EP2310546B1 - Hardened martensitic steel having a low cobalt content, process for manufacturing a part from this steel, and part thus obtained - Google Patents

Hardened martensitic steel having a low cobalt content, process for manufacturing a part from this steel, and part thus obtained Download PDF

Info

Publication number
EP2310546B1
EP2310546B1 EP09784484.9A EP09784484A EP2310546B1 EP 2310546 B1 EP2310546 B1 EP 2310546B1 EP 09784484 A EP09784484 A EP 09784484A EP 2310546 B1 EP2310546 B1 EP 2310546B1
Authority
EP
European Patent Office
Prior art keywords
traces
steel
ppm
steel according
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09784484.9A
Other languages
German (de)
French (fr)
Other versions
EP2310546A1 (en
Inventor
François ROCH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aubert and Duval SA
Original Assignee
Aubert and Duval SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aubert and Duval SA filed Critical Aubert and Duval SA
Priority to PL09784484T priority Critical patent/PL2310546T3/en
Publication of EP2310546A1 publication Critical patent/EP2310546A1/en
Application granted granted Critical
Publication of EP2310546B1 publication Critical patent/EP2310546B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a martensitic steel hardened by a duplex system, that is to say by a precipitation of intermetallic compounds and carbides obtained by means of a suitable steel composition and heat aging treatment.
  • maraging steels contain quite consistently high levels of nickel, cobalt and molybdenum, all of which are expensive and subject to significant changes in their rating in the commodity market. They also contain titanium, used for its strong contribution to secondary hardening, but which is mainly involved in lowering the fatigue strength of maraging steels due to TiN nitride, which it is almost impossible to avoid training during the making of steels even contains only a few tenths of a percent.
  • This steel is said to be "duplex-hardening" because its hardening is achieved by simultaneous hardening precipitation of intermetallic compounds and M 2 C carbides.
  • the object of the invention is to provide a usable steel, in particular, for manufacturing mechanical parts such as transmission shafts, or structural elements, having a higher resilience while having a high mechanical strength.
  • This steel should also have a lower production cost than the best performing steels currently known for these uses, thanks, in particular, to a significantly lower cobalt content.
  • It preferably contains C 0.20 - 0.25%.
  • It preferably contains Cr 2 - 4%.
  • It preferably contains Al 1 - 1.6%, better 1.4 - 1.6%.
  • It preferably contains Mo + W / 2 1 - 2%.
  • It preferably contains V 0.2 - 0.3%.
  • It preferably contains Ni 12-14%, with Ni ⁇ 7 + 3.5 Al.
  • Nb traces - 0.05%
  • It preferably contains Si traces - 0.25%, better traces - 0.10%.
  • It preferably contains O traces - 10 ppm.
  • N traces - 10 ppm.
  • It preferably contains S traces - 10 ppm, better traces - 5 ppm.
  • It preferably contains P traces - 100 ppm.
  • Its measured martensitic transformation temperature Ms is preferably greater than or equal to 100 ° C.
  • Its martensitic transformation temperature Ms measured may be greater than or equal to 140 ° C.
  • It further preferably comprises a cryogenic treatment at -50 ° C or lower, preferably between -80 ° C and 100 ° C or lower but not below -110 ° C, to convert all the austenite to martensite , the temperature being lower than 150 ° C. or more measured Ms, at least one of said treatments lasting between 4h and 50h and preferably between 4h and 10h.
  • It also preferably comprises a softening treatment of the rough quenching martensite carried out at 150-250 ° C for 4-16h, followed by cooling with still air.
  • the part also preferably undergoes carburizing, or nitriding, or carbonitriding.
  • Nitriding, or carburizing, or carbonitriding can be performed during an aging cycle.
  • Nitriding can be carried out between 475 and 600 ° C.
  • Said nitriding or carburising or carbonitriding can be carried out during a thermal cycle prior to or simultaneously with said dissolution.
  • the invention also relates to a mechanical part or component for structural element, characterized in that it is manufactured according to the preceding method.
  • It may be in particular a motor transmission shaft, or a motor suspension device or a landing gear element or a gearbox element or a bearing axis.
  • the invention is based first of all on a steel composition which differs from the prior art represented by WO-2006/114499 in particular by a lower but still significant Co content, between 1.5 and 4%.
  • the contents of the other most commonly present significant alloying elements are only slightly modified, but certain levels of impurities must be carefully controlled.
  • Co is an expensive element whose content has been significantly reduced compared with the prior art, without, however, eliminating it or bringing it to a very low level.
  • the steel according to the invention generally contains relatively few expensive addition elements, apart from nickel, the content of which, however, is not increased with respect to the prior art. But, it is necessary to take special care during development, to limit the nitrogen content to 20 ppm at most to avoid as much as possible the formation of aluminum nitrides. The maximum levels of titanium and zirconium must also be limited accordingly to prevent nitrides from forming with residual nitrogen.
  • the steel of the invention can be machined in the quenched state, with tools adapted to a hardness of 45HRC. It is intermediate between the maragings (rough machining quench since they have a mild low carbon martensite) and carbon steels that must be machined essentially in the annealed state.
  • a "duplex" curing is carried out, that is to say obtained jointly by intermetallics of ⁇ -NiAl type and carbides of M 2 C type, in the presence of reversion austenite formed / stabilized by diffusion-enriched nickel enrichment during curing aging, which gives ductility to the structure by forming a sandwich structure (a few% of stable and ductile austenite between the slats of hardened martensite).
  • nitrides Ti, Zr and Al in particular, which are weakening: they deteriorate the tenacity and fatigue resistance. Since these nitrides can precipitate from 1 to a few ppm of N in the presence of Ti, Zr and / or Al, and the conventional elaboration means make it difficult to achieve less than 5 ppm of N, the steel of the invention respects the following rules.
  • any addition of Ti (maximum allowed: 100 ppm) is limited, and N is limited as much as possible.
  • the N content should not exceed 20 ppm and more preferably 10 ppm, and the Ti content should not exceed 10 times the N content.
  • Ti and Zr are to be considered as impurities to be avoided, and the sum Ti + Zr / 2 must be ⁇ 150 ppm.
  • rare earths at the end of the elaboration, can also contribute to fix a fraction of N, besides the S and O. In this case, it must be ensured that the residual content of rare earths in free form remains less than or equal to 100 ppm, and preferably less than or equal to 50 ppm, because these elements weaken the steel when they are present beyond these values. It is believed that rare earth (eg La) oxynitrides are less harmful than Ti or Al nitrides because of their globular form which would make them less likely to constitute fatigue fracture primers.
  • Calcium treatment may be practiced to complete the deoxidation / desulfurization of the liquid metal. This treatment is preferably conducted with the possible additions of Ti, Zr or rare earths.
  • the M 2 C carbide of Cr, Mo, W and V containing very little Fe is preferred for its hardening and non-embrittling properties.
  • the carbide M 2 C is metastable with respect to equilibrium carbides M 7 C 3 and / or M 6 C and / or M 23 C 6 . It is stabilized by Mo and W.
  • Mo + W / 2 is between 1 and 2%. It is also to prevent the formation of non-hardening Ti carbides which may weaken the grain boundaries that a 100 ppm imperative limitation of the Ti content of the steels according to the invention is required.
  • Cr and V are elements that activate the formation of "metastable" carbides.
  • V also forms carbides of MC type, stable up to the dissolution temperatures, which "block" the grain boundaries and limit the magnification of grains during heat treatments at high temperatures.
  • V 0.3% must not be exceeded in order not to fix too much C in carbides of V, during the dissolution cycle, to the detriment of the M 2 C carbide of Cr, Mo, W, V which is sought precipitation during the subsequent aging cycle.
  • the V content is between 0.2 and 0.3%.
  • the presence of C favors the appearance of M 2 C with respect to the ⁇ phase. But an excessive content causes segregations, a lowering of Ms and causes difficulties in manufacturing on an industrial scale: sensitivity to the taps (superficial cracking during rapid cooling), difficult machinability of martensite too hard to l quenching state. Its content must be between 0.20 and 0.30%, preferably 0.20-0.25%.
  • the surface layer of the parts may be enriched in C by carburizing or carbonitriding if a very high surface hardness is required in the envisaged applications.
  • Cobalt slightly raises the ductile / brittle transition temperature, which is not favorable, particularly in compositions with low nickel contents, whereas, contrary to what can be observed in other steels, cobalt does not obviously raise the transformation point Ms compositions of the invention and therefore has no obvious interest either in this respect.
  • the invention is based first of all on a steel composition which differs from the prior art represented by WO-2006/114499 in particular by a lower Co content, between 1.5 and 4%, better between 2 and 3%.
  • the contents of the other most commonly present significant alloying elements are only slightly modified, but certain impurity contents must be carefully controlled, especially the contents of Ti, Zr and N which affect the toughness.
  • Co degrades the transition of resilience of pure Fe ( page 52-54 Materials Science and Technology January 1994 Vol. 10 ). Indeed, as has been said the presence of Co increases the ductile / brittle transition temperature. Furthermore, a Co content greater than 1.5% Co is useful for improving the structural hardening by precipitation of M 2 C carbide and thus significantly increasing Rm.
  • a Co content between about 1.5 and 4%, more preferably between 2 and 3%, significantly improves the mechanical strength virtually without degrading the resilience, compared to a very low Co content ( ⁇ 1%) whose composition would, moreover, be identical.
  • Ni and Al are bonded in the invention, where Ni must be ⁇ 7 + 3.5 Al. These are the two essential elements which participate in a good part of aging hardening, thanks to the precipitation of the nanometric intermetallic phase of type B2 (NiAl for example). It is this phase which gives a large part of the mechanical strength when hot, up to about 400 ° C. Nickel is also the element that reduces brittleness by cleavage because it lowers the ductile / brittle transition temperature of martensites. If Al is too high relative to Ni, the martensitic matrix is too strongly depleted of nickel as a result of the precipitation of the NiAl curing precipitate during aging.
  • martensitic transformation start temperature Ms which, according to the invention, should preferably remain equal to or greater than 140 ° C. if no cryogenic cycle is used, and should preferably be between 100 and 140 ° C. if we practice a cryogenic cycle.
  • this formula is only very approximate, in particular because the effects of Co and Al are highly variable from one type of steel to another. To know whether a steel is or not according to the invention, it is therefore necessary to rely on measurements of the actual temperature Ms, made for example by dilatometry as is conventional. Ni content is one of Ms.'s possible adjustment variables
  • the end-of-cooling temperature after quenching must be less than the actual Ms -150 ° C., preferably lower than the actual Ms -200 ° C., in order to ensure a full martensitic transformation of the steel.
  • the end-of-cooling temperature must therefore be lower than the measured temperature Mf of martensitic transformation end of the steel.
  • a cryogenic treatment may be applied immediately following cooling to room temperature from the solution temperature.
  • the overall rate of cooling should be as high as possible to avoid the mechanisms of stabilization of the carbon-rich residual austenite. However, it is not useful to look for cryogenic temperatures below -110 ° C because the thermal agitation of the structure becomes insufficient to produce the martensitic transformation.
  • the Ms value of the steel is between 100 and 140 ° C if a cryogenic cycle is applied, and greater than or equal to 140 ° C in the absence of this cryogenic cycle.
  • the duration of the cryogenic cycle is between 4 and 50 hours, preferably 4 to 16 hours, and more preferably 4 to 10 hours. It is possible to practice several cryogenic cycles, the essential being that at least one of them has the aforementioned characteristics.
  • steels of the class of the invention prefer the presence of B2 hardening phases, especially NiAl, to obtain a high mechanical strength when hot. Compliance with the conditions on Ni and Al that have been given ensures a sufficient potential content of reversion austenite to maintain ductility and toughness suitable for the intended applications.
  • Nb to control grain size during forging or other hot processing at a content not exceeding 0.1%.
  • the steel according to the invention therefore accepts raw materials that can contain significant residual contents in Nb.
  • a characteristic of the steels of the class of the invention is also the possibility of replacing at least a portion of Mo by W.
  • W segregates less at solidification than Mo and provides an increase in mechanical strength when hot. It has the disadvantage of being expensive and we can optimize this cost by associating it with Mo.
  • Mo + W / 2 must be between 1 and 4%, preferably between 1 and 2% . It is preferred to maintain a minimum content of 1% Mo to limit the cost of steel, especially as the high temperature withstand is not a priority objective of the steel of the invention.
  • Cu can be up to 1%. It is likely to participate in the hardening with the help of its epsilon phase, and the presence of Ni makes it possible to limit its harmful effects, in particular the appearance of superficial cracks during the forging of the pieces, which one observes during additions of copper in steels not containing nickel. But its presence is not essential and it may be present only in the state of residual traces, resulting from the pollution of raw materials.
  • Manganese is not a priori useful for obtaining the properties of steel, but it has no recognized adverse effect.
  • its low vapor pressure at the temperatures of the liquid steel makes its concentration difficult to control in vacuum production and vacuum remelting: its content may vary depending on the radial and axial location in a remelted ingot. As it is often present in the raw materials, and for the reasons above, its content will preferably be at most 0.25%, and in any case limited to 2% at most, because of too great variations in its concentration in the same product will interfere with the repeatability of the properties.
  • Silicon is known to have a solid solution hardening effect of ferrite and, like cobalt, to decrease the solubility of certain elements or phases in ferrite.
  • the steel of the invention comprises only relatively little cobalt, and it can do without silicon, especially since, in addition, silicon generally promotes the precipitation of intermetallic phases harmful in complex steels (Laves phase, silicides ). Its content will be limited to 1%, preferably less than 0.25% and still more preferably less than 0.1%.
  • S traces - 20ppm, preferably traces - 10ppm, better traces - 5ppm
  • P traces - 200ppm, preferably traces - 100ppm, better traces - 50ppm.
  • Ca can be used as a deoxidizer and as a sulfur sensor, finding it in the end ( ⁇ 20ppm).
  • rare earth residues may ultimately remain ( ⁇ 100ppm) following a refining treatment of the liquid metal where they would have been used to capture O, S and / or N.
  • the use of Ca and rare earths for these effects not being mandatory, these elements may be present only in the form of traces in the steels of the invention.
  • the acceptable oxygen content is 50 ppm maximum, preferably 10 ppm maximum.
  • Table 1 Composition of the tested samples
  • S ppm 1 4 7 4 6 7 3 8 10 5 4 P ppm 54 30 29 31 30 25 15 28 80 45 29 Or% 13,43 12.67 13,31 12.42 12,30 14,11 12.99 12.70 15,10 11.25 12.91 Cr% 2.76 3.38 2.99 3.05 3.21 3.19 2.95 3.25 3.17 3.17 2.89 Mo% 1.44 1.52 1.61 1.52
  • Reference steel A corresponds to a steel according to US-A-5,393,488 , thus having a high Co content.
  • the reference steel B corresponds to a steel according to WO-A-2006/114 499, it is distinguished from A by a lower Co content and a higher Al content.
  • Steels C to J are in accordance with the invention in all respects, in particular by their Co content, which is significantly lower than that of steel. B, but which nevertheless remains substantially higher than a simple residual content and is obtained by a deliberate addition during the preparation.
  • Steel D differs from C by a slightly lower Co content for a lower Ni content, and by the absence of V, which is present only in trace amounts.
  • Steel E is distinguished from D by a Co content even lower than that of D and by a V content at a level comparable to steel C.
  • Steel F is distinguished from C, D, E mainly by a slightly higher Ni content, its Co content being comparable to that of E steel.
  • Steel G differs from steels C to F by an even lower Co content and has no V.
  • Steel H is distinguished from Steel G by a further steepening of the Co content and a significantly higher boron content.
  • Steel I is distinguished from Steel H by further lowering of Co content, and lower C content with higher Ni content.
  • Steel J is the one whose composition has the lowest Co content, while corresponding to a voluntary addition and which remains in accordance with the invention. It also has the lowest Ni content and contains V.
  • the reference steel K has a low Co content and below the minimum required by the invention. It is comparable on the other points to steels according to the invention without V and B and very low N.
  • the samples were softened at a temperature of at least 600 ° C.
  • this softening income was carried out at 650 ° C. for 8 hours and followed by cooling in air. Thanks to this, the raw products of thermomechanical transformations can undergo without particular problems the finishing operations (straightening, peeling, machining ...) giving the piece its final form. It will be noted that the softening income does not contribute to obtaining the final mechanical characteristics.
  • the desired resilience / resilience tradeoff could be further refined through a modification of the aging conditions, but the adjustment of the Co content remains the key parameter that must be used to achieve this compromise.
  • the hardening provided by the increase of Al, with the high Ni, to form the hardening phase NiAl, is not proportional to the concentration of Al, and exceed a value of 2% in Al does not bring gain significant on the tensile strength.
  • Nb and B of the samples D and H respectively are not necessary to obtain the high mechanical strengths targeted primarily in the steels of the class of the invention.
  • the addition of Nb makes it possible to refine the grain size, described by the conventional ASTM index (the highest ASTM values corresponding to the finest grains).
  • thermomechanical treatments for hot and / or cold forming can be carried out in addition to or in place of this forging, depending on the type of end product that is desired (stamped parts, bars). , semi-finished products ).
  • the preferred applications of the steel according to the invention are the endurance parts for mechanics and structural elements, for which a tensile strength greater than 2150 MPa must be cold, combined with higher values of resilience than better high-strength steels, and hot (400 ° C) a tensile strength of the order of 1800 MPa, as well as optimal fatigue properties.
  • the steel according to the invention also has the advantage of being cementable, nitrurable and carbonitrurable.
  • the parts that use it can therefore be given high abrasion resistance without affecting its core properties. This is particularly advantageous in the intended applications that have been cited.
  • the carburizing, or the nitriding, or the carbonitriding can, possibly, be carried out during the heat treatments of aging or dissolution in solution, instead of being carried out during a separate step.
  • nitriding can be carried out between 475 and 500 ° C during an aging cycle.

