reste inférieure à 100 ppm, et préférentiellement moins que 50 ppm, car ces éléments fragilisent l'acier lorsqu'ils sont présents au-delà de ces valeurs. On pense que les oxynitrures de terres rares (par exemple de La) sont moins nocifs que les nitrures de Ti ou Al, du fait de leur forme globulaire qui les rendrait moins susceptibles de constituer des amorces de ruptures de fatigue. On a quand même intérêt à laisser subsister le moins possible de ces inclusions dans l'acier, grâce aux techniques d'élaboration soignées classiques.The possible addition of rare earths, at the end of the process, can also help to fix a fraction of N, besides the S and O. In this case, it must be ensured that the residual rare earth content remains below 100. ppm, and preferably less than 50 ppm, because these elements weaken the steel when they are present beyond these values. It is believed that rare earth (eg La) oxynitrides are less harmful than Ti or Al nitrides because of their globular form which would make them less likely to constitute fatigue fracture primers. It is nevertheless advantageous to leave as few of these inclusions as possible in the steel, thanks to the classic techniques of careful elaboration.

Un traitement au calcium peut être pratiqué en vue de compléter la désoxydation/désulfuration du métal liquide. Ce traitement est préférentiellement conduit avec les éventuelles additions de Ti, Zr ou terres rares.Calcium treatment may be practiced to complete the deoxidation / desulfurization of the liquid metal. This treatment is preferably conducted with the possible additions of Ti, Zr or rare earths.

Le carbure M2C de Cr, Mo, W et V contenant très peu de Fe est privilégié pour ses propriétés durcissantes et non fragilisantes. Le carbure M2C est métastable au regard des carbures d'équilibre M7C3 et/ou M6C et/ou M23C6. Il est stabilisé par Mo et W. La somme de la teneur en Mo et de la moitié de la teneur en W doit être d'au moins 1%. Il ne faut cependant pas dépasser Mo + W/2 = 4% pour ne pas détériorer la forgeabilité (ou la déformabilité à chaud en général) et ne pas former des intermétalliques de la phase µ de type Fe7Mo6, qui est l'une des phases durcissantes essentielles des aciers maraging classiques mais n'est pas souhaitée dans l'acier de l'invention. De préférence, Mo + W/2 est compris entre 1 et 2%. C'est également pour éviter la formation de carbures de Ti non durcissants et susceptibles de fragiliser les joints de grains qu'une limitation impérative à 100 ppm de la teneur en Ti des aciers selon l'invention est requise.The M 2 C carbide of Cr, Mo, W and V containing very little Fe is preferred for its hardening and non-embrittling properties. M 2 C carbide is metastable with regard to equilibrium carbides M 7 C 3 and / or M 6 C and / or M 23 C 6 . It is stabilized by Mo and W. The sum of the Mo content and half of the W content must be at least 1%. However, it is not necessary to exceed Mo + W / 2 = 4% in order not to deteriorate the forgeability (or the heat deformability in general) and not to form intermetallics of the μ phase of type Fe 7 Mo 6 , which is the one of the essential hardening phases of conventional maraging steels but is not desired in the steel of the invention. Preferably, Mo + W / 2 is between 1 and 2%. It is also to prevent the formation of non-hardening Ti carbides which may weaken the grain boundaries that a 100 ppm imperative limitation of the Ti content of the steels according to the invention is required.

Cr et V sont des éléments qui activent la formation des carbures « métastables ».Cr and V are elements that activate the formation of "metastable" carbides.

V forme aussi des carbures de type MC, stables jusqu'aux températures de mise en solution, qui « bloquent » les joints de grains et limitent le grossissement des grains lors des traitements thermiques à haute température. Il ne faut pas dépasser V = 0,3% pour ne pas fixer trop de C dans des carbures de V, lors du cycle de mise en solution, au détriment du carbure M2C de Cr, Mo, W, V dont on recherche la précipitation lors du cycle de vieillissement ultérieur. De préférence la teneur en V est comprise entre 0,2 et 0,3%.V also forms carbides of MC type, stable up to the dissolution temperatures, which "block" the grain boundaries and limit the magnification of grains during heat treatments at high temperatures. V = 0.3% must not be exceeded in order not to fix too much C in carbides of V, during the dissolution cycle, to the detriment of the M 2 C carbide of Cr, Mo, W, V which is sought precipitation during the subsequent aging cycle. Preferably, the V content is between 0.2 and 0.3%.

La présence de Cr (au moins 2%) permet de diminuer le taux de carbures de V et d'accroître le taux de M2C. Il ne faut pas dépasser 5% pour ne pas trop favoriser la formation des carbures stables, en particulier M23C6. De préférence on ne dépasse pas 4% de Cr pour mieux assurer l'absence de M23C6 et ne pas trop abaisser la température Ms de début de transformation martensitique.The presence of Cr (at least 2%) makes it possible to reduce the level of carbides of V and to increase the level of M 2 C. It is not necessary to exceed 5% in order not to favor the formation of stable carbides, in particular M 23 C 6 . Preferably, no more than 4% of Cr is used to better ensure the absence of M 23 C 6 and not to lower the temperature of the beginning of martensitic transformation too much.

La présence de C favorise l'apparition de M2C par rapport à la phase µ. Mais une teneur excessive cause des ségrégations, un abaissement de Ms et amène des difficultés lors de la fabrication à l'échelle industrielle : sensibilité aux tapures (fissurations superficielles lors d'un refroidissement rapide), usinabilité difficile d'une martensite trop dure à l'état brut de trempe.... Sa teneur doit être comprise entre 0,20 et 0,30%, de préférence 0,20-0,25% pour ne pas conférer à la pièce une dureté trop élevée qui pourrait nécessiter un usinage à l'état recuit. La couche superficielle des pièces pourra être enrichie en C par cémentation, nitruration ou carbonitruration si une très grande dureté de surface est requise dans les applications envisagées.The presence of C favors the appearance of M 2 C with respect to the μ phase. But an excessive content causes segregations, a lowering of Ms and causes difficulties in manufacturing on an industrial scale: sensitivity to the taps (superficial cracking during rapid cooling), difficult machinability of martensite too hard to l quenching condition ... Its content must be between 0.20 and 0.30%, preferably 0.20-0.25% so as not to give the part too hard a hardness which could require machining in the annealed state. The surface layer of the parts can be enriched in C by cementation, nitriding or carbonitriding if a very high surface hardness is required in the intended applications.

Co retarde la restauration des dislocations et, donc, ralentit les mécanismes de survieillissement à chaud dans la martensite. On pensait qu'il permettait ainsi de conserver une résistance à la traction à chaud élevée. Mais d'autre part, on soupçonnait que, comme le Co favorise la formation de la phase µ précitée qui est celle qui durcit les aciers maraging de l'art antérieur au Fe-Ni-Co-Mo, sa présence massive contribuait à diminuer la quantité de Mo et/ou de W disponible pour former des carbures M2C qui contribuent au durcissement selon le mécanisme que l'on veut favoriser.Co delays the restoration of dislocations and, therefore, slows the mechanisms of hot survivability in martensite. It was thought that this made it possible to maintain high tensile strength at high temperature. But on the other hand, it was suspected that, since the Co promotes the formation of the aforementioned μ phase which is the one that hardens the maraging steels of the prior art to Fe-Ni-Co-Mo, its massive presence contributed to reducing the quantity of Mo and / or W available to form M 2 C carbides which contribute to the hardening according to the mechanism that is to be promoted.

D'autre part, le cobalt relève quelque peu la température de transition ductile/fragile, ce qui n'est pas favorable, en particulier dans des compositions à teneurs en nickel plutôt basses, tandis que, contrairement à ce qui a pu être constaté dans d'autres aciers, le cobalt ne relève pas de manière évidente le point de transformation Ms des compositions de l'invention et n'a donc pas d'intérêt manifeste non plus sur ce plan.On the other hand, the cobalt somewhat raises the ductile / brittle transition temperature, which is not favorable, particularly in compositions with low nickel contents, whereas, contrary to what could be found in cobalt does not clearly show the transformation point Ms of the compositions of the invention and therefore has no obvious interest either in this respect.

La teneur en Co (5 à 7%) proposée dans les aciers de WO-A-2006/114499 , en combinaison avec les teneurs des autres éléments, résultait de la recherche d'un compromis entre ces divers avantages et inconvénients.The content of Co (5 to 7%) proposed in the steels of WO-2006/114499 , in combination with the contents of the other elements, resulted from the search for a compromise between these various advantages and disadvantages.