Description

L'invention concerne un acier martensitique durci par un système duplex, c'est-à-dire par une précipitation de composés intermétalliques et de carbures obtenue grâce à une composition de l'acier et un traitement thermique de vieillissement appropriés.The invention relates to a martensitic steel hardened by a duplex system, that is to say by a precipitation of intermetallic compounds and carbides obtained by means of a suitable steel composition and heat aging treatment.

Ce type d'acier propose :

  • une très haute résistance mécanique, mais en même temps une ténacité et une ductilité élevées, autrement dit une faible sensibilité à la rupture fragile ; cette très haute résistance subsiste à chaud, jusqu'à des températures de l'ordre de 400°C ;
  • de bonnes propriétés en fatigue, ce qui implique notamment l'absence d'inclusions nocives telles que des nitrures et des oxydes ; cette caractéristique doit être obtenue par une composition appropriée et des conditions d'élaboration du métal liquide soignées.
This type of steel offers:
  • a very high mechanical strength, but at the same time a high tenacity and ductility, ie a low sensitivity to brittle fracture; this very high resistance remains hot, up to temperatures of the order of 400 ° C;
  • good fatigue properties, which notably implies the absence of harmful inclusions such as nitrides and oxides; this characteristic must be obtained by a suitable composition and conditions of preparation of the liquid metal treated.

De plus, il est cémentable et nitrurable, de manière à pouvoir durcir sa surface pour lui conférer une bonne résistance à l'abrasion et en frottement lubrifié.In addition, it is cementable and nitrurable, so as to harden its surface to give it good resistance to abrasion and lubricated friction.

Les applications envisageables de cet acier concernent tous les domaines de la mécanique où sont requises des pièces de structure ou de transmission qui doivent combiner de très fortes charges, sous sollicitations dynamiques et en présence d'échauffement induit ou environnant. On citera, de manière non exhaustive, les arbres de transmission, les arbres de boîte de vitesse, les axes de roulements,...The possible applications of this steel concern all areas of mechanics where structural or transmission parts are required which must combine very high loads, under dynamic loads and in the presence of induced or surrounding heating. Non-exhaustive examples include transmission shafts, gear shafts, bearing shafts, etc.

La demande d'une excellente résistance mécanique à chaud empêche d'utiliser, dans certaines applications, les aciers au carbone ou les aciers dits « faiblement alliés » dont la résistance se dégrade à partir de 200°C. En outre, la ténacité de ces aciers n'est généralement plus satisfaisante lorsqu'ils sont traités pour des niveaux de résistance mécanique supérieurs à 2000 MPa, et, d'une manière générale, leur limite élastique « vraie » est bien inférieure à leur résistance maximale mesurée à l'essai de traction : la limite élastique est donc un critère dimensionnant qui devient pénalisant dans ce cas. On peut alors utiliser les aciers maraging, dont la limite élastique est notablement plus proche de leur valeur maximale de résistance à la traction, qui ont une résistance satisfaisante jusqu'à 350-400°C, et qui offrent encore une bonne ténacité pour les très hauts niveaux de résistance mécanique. Mais ces aciers maraging contiennent assez systématiquement des teneurs élevées en nickel, cobalt et molybdène, tous éléments qui sont coûteux et sujets à des variations notables de leur cote sur le marché des matières premières. Ils contiennent aussi du titane, utilisé pour sa forte contribution au durcissement secondaire, mais qui est principalement en cause dans l'abaissement de la tenue en fatigue des aciers maraging dû au nitrure TiN, dont il est quasiment impossible d'éviter la formation lors de l'élaboration d'aciers n'en contenant même seulement que quelques dixièmes de pourcents.The demand for excellent mechanical resistance to hot prevents the use in some applications of carbon steels or so-called "low alloyed" steels whose resistance deteriorates from 200 ° C. In addition, the toughness of these steels is generally no longer satisfactory when treated for mechanical strength levels greater than 2000 MPa, and, in general, their "true" elastic limit is much lower than their resistance. maximum measured at the tensile test: the elastic limit is therefore a dimensioning criterion which becomes penalizing in this case. We can then use maraging steels, whose elastic limit is significantly closer to their maximum tensile strength, which have a satisfactory strength up to 350-400 ° C, and which still offer good toughness for very high levels of mechanical strength. But these maraging steels contain quite consistently high levels of nickel, cobalt and molybdenum, all of which are expensive and subject to significant changes in their rating in the commodity market. They also contain titanium, used for its strong contribution to secondary hardening, but which is mainly involved in lowering the fatigue strength of maraging steels due to TiN nitride, which it is almost impossible to avoid training during the making of steels even contains only a few tenths of a percent.

Il a été proposé dans US-A-5,393,488 une composition d'acier à durcissement secondaire sans addition de titane, visant à améliorer la tenue à chaud et surtout à améliorer les propriétés en fatigue, la ductilité et la ténacité. Cette composition a l'inconvénient d'exiger une teneur en Co élevée (8 à 16%), ce qui rend l'acier très coûteux. (NB : dans le présent texte, toutes les teneurs des différents éléments sont exprimées en % pondéraux).It has been proposed in US Patent 5,393,488 a secondary hardening steel composition without addition of titanium, aimed at improving the heat resistance and especially to improve the fatigue properties, ductility and toughness. This composition has the disadvantage of requiring a high Co content (8 to 16%), which makes the steel very expensive. (NB: in the present text, all the contents of the various elements are expressed in% by weight).