Cependant, les inventeurs ont constaté que contrairement aux préjugés en vigueur chez les métallurgistes spécialistes du domaine de l'invention, la présence de cobalt n'était pas indispensable à l'obtention, notamment, d'une résistance mécanique élevée dans les aciers maraging à durcissement duplex. Son absence peut, même, présenter l'avantage d'offrir un meilleur compromis entre la résistance à la traction Rm et la ténacité Kv. Mais elle doit aller de pair avec des tolérances resserrées sur les teneurs en certaines impuretés, et de préférence avec un ajustement des teneurs en certains éléments garantissant une température Ms mesurée suffisamment élevée.However, the inventors have found that, contrary to the prejudices in force among metallurgists who are specialists in the field of the invention, the presence of cobalt was not essential to obtain, in particular, a high mechanical strength in maraging steels. duplex hardening. Its absence may even have the advantage of offering a better compromise between the tensile strength Rm and the toughness Kv. But it must go hand in hand with tight tolerances on the contents of certain impurities, and preferably with an adjustment of the contents of certain elements ensuring a sufficiently high measured temperature Ms.

Ni et Al sont liés dans l'invention, où Ni doit être ≥ 7 + 3,5 Al. Ce sont les deux éléments essentiels qui participent à une bonne part du durcissement par vieillissement, grâce à la précipitation de la phase intermétallique nanométrique de type B2 (NiAl par exemple). C'est cette phase qui confère une large part de la résistance mécanique à chaud, jusqu'à environ 400°C. Le nickel est aussi l'élément qui réduit la fragilité par clivage car il abaisse la température de transition ductile/fragile des martensites. Si Al est trop élevé par rapport à Ni, la matrice martensitique est trop fortement appauvrie en nickel à la suite de la précipitation du précipité durcissant NiAl lors du vieillissement. Cela est dommageable pour les critères de ténacité et de ductilité, car l'abaissement de la teneur en nickel dans la phase martensitique conduit au relèvement de sa température de transition ductile/fragile, donc à sa fragilisation à des températures voisines de l'ambiante. En outre, le nickel favorise la formation d'austénite de réversion et/ou stabilise la fraction d'austénite résiduelle (éventuellement présente), lors du cycle de vieillissement. Ces mécanismes sont favorables aux critères de ductilité et de ténacité, mais aussi de stabilité structurale de l'acier. Si la matrice vieillie est trop appauvrie en nickel, ces mécanismes vertueux sont minorés ou inhibés : on n'a plus de potentiel d'austénite de réversion. A l'inverse, si on a trop de Ni, on réduit exagérément le taux de phase durcissante de type NiAl en exagérant le taux d'austénite de réversion dans laquelle Al reste largement en solution.Ni and Al are bonded in the invention, where Ni must be ≥ 7 + 3.5 Al. These are the two essential elements which participate in a good part of aging hardening, thanks to the precipitation of the nanometric intermetallic phase of type B2 (NiAl for example). It is this phase which gives a large part of the mechanical strength when hot, up to about 400 ° C. Nickel is also the element which reduces brittleness by cleavage because it lowers the ductile / brittle transition temperature of martensites. If Al is too high relative to Ni, the martensitic matrix is too strongly depleted of nickel as a result of the precipitation of the NiAl curing precipitate during aging. This is detrimental to the tenacity and ductility criteria, since the lowering of the nickel content in the martensitic phase leads to the raising of its ductile / brittle transition temperature, and therefore to its embrittlement at temperatures close to ambient. In addition, nickel promotes the formation of reversion austenite and / or stabilizes the residual austenite fraction (possibly present) during the aging cycle. These mechanisms favor the ductility and tenacity criteria, but also the structural stability of the steel. If the aged matrix is too depleted of nickel, these virtuous mechanisms are diminished or inhibited: there is no longer any potential for reversion austenite. On the other hand, if there is too much Ni, the rate of NiAl-type hardening phase is excessively reduced by exaggerating the degree of reversion austenite in which Al remains largely in solution.

En fin de trempe, il ne faut pas avoir d'austénite résiduelle (< 3%), et il faut se retrouver avec une structure essentiellement martensitique. A cet effet, il faut ajuster les conditions de la trempe, en particulier la température de fin de refroidissement, et aussi la composition de l'acier. Cette dernière détermine la température Ms de début de transformation martensitique qui, selon l'invention, doit de préférence rester égale ou supérieure à 140°C si on ne pratique pas de cycle cryogénique, et doit de préférence être égale ou supérieure à 100°C si on pratique un cycle cryogénique.At the end of quenching, residual austenite (<3%) must not be used, and you must end up with an essentially martensitic structure. For this purpose, it is necessary to adjust the conditions of quenching, in particular the temperature of end of cooling, and also the composition of the steel. The latter determines the martensitic transformation start temperature Ms which, according to the invention, should preferably remain equal to or greater than 140 ° C. if no cryogenic cycle is used, and should preferably be equal to or greater than 100 ° C. if we practice a cryogenic cycle.

Ms est habituellement calculée selon la formule classique de la littérature : Ms = 550 - 350 x C% - 40 x Mn% - 17 x Cr% - 10 x Mo% - 17 x Ni% - 8 x W% - 35 x V% - 10 x Cu% - 10 x Co% + 30 x Al% C. Toutefois, l'expérience montre que cette formule n'est que très approximative, en particulier parce que les effets de Co et de Al sont très variables d'un type d'acier à l'autre. Pour savoir si un acier est conforme ou non à l'invention, il faut donc se baser sur des mesures de la température Ms réelle, effectuées par exemple par dilatométrie comme cela est classique. La teneur en Ni est une des variables d'ajustement possibles de Ms.Ms is usually calculated according to the classic formula of the literature: Ms = 550 - 350 x C% - 40 x Mn% - 17 x Cr% - 10 x Mo% - 17 x Ni% - 8 x W% - 35 x V% - 10 x Cu% - 10 x Co% + 30 x Al% C. However, experience shows that this formula is only very approximate, in particular because the effects of Co and Al are highly variable type of steel to another. To know whether a steel is or not according to the invention, it is therefore necessary to rely on measurements of the actual temperature Ms, made for example by dilatometry as is conventional. Ni content is one of Ms.'s possible adjustment variables

La température de fin de refroidissement après trempe doit être inférieure à Ms réelle -150°C, préférentiellement inférieure à Ms réelle -200°C, afin d'assurer une pleine transformation martensitique de l'acier. Pour les compositions les plus enrichies en C et Ni en particulier, cette température de fin de refroidissement peut être obtenue à la suite d'un traitement cryogénique appliqué immédiatement à la suite d'un refroidissement à température ambiante depuis la température de mise en solution. On peut aussi appliquer le traitement cryogénique non à partir de la température ambiante, mais après une trempe isotherme se terminant à une température un peu supérieure à Ms, préférentiellement entre Ms et Ms + 50°C. La vitesse globale de refroidissement doit être la plus élevée possible de façon à éviter les mécanismes de stabilisation de l'austénite résiduelle riche en carbone. Il n'est cependant pas toujours très utile de rechercher des températures cryogéniques inférieures à - 100°C car l'agitation thermique de la structure peut y devenir insuffisante pour produire la transformation martensitique. D'une façon générale, il est préférable que la valeur Ms de l'acier soit supérieure ou égale à 100°C si on applique un cycle cryogénique, et supérieure ou égale à 140°C en l'absence de ce cycle cryogénique. La duré e du cycle cryogénique, si nécessaire, est comprise entre 4 et 50 heures, préférentiellement de 4 à 16 heures, et encore préférentiellement de 4 à 8 heures. On peut pratiquer plusieurs cycles cryogéniques, l'essentiel étant qu'au moins l'un d'entre eux ait les caractéristiques précitées.The end-of-cooling temperature after quenching must be less than the actual Ms -150.degree. C., preferably less than the actual Ms -200.degree. to ensure a full martensitic transformation of steel. For the most enriched C and Ni compositions in particular, this end-of-cooling temperature can be obtained as a result of a cryogenic treatment applied immediately following cooling to ambient temperature from the solution temperature. It is also possible to apply the cryogenic treatment not from ambient temperature, but after isothermal quenching ending at a temperature slightly greater than Ms, preferably between Ms and Ms + 50 ° C. The overall rate of cooling should be as high as possible to avoid the mechanisms of stabilization of the carbon-rich residual austenite. However, it is not always very useful to look for cryogenic temperatures below -100 ° C because the thermal agitation of the structure may become insufficient to produce the martensitic transformation. In general, it is preferable that the Ms value of the steel is greater than or equal to 100 ° C if a cryogenic cycle is applied, and greater than or equal to 140 ° C in the absence of this cryogenic cycle. The duration of the cryogenic cycle, if necessary, is between 4 and 50 hours, preferably from 4 to 16 hours, and more preferably from 4 to 8 hours. It is possible to practice several cryogenic cycles, the essential being that at least one of them has the aforementioned characteristics.

On doit avoir Al = 1-2%, de préférence 1-1,6%, mieux 1,4-1,6%, et Ni = 11-16%, avec Ni ≥ 7 + 3,5 Al. Idéalement on a 1,5% d'Al et 12-14% de Ni. Ces conditions favorisent la présence de NiAl ce qui augmente la résistance à la traction Rm, dont on constate également qu'elle n'est pas trop détériorée par l'absence de Co si les autres conditions de l'invention sont réunies. La limite élastique Rp0,2 est influencée de la même façon que Rm.We must have Al = 1-2%, preferably 1-1.6%, better 1.4-1.6%, and Ni = 11-16%, with Ni ≥ 7 + 3.5 Al. 1.5% Al and 12-14% Ni. These conditions favor the presence of NiAl which increases the tensile strength R m , which we also note that it is not too deteriorated by the absence of Co if the other conditions of the invention are combined. The elastic limit R p0,2 is influenced in the same way as R m .

Par rapport aux aciers connus de US-A-5 393 388 , où on recherche une présence élevée d'austénite de réversion pour avoir une ductilité et une ténacité élevée, les aciers de la classe de l'invention privilégient la présence des phases durcissantes B2, notamment NiAl, pour obtenir une résistance mécanique élevée à chaud. Le respect des conditions sur Ni et Al qui ont été données assure une teneur potentielle suffisante d'austénite de réversion pour conserver une ductilité et une ténacité convenables pour les applications envisagées.Compared to the known steels of US-A-5,393,388 , where a high presence of reversion austenite is sought to obtain high ductility and toughness, the steels of the class of the invention prefer the presence of the hardening phases B2, in particular NiAl, in order to obtain a high mechanical strength when hot. Compliance with the conditions on Ni and Al that have been given ensures a sufficient potential content of reversion austenite to maintain ductility and toughness suitable for the intended applications.

Il est possible d'ajouter du B, mais pas plus de 30ppm pour ne pas dégrader les propriétés de l'acier.It is possible to add B, but not more than 30ppm not to degrade the properties of the steel.

Il est également possible d'ajouter du Nb pour contrôler la taille des grains lors d'un forgeage ou d'une autre transformation à chaud, à une teneur ne dépassant pas 0,1%, de préférence ne dépassant pas 0,05% pour éviter des ségrégations qui pourraient être excessives. L'acier, selon l'invention accepte donc des matières premières pouvant contenir des teneurs résiduelles en Nb non négligeables.It is also possible to add Nb to control the grain size during forging or other hot processing, at a content not exceeding 0.1%, preferably not exceeding 0.05% for avoid segregations that may be excessive. The steel according to the invention therefore accepts raw materials that can contain significant residual contents in Nb.

Une caractéristique des aciers de la classe de l'invention est aussi la possibilité de remplacer au moins une partie de Mo par W. A fraction atomique équivalente, W ségrège moins à la solidification que Mo et apporte un surcroît de tenue mécanique à chaud. Il a l'inconvénient d'être coûteux et on peut optimiser ce coût en l'associant à Mo. Comme on l'a dit, Mo + W/2 doit être compris entre 1 et 4%, de préférence entre 1 et 2%. On préfère conserver une teneur minimale en Mo de 1 % pour limiter le coût de l'acier, d'autant que la tenue à haute température n'est pas un objectif prioritaire de l'acier de l'invention.A characteristic of the steels of the class of the invention is also the possibility of replacing at least a portion of Mo by W. At equivalent atomic fraction, W segregates less at solidification than Mo and provides an increase in mechanical strength when hot. It has the disadvantage of being expensive and we can optimize this cost by associating it with Mo. As has been said, Mo + W / 2 must be between 1 and 4%, preferably between 1 and 2% . It is preferred to maintain a minimum content of 1% Mo to limit the cost of steel, especially as the high temperature withstand is not a priority objective of the steel of the invention.

Cu peut aller jusqu'à 1%. Il est susceptible de participer au durcissement à l'aide de sa phase epsilon, et la présence de Ni permet de limiter ses effets nocifs, en particulier l'apparition de criques superficielles lors du forgeage des pièces, que l'on constate lors d'additions de cuivre dans des aciers ne contenant pas de nickel. Mais sa présence n'a rien d'indispensable et il peut n'être présent qu'à l'état de traces résiduelles, issues des pollutions des matières premières.Cu can be up to 1%. It is likely to participate in the hardening with the help of its epsilon phase, and the presence of Ni makes it possible to limit its harmful effects, in particular the appearance of superficial cracks during the forging of the pieces, which one observes during additions of copper in steels not containing nickel. But its presence is not essential and it may be present only in the state of residual traces, resulting from the pollution of raw materials.

Le manganèse n'est a priori pas utile à l'obtention des propriétés de l'acier visées, mais il n'a pas d'effet néfaste reconnu ; en outre, sa faible tension de vapeur aux températures de l'acier liquide fait que sa concentration est difficilement maîtrisable en élaboration sous vide et refusion sous vide : sa teneur peut varier en fonction de la localisation radiale et axiale dans un lingot refondu. Comme il est souvent présent dans les matières premières, et pour les raisons ci-dessus, sa teneur sera préférentiellement au plus de 0,25%, et en tous cas limitée à 2% au plus car de trop fortes variations de sa concentration dans un même produit nuiront à la répétitivité des propriétés.Manganese is not a priori useful for obtaining the properties of steel, but it has no recognized adverse effect; in addition, its low vapor pressure at the temperatures of the liquid steel makes it difficult to control its concentration in vacuum and vacuum remelting: its content may vary depending on the radial and axial location in a remelted ingot. As it is often present in the raw materials, and for the reasons above, its content will preferably be at most 0.25%, and in any case limited to 2% at the most because of too great variations of its concentration in a same product will interfere with the repeatability of the properties.

Le silicium est connu pour avoir un effet de durcissement en solution solide de la ferrite et, à l'instar du cobalt, pour diminuer la solubilité de certains éléments ou de certaines phases dans la ferrite. Néanmoins, l'acier de l'invention se passe d'une addition significative de cobalt, et il en est de même de l'addition de silicium, d'autant plus que, en outre, le silicium favorise généralement la précipitation de phases intermétalliques néfastes dans les aciers complexes (phase de Laves, siliciures...). Sa teneur sera limitée à 1%, préférentiellement à moins de 0,25% et encore préférentiellement à moins de 0,1 %.Silicon is known to have a hardening effect in solid solution of ferrite and, like cobalt, to decrease the solubility of some elements or certain phases in ferrite. Nevertheless, the steel of the invention requires a significant addition of cobalt, and the same is true of the addition of silicon, especially since, moreover, silicon generally promotes the precipitation of intermetallic phases. harmful in complex steels (Laves phase, silicides ...). Its content will be limited to 1%, preferably less than 0.25% and still more preferably less than 0.1%.

De manière générale, les éléments pouvant ségréger aux joints de grains et les fragiliser, comme P et S, doivent être contrôlés dans les limites suivantes : S = traces - 20ppm, de préférence traces - 10ppm, mieux traces -5ppm, et P = traces - 200ppm, de préférence traces -100ppm, mieux traces-50 ppm.In general, the elements that can segregate at the grain boundaries and weaken them, such as P and S, must be controlled within the following limits: S = traces - 20ppm, preferably traces - 10ppm, better traces - 5ppm, and P = traces - 200ppm, preferably -100ppm traces, better traces-50ppm.

On peut utiliser Ca comme désoxydant et comme capteur de soufre, en le retrouvant résiduellement au final (≤ 20ppm). De même, des résidus de terres rares peuvent subsister au final (≤ 100ppm) à la suite d'un traitement d'affinage du métal liquide où elles auraient été utilisées pour capter O, S et/ou N. L'utilisation de Ca et de terres rares à ces effets n'étant pas obligatoire, ces éléments peuvent n'être présents qu'à l'état de traces dans les aciers de l'invention.Ca can be used as a deoxidizer and as a sulfur sensor, finding it in the end (≤ 20ppm). Similarly, rare earth residues may ultimately remain (≤100ppm) following a refining treatment of the liquid metal where they would have been used to capture O, S and / or N. The use of Ca and rare earths for these effects not being mandatory, these elements may be present only in the form of traces in the steels of the invention.