Dans le document WO-A-2006/114499 , on a proposé une composition d'acier martensitique durci et une suite de traitements thermiques optimisée adaptée à cette composition qui, par rapport à l'art antérieur représenté par US-A-5,393,388 , présentait l'avantage de n'exiger qu'une teneur plus réduite en cobalt, soit entre 5 et 7%. En ajustant les teneurs des autres éléments et les paramètres des traitements thermiques en conséquence, il a été possible d'obtenir des pièces proposant un ensemble de propriétés mécaniques très satisfaisantes, notamment pour les applications aéronautiques. Ce sont, notamment, une résistance à la traction à froid comprise entre 2200 MPa et 2350 MPa, une ductilité et une résilience au moins égales à celles des meilleurs aciers à haute résistance, et à chaud (400°C) une résistance à la traction de l'ordre de 1800 MPa, ainsi que des propriétés de fatigue optimales.In the document WO-2006/114499 , a hardened martensitic steel composition and an optimized heat treatment suite adapted to this composition have been proposed which, with respect to the prior art represented by US Patent 5,393,388 , had the advantage of requiring a lower cobalt content of between 5 and 7%. By adjusting the contents of the other elements and the parameters of the heat treatments accordingly, it has been possible to obtain parts offering a very satisfactory set of mechanical properties, in particular for aeronautical applications. These include, in particular, a cold tensile strength of between 2200 MPa and 2350 MPa, ductility and resilience at least equal to those of the best high-strength steels, and hot (400 ° C.) tensile strength. of the order of 1800 MPa, as well as optimal fatigue properties.

Cet acier est dit « à durcissement duplex », car son durcissement est obtenu par la précipitation durcissante simultanée de composés intermétalliques et de carbures de type M2C.This steel is said to be "duplex-hardening" because its hardening is achieved by simultaneous hardening precipitation of intermetallic compounds and M 2 C carbides.

Toutefois, cet acier contient toujours des quantités de cobalt relativement importantes. Cet élément étant de toute façon onéreux et son prix étant susceptible de subir des fluctuations importantes sur le marché des matières premières, il serait important de trouver des moyens de réduire encore très sensiblement sa présence, notamment dans les matériaux destinés à des applications mécaniques plus courantes que les applications aéronautiques.However, this steel still contains relatively large amounts of cobalt. As this element is in any case expensive and its price is likely to undergo significant fluctuations on the raw materials market, it would be important to find ways to reduce its presence even more significantly, particularly in materials intended for more common mechanical applications. than aeronautical applications.

Les aciers tels que proposés dans WO-A-2006/114499 et US-A-5 393 488 permettent d'obtenir une bonne résilience mais pour certaines applications celle-ci peut s'avérer insuffisante.Steels as proposed in WO-2006/114499 and US-A-5,393,488 allow to obtain a good resilience but for some applications it may be insufficient.

Pour ces mêmes applications il est également demandé d'obtenir une résistance à la traction (Rm) très élevée.For these same applications it is also required to obtain a very high tensile strength (Rm).

Le but de l'invention est de proposer un acier utilisable, notamment, pour fabriquer des pièces mécaniques telles que des arbres de transmission, ou des éléments de structure, présentant une résilience plus élevée tout en présentant une résistance mécanique importante. Cet acier devrait également avoir un coût de production plus faible que les aciers les plus performants connus actuellement pour ces usages, grâce, en particulier, à une teneur en cobalt significativement plus réduite.The object of the invention is to provide a usable steel, in particular, for manufacturing mechanical parts such as transmission shafts, or structural elements, having a higher resilience while having a high mechanical strength. This steel should also have a lower production cost than the best performing steels currently known for these uses, thanks, in particular, to a significantly lower cobalt content.

A cet effet, l'invention a pour objet un acier caractérisé en ce que sa composition est, en pourcentages pondéraux :

  • C = 0,18 - 0,30%
  • Co = 1,5 - 4 %, de préférence 2 - 3%
  • Cr = 2 - 5%
  • Al = 1 - 2%
  • Mo + W/2 = 1 - 4%
  • V = traces - 0,3%
  • Nb = traces - 0,1%
  • B = traces - 30 ppm
  • Ni = 11 - 16% avec Ni ≥ 7 + 3,5 Al
  • Si = traces - 1,0%
  • Mn = traces - 2,0%
  • Ca = traces - 20 ppm
  • Terres rares = traces - 100 ppm
  • si N ≤ 10 ppm, Ti + Zr/2 = traces - 100 ppm avec Ti + Zr/2 ≤ 10 N
  • si 10 ppm < N ≤ 20 ppm, Ti + Zr/2 = traces - 150 ppm
  • O = traces - 50 ppm
  • N = traces - 20 ppm
  • S = traces - 20 ppm
  • Cu = traces - 1 %
  • P = traces - 200 ppm
le reste étant du fer et des impuretés inévitables résultant de l'élaboration.For this purpose, the invention relates to a steel characterized in that its composition is, in percentages by weight:
  • C = 0.18 - 0.30%
  • Co = 1.5 - 4%, preferably 2 - 3%
  • Cr = 2 - 5%
  • Al = 1 - 2%
  • Mo + W / 2 = 1 - 4%
  • V = traces - 0.3%
  • Nb = traces - 0,1%
  • B = traces - 30 ppm
  • Ni = 11 - 16% with Ni ≥ 7 + 3.5 Al
  • If = traces - 1.0%
  • Mn = traces - 2.0%
  • Ca = traces - 20 ppm
  • Rare earth = traces - 100 ppm
  • if N ≤ 10 ppm, Ti + Zr / 2 = traces - 100 ppm with Ti + Zr / 2 ≤ 10 N
  • if 10 ppm <N ≤ 20 ppm, Ti + Zr / 2 = traces - 150 ppm
  • O = traces - 50 ppm
  • N = traces - 20 ppm
  • S = traces - 20 ppm
  • Cu = traces - 1%
  • P = traces - 200 ppm
the rest being iron and unavoidable impurities resulting from the elaboration.

Il contient de préférence C = 0,20 - 0,25%.It preferably contains C = 0.20 - 0.25%.

Il contient de préférence Cr = 2 - 4%.It preferably contains Cr = 2 - 4%.

Il contient de préférence Al = 1 - 1,6%, mieux 1,4 - 1,6%.It preferably contains Al = 1 - 1.6%, better 1.4 - 1.6%.

Il contient de préférence Mo ≥ 1%.It preferably contains Mo ≥ 1%.

Il contient de préférence Mo + W/2 = 1 - 2%.It preferably contains Mo + W / 2 = 1 - 2%.

Il contient de préférence V = 0,2 - 0,3%.It preferably contains V = 0.2 - 0.3%.

Il contient de préférence Ni = 12 - 14%, avec Ni ≥ 7 + 3,5 Al.It preferably contains Ni = 12-14%, with Ni ≥ 7 + 3.5 Al.

Il contient de préférence Nb = traces - 0,05%It preferably contains Nb = traces - 0.05%

Il contient de préférence Si = traces - 0,25%, mieux traces - 0,10%.It preferably contains Si = traces - 0.25%, better traces - 0.10%.

Il contient de préférence O = traces - 10 ppm.It preferably contains O = traces - 10 ppm.

Il contient de préférence N = traces - 10 ppm.It preferably contains N = traces - 10 ppm.

Il contient de préférence S = traces - 10 ppm, mieux traces - 5 ppm.It preferably contains S = traces - 10 ppm, better traces - 5 ppm.

Il contient de préférence P = traces - 100 ppm.It preferably contains P = traces - 100 ppm.

Sa température de transformation martensitique Ms mesurée est de préférence supérieure ou égale à 100°C.Its measured martensitic transformation temperature Ms is preferably greater than or equal to 100 ° C.

Sa température de transformation martensitique Ms mesurée peut être supérieure ou égale à 140°C.Its martensitic transformation temperature Ms measured may be greater than or equal to 140 ° C.

L'invention a aussi pour objet un procédé de fabrication d'une pièce en acier, caractérisé en ce qu'il comporte les étapes suivantes précédant le parachèvement de la pièce lui procurant sa forme définitive :

  • la préparation d'un acier ayant la composition précédente ;
  • au moins une opération de mise en forme de cet acier ;
  • un revenu d'adoucissement à 600-675°C pendant 4 à 20h suivi d'un refroidissement à l'air ;
  • une mise en solution à 900-1000°C pendant au moins 1h, suivie par un refroidissement à l'huile ou à l'air suffisamment rapide pour éviter la précipitation de carbures intergranulaires dans la matrice d'austénite ;
  • un vieillissement de durcissement à 475-600°C, de préférence de 490-525°C pendant 5-20h.
The invention also relates to a method for manufacturing a steel part, characterized in that it comprises the following steps preceding the completion of the part giving it its final shape:
  • the preparation of a steel having the preceding composition;
  • at least one shaping operation of this steel;
  • softening income at 600-675 ° C for 4 to 20 hours followed by cooling in the air;
  • solution at 900-1000 ° C for at least 1 hour, followed by cooling with oil or air fast enough to avoid the precipitation of intergranular carbides in the austenite matrix;
  • curing aging at 475-600 ° C, preferably 490-525 ° C for 5-20h.

Il comporte en outre de préférence un traitement cryogénique à -50°C ou plus bas, de préférence entre -80°C et 100°C ou plus bas mais pas en dessous de -110°C, pour transformer toute l'austénite en martensite, la température étant inférieure de 150°C ou davantage à Ms mesurée, au moins un desdits traitements durant entre 4h et 50h et de préférence entre 4h et 10h.It further preferably comprises a cryogenic treatment at -50 ° C or lower, preferably between -80 ° C and 100 ° C or lower but not below -110 ° C, to convert all the austenite to martensite , the temperature being lower than 150 ° C. or more measured Ms, at least one of said treatments lasting between 4h and 50h and preferably between 4h and 10h.

Il comporte en outre de préférence un traitement d'adoucissement de la martensite brute de trempe effectué à 150-250°C pendant 4-16h, suivi par un refroidissement à l'air calme.It also preferably comprises a softening treatment of the rough quenching martensite carried out at 150-250 ° C for 4-16h, followed by cooling with still air.

La pièce subit également de préférence une cémentation, ou une nitruration, ou une carbonitruration .The part also preferably undergoes carburizing, or nitriding, or carbonitriding.

La nitruration, ou la cémentation, ou la carbonitruration, peut être effectuée lors d'un cycle de vieillissement.Nitriding, or carburizing, or carbonitriding, can be performed during an aging cycle.

Une nitruration peut être effectuée entre 475 et 600°C.Nitriding can be carried out between 475 and 600 ° C.

Ladite nitruration ou cémentation ou carbonitruration peut être effectuée lors d'un cycle thermique préalablement ou simultanément à ladite mise en solution.Said nitriding or carburising or carbonitriding can be carried out during a thermal cycle prior to or simultaneously with said dissolution.

L'invention a également pour objet une pièce mécanique ou pièce pour élément de structure, caractérisée en ce qu'elle est fabriquée selon le procédé précédent.The invention also relates to a mechanical part or component for structural element, characterized in that it is manufactured according to the preceding method.

Il peut s'agir notamment d'un arbre de transmission de moteur, ou d'un dispositif de suspension de moteur ou d'un élément d'atterrisseur ou d'un élément de boîte de vitesses ou d'un axe de roulement.It may be in particular a motor transmission shaft, or a motor suspension device or a landing gear element or a gearbox element or a bearing axis.

Comme on l'aura compris, l'invention repose d'abord sur une composition d'acier qui se distingue de l'art antérieur représenté par WO-A-2006/114499 notamment par une teneur en Co plus faible mais restant significative, comprise entre 1,5 et 4 %. Les teneurs des autres éléments d'alliage significativement présents les plus courants ne sont que peu modifiées, mais certaines teneurs en impuretés doivent être maîtrisées avec soin.As will be understood, the invention is based first of all on a steel composition which differs from the prior art represented by WO-2006/114499 in particular by a lower but still significant Co content, between 1.5 and 4%. The contents of the other most commonly present significant alloying elements are only slightly modified, but certain levels of impurities must be carefully controlled.

Le Co est un élément coûteux dont on a réduit significativement la teneur par rapport à l'art antérieur, sans toutefois le supprimer ou le porter à un très bas niveau. L'acier selon l'invention contient, de manière générale, assez peu d'éléments d'addition coûteux, mis à part le nickel dont la teneur n'est cependant pas augmentée par rapport à l'art antérieur. Mais, il est nécessaire d'apporter un soin particulier lors de l'élaboration, afin de limiter la teneur en azote à 20 ppm au maximum pour éviter autant que possible la formation de nitrures d'aluminium. Les teneurs maximales en titane et zirconium doivent aussi être limitées en conséquence pour éviter qu'ils ne forment des nitrures avec l'azote résiduel.Co is an expensive element whose content has been significantly reduced compared with the prior art, without, however, eliminating it or bringing it to a very low level. The steel according to the invention generally contains relatively few expensive addition elements, apart from nickel, the content of which, however, is not increased with respect to the prior art. But, it is necessary to take special care during development, to limit the nitrogen content to 20 ppm at most to avoid as much as possible the formation of aluminum nitrides. The maximum levels of titanium and zirconium must also be limited accordingly to prevent nitrides from forming with residual nitrogen.

L'acier de l'invention peut être usiné à l'état trempé, avec des outils adaptés à une dureté de 45HRC. Il est intermédiaire entre les maragings (usinables bruts de trempe puisqu'ils ont une martensite douce à bas carbone) et les aciers au carbone qui doivent être usinés essentiellement à l'état recuit.The steel of the invention can be machined in the quenched state, with tools adapted to a hardness of 45HRC. It is intermediate between the maragings (rough machining quench since they have a mild low carbon martensite) and carbon steels that must be machined essentially in the annealed state.

L'invention sera mieux comprise à la lecture de la description qui suit, donnée en référence à la figure 1 annexée, qui montre, pour des échantillons de diverses compositions, leur résistance à la traction Rm et leur ténacité Kv.The invention will be better understood on reading the description which follows, given with reference to the figure 1 annexed, which shows, for samples of various compositions, their tensile strength Rm and toughness Kv.

Dans les aciers de la classe de ceux de l'invention, on réalise un durcissement « duplex », c'est-à-dire obtenu conjointement par des intermétalliques de type β-NiAl et par des carbures de type M2C, en présence d'austénite de réversion formée/stabilisée par un enrichissement en nickel obtenu par diffusion lors du vieillissement de durcissement, qui donne de la ductilité à la structure par formation d'une structure sandwich (quelques % d'austénite stable et ductile entre les lattes de la martensite durcie).In the steels of the class of those of the invention, a "duplex" curing is carried out, that is to say obtained jointly by intermetallics of β-NiAl type and carbides of M 2 C type, in the presence of reversion austenite formed / stabilized by diffusion-enriched nickel enrichment during curing aging, which gives ductility to the structure by forming a sandwich structure (a few% of stable and ductile austenite between the slats of hardened martensite).

Il faut éviter de former des nitrures, de Ti, de Zr et d'Al notamment, qui sont fragilisants : ils détériorent la ténacité et la tenue en fatigue. Comme ces nitrures peuvent précipiter dès des teneurs de 1 à quelques ppm de N en présence de Ti, Zr et/ou Al, et que les moyens d'élaboration conventionnels permettent difficilement d'atteindre moins de 5 ppm de N, l'acier de l'invention respecte les règles suivantes.It is necessary to avoid forming nitrides, Ti, Zr and Al in particular, which are weakening: they deteriorate the tenacity and fatigue resistance. Since these nitrides can precipitate from 1 to a few ppm of N in the presence of Ti, Zr and / or Al, and the conventional elaboration means make it difficult to achieve less than 5 ppm of N, the steel of the invention respects the following rules.

On limite en principe toute addition de Ti (maximum autorisé : 100 ppm), et on limite N autant que possible. Selon l'invention, la teneur en N ne doit pas dépasser 20 ppm et, mieux, 10 ppm, et la teneur en Ti ne doit pas dépasser 10 fois la teneur en N.In principle, any addition of Ti (maximum allowed: 100 ppm) is limited, and N is limited as much as possible. According to the invention, the N content should not exceed 20 ppm and more preferably 10 ppm, and the Ti content should not exceed 10 times the N content.

Néanmoins, une addition proportionnée de titane en fin d'élaboration au four sous vide est envisageable en vue de fixer l'azote résiduel et, ainsi, éviter la précipitation nocive du nitrure AIN. Comme il faut, toutefois, éviter la formation du nitrure TiN en phase liquide, car il devient grossier (de 5 à 10 µm ou davantage), l'addition de titane ne peut être pratiquée que pour une teneur résiduelle maximale en azote de 10 ppm dans le métal liquide, et toujours sans dépasser 10 fois cette valeur résiduelle en azote. Par exemple, pour une teneur finale de 8 ppm de N en fin d'élaboration, la teneur limite de l'addition éventuelle en titane est de 80 ppm.Nevertheless, a proportionate addition of titanium at the end of elaboration in a vacuum furnace is conceivable with a view to fixing the residual nitrogen and thus avoiding the harmful precipitation of the nitride AlN. As it is necessary, however, to avoid the formation of nitride TiN in the liquid phase, since it becomes coarse (from 5 to 10 μm or more), the addition of titanium can be practiced only for a residual maximum nitrogen content of 10 ppm in the liquid metal, and still not exceed 10 times this residual value of nitrogen. For example, for a final content of 8 ppm of N at the end of processing, the limiting content of the optional addition of titanium is 80 ppm.

On peut remplacer partiellement ou totalement Ti par Zr, ces deux éléments se comportant de façon assez comparable. Leurs masses atomiques étant dans un rapport de 2, si du Zr est ajouté en plus ou à la place du Ti il faut raisonner sur la somme Ti + Zr/2 et dire que, en même temps que N ≤ 10 ppm :

  • Ti + Zr/2 doit toujours être ≤ 100 ppm ;
  • et Ti + Zr/2 doit être ≤ 10 N.
It is possible to replace partially or totally Ti by Zr, these two elements behaving quite similarly. Their atomic masses being in a ratio of 2, if Zr is added in addition to or in place of the Ti it is necessary to reason on the sum Ti + Zr / 2 and to say that, at the same time as N ≤ 10 ppm:
  • Ti + Zr / 2 should always be ≤ 100 ppm;
  • and Ti + Zr / 2 should be ≤ 10 N.

Dans le cas où la teneur en N est supérieure à 10 ppm et inférieure ou égale à 20 ppm, Ti et Zr sont à considérer comme des impuretés à éviter, et la somme Ti + Zr/2 doit être ≤ 150 ppm.In the case where the N content is greater than 10 ppm and less than or equal to 20 ppm, Ti and Zr are to be considered as impurities to be avoided, and the sum Ti + Zr / 2 must be ≤ 150 ppm.

L'addition éventuelle de terres rares, en fin d'élaboration, peut aussi contribuer à fixer une fraction de N, outre le S et O. Dans ce cas, il faut s'assurer que la teneur résiduelle en terres rares sous forme libre reste inférieure ou égale à 100 ppm, et préférentiellement inférieure ou égale à 50 ppm, car ces éléments fragilisent l'acier lorsqu'ils sont présents au-delà de ces valeurs. On pense que les oxynitrures de terres rares (par exemple de La) sont moins nocifs que les nitrures de Ti ou Al, du fait de leur forme globulaire qui les rendrait moins susceptibles de constituer des amorces de ruptures de fatigue.The possible addition of rare earths, at the end of the elaboration, can also contribute to fix a fraction of N, besides the S and O. In this case, it must be ensured that the residual content of rare earths in free form remains less than or equal to 100 ppm, and preferably less than or equal to 50 ppm, because these elements weaken the steel when they are present beyond these values. It is believed that rare earth (eg La) oxynitrides are less harmful than Ti or Al nitrides because of their globular form which would make them less likely to constitute fatigue fracture primers.

Un traitement au calcium peut être pratiqué en vue de compléter la désoxydation/désulfuration du métal liquide. Ce traitement est préférentiellement conduit avec les éventuelles additions de Ti, Zr ou terres rares.Calcium treatment may be practiced to complete the deoxidation / desulfurization of the liquid metal. This treatment is preferably conducted with the possible additions of Ti, Zr or rare earths.

Le carbure M2C de Cr, Mo, W et V contenant très peu de Fe est privilégié pour ses propriétés durcissantes et non fragilisantes. Le carbure M2C est métastable au regard des carbures d'équilibre M7C3 et/ou M6C et/ou M23C6. Il est stabilisé par Mo et W. La somme de la teneur en Mo et de la moitié de la teneur en W doit être d'au moins 1%. Il ne faut cependant pas dépasser Mo + W/2 = 4% pour ne pas détériorer la forgeabilité (ou la déformabilité à chaud en général) et ne pas former des intermétalliques de la phase µ de type Fe7Mo6, qui est l'une des phases durcissantes essentielles des aciers maraging classiques mais n'est pas souhaitée dans l'acier de l'invention. De préférence, Mo + W/2 est compris entre 1 et 2%. C'est également pour éviter la formation de carbures de Ti non durcissants et susceptibles de fragiliser les joints de grains qu'une limitation impérative à 100 ppm de la teneur en Ti des aciers selon l'invention est requise.The M 2 C carbide of Cr, Mo, W and V containing very little Fe is preferred for its hardening and non-embrittling properties. The carbide M 2 C is metastable with respect to equilibrium carbides M 7 C 3 and / or M 6 C and / or M 23 C 6 . It is stabilized by Mo and W. The sum of the Mo content and the half of the content in W must be at least 1%. However, it is not necessary to exceed Mo + W / 2 = 4% in order not to deteriorate the forgeability (or the heat deformability in general) and not to form intermetallics of the μ phase of type Fe 7 Mo 6 , which is the one of the essential hardening phases of conventional maraging steels but is not desired in the steel of the invention. Preferably, Mo + W / 2 is between 1 and 2%. It is also to prevent the formation of non-hardening Ti carbides which may weaken the grain boundaries that a 100 ppm imperative limitation of the Ti content of the steels according to the invention is required.

Cr et V sont des éléments qui activent la formation des carbures « métastables ».Cr and V are elements that activate the formation of "metastable" carbides.

V forme aussi des carbures de type MC, stables jusqu'aux températures de mise en solution, qui « bloquent » les joints de grains et limitent le grossissement des grains lors des traitements thermiques à haute température. Il ne faut pas dépasser V = 0,3% pour ne pas fixer trop de C dans des carbures de V, lors du cycle de mise en solution, au détriment du carbure M2C de Cr, Mo, W, V dont on recherche la précipitation lors du cycle de vieillissement ultérieur. De préférence la teneur en V est comprise entre 0,2 et 0,3%.V also forms carbides of MC type, stable up to the dissolution temperatures, which "block" the grain boundaries and limit the magnification of grains during heat treatments at high temperatures. V = 0.3% must not be exceeded in order not to fix too much C in carbides of V, during the dissolution cycle, to the detriment of the M 2 C carbide of Cr, Mo, W, V which is sought precipitation during the subsequent aging cycle. Preferably, the V content is between 0.2 and 0.3%.

La présence de Cr (au moins 2%) permet de diminuer le taux de carbures de V et d'accroître le taux de M2C. Il ne faut pas dépasser 5% pour ne pas trop favoriser la formation des carbures stables, en particulier M23C6. De préférence on ne dépasse pas 4% de Cr.The presence of Cr (at least 2%) makes it possible to reduce the level of carbides of V and to increase the level of M 2 C. It is not necessary to exceed 5% in order not to favor the formation of stable carbides, in particular M 23 C 6 . Preferably no more than 4% of Cr is exceeded.