La teneur en oxygène acceptable est de 50 ppm au maximum, de préférence 10 ppm au maximum.The acceptable oxygen content is 50 ppm maximum, preferably 10 ppm maximum.

A titre d'exemples, on a testé des échantillons d'acier dont les compositions (en pourcentages pondéraux) sont reportées dans le tableau 1 : Tableau 1 : Composition et températures Ms mesurées des échantillons testés A (réf.) B (réf.) C (réf.) D (réf.) E (réf.) F (réf.) G (réf.) H (invention) C% 0,233 0,247 0,239 0,244 0,247 0,19 0,22 0,21 Si% 0,082 0,031 0,031 0,037 0,030 0,05 0,04 0,05 Mn% 0,026 0,030 0,033 0,033 0,030 0,02 < 0,03 0,04 S ppm 1,0 7,3 3,8 6,1 6,7 7 7 6 P ppm 54 <30 <30 <30 <30 28 < 50 29 Ni% 13,43 13,31 12,67 12,71 13,08 13,00 14,70 12,95 Cr% 2,76 3,08 3,38 3,38 3,29 3,66 3,19 3,17 Mo% 1,44 1,53 1,52 1,53 1,53 1,50 1,67 1,50 Al% 0,962 1,01 1,50 1,50 1,49 1,56 1,68 1,54 Co% 10,25 10,35 6,18 6,24 6,33 6,00 < 0,10 < 0,10 Cu% 0,014 <0,010 0,011 0,012 0,011 < 0,030 <0,020 < 0,030 Ti% <0,020 <0,020 <0,020 <0,020 <0,020 < 0,005 0,022 <0,005 Nb% <0,0050 <0,0050 <0,0050 <0,0050 0,054 < 0,005 <0,010 <0,005 B ppm <10 <5 <5 29 <5 < 5 < 5 < 5 Ca ppm <50 <50 <50 <50 <50 <10 <10 < 10 N ppm <3 13 13 12 14 3 28 < 3 O ppm <3 4,8 3,4 4,4 7,7 < 3 7,5 < 3 V% <0,010 0,252 0,245 0,254 0,253 0,006 0,208 0,250 Ms mesurée °C - 188 176 140 141 186 90 187 By way of examples, steel samples have been tested whose compositions (in percentages by weight) are reported in Table 1: Table 1: Composition and Measured Temperatures of the Samples Tested A (ref.) B (ref.) C (ref.) D (ref.) E (ref.) F (ref.) G (ref.) H (invention) VS% 0.233 0.247 0.239 0.244 0.247 0.19 0.22 0.21 Yes% 0.082 0.031 0.031 0,037 0,030 0.05 0.04 0.05 mn% 0,026 0,030 0.033 0.033 0,030 0.02 <0.03 0.04 S ppm 1.0 7.3 3.8 6.1 6.7 7 7 6 P ppm 54 <30 <30 <30 <30 28 <50 29 Or% 13,43 13,31 12.67 12.71 13.08 13,00 14.70 12.95 Cr% 2.76 3.08 3.38 3.38 3.29 3.66 3.19 3.17 Mo% 1.44 1.53 1.52 1.53 1.53 1.50 1.67 1.50 al% 0.962 1.01 1.50 1.50 1.49 1.56 1.68 1.54 Co% 10.25 10.35 6.18 6.24 6.33 6.00 <0.10 <0.10 Cu% 0.014 <0.010 0,011 0.012 0,011 <0.030 <0.020 <0.030 Ti% <0.020 <0.020 <0.020 <0.020 <0.020 <0.005 0,022 <0.005 No.% <0.0050 <0.0050 <0.0050 <0.0050 0,054 <0.005 <0.010 <0.005 B ppm <10 <5 <5 29 <5 <5 <5 <5 Ca ppm <50 <50 <50 <50 <50 <10 <10 <10 N ppm <3 13 13 12 14 3 28 <3 O ppm <3 4.8 3.4 4.4 7.7 <3 7.5 <3 V% <0.010 0.252 0,245 0,254 0.253 0.006 0.208 0,250 Ms measured ° C - 188 176 140 141 186 90 187

La teneur en Co < 0,10% des échantillons G et H correspond à la limite de précision habituelle de l'analyse de cet élément. Dans les deux cas, aucune addition volontaire de Co n'a été effectuée.The Co content <0.10% of samples G and H corresponds to the usual precision limit of the analysis of this element. In both cases, no voluntary addition of Co was performed.

Les éléments non cités dans le tableau ne sont présents au plus qu'à l'état de traces résultant de l'élaboration.The elements not mentioned in the table are present at most in the state of traces resulting from the elaboration.

L'acier de référence A correspond à un acier selon US-A-5 393 488 , ayant donc une teneur en Co élevée.Reference steel A corresponds to a steel according to US-A-5,393,488 , thus having a high Co content.

L'acier de référence B correspond à un acier comparable à l'acier A, auquel on a ajouté du V sans modifier la teneur en Co.Reference steel B corresponds to a steel comparable to steel A, to which V was added without modifying the content of Co.

L'acier de référence C correspond à un acier selon WO-A-2006/114499 notamment en ce que, par rapport aux aciers A et B, on a augmenté sa teneur en Al et diminué sa teneur en Co.Reference steel C corresponds to a steel according to WO-2006/114499 especially in that, with respect to steels A and B, its Al content has been increased and its Co content decreased.

L'acier de référence D a subi par rapport à C une addition de B.The reference steel D has undergone a C addition of B.

L'acier de référence E a subi par rapport à C une addition de Nb.The reference steel E has undergone a Nb addition to C.

L'acier de référence F se distingue de C essentiellement par l'absence d'une addition significative de V, compensée par une plus faible teneur en C, et une plus grande pureté en éléments résiduels.The reference steel F differs from C mainly by the absence of a significant addition of V, compensated by a lower C content, and a higher purity of residual elements.

L'acier de référence G se distingue de F par une teneur en Co très faible qui serait conforme à l'invention, la présence de V à un niveau comparable à celui de C, D et E, et une teneur en Ni plus élevée, mais qui, prise isolément, serait néanmoins conforme à l'invention. Mais ses teneurs en Ti et N sont légèrement supérieures à ce que l'invention tolère. L'expérience montre aussi que sa température Ms mesurée est sensiblement trop faible par rapport aux exigences de l'invention, la teneur en Ni relativement élevée n'étant pas compensée par des teneurs en Cr, Mo, Al et V qui seraient relativement basses.The reference steel G is distinguished from F by a very low content of Co which would be in accordance with the invention, the presence of V at a level comparable to that of C, D and E, and a higher Ni content, but which, taken in isolation, would nonetheless conform to the invention. But its contents in Ti and N are slightly higher than the invention tolerates. Experience also shows that its measured temperature Ms is substantially too low compared to the requirements of the invention, the relatively high Ni content is not compensated by relatively low levels of Cr, Mo, Al and V.

L'acier H est conforme à l'invention à tous points de vue, notamment sa très faible teneur en Co et sa grande pureté en N et Ti. Egalement, sa teneur en O est très faible. Enfin, sa température Ms mesurée est tout à fait conforme à l'invention.The steel H is in accordance with the invention in all respects, in particular its very low Co content and its high N and Ti purity. Also, its O content is very low. Finally, its measured temperature Ms is entirely in accordance with the invention.

Ces échantillons ont été forgés à partir de lingots de 200kg en plats de 75 x 35mm dans les conditions suivantes. Un traitement d'homogénéisation d'au moins 16 heures à 1250°C est suivi d'une première opération de forgeage destinée à fractionner les structures grossières des lingots ; des demi-produits de section carrée de 75 x 75 mm ont ensuite été forgés après une remise en température à 1180°C ; finalement, chaque demi-produit a été placé dans un four à 950°C, puis a été forgé à cette température sous la forme de plats de 75 x 35 mm dont la structure granulaire est affinée par ces opérations successives.These samples were forged from 200kg ingots into 75x35mm dishes under the following conditions. A homogenization treatment of at least 16 hours at 1250 ° C. is followed by a first forging operation intended to split the coarse structures of the ingots; square section semifinished products of 75 x 75 mm were then forged after re-heating to 1180 ° C .; finally, each half-product was placed in an oven at 950 ° C, and was forged at this temperature in the form of 75 x 35 mm dishes whose granular structure is refined by these successive operations.