La présence de C favorise l'apparition de M2C par rapport à la phase µ. Mais une teneur excessive cause des ségrégations, un abaissement de Ms et amène des difficultés lors de la fabrication à l'échelle industrielle : sensibilité aux tapures (fissurations superficielles lors d'un refroidissement rapide), usinabilité difficile d'une martensite trop dure à l'état brut de trempe.... Sa teneur doit être comprise entre 0,20 et 0,30%, de préférence 0,20-0,25%. La couche superficielle des pièces pourra être enrichie en C par cémentation ou carbonitruration si une très grande dureté de surface est requise dans les applications envisagées.The presence of C favors the appearance of M 2 C with respect to the μ phase. But an excessive content causes segregations, a lowering of Ms and causes difficulties in manufacturing on an industrial scale: sensitivity to the taps (superficial cracking during rapid cooling), difficult machinability of martensite too hard to l quenching state. Its content must be between 0.20 and 0.30%, preferably 0.20-0.25%. The surface layer of the parts may be enriched in C by carburizing or carbonitriding if a very high surface hardness is required in the envisaged applications.

Le cobalt relève quelque peu la température de transition ductile/fragile, ce qui n'est pas favorable, en particulier dans des compositions à teneurs en nickel plutôt basses, tandis que, contrairement à ce qui a pu être constaté dans d'autres aciers, le cobalt ne relève pas de manière évidente le point de transformation Ms des compositions de l'invention et n'a donc pas d'intérêt manifeste non plus sur ce plan.Cobalt slightly raises the ductile / brittle transition temperature, which is not favorable, particularly in compositions with low nickel contents, whereas, contrary to what can be observed in other steels, cobalt does not obviously raise the transformation point Ms compositions of the invention and therefore has no obvious interest either in this respect.

La teneur en Co (5 à 7%) proposée dans les aciers de WO-A-2006/114499 , en combinaison avec les teneurs des autres éléments, résultait de la recherche d'un compromis entre ces divers avantages et inconvénients.The content of Co (5 to 7%) proposed in the steels of WO-2006/114499 , in combination with the contents of the other elements, resulted from the search for a compromise between these various advantages and disadvantages.

Comme on l'a dit, l'invention repose d'abord sur une composition d'acier qui se distingue de l'art antérieur représenté par WO-A-2006/114499 notamment par une teneur en Co plus faible, comprise entre 1,5 et 4 %, mieux entre 2 et 3%. Les teneurs des autres éléments d'alliage significativement présents les plus courants ne sont que peu modifiées, mais certaines teneurs en impuretés doivent être maîtrisées avec soin, notamment les teneurs en Ti, Zr et N qui affectent la ténacité.As has been said, the invention is based first of all on a steel composition which differs from the prior art represented by WO-2006/114499 in particular by a lower Co content, between 1.5 and 4%, better between 2 and 3%. The contents of the other most commonly present significant alloying elements are only slightly modified, but certain impurity contents must be carefully controlled, especially the contents of Ti, Zr and N which affect the toughness.

Dans le contexte d'une exploration de l'effet du Co sur les propriétés mécaniques de ce type d'acier (Rm et Kv), il a été mis en évidence de manière inattendue que l'ajustement de la concentration de cet élément permet d'obtenir le meilleur compromis Résilience / Rm. Cette mise en évidence est illustrée sur la figure 1 sur laquelle on constate qu'une population de points Rm/Kv est répartie autour d'une courbe polynomiale d'ordre 3 présentant une inflexion pour des teneurs en Co comprises entre 1,5 et 4 % de Co. Une résilience de l'ordre de 30 joules ou davantage et une Rm supérieur ou égal à 2140 MPa sont obtenues simultanément dans cet intervalle de teneur en Co.In the context of an exploration of the effect of Co on the mechanical properties of this type of steel (Rm and Kv), it has been unexpectedly demonstrated that the adjustment of the concentration of this element makes it possible to to obtain the best compromise Resilience / Rm. This highlighting is illustrated on the figure 1 on which we observe that a population of points Rm / Kv is distributed around a polynomial curve of order 3 with an inflection for contents in Co between 1.5 and 4% of Co. A resilience of the order of 30 joules or more and an Rm greater than or equal to 2140 MPa are obtained simultaneously in this range of Co content.

Il faut éviter d'avoir une concentration inutilement élevée en Co qui, non seulement est très onéreux, mais dégrade également la résilience. Il est connu que le Co dégrade la transition de résilience du Fe pur ( page 52-54 materials Sciences and Technology January 1994 Vol. 10 ). En effet, comme on l'a dit la présence de Co augmente la température de transition ductile / fragile. Par ailleurs une teneur en Co supérieure à 1,5 % de Co s'avère utile pour améliorer le durcissement structural par précipitation de carbure M2C et ainsi augmenter significativement Rm. De plus, de manière surprenante les inventeurs ont constaté après plusieurs essais qu'une teneur en Co comprise entre environ 1,5 et 4 %, mieux entre 2 et 3%, améliore significativement la résistance mécanique pratiquement sans dégrader la résilience, comparativement à une nuance à très basse teneur en Co (< 1 %) dont la composition serait, par ailleurs, identique.It is important to avoid having an unnecessarily high concentration of Co which is not only very expensive but also damages resilience. It is known that Co degrades the transition of resilience of pure Fe ( page 52-54 Materials Science and Technology January 1994 Vol. 10 ). Indeed, as has been said the presence of Co increases the ductile / brittle transition temperature. Furthermore, a Co content greater than 1.5% Co is useful for improving the structural hardening by precipitation of M 2 C carbide and thus significantly increasing Rm. Moreover, the inventors have surprisingly found, after several tests, that a Co content between about 1.5 and 4%, more preferably between 2 and 3%, significantly improves the mechanical strength virtually without degrading the resilience, compared to a very low Co content (<1%) whose composition would, moreover, be identical.

Ni et Al sont liés dans l'invention, où Ni doit être ≥ 7 + 3,5 Al. Ce sont les deux éléments essentiels qui participent à une bonne part du durcissement par vieillissement, grâce à la précipitation de la phase intermétallique nanométrique de type B2 (NiAl par exemple). C'est cette phase qui confère une large part de la résistance mécanique à chaud, jusqu'à environ 400°C. Le nickel est aussi l'élément qui réduit la fragilité par clivage car il abaisse la température de transition ductile/fragile des martensites. Si Al est trop élevé par rapport à Ni, la matrice martensitique est trop fortement appauvrie en nickel à la suite de la précipitation du précipité durcissant NiAl lors du vieillissement. Cela est dommageable pour les critères de ténacité et de ductilité, car l'abaissement de la teneur en nickel dans la phase martensitique conduit au relèvement de sa température de transition ductile/fragile, donc à sa fragilisation à des températures voisines de l'ambiante. En outre, le nickel favorise la formation d'austénite de réversion et/ou stabilise la fraction d'austénite résiduelle (éventuellement présente), lors du cycle de vieillissement. Ces mécanismes sont favorables aux critères de ductilité et de ténacité, mais aussi de stabilité structurale de l'acier. Si la matrice vieillie est trop appauvrie en nickel, ces mécanismes vertueux sont minorés ou inhibés : on n'a plus de potentiel d'austénite de réversion. A l'inverse, si on a trop de Ni, on réduit exagérément le taux de phase durcissante de type NiAl en exagérant le taux d'austénite de réversion dans laquelle Al reste largement en solution.Ni and Al are bonded in the invention, where Ni must be ≥ 7 + 3.5 Al. These are the two essential elements which participate in a good part of aging hardening, thanks to the precipitation of the nanometric intermetallic phase of type B2 (NiAl for example). It is this phase which gives a large part of the mechanical strength when hot, up to about 400 ° C. Nickel is also the element that reduces brittleness by cleavage because it lowers the ductile / brittle transition temperature of martensites. If Al is too high relative to Ni, the martensitic matrix is too strongly depleted of nickel as a result of the precipitation of the NiAl curing precipitate during aging. This is detrimental to the tenacity and ductility criteria, since the lowering of the nickel content in the martensitic phase leads to the raising of its ductile / brittle transition temperature, and therefore to its embrittlement at temperatures close to ambient. In addition, nickel promotes the formation of reversion austenite and / or stabilizes the residual austenite fraction (possibly present) during the aging cycle. These mechanisms favor the ductility and tenacity criteria, but also the structural stability of the steel. If the aged matrix is too depleted of nickel, these virtuous mechanisms are diminished or inhibited: there is no longer any potential for reversion austenite. On the other hand, if there is too much Ni, the rate of NiAl-type hardening phase is excessively reduced by exaggerating the degree of reversion austenite in which Al remains largely in solution.

En fin de trempe, il ne faut pas avoir d'austénite résiduelle (<3%), et il faut se retrouver avec une structure essentiellement martensitique. A cet effet, il faut ajuster les conditions de la trempe, en particulier la température de fin de refroidissement, et aussi la composition de l'acier. Cette dernière détermine la température Ms de début de transformation martensitique qui, selon l'invention, doit de préférence rester égale ou supérieure à 140°C si on ne pratique pas de cycle cryogénique, et doit de préférence être comprise entre 100 et 140°C si on pratique un cycle cryogénique.At the end of quenching, residual austenite (<3%) must not be used, and you must end up with an essentially martensitic structure. For this purpose, it is necessary to adjust the conditions of quenching, in particular the temperature of end of cooling, and also the composition of the steel. The latter determines the martensitic transformation start temperature Ms which, according to the invention, should preferably remain equal to or greater than 140 ° C. if no cryogenic cycle is used, and should preferably be between 100 and 140 ° C. if we practice a cryogenic cycle.

Ms est habituellement calculée selon la formule classique de la littérature : Ms = 550 - 350 x C% - 40 x Mn% - 17 x Cr% - 10 x Mo% - 17 x Ni% - 8 x W% - 35 x V% - 10 x Cu% - 10 x Co% + 30 x Al% °C. Toutefois, l'expérience montre que cette formule n'est que très approximative, en particulier parce que les effets du Co et de Al sont très variables d'un type d'acier à l'autre. Pour savoir si un acier est conforme ou non à l'invention, il faut donc se baser sur des mesures de la température Ms réelle, effectuées par exemple par dilatométrie comme cela est classique. La teneur en Ni est une des variables d'ajustement possibles de Ms.Ms is usually calculated according to the classic formula of the literature: Ms = 550 - 350 x C% - 40 x Mn% - 17 x Cr% - 10 x Mo% - 17 x Ni% - 8 x W% - 35 x V% - 10 x Cu% - 10 x Co% + 30 x Al% ° C. However, experience shows that this formula is only very approximate, in particular because the effects of Co and Al are highly variable from one type of steel to another. To know whether a steel is or not according to the invention, it is therefore necessary to rely on measurements of the actual temperature Ms, made for example by dilatometry as is conventional. Ni content is one of Ms.'s possible adjustment variables

La température de fin de refroidissement après trempe doit être inférieure à Ms réelle -150°C, préférentiellement inférieure à Ms réelle -200°C, afin d'assurer une pleine transformation martensitique de l'acier. La température de fin de refroidissement doit donc être inférieure à la température Mf mesurée de fin de transformation martensitique de l'acier. Pour les compositions les plus enrichies en C et Ni en particulier, un traitement cryogénique peut être appliqué immédiatement à la suite d'un refroidissement à température ambiante depuis la température de mise en solution. La vitesse globale de refroidissement doit être la plus élevée possible de façon à éviter les mécanismes de stabilisation de l'austénite résiduelle riche en carbone. Il n'est cependant pas utile de rechercher des températures cryogéniques inférieures à -110°C car l'agitation thermique de la structure y devient insuffisante pour produire la transformation martensitique. D'une façon générale, il est préférable que la valeur Ms de l'acier soit comprise entre 100 et 140°C si on applique un cycle cryogénique, et supérieure ou égale à 140°C en l'absence de ce cycle cryogénique. Tel que déjà appliqué pour des aciers martensitiques durcis par un système duplex et tel que déjà connu de WO-A-2006/114499 , la durée du cycle cryogénique, si nécessaire, est comprise entre 4 et 50 heures, préférentiellement de 4 à 16 heures, et encore préférentiellement de 4 à 10 heures. On peut pratiquer plusieurs cycles cryogéniques, l'essentiel étant qu'au moins l'un d'entre eux ait les caractéristiques précitées.The end-of-cooling temperature after quenching must be less than the actual Ms -150 ° C., preferably lower than the actual Ms -200 ° C., in order to ensure a full martensitic transformation of the steel. The end-of-cooling temperature must therefore be lower than the measured temperature Mf of martensitic transformation end of the steel. For the most enriched C and Ni compositions in particular, a cryogenic treatment may be applied immediately following cooling to room temperature from the solution temperature. The overall rate of cooling should be as high as possible to avoid the mechanisms of stabilization of the carbon-rich residual austenite. However, it is not useful to look for cryogenic temperatures below -110 ° C because the thermal agitation of the structure becomes insufficient to produce the martensitic transformation. In general, it is preferable that the Ms value of the steel is between 100 and 140 ° C if a cryogenic cycle is applied, and greater than or equal to 140 ° C in the absence of this cryogenic cycle. As already applied for martensitic steels cured by a duplex system and as already known from WO-2006/114499 the duration of the cryogenic cycle, if necessary, is between 4 and 50 hours, preferably 4 to 16 hours, and more preferably 4 to 10 hours. It is possible to practice several cryogenic cycles, the essential being that at least one of them has the aforementioned characteristics.

Concrètement, on doit avoir Al = 1-2%, de préférence 1-1,6%, mieux 1,4-1,6%, et Ni = 11-16%, avec Ni ≥ 7 + 3,5 Al. Idéalement on a 1,5% d'Al et 12-14% de Ni. Ces conditions favorisent la présence de NiAl ce qui augmente la résistance à la traction Rm, dont on constate également qu'elle n'est pas trop détériorée par la faible teneur en Co si les autres conditions de l'invention sont réunies. La limite élastique Rp0,2 est influencée de la même façon que Rm.Specifically, we must have Al = 1-2%, preferably 1-1.6%, better 1.4-1.6%, and Ni = 11-16%, with Ni ≥ 7 + 3.5 Al. we have 1.5% Al and 12-14% Ni. These conditions favor the presence of NiAl which increases the tensile strength Rm, which we also note that it is not too deteriorated by the low Co content if the other conditions of the invention are met. The elastic limit R p0,2 is influenced in the same way as Rm.

Par rapport aux aciers connus de US-A-5 393 488 , où on recherche une présence très élevée d'austénite de réversion pour avoir une ductilité et une ténacité élevée, les aciers de la classe de l'invention privilégient la présence des phases durcissantes B2, notamment NiAl, pour obtenir une résistance mécanique élevée à chaud. Le respect des conditions sur Ni et Al qui ont été données assure une teneur potentielle suffisante d'austénite de réversion pour conserver une ductilité et une ténacité convenables pour les applications envisagées.Compared to the known steels of US-A-5,393,488 , where a very high presence of reversion austenite is sought for high ductility and toughness, steels of the class of the invention prefer the presence of B2 hardening phases, especially NiAl, to obtain a high mechanical strength when hot. Compliance with the conditions on Ni and Al that have been given ensures a sufficient potential content of reversion austenite to maintain ductility and toughness suitable for the intended applications.

Il est possible d'ajouter du B, mais pas plus de 30ppm pour ne pas dégrader les propriétés de l'acier.It is possible to add B, but not more than 30ppm not to degrade the properties of the steel.

Il est également possible d'ajouter du Nb pour contrôler la taille des grains lors d'un forgeage ou d'une autre transformation à chaud, à une teneur ne dépassant pas 0,1%. L'acier, selon l'invention accepte donc des matières premières pouvant contenir des teneurs résiduelles en Nb non négligeables.It is also possible to add Nb to control grain size during forging or other hot processing at a content not exceeding 0.1%. The steel according to the invention therefore accepts raw materials that can contain significant residual contents in Nb.

Une caractéristique des aciers de la classe de l'invention est aussi la possibilité de remplacer au moins une partie de Mo par W. A fraction atomique équivalente, W ségrège moins à la solidification que Mo et apporte un surcroît de tenue mécanique à chaud. Il a l'inconvénient d'être coûteux et on peut optimiser ce coût en l'associant à Mo. Comme on l'a dit, Mo + W/2 doit être compris entre 1 et 4%, de préférence entre 1 et 2%. On préfère conserver une teneur minimale en Mo de 1% pour limiter le coût de l'acier, d'autant que la tenue à haute température n'est pas un objectif prioritaire de l'acier de l'invention.A characteristic of the steels of the class of the invention is also the possibility of replacing at least a portion of Mo by W. At equivalent atomic fraction, W segregates less at solidification than Mo and provides an increase in mechanical strength when hot. It has the disadvantage of being expensive and we can optimize this cost by associating it with Mo. As has been said, Mo + W / 2 must be between 1 and 4%, preferably between 1 and 2% . It is preferred to maintain a minimum content of 1% Mo to limit the cost of steel, especially as the high temperature withstand is not a priority objective of the steel of the invention.

Cu peut aller jusqu'à 1%. Il est susceptible de participer au durcissement à l'aide de sa phase epsilon, et la présence de Ni permet de limiter ses effets nocifs, en particulier l'apparition de criques superficielles lors du forgeage des pièces, que l'on constate lors d'additions de cuivre dans des aciers ne contenant pas de nickel. Mais sa présence n'a rien d'indispensable et il peut n'être présent qu'à l'état de traces résiduelles, issues des pollutions des matières premières.Cu can be up to 1%. It is likely to participate in the hardening with the help of its epsilon phase, and the presence of Ni makes it possible to limit its harmful effects, in particular the appearance of superficial cracks during the forging of the pieces, which one observes during additions of copper in steels not containing nickel. But its presence is not essential and it may be present only in the state of residual traces, resulting from the pollution of raw materials.

Le manganèse n'est a priori pas utile à l'obtention des propriétés de l'acier visées, mais il n'a pas d'effet néfaste reconnu. En outre, sa faible tension de vapeur aux températures de l'acier liquide fait que sa concentration est difficilement maîtrisable en élaboration sous vide et refusion sous vide : sa teneur peut varier en fonction de la localisation radiale et axiale dans un lingot refondu. Comme il est souvent présent dans les matières premières, et pour les raisons ci-dessus, sa teneur sera préférentiellement au plus de 0,25%, et en tous cas limitée à 2% au plus, car de trop fortes variations de sa concentration dans un même produit nuiront à la répétitivité des propriétés.Manganese is not a priori useful for obtaining the properties of steel, but it has no recognized adverse effect. In addition, its low vapor pressure at the temperatures of the liquid steel makes its concentration difficult to control in vacuum production and vacuum remelting: its content may vary depending on the radial and axial location in a remelted ingot. As it is often present in the raw materials, and for the reasons above, its content will preferably be at most 0.25%, and in any case limited to 2% at most, because of too great variations in its concentration in the same product will interfere with the repeatability of the properties.

Le silicium est connu pour avoir un effet de durcissement en solution solide de la ferrite et, à l'instar du cobalt, pour diminuer la solubilité de certains éléments ou de certaines phases dans la ferrite. Néanmoins, comme on l'a vu, l'acier de l'invention ne comporte que relativement peu de cobalt, et il peut se passer de silicium, d'autant plus que, en outre, le silicium favorise généralement la précipitation de phases intermétalliques néfastes dans les aciers complexes (phase de Laves, siliciures...). Sa teneur sera limitée à 1%, préférentiellement à moins de 0,25% et encore préférentiellement à moins de 0,1%.Silicon is known to have a solid solution hardening effect of ferrite and, like cobalt, to decrease the solubility of certain elements or phases in ferrite. However, as we have seen, the steel of the invention comprises only relatively little cobalt, and it can do without silicon, especially since, in addition, silicon generally promotes the precipitation of intermetallic phases harmful in complex steels (Laves phase, silicides ...). Its content will be limited to 1%, preferably less than 0.25% and still more preferably less than 0.1%.

De manière générale, les éléments pouvant ségréger aux joints de grains et les fragiliser, comme P et S, doivent être contrôlés dans les limites suivantes : S = traces - 20ppm, de préférence traces - 10ppm, mieux traces - 5ppm, et P = traces - 200ppm, de préférence traces - 100ppm, mieux traces - 50 ppm.In general, the elements that can segregate at the grain boundaries and weaken them, like P and S, must be controlled within the following limits: S = traces - 20ppm, preferably traces - 10ppm, better traces - 5ppm, and P = traces - 200ppm, preferably traces - 100ppm, better traces - 50ppm.

On peut utiliser Ca comme désoxydant et comme capteur de soufre, en le retrouvant résiduellement au final (≤ 20ppm). De même, des résidus de terres rares peuvent subsister au final (≤ 100ppm) à la suite d'un traitement d'affinage du métal liquide où elles auraient été utilisées pour capter O, S et/ou N. L'utilisation de Ca et de terres rares à ces effets n'étant pas obligatoire, ces éléments peuvent n'être présents qu'à l'état de traces dans les aciers de l'invention.Ca can be used as a deoxidizer and as a sulfur sensor, finding it in the end (≤ 20ppm). Similarly, rare earth residues may ultimately remain (≤100ppm) following a refining treatment of the liquid metal where they would have been used to capture O, S and / or N. The use of Ca and rare earths for these effects not being mandatory, these elements may be present only in the form of traces in the steels of the invention.

La teneur en oxygène acceptable est de 50 ppm au maximum, de préférence 10 ppm au maximum.The acceptable oxygen content is 50 ppm maximum, preferably 10 ppm maximum.