De plus, les échantillons ont subi un revenu d'adoucissement à une température d'au moins 600°C. L'expérience montre q u'il est nécessaire pour obtenir une complète recristallisation de l'acier lors de la mise en solution qui suivra. En l'occurrence, ce revenu d'adoucissement a été effectué à 650°C pendant 8h et suivi d'un refroidissement à l'air. Grâce à cela, les produits bruts de transformations thermomécaniques peuvent subir sans problèmes particuliers les opérations de parachèvement (redressage, écroûtage, usinage...) conférant à la pièce sa forme définitive.In addition, the samples were softened at a temperature of at least 600 ° C. Experience shows that it is necessary to obtain a complete recrystallization of the steel during the dissolution which will follow. In this case, this softening income was carried out at 650 ° C. for 8 hours and followed by cooling in air. Thanks to this, the raw products of thermomechanical transformations can undergo without particular problems the finishing operations (straightening, peeling, machining ...) giving the piece its final form.

Après le forgeage et le revenu d'adoucissement, les échantillons ont subi :

  • une mise en solution à 935°C pendant 1h puis un refroidissement par trempe à l'huile ;
  • un traitement cryogénique à -80°C pendant 8h ; spécifiquement pour l'échantillon H, on y a ajouté un autre traitement cryogénique à -120°C pendant 2h ;
  • un revenu de détente de 16h à 200°C ;
  • un vieillissement de durcissement à 500°C pendant 12h puis un refroidissement à l'air.
After forging and softening income, the samples underwent:
  • dissolution at 935 ° C for 1 h and then cooling by quenching with oil;
  • cryogenic treatment at -80 ° C for 8h; specifically for sample H, another cryogenic treatment was added at -120 ° C for 2h;
  • a relaxation income of 16h at 200 ° C;
  • curing aging at 500 ° C for 12 hours and then cooling in air.

Les propriétés des échantillons (résistance à la traction Rm en sens long, limite élastique Rp0,2, élongation A5d, striction Z, résilience KV, ténacité K1 c, taille du grain ASTM) sont reportées dans le tableau 2. Elles sont ici mesurées à la température ambiante normale. Tableau 2 : Propriétés des échantillons testés Rm (Mpa) Rp0,2 (Mpa) A5d (%) Z (%) KV (J) K1c (MPa Vm) Grain ASTM A 2075 1915 11,5 59 26/30 57 8 B 2115 1963 11,3 60 27/27 57,1 8 C 2274 1982 10,6 54 23/24 43,5 8 D 2286 1970 10,9 56 20/23 44,3 8 E 2270 1961 10,3 52 21/24 46,6 9 F 2060 1904 10,4 59 21/23 59 7 G 2149 1715 10,2 52 28/28 - 7 H 2077 1866 10,9 62 34/35 70,4 7 The properties of the samples (tensile strength R m in long direction, elastic limit R p0,2 , elongation A5d, necking Z, resilience KV, toughness K1 c, size of grain ASTM) are reported in Table 2. They are here measured at normal room temperature. Table 2: Properties of the tested samples R m (Mpa) R p0.2 (Mpa) A5d (%) Z (%) KV (J) K1c (MPa Vm) ASTM grain AT 2075 1915 11.5 59 26/30 57 8 B 2115 1963 11.3 60 27/27 57.1 8 VS 2274 1982 10.6 54 23/24 43.5 8 D 2286 1970 10.9 56 20/23 44.3 8 E 2270 1961 10.3 52 21/24 46.6 9 F 2060 1904 10.4 59 21/23 59 7 BOY WUT 2149 1715 10.2 52 28/28 - 7 H 2077 1866 10.9 62 34/35 70.4 7

On voit que les échantillons de référence C, D et E présentent une résistance à la traction très supérieure à celle des échantillons de référence A et B. La limite élastique est au moins du même ordre de grandeur. En contrepartie de ce relèvement de la résistance à la traction, les propriétés de ductilité (striction et allongement à la rupture), de ténacité et de résilience sont abaissées, dans le cas des traitements thermiques décrits et appliqués. Le compromis résistance/ténacité recherché peut être ajusté à l'aide d'une modification des conditions de vieillissement.It can be seen that the reference samples C, D and E have a tensile strength that is much greater than that of the reference samples A and B. The elastic limit is at least of the same order of magnitude. In return for this increase in tensile strength, the properties of ductility (necking and elongation at break), toughness and resilience are lowered, in the case of heat treatments described and applied. The desired resistance / toughness compromise can be adjusted by changing the aging conditions.

L'échantillon de référence B montre que la seule addition de V à l'acier A ne procure qu'une amélioration de certaines propriétés, et dans des proportions le plus souvent moins importantes que dans le cas des aciers à teneur en Co réduite ou nulle C à H.Reference sample B shows that the mere addition of V to steel A gives only an improvement in certain properties, and in proportions that are often less important than in the case of steels with reduced or no Co content. C to H.

En particulier, l'augmentation de l'Al, dans les aciers C à H, conjuguée au maintien d'une teneur en Ni élevée, rend la phase durcissante NiAl plus présente et est un facteur essentiel de l'amélioration de la résistance à la traction ou de son maintien à une valeur convenablement élevée.In particular, the increase of Al in steels C to H, combined with the maintenance of a high Ni content, renders the NiAl hardening phase more present. and is an essential factor in improving the tensile strength or keeping it at a suitably high value.

Les additions de B et Nb des échantillons D et E respectivement ne sont pas nécessaires pour l'obtention des résistances mécaniques élevées visées prioritairement dans les aciers de la classe de l'invention. Cependant, l'addition de Nb permet d'affiner la taille de grain, décrite par l'indice ASTM conventionnel (les valeurs ASTM les plus élevées correspondant aux grains les plus fins).The additions of B and Nb of the samples D and E respectively are not necessary to obtain the high mechanical strengths primarily targeted in the steels of the class of the invention. However, the addition of Nb makes it possible to refine the grain size, described by the conventional ASTM index (the highest ASTM values corresponding to the finest grains).

Après le revenu d'adoucissement à 650°C pendant 8h et refroidissement à l'air, une mise en solution à 935°C pendant 1 heure suivie d'un refroidissement à l'huile, puis un traitement cryogénique à -80°C pendant 8h, puis un dé-tensionnement à 200°C pendant 8h (sur les éprouvett es de traction) ou 16h (sur les éprouvettes de résilience en vue de faciliter l'usinage de l'entaille en V de l'éprouvette Charpy ; ce revenu basse température a pour seul effet d'adoucir de quelques unités HRC la structure brute de trempe), puis un vieillissement à 500°C pendant 12h suivi d'un refroidissement à l'air, ont permis d'obtenir en sens long à 20°C un excellent compromis entre résistance à la traction, ductilité et résilience.After the softening recovery at 650 ° C. for 8 hours and cooling in air, a solution at 935 ° C. for 1 hour followed by an oil cooling and then a cryogenic treatment at -80 ° C. for 8h, then un-tensioning at 200 ° C for 8h (on the tensile test specimens) or 16h (on the test specimens of resilience to facilitate the machining of the V-notch of the Charpy test tube; low temperature has the effect of softening a few units HRC (raw quenching structure), then aging at 500 ° C for 12 hours followed by cooling in air, have obtained in long direction at 20 ° C an excellent compromise between tensile strength, ductility and resilience.

Des expériences complémentaires montrent qu'en sens travers, les valeurs de résilience demeurent acceptables. A 400°C, la résistance à la traction demeure très élevée, et des teneurs en Co relativement faibles comme dans les échantillons C à F ou, selon l'invention, presque ou franchement négligeables, comme dans les échantillons G et H, sont compatibles avec la résolution de ces aspects des problèmes posés.Complementary experiments show that in the mean direction resilience values remain acceptable. At 400 ° C., the tensile strength remains very high, and relatively low Co contents as in samples C to F or, according to the invention, almost or completely negligible, as in samples G and H, are compatible with with the resolution of these aspects of the problems posed.