A titre d'exemples, on a testé des échantillons d'acier dont les compositions (en pourcentages pondéraux) sont reportées dans le tableau 1 : Tableau 1 : Composition des échantillons testés Domaine de l'Invention A (réf.) B (réf.) C D E F G H I J K(réf.) C% 0,233 0,239 0,22 0,23 0,24 0,21 0,24 0,22 0,18 0,23 0,21 Si% 0,082 0,031 0,029 0,033 0,041 0,045 0,053 0,036 0,065 0,30 0,052 Mn% 0,026 0,033 0,032 0 ,035 0,028 0,035 0,039 0,041 0,38 0,052 0,061 S ppm 1 4 7 4 6 7 3 8 10 5 4 P ppm 54 30 29 31 30 25 15 28 80 45 29 Ni% 13,43 12,67 13,31 12,42 12,30 14,11 12,99 12,70 15,10 11,25 12,91 Cr% 2,76 3,38 2,99 3,05 3,21 3,19 2,95 3,25 3,17 3,17 2,89 Mo% 1,44 1,52 1,61 1,52 1,49 1,46 1,47 1,51 1,48 1,55 1,46 Al% 0,962 1,50 1,45 1,50 1,60 1,54 1,46 1,49 1,53 1,48 1,39 Co% 10,25 6,18 3,93 3,50 3,02 2,98 2,56 2,30 2,02 1,72 0,5 Cu% 0,014 0,011 <0,010 0,011 0,010 <0,010 0,025 0,35 0,052 0,061 0,032 Ti% <0.02 <0,020 <0,020 <0,020 <0,020 <0,020 0,025 < 0,02 <0,02 <0,02 <0,02 Nb% <0.05 <0,005 0 <0,005 0 0,050 <0,005 0 0,015 < 0,005 <0,005 <0,005 <0,005 <0.005 B ppm <10 <5 <5 <5 <5 <5 <5 28 15 <5 <5 Ca pm <50 <50 <50 <50 <50 60 < 50 < 50 < 50 < 50 <50 N ppm <3 13 4 7 5 10 6 3 6 < 3 <3 O ppm <3 3,4 4 3 10 15 < 3 12 <3 20 6 V% <0,01 0,245 0,251 <0,010 0,248 0,243 <0 ,010 0,115 0,292 0,241 <0,010 By way of examples, steel samples have been tested whose compositions (in percentages by weight) are reported in Table 1: Table 1: Composition of the tested samples Field of the Invention A (ref.) B (ref.) VS D E F BOY WUT H I J K (ref.) VS% 0.233 0.239 0.22 0.23 0.24 0.21 0.24 0.22 0.18 0.23 0.21 Yes% 0.082 0.031 0,029 0.033 0.041 0,045 0.053 0,036 0,065 0.30 0,052 mn% 0,026 0.033 0,032 0, 035 0,028 0,035 0,039 0.041 0.38 0,052 0,061 S ppm 1 4 7 4 6 7 3 8 10 5 4 P ppm 54 30 29 31 30 25 15 28 80 45 29 Or% 13,43 12.67 13,31 12.42 12,30 14,11 12.99 12.70 15,10 11.25 12.91 Cr% 2.76 3.38 2.99 3.05 3.21 3.19 2.95 3.25 3.17 3.17 2.89 Mo% 1.44 1.52 1.61 1.52 1.49 1.46 1.47 1.51 1.48 1.55 1.46 al% 0.962 1.50 1.45 1.50 1.60 1.54 1.46 1.49 1.53 1.48 1.39 Co% 10.25 6.18 3.93 3.50 3.02 2.98 2.56 2.30 2.02 1.72 0.5 Cu% 0.014 0,011 <0.010 0,011 0,010 <0.010 0,025 0.35 0,052 0,061 0,032 Ti% <0.02 <0.020 <0.020 <0.020 <0.020 <0.020 0,025 <0.02 <0.02 <0.02 <0.02 No.% <0.05 <0.005 0 <0.005 0 0,050 <0.005 0 0,015 <0.005 <0.005 <0.005 <0.005 <0.005 B ppm <10 <5 <5 <5 <5 <5 <5 28 15 <5 <5 Ca pm <50 <50 <50 <50 <50 60 <50 <50 <50 <50 <50 N ppm <3 13 4 7 5 10 6 3 6 <3 <3 O ppm <3 3.4 4 3 10 15 <3 12 <3 20 6 V% <0.01 0,245 0.251 <0.010 0.248 0.243 <0, 010 0.115 0.292 0.241 <0.010

Les éléments non cités dans le tableau ne sont présents au plus qu'à l'état de traces résultant de l'élaboration.The elements not mentioned in the table are present at most in the state of traces resulting from the elaboration.

L'acier de référence A correspond à un acier selon US-A-5 393 488 , ayant donc une teneur en Co élevée.Reference steel A corresponds to a steel according to US-A-5,393,488 , thus having a high Co content.

L'acier de référence B correspond à un acier selon WO-A-2006 / 114 499, il se distingue de A par une teneur en Co plus faible et une teneur en Al plus élevée.The reference steel B corresponds to a steel according to WO-A-2006/114 499, it is distinguished from A by a lower Co content and a higher Al content.

Les aciers C à J sont conformes à l'invention à tous points de vue, notamment par leur teneur en Co, significativement plus faible que celle de l'acier B, mais qui reste néanmoins sensiblement supérieure à une simple teneur résiduelle et est obtenue par un ajout délibéré au cours de l'élaboration.Steels C to J are in accordance with the invention in all respects, in particular by their Co content, which is significantly lower than that of steel. B, but which nevertheless remains substantially higher than a simple residual content and is obtained by a deliberate addition during the preparation.

L'acier C se distingue de l'acier de référence B essentiellement par une teneur en Co plus faible.Steel C is distinguished from Reference Steel B primarily by a lower Co content.

L'acier D se distingue de C par une teneur Co légèrement plus faible pour une teneur en Ni plus faible, et par l'absence de V qui n'est présent qu'à l'état de traces.Steel D differs from C by a slightly lower Co content for a lower Ni content, and by the absence of V, which is present only in trace amounts.

L'acier E se distingue de D par une teneur Co encore plus faible que celle de D et par une teneur en V à un niveau comparable à l'acier C.Steel E is distinguished from D by a Co content even lower than that of D and by a V content at a level comparable to steel C.

L'acier F se distingue de C, D, E essentiellement par une teneur légèrement supérieure en Ni, sa teneur en Co étant comparable à celle de l'acier E.Steel F is distinguished from C, D, E mainly by a slightly higher Ni content, its Co content being comparable to that of E steel.

L'acier G se distingue des aciers C à F par une teneur en Co encore réduite et ne comporte pas de V.Steel G differs from steels C to F by an even lower Co content and has no V.

L'acier H se distingue de l'acier G par une baisse encore accentuée de la teneur en Co et par une teneur significativement plus élevée en Bore.Steel H is distinguished from Steel G by a further steepening of the Co content and a significantly higher boron content.

L'acier I se distingue de l'acier H par un abaissement encore accentué de la teneur en Co, et par une plus basse teneur en C associée à une teneur plus élevée en Ni.Steel I is distinguished from Steel H by further lowering of Co content, and lower C content with higher Ni content.

L'acier J est celui dont la composition la teneur en Co la plus faible, tout en correspondant à une addition volontaire et qui demeure conforme à l'invention. Il a également la plus faible teneur en Ni et comporte du V.Steel J is the one whose composition has the lowest Co content, while corresponding to a voluntary addition and which remains in accordance with the invention. It also has the lowest Ni content and contains V.

L'acier de référence K à une teneur en Co faible et en dessous du minimum exigé par l'invention. Il est comparable sur les autres points aux aciers selon l'invention sans V et B et à très bas N.The reference steel K has a low Co content and below the minimum required by the invention. It is comparable on the other points to steels according to the invention without V and B and very low N.

Ces échantillons ont été forgés à partir de lingots de 200kg en éléments plats de 75 x 35mm dans les conditions suivantes. Un traitement d'homogénéisation d'au moins 16 heures à 1250°C est suivi d'une première opération de forgeage destinée à fractionner les structures grossières des lingots ; des demi-produits de section carrée de 75 x 75 mm ont ensuite été forgés après une remise en température à 1180°C; finalement, chaque demi-produit a été placé dans un four à 950°C, puis a été forgé à cette température sous la forme d'éléments plats de 75 x 35 mm dont la structure granulaire est affinée par ces opérations successives.These samples were forged from 200kg ingots of 75 x 35mm flat elements under the following conditions. A homogenization treatment of at least 16 hours at 1250 ° C. is followed by a first forging operation intended to split the coarse structures of the ingots; square section semifinished products of 75 x 75 mm were then forged after re-heating to 1180 ° C .; finally, each half-product was placed in an oven at 950 ° C and was forged at this temperature in the form of 75 x 35 mm flat elements whose granular structure is refined by these successive operations.

De plus, les échantillons ont subi un revenu d'adoucissement à une température d'au moins 600°C. En l'occurrence, ce revenu d'adoucissement a été effectué à 650°C pendant 8h et suivi d'un refroidissement à l'air. Grâce à cela, les produits bruts de transformations thermomécaniques peuvent subir sans problèmes particuliers les opérations de parachèvement (redressage, écroûtage, usinage...) conférant à la pièce sa forme définitive. On remarquera que le revenu d'adoucissement n'apporte pas de contribution pour l'obtention des caractéristiques mécaniques finales.In addition, the samples were softened at a temperature of at least 600 ° C. In this case, this softening income was carried out at 650 ° C. for 8 hours and followed by cooling in air. Thanks to this, the raw products of thermomechanical transformations can undergo without particular problems the finishing operations (straightening, peeling, machining ...) giving the piece its final form. It will be noted that the softening income does not contribute to obtaining the final mechanical characteristics.

Après le forgeage, les échantillons ont subi :

  • une mise en solution à 900°C pendant 1h puis un refroidissement par trempe à l'huile ;
  • de manière connue en soi et tel que déjà appliqué pour des aciers martensitiques durcis par un système duplex comme par exemple l'acier de WO-A-2006/114499 : un traitement cryogénique à - 80°C pendant 8h pour les échantillons A, B, C, E, G, I ,J et K ; les échantillons D et H ont subi un traitement cryogénique à - 90°C pendant 7h et l'échantillon F un traitement à - 100°C pendant 6h ;
  • un revenu de détente de 16h à 200°C ;
  • un vieillissement de durcissement à 500°C pendant 10h puis un refroidissement à l'air.
After the forging, the samples underwent:
  • solubilization at 900 ° C for 1 h and then cooling by quenching with oil;
  • in a manner known per se and as already applied for martensitic steels hardened by a duplex system such as for example the steel of WO-2006/114499 cryogenic treatment at -80 ° C. for 8 hours for samples A, B, C, E, G, I, J and K; samples D and H were cryogenically treated at -90 ° C for 7h and sample F treated at -100 ° C for 6h;
  • a relaxation income of 16h at 200 ° C;
  • curing aging at 500 ° C for 10h and then cooling in air.

Les propriétés des échantillons (résistance à la traction Rm en sens long, limite élastique Rp0,2, élongation A5d, striction Z, résilience KV, taille du grain ASTM) sont reportées dans le tableau 2. Elles sont ici mesurées à la température ambiante normale. Tableau 2 : Propriétés des échantillons testés Co Rm (Mpa) Rp0,2 (Mpa) A5d (%) Z (%) KV (J) Grain ASTM A 10,25 2176 1956 11,2 58 25/27 8 Réf. B 6,18 2316 2135 9,5 49 20/24 8 C 3,93 2220 2030 10,1 52 29 7 D 3,50 2208 2011 10,3 55 31 9 Inv. E 3,02 2200 1998 10,3 55 30 8 F 2,98 2140 1935 10,9 61 32 7 G 2,56 2188 1975 10,7 60 31 7 H 2,30 2150 1945 10,6 61 33 8 I 2,02 2185 1970 10,4 59 31 7 J 1,72 2170 1943 10,4 60 33 8 Réf. K 0,5 2085 1891 11,1 62 34 7 The properties of the samples (tensile strength Rm in long direction, elastic limit Rp 0.2 , elongation A5d, necking Z, resilience KV, grain size ASTM) are reported in Table 2. They are here measured at room temperature normal. Table 2: Properties of the tested samples Co Rm (Mpa) Rp 0.2 (Mpa) A5d (%) Z (%) KV (J) ASTM grain AT 10.25 2176 1956 11.2 58 25/27 8 Ref. B 6.18 2316 2135 9.5 49 20/24 8 VS 3.93 2220 2030 10.1 52 29 7 D 3.50 2208 2011 10.3 55 31 9 Inv. E 3.02 2200 1998 10.3 55 30 8 F 2.98 2140 1935 10.9 61 32 7 BOY WUT 2.56 2188 1975 10.7 60 31 7 H 2.30 2150 1945 10.6 61 33 8 I 2.02 2185 1970 10.4 59 31 7 J 1.72 2170 1943 10.4 60 33 8 Ref. K 0.5 2085 1891 11.1 62 34 7

On voit que les échantillons selon l'invention C à J ont des propriétés en traction qui sont comparables à A et B mais aussi une résilience nettement améliorée due à l'abaissement significatif de la teneur en Co.It is seen that the samples according to the invention C to J have tensile properties that are comparable to A and B but also a significantly improved resilience due to the significant lowering of the content of Co.