L'échantillon G montre que la forte diminution, allant jusqu'à la suppression totale, du cobalt, peut permettre quand même de conserver une résistance à la traction élevée. Les propriétés de ductilité, de manière surprenante, sont également améliorées. La limite élastique est, cependant, assez sensiblement détériorée dans le cas de l'échantillon G, en relation avec une plus grande quantité d'austénite dispersée dans la structure, due à la teneur élevée en Ni de cet échantillon. Celle-ci contribue à un abaissement excessif de la Ms mesurée qui n'est pas compensé par des ajustements des teneurs des autres éléments.Sample G shows that the large decrease, up to the total removal, of cobalt, can still allow to maintain a high tensile strength. The ductility properties, surprisingly, are also improved. The elastic limit is, however, quite substantially deteriorated in the case of the sample G, in relation to a larger amount of austenite dispersed in the structure, due to the high Ni content of this sample. This contributes to an excessive lowering of the measured Ms which is not compensated by adjustments of the contents of the other elements.

En revanche, dans le cas de l'échantillon H, conforme en tous points à la composition selon l'invention, et dont la température Ms est suffisamment élevée, on obtient :

  • une résistance à la traction qui demeure élevée, et pourrait être, en cas de besoin, encore améliorée par une augmentation de la teneur en C qui favoriserait le durcissement par trempe et formation de carbures secondaires ; une résistance à la traction de l'ordre de 2300 MPa serait ainsi accessible pour une teneur en C de 0,25% environ ;
  • une limite élastique sensiblement améliorée par rapport à l'échantillon G;
  • et surtout des propriétés de ductilité remarquables, supérieures à celles de tous les échantillons de référence, permettant de réaliser un bon compromis entre résistance à la traction et ténacité, cette caractéristique étant très importante dans le cadre des applications privilégiées envisagées pour l'acier de l'invention.
On the other hand, in the case of sample H, which conforms in every respect to the composition according to the invention, and whose temperature Ms is sufficiently high, we obtain:
  • a tensile strength which remains high, and could, if necessary, be further improved by an increase in the C content which would favor hardening by quenching and formation of secondary carbides; a tensile strength of the order of 2300 MPa would thus be accessible for a C content of about 0.25%;
  • a substantially improved elastic limit with respect to the sample G;
  • and above all remarkable ductility properties, superior to those of all the reference samples, making it possible to achieve a good compromise between tensile strength and toughness, this characteristic being very important in the context of the preferred applications envisaged for the steel of the 'invention.

Les teneurs en N et Ti un peu trop élevées dans l'échantillon G par rapport aux exigences de l'invention, et aussi sa teneur en oxygène un peu plus élevée, contribuent également en partie à ses performances moins bonnes que celles de l'échantillon H. Un autre facteur à considérer pour cet échantillon G est une teneur en S qui n'est pas particulièrement basse, et qui tend à dégrader la ténacité si elle n'est pas compensée par d'autres caractéristiques qui seraient favorables à cette propriété. Enfin, comme on l'a dit, cet échantillon G a une teneur en Ni assez élevée (quoique demeurant dans la gamme de l'invention), qui abaisse Ms et favorise donc le maintien d'un taux d'austénite résiduelle possiblement trop élevé, même à l'issue du traitement cryogénique plus particulièrement poussé (à -80°C puis à -120°C) qui a été subi par c et échantillon.The contents of N and Ti a little too high in the sample G compared to the requirements of the invention, and also its slightly higher oxygen content, also contribute in part to its poorer performance than that of the sample. H. Another factor to consider for this sample G is an S content which is not particularly low, and which tends to degrade toughness if it is not offset by other characteristics that would be favorable to this property. Finally, as has been said, this sample G has a fairly high Ni content (although remaining within the range of the invention), which lowers Ms and thus promotes the maintenance of a possibly too high residual austenite level. , even after the cryogenic treatment more particularly pushed (to -80 ° C and then -120 ° C) which was undergone by c and sample.

En revanche, l'échantillon H selon l'invention, qui n'a été traité cryogéniquement qu'à -80°C, mais qui a une teneur en Ni judicieusement ajustée, des teneurs en impuretés minimales à tous points de vue et une température Ms mesurée suffisamment élevée, répond très bien aux problèmes posés.On the other hand, the sample H according to the invention, which has been cryogenically treated only at -80 ° C., but which has a judiciously adjusted Ni content, minimum impurity contents in all points of view and a temperature Ms measured high enough, responds very well to the problems posed.

De manière générale, un mode de traitement thermique optimisé de l'acier selon l'invention pour l'obtention au final d'une pièce présentant les propriétés souhaitées est, après la mise en forme de l'ébauche de la pièce et avant le parachèvement procurant à la pièce sa forme définitive :

  • un revenu d'adoucissement à 600-675°C pendant 4 à 20h suivi d'un refroidissement à l'air ;
  • une mise en solution à 900-1000°C pendant au moins 1h, suivie par un refroidissement à l'huile ou à l'air suffisamment rapide pour éviter la précipitation de carbures intergranulaires dans la matrice d'austénite ;
  • si nécessaire, un traitement cryogénique à -50°C ou plus bas, de préférence à -80°C ou plus bas, pour transformer toute l'austénite en martensite, la température étant inférieure de 150°C ou davantage à Ms, préférentiellement inférieure d'environ 200°C, un au moins desdits traitements cryogéniques durant au moins 4h et au plus 50h ; pour les compositions ayant, notamment, une teneur en Ni relativement basse qui conduit à une température Ms relativement élevée, ce traitement cryogénique est moins utile ;
  • optionnellement un traitement d'adoucissement de la martensite brute de trempe effectué à 150-250°C pendant 4-16h, suivi par un refroidissement l'air calme ;
  • un vieillissement de durcissement à 475-600°C, de préférence de 490-525°C pendant 5-20h; un vieillissement en dessous d e 490°C n'est pas toujours recommandé car le carbure métastable M3C pourrait encore être présent et apporterait une fragilité à la structure; les vieillissements au-delà de 525°C peuvent provoquer une perte de résistance mécanique par vieillissement, sans gain notable de ténacité ou de ductilité.
In general, an optimized heat treatment mode of the steel according to the invention for finally obtaining a part having the desired properties is, after forming the blank of the part and before the completion. giving the piece its final form:
  • softening income at 600-675 ° C for 4 to 20 hours followed by cooling in the air;
  • solution at 900-1000 ° C for at least 1 hour, followed by cooling with oil or air fast enough to avoid the precipitation of intergranular carbides in the austenite matrix;
  • if necessary, cryogenic treatment at -50 ° C or lower, preferably at -80 ° C or lower, to convert all the austenite to martensite, the temperature being lower by 150 ° C or more to Ms, preferably lower about 200 ° C, at least one of said cryogenic treatments for at least 4h and at most 50h; for compositions having, in particular, a relatively low Ni content which leads to a relatively high Ms temperature, this cryogenic treatment is less useful;
  • optionally softening treatment of the rough quenching martensite carried out at 150-250 ° C for 4-16h, followed by cooling the still air;
  • curing aging at 475-600 ° C, preferably 490-525 ° C for 5-20h; aging below 490 ° C is not always recommended because the M 3 C metastable carbide could still be present and would bring fragility to the structure; Aging beyond 525 ° C can cause a loss of mechanical strength by aging, without significant gain in toughness or ductility.

Dans les exemples qui ont été décrits, les opérations de mise en forme de l'acier suivant sa coulée et précédant le revenu d'adoucissement et les autres traitements thermiques ont consisté en un forgeage. Mais d'autres types de traitements thermomécaniques de mise en forme à chaud peuvent être exécutés en plus ou à la place de ce forgeage, en fonction du type de produit final que l'on désire obtenir (pièces matricées, barres, demi-produits...). On peut notamment citer un ou des laminages, un matriçage, un estampage... ainsi qu'une combinaison de plusieurs tels traitements.In the examples which have been described, the shaping operations of the steel following its casting and preceding the softening income and the other heat treatments have consisted of forging. But other types of thermomechanical heat-forming treatments may be performed in addition to or in place of this forging, depending on the type of end product that is desired (stamped parts, bars, semi-finished products. ..). In particular, mention may be made of one or more laminates, a stamping, a stamping, and a combination of several such treatments.

Les applications privilégiées de l'acier selon l'invention sont les pièces d'endurance pour mécanique et éléments de structure, pour lesquelles on doit avoir à froid une résistance à la traction comprise entre 2000 MPa et 2350 MPa voire davantage, combinée à des valeurs de ductilité et de résilience au moins équivalentes à celles des meilleurs aciers à haute résistance, et à chaud (400°C) une résistance à la traction de l'ordre de 1800 MPa, ainsi que des propriétés de fatigue optimales.The preferred applications of the steel according to the invention are the endurance parts for mechanics and structural elements, for which a tensile strength of between 2000 MPa and 2350 MPa or more must be cold, combined with values ductility and resilience at least equivalent to those of the best high strength and hot (400 ° C) steels a tensile strength of the order of 1800 MPa, as well as optimal fatigue properties.

L'acier selon l'invention a également pour avantage d'être cémentable, nitrurable et carbonitrurable. On peut donc conférer aux pièces qui l'utilisent une résistance à l'abrasion élevée sans affecter ses propriétés à coeur. Cela est particulièrement avantageux dans les applications envisagées qui ont été citées. D'autres traitements de surface, tels que des traitements mécaniques limitant l'amorçage de fissurations de fatigue à partir des défauts superficiels, sont envisageables. Un grenaillage (shot-peening) est un exemple de tel traitement.The steel according to the invention also has the advantage of being cementable, nitrurable and carbonitrurable. The parts that use it can therefore be given high abrasion resistance without affecting its core properties. This is particularly advantageous in the intended applications that have been cited. Other surface treatments, such as mechanical treatments that limit the initiation of fatigue cracking from superficial defects, are conceivable. Shot peening is an example of such treatment.

Si on exécute une nitruration, celle-ci peut être effectuée pendant le cycle de vieillissement, de préférence à une température de 490 à 525°C et pendant une durée pouvant aller de 5 à 100h, les vieillissements les plus longs provoquant un adoucissement structural progressif et, par suite, une diminution progressive de la résistance maximale à la traction.If nitriding is carried out, this can be carried out during the aging cycle, preferably at a temperature of 490 to 525 ° C and for a period of time ranging from 5 to 100 hours, the longest ages causing progressive structural softening and, as a result, a progressive decrease in the maximum tensile strength.

Une autre possibilité est d'effectuer la cémentation, nitruration ou carbonitruration lors d'un cycle thermique préalablement ou simultanément à la mise en solution, le substrat en acier de l'invention conservant dans ce cas tout son potentiel de propriétés mécaniques.Another possibility is to perform carburizing, nitriding or carbonitriding during a thermal cycle prior to or simultaneously with the dissolution, the steel substrate of the invention retaining in this case all its potential mechanical properties.

Claims (25)

  1. Steel characterised in that its composition is, in percentages by weight:
    - C = 0.20 - 0.30%
    - Co = traces - 1%
    - Cr =2-5%
    - Al = 1 - 2%
    - Mo + W/2 = 1 - 4%
    - V = traces - 0.3%
    - Nb = traces - 0.1%
    - B = traces - 30 ppm
    - Ni = 11 - 16% with Ni ≥ 7 + 3.5 Al
    - Si = traces - 1.0%
    - Mn = traces - 2.0%
    - Ca = traces - 20 ppm
    - Rare earths = traces - 100 ppm
    - if N ≤ 10 ppm, Ti + Zr/2 = traces - 100 ppm with Ti + Zr/2 ≤ 10 N
    - if 10 ppm < N ≤ 20 ppm, Ti Zr/2 = traces - 150 ppm
    - O = traces - 50 ppm
    - N = traces - 20 ppm
    - S = traces - 20 ppm
    - Cu = traces - 1%
    - P = traces - 200 ppm
    the remainder being iron and unavoidable impurities resulting from the melting.
  2. Steel according to claim 1, characterised in that it contains C = 0.20 - 0.25%.
  3. Steel according to claim 1 or 2, characterised in that it contains Cr = 2 - 4%.
  4. Steel according to one of the claims 1 to 3, characterised in that it contains Al = 1 - 1.6%, preferably 1.4 - 1.6%.
  5. Steel according to one of the claims 1 to 4, characterised in that it contains Mo ≥ 1%.
  6. Steel according to one of the claims 1 to 5, characterised in that it contains Mo + W/2 = 1 - 2%.
  7. Steel according to one of the claims 1 to 6, characterised in that it contains V = 0.2 - 0.3%.
  8. Steel according to one of the claims 1 to 7, characterised in that it contains Ni = 12 - 14% with Ni ≥ 7 + 3.5 Al.
  9. Steel according to one of the claims 1 to 8, characterised in that it contains Nb = traces - 0.05%.
  10. Steel according to one of the claims 1 to 9, characterised in that it contains Si = traces - 0.25%, preferably traces - 0.10%.
  11. Steel according to one of the claims 1 to 10, characterised in that it contains O = traces - 10 ppm.
  12. Steel according to one of the claims 1 to 11, characterised in that it contains N = traces - 10 ppm.
  13. Steel according to one of the claims 1 to 12, characterised in that it contains S = traces - 10 ppm, preferably traces - 5 ppm.
  14. Steel according to one of the claims 1 to 13, characterised in that it contains P = traces - 100 ppm.
  15. Steel according to one of the claims 1 to 14, characterised in that its measured martensitic transformation temperature Ms is greater than or equal to 100°C.
  16. Steel according to claim 15, characterised in that its measured martensitic transformation temperature Ms is greater than or equal to 140°C.
  17. Method for producing a martensitic steel part, characterised in that it comprises the following steps preceding finishing of the part which endows it with its definitive shape:
    - the preparation of a steel having the composition according to one of the claims 1 to 16;
    - at least one operation for shaping this steel;
    - tempering at 600 - 675°C for 4 to 20 h followed by cooling in air;
    - solution heat treatment at 900 - 1000°C for at least 1 h, followed by sufficiently rapid cooling in oil or in air to avoid the precipitation of intergranular carbides in the austenite matrix;
    - age hardening at 475 - 600°C, preferably from 490 - 525°C for 5 - 20 h;
  18. Method for producing a steel part according to claim 17, characterised in that it comprises furthermore a cryogenic treatment at - 50°C or lower, preferably at - 80°C or lower, before the age hardening step in order to transform all the austenite into martensite, the temperature being less by 150°C or more than the measured Ms, at least one of said treatments lasting at least 4 h and at most 50 h.
  19. Method for producing a steel part according to one of the claims 17 or 18, characterised in that it comprises furthermore a softening treatment of the crude martensite resulting from the quenching effected at 150 - 250°C for 4 - 16 h, followed by cooling in still air.
  20. Method for producing a steel part according to one of the claims 17 to 19, characterised in that the part is subjected likewise to a carburising or a nitriding or a carbonitriding.
  21. Method for producing a steel part according to claim 20, characterised in that the nitriding is effected during an age hardening cycle.
  22. Method for producing a steel part according to claim 21, characterised in that the nitriding is effected before 490 and 525°C for 5 to 100 h.
  23. Method for producing a steel part according to one of the claims 20 to 22, characterised in that said nitriding or carburising is effected during a thermal cycle prior to or simultaneously with said solution heat treatment.
  24. Mechanical part or part for a structural element, characterised in that it is produced according to the method of one of the claims 17 to 23.
  25. Mechanical part according to claim 24, characterised in that it concerns an engine transmission shaft, or an engine suspension device or a landing gear element or a gearbox element or a bearing axle.
EP08806015A 2007-07-10 2008-06-18 Hardened martensitic steel having a low or zero content of cobalt, process for manufacturing a part from this steel, and part thus obtained Active EP2164998B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200830116T SI2164998T1 (en) 2007-07-10 2008-06-18 Hardened martensitic steel having a low or zero content of cobalt, process for manufacturing a part from this steel, and part thus obtained
PL08806015T PL2164998T3 (en) 2007-07-10 2008-06-18 Hardened martensitic steel having a low or zero content of cobalt, process for manufacturing a part from this steel, and part thus obtained

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0756379 2007-07-10
PCT/FR2008/051080 WO2009007562A1 (en) 2007-07-10 2008-06-18 Hardened martensitic steel having a low or zero content of cobalt, process for manufacturing a part from this steel, and part thus obtained

Publications (2)

Publication Number Publication Date
EP2164998A1 EP2164998A1 (en) 2010-03-24
EP2164998B1 true EP2164998B1 (en) 2010-12-01

Family

ID=39156307

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08806015A Active EP2164998B1 (en) 2007-07-10 2008-06-18 Hardened martensitic steel having a low or zero content of cobalt, process for manufacturing a part from this steel, and part thus obtained

Country Status (13)

Country Link
US (1) US9045806B2 (en)
EP (1) EP2164998B1 (en)
JP (1) JP5328785B2 (en)
CN (1) CN101815797B (en)
AT (1) ATE490347T1 (en)
CA (1) CA2694844C (en)
DE (1) DE602008003811D1 (en)
DK (1) DK2164998T3 (en)
ES (1) ES2352788T3 (en)
PL (1) PL2164998T3 (en)
RU (1) RU2456367C2 (en)
SI (1) SI2164998T1 (en)
WO (1) WO2009007562A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109604957A (en) * 2018-12-14 2019-04-12 中国航空工业集团公司北京航空精密机械研究所 A kind of processing method of the open thin-wall titanium alloy part of high-precision configuration

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2947565B1 (en) * 2009-07-03 2011-12-23 Snecma CRYOGENIC TREATMENT OF A MARTENSITIC STEEL WITH MIXED CURING
FR2947566B1 (en) * 2009-07-03 2011-12-16 Snecma PROCESS FOR PRODUCING A MARTENSITIC STEEL WITH MIXED CURING
FR2964668B1 (en) * 2010-09-14 2012-10-12 Snecma OPTIMIZING THE MACHINABILITY OF STAINLESS MARTENSITIC STEELS
RU2502822C1 (en) * 2012-12-18 2013-12-27 Юлия Алексеевна Щепочкина Steel
US9303295B2 (en) * 2012-12-28 2016-04-05 Terrapower, Llc Iron-based composition for fuel element
US10157687B2 (en) 2012-12-28 2018-12-18 Terrapower, Llc Iron-based composition for fuel element
CN103667964B (en) * 2013-11-07 2016-06-15 安徽省智汇电气技术有限公司 A kind of pump bearing mild steel material and preparation method thereof
CN104372260B (en) * 2014-11-07 2017-03-08 佛山市南海区华恭金属加工有限公司 High-strength steel tension rod and its heat treatment method
CN104911499B (en) * 2015-06-29 2017-12-26 钢铁研究总院 Cu strengthens Co free Secondery-hardening Ultrahigh Strength Steels and preparation method
RU2611250C1 (en) * 2015-11-25 2017-02-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Tool steel
CN110257718B (en) * 2019-08-01 2020-10-16 邵东智能制造技术研究院有限公司 Wear-resistant stainless steel structural alloy and preparation method thereof
CN111440929B (en) * 2020-04-10 2021-11-12 合肥通用机械研究院有限公司 Design and manufacturing method of high-pressure hydrogen-contacting self-tightening combined sealing element
CN116926442B (en) * 2023-07-24 2024-02-23 北京理工大学 Nanophase synergistic precipitation strengthening low yield ratio ultrahigh strength steel and preparation method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1089934A (en) * 1964-10-28 1967-11-08 Republic Steel Corp High strength steel alloy composition
JPS5161B1 (en) * 1967-09-18 1976-01-05
US4004920A (en) * 1975-05-05 1977-01-25 United States Steel Corporation Method of producing low nitrogen steel
FR2307879A1 (en) * 1975-04-18 1976-11-12 Siderurgie Fse Inst Rech Cryogenic steel sheet mfr. - by rapid cooling immediately after rolling, then annealing
EP0021349B1 (en) * 1979-06-29 1985-04-17 Nippon Steel Corporation High tensile steel and process for producing the same
JPS5635750A (en) * 1979-08-29 1981-04-08 Kobe Steel Ltd Alloy steel with superior strength and toughness and its manufacture
US4605321A (en) * 1983-03-23 1986-08-12 Skf Kugellagerfbriken Gmbh Roller bearing for seating a pedal bearing shaft
US4832525A (en) * 1988-03-25 1989-05-23 Morrison Donald R Double-bearing shaft for a vibrating screed
US5393488A (en) * 1993-08-06 1995-02-28 General Electric Company High strength, high fatigue structural steel
SE520169C2 (en) * 1999-08-23 2003-06-03 Sandvik Ab Method for the manufacture of steel products of precipitated hardened martensitic steel, and the use of these steel products
FR2823226B1 (en) * 2001-04-04 2004-02-20 V & M France STEEL AND STEEL TUBE FOR HIGH TEMPERATURE USE
US6715921B2 (en) * 2001-10-24 2004-04-06 Victor Company Of Japan, Ltd. Shaft bearing structure of spindle motor
RU2218445C2 (en) * 2001-11-28 2003-12-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт неорганических материалов им. акад. А.А.Бочвара" Heat-resistant radiation-resistant steel
US6890393B2 (en) * 2003-02-07 2005-05-10 Advanced Steel Technology, Llc Fine-grained martensitic stainless steel and method thereof
FR2885142B1 (en) * 2005-04-27 2007-07-27 Aubert & Duval Soc Par Actions CURED MARTENSITIC STEEL, METHOD FOR MANUFACTURING A WORKPIECE THEREFROM, AND PIECE THUS OBTAINED
JP2007063658A (en) * 2005-09-02 2007-03-15 Daido Steel Co Ltd Martensitic stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109604957A (en) * 2018-12-14 2019-04-12 中国航空工业集团公司北京航空精密机械研究所 A kind of processing method of the open thin-wall titanium alloy part of high-precision configuration

Also Published As

Publication number Publication date
EP2164998A1 (en) 2010-03-24
DE602008003811D1 (en) 2011-01-13
CA2694844C (en) 2015-07-28
WO2009007562A1 (en) 2009-01-15
CA2694844A1 (en) 2009-01-15
ES2352788T3 (en) 2011-02-23
CN101815797B (en) 2012-05-16
US20100200119A1 (en) 2010-08-12
PL2164998T3 (en) 2011-05-31
RU2456367C2 (en) 2012-07-20
JP2010533240A (en) 2010-10-21
US9045806B2 (en) 2015-06-02
RU2010104452A (en) 2011-08-20
DK2164998T3 (en) 2011-03-14
ATE490347T1 (en) 2010-12-15
JP5328785B2 (en) 2013-10-30
SI2164998T1 (en) 2011-01-31
CN101815797A (en) 2010-08-25

Similar Documents

Publication Publication Date Title
EP2164998B1 (en) Hardened martensitic steel having a low or zero content of cobalt, process for manufacturing a part from this steel, and part thus obtained
EP2310546B1 (en) Hardened martensitic steel having a low cobalt content, process for manufacturing a part from this steel, and part thus obtained
EP1874973B1 (en) Tempered martensitic steel, method of producing a part from said steel and part thus obtained
EP1896624B1 (en) Martensitic stainless steel composition, method for making a mechanical part from said steel and resulting part
EP1426453B1 (en) Process for the production of a steel forged part
CA2335911C (en) Case hardened steel with high tempering temperature, method for obtaining same and parts formed with said steel
EP1979583B1 (en) Method for making a combustion engine valve, and valve thus obtained
FR2885141A1 (en) Hardened martensitic steel contains amounts of carbon, cobalt, chrome and aluminum with traces of other minerals
CA2984131C (en) Steel, product made of said steel, and manufacturing method thereof
EP3765646B1 (en) Steel composition
CA3001158C (en) Steel, product created from said steel, and manufacturing method thereof
WO2017216500A1 (en) Steel composition
JP4688691B2 (en) Case-hardened steel with excellent low cycle fatigue strength
CA2559562C (en) Steel for mechanical parts, method for producing mechanical parts from said steel and the thus obtainable mechanical parts
JP5381171B2 (en) Manufacturing method of high strength case hardening steel parts
CA2312034C (en) Nitriding steel, method for obtaining same and parts formed with said steel
WO2022253912A1 (en) Hot-formed steel part and manufacturing method
FR2784692A1 (en) Case hardenable low alloy constructional steel, especially for automobile gear wheels, comprises chromium, manganese, nickel, molybdenum, silicon, copper, sulfur, carbon, and aluminum

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602008003811

Country of ref document: DE

Date of ref document: 20110113

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110211

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE S.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110301

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110301

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110401

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110902

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008003811

Country of ref document: DE

Effective date: 20110902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20140516

Year of fee payment: 7

Ref country code: CH

Payment date: 20140612

Year of fee payment: 7

Ref country code: NL

Payment date: 20140520

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20140519

Year of fee payment: 7

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20150630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150701

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20160223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150619

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230627

Year of fee payment: 16

Ref country code: DE

Payment date: 20230620

Year of fee payment: 16

Ref country code: CZ

Payment date: 20230612

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230620

Year of fee payment: 16

Ref country code: PL

Payment date: 20230612

Year of fee payment: 16

Ref country code: AT

Payment date: 20230621

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230619

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 16

Ref country code: GB

Payment date: 20230620

Year of fee payment: 16

Ref country code: ES

Payment date: 20230828

Year of fee payment: 16