Par ailleurs, les inventeurs constatent après plusieurs essais qu'une teneur en Co comprise entre environ 1,5 et 4 % améliore significativement la résistance mécanique, pratiquement sans dégrader la résilience comparativement à l'échantillon de référence K à 0,5% de Co. L'échantillon K à moins de 1,5 % de Co permet de maintenir une résilience aussi bonne, mais avec une résistance à la traction amoindrie.On the other hand, the inventors note after several tests that a Co content of between approximately 1.5 and 4% significantly improves the mechanical strength, practically without degrading the resilience compared to the reference sample K at 0.5% Co Sample K at less than 1.5% Co maintains resilience as good, but with reduced tensile strength.

Il a été mis en évidence de manière inattendue que la concentration de Co selon l'invention permet d'obtenir le meilleur compromis Résilience / Rm. Cette mise en évidence est illustrée sur la figure 1 sur laquelle on constate qu'une population de points Rm/Kv est répartie autour d'une courbe polynomiale d'ordre 3 présentant une inflexion entre 1,5 et 4 % de Co. Une résilience de l'ordre de 30 joules ou davantage et un Rm supérieur ou égal à 2140 MPa sont obtenus dans cet intervalle de teneurs en Co.It has been unexpectedly demonstrated that the concentration of Co according to the invention makes it possible to obtain the best compromise Resilience / Rm. This highlighting is illustrated on the figure 1 on which we observe that a population of points Rm / Kv is distributed around a polynomial curve of order 3 having an inflection between 1.5 and 4% of Co. A resilience of the order of 30 joules or more and an Rm greater than or equal to 2140 MPa are obtained in this range of contents of Co.

Le compromis résistance/résilience recherché pourrait par ailleurs être affiné à l'aide d'une modification des conditions de vieillissement, mais l'ajustement de la teneur en Co demeure le paramètre essentiel sur lequel il faut jouer pour obtenir ce compromis.The desired resilience / resilience tradeoff could be further refined through a modification of the aging conditions, but the adjustment of the Co content remains the key parameter that must be used to achieve this compromise.

Le durcissement apporté par l'augmentation de l'Al, avec le Ni élevé, pour former la phase durcissante NiAl, n'est pas proportionnel à la concentration en Al, et dépasser une valeur de 2 % en Al n'apporte pas de gain significatif sur la résistance à la traction.The hardening provided by the increase of Al, with the high Ni, to form the hardening phase NiAl, is not proportional to the concentration of Al, and exceed a value of 2% in Al does not bring gain significant on the tensile strength.

Les additions de Nb et B des échantillons D et H respectivement ne sont pas nécessaires pour l'obtention des résistances mécaniques élevées visées prioritairement dans les aciers de la classe de l'invention. Cependant, l'addition de Nb permet d'affiner la taille de grain, décrite par l'indice ASTM conventionnel (les valeurs ASTM les plus élevées correspondant aux grains les plus fins).The additions of Nb and B of the samples D and H respectively are not necessary to obtain the high mechanical strengths targeted primarily in the steels of the class of the invention. However, the addition of Nb makes it possible to refine the grain size, described by the conventional ASTM index (the highest ASTM values corresponding to the finest grains).

Après le revenu d'adoucissement à 650°C pendant 8h et refroidissement à l'air, une mise en solution à 935°C pendant 1 heure suivie d'un refroidissement à l'huile, puis un traitement cryogénique à -80°C pendant 8h ou à -90°C pendant 7h ou encore à -100°C pendant 6h, puis un détensionnement à 200°C pendant 8h (sur les éprouvettes de traction) ou 16h (sur les éprouvettes de résilience), puis un vieillissement à 500°C pendant 12h suivi d'un refroidissement à l'air, ont permis d'obtenir en sens long à 20°C un excellent compromis entre résistance à la traction, ductilité et résilience.After the softening recovery at 650 ° C. for 8 hours and cooling in air, a solution at 935 ° C. for 1 hour followed by an oil cooling and then a cryogenic treatment at -80 ° C. for 8h or at -90 ° C for 7h or at -100 ° C for 6h, then stress relief at 200 ° C for 8h (on the tensile test pieces) or 16h (on the test specimens of resilience), then aging to 500 ° C for 12h followed by cooling in air, have obtained in long direction at 20 ° C an excellent compromise between tensile strength, ductility and resilience.

Des expériences complémentaires montrent qu'en sens travers, les valeurs de résilience demeurent acceptables. A 400°C, la résistance à la traction demeure très élevée, et des teneurs en Co relativement faibles sont compatibles avec les propriétés recherchées.Complementary experiments show that in the mean direction resilience values remain acceptable. At 400 ° C., the tensile strength remains very high, and relatively low Co contents are compatible with the desired properties.

De manière générale, un mode de traitement thermique optimisé de l'acier selon l'invention pour l'obtention au final d'une pièce présentant les propriétés souhaitées est, après la mise en forme de l'ébauche de la pièce et avant le parachèvement procurant à la pièce sa forme définitive est le suivant :

  • un revenu d'adoucissement à 600-675°C pendant 4 à 20h suivi d'un refroidissement à l'air ;
  • une mise en solution à 900-1000°C pendant au moins 1h, suivie par un refroidissement à l'huile ou à l'air suffisamment rapide pour éviter la précipitation de carbures intergranulaires dans la matrice d'austénite ;
  • si nécessaire, un traitement cryogénique à -50°C ou plus bas, de préférence entre -80°C et -100°C ou plus bas mais pas en dessous de -110°C, pour transformer toute l'austénite en martensite, la température étant inférieure de 150°C ou davantage à Ms, préférentiellement inférieure d'environ 200°C à Ms, un au moins desdits traitements cryogéniques durant au moins 4h et au plus 50h et de préférence entre 4h et 10h ; pour les compositions ayant, notamment, une teneur en Ni relativement basse qui conduit à une température Ms relativement élevée, ce traitement cryogénique est moins utile ; la durée du traitement cryogénique dépendant notamment de la massivité de la pièce à traiter ;
  • optionnellement un traitement d'adoucissement de la martensite brute de trempe effectué à 150-250°C pendant 4-16h, suivi par un refroidissement l'air calme ;
  • un vieillissement de durcissement à 475-600°C, de préférence à 490-525°C pendant 5-20h; un vieillissement en dessous de 490°C n'est pas toujours recommandé car le carbure métastable M3C pourrait encore être présent et apporterait une fragilité à la structure; les vieillissements au-delà de 525°C peuvent provoquer une perte de résistance mécanique par vieillissement, sans gain notable de ténacité ou de ductilité.
In general, an optimized heat treatment mode of the steel according to the invention for finally obtaining a part having the desired properties is, after forming the blank of the part and before the completion. giving the piece its final form is as follows:
  • softening income at 600-675 ° C for 4 to 20 hours followed by cooling in the air;
  • solution at 900-1000 ° C for at least 1 hour, followed by cooling with oil or air fast enough to avoid the precipitation of intergranular carbides in the austenite matrix;
  • if necessary, cryogenic treatment at -50 ° C or lower, preferably between -80 ° C and -100 ° C or below but not below -110 ° C, to convert all the austenite to martensite, temperature being less than 150 ° C or more to Ms, preferably less than 200 ° C to Ms, at least one of said cryogenic treatments for at least 4h and at most 50h and preferably between 4h and 10h; for compositions having, in particular, a relatively low Ni content which leads to a relatively high Ms temperature, this cryogenic treatment is less useful; the duration of the cryogenic treatment depending in particular on the massiveness of the workpiece;
  • optionally softening treatment of the rough quenching martensite carried out at 150-250 ° C for 4-16h, followed by cooling the still air;
  • curing aging at 475-600 ° C, preferably at 490-525 ° C for 5-20h; aging below 490 ° C is not always recommended because the M 3 C metastable carbide could still be present and would bring fragility to the structure; Aging beyond 525 ° C can cause a loss of mechanical strength by aging, without significant gain in toughness or ductility.

Dans les exemples qui ont été décrits, les opérations de mise en forme de l'acier suivant sa coulée et précédant le revenu d'adoucissement et les autres traitements thermiques ont consisté en un forgeage. Mais d'autres types de traitements thermomécaniques de mise en forme à chaud et/ou à froid peuvent être exécutés en plus ou à la place de ce forgeage, en fonction du type de produit final que l'on désire obtenir (pièces matricées, barres, demi-produits...). On peut notamment citer un ou des laminages, un matriçage, un estampage... ainsi qu'une combinaison de plusieurs tels traitements.In the examples which have been described, the shaping operations of the steel following its casting and preceding the softening income and the other heat treatments have consisted of forging. But other types of thermomechanical treatments for hot and / or cold forming can be carried out in addition to or in place of this forging, depending on the type of end product that is desired (stamped parts, bars). , semi-finished products ...). In particular, mention may be made of one or more laminates, a stamping, a stamping, and a combination of several such treatments.

Les applications privilégiées de l'acier selon l'invention sont les pièces d'endurance pour mécanique et éléments de structure, pour lesquelles on doit avoir à froid une résistance à la traction supérieure à 2150 MPa, combinée à des valeurs de résilience supérieures à celles des meilleurs aciers à haute résistance, et à chaud (400°C) une résistance à la traction de l'ordre de 1800 MPa, ainsi que des propriétés de fatigue optimales.The preferred applications of the steel according to the invention are the endurance parts for mechanics and structural elements, for which a tensile strength greater than 2150 MPa must be cold, combined with higher values of resilience than better high-strength steels, and hot (400 ° C) a tensile strength of the order of 1800 MPa, as well as optimal fatigue properties.

L'acier selon l'invention a également pour avantage d'être cémentable, nitrurable et carbonitrurable. On peut donc conférer aux pièces qui l'utilisent une résistance à l'abrasion élevée sans affecter ses propriétés à coeur. Cela est particulièrement avantageux dans les applications envisagées qui ont été citées.The steel according to the invention also has the advantage of being cementable, nitrurable and carbonitrurable. The parts that use it can therefore be given high abrasion resistance without affecting its core properties. This is particularly advantageous in the intended applications that have been cited.

La cémentation, ou la nitruration, ou la carbonitruration, peut, éventuellement, être effectuée pendant les traitements thermiques de vieillissement ou de mise en solution, au lieu d'être effectuée lors d'une étape séparée. En particulier, une nitruration peut être effectuée entre 475 et 500°C lors d'un cycle de vieillissement.The carburizing, or the nitriding, or the carbonitriding, can, possibly, be carried out during the heat treatments of aging or dissolution in solution, instead of being carried out during a separate step. In particular, nitriding can be carried out between 475 and 500 ° C during an aging cycle.

Claims (26)

  1. A steel characterized in that its composition is, in weight percentages:
    - C = 0.18 - 0.30%
    - Co = 1.5 - 4%
    - Cr = 2 - 5%
    - Al = 1 - 2%
    - Mo + W/2 = 1 - 4%
    - V = traces - 0.3%
    - Nb = traces - 0.1%
    - B = traces - 30 ppm
    - Ni = 11 - 16% where Ni ≥ 7 + 3.5 Al
    - Si = traces - 1.0%
    - Mn = traces - 2.0%
    - Ca = traces - 20 ppm
    - Rare earths = traces - 100 ppm
    - if N ≤ 10 ppm, Ti + Zr/2 = traces - 100 ppm where Ti + Zr/2 ≤ 10 N
    - if 10 ppm < N ≤ 20 ppm, Ti + Zr/2 = traces - 150 ppm
    - O = traces - 50 ppm
    - N = traces - 20 ppm
    - S = traces - 20 ppm
    - Cu = traces - 1%
    - P = traces - 200 ppm
    the remainder being iron and inevitable impurities resulting from the smelting.
  2. The steel according to claim 1, characterized in that it contains between 2 and 3% of Co.
  3. The steel according to claim 1 or 2, characterized in that it contains C = 0.20 - 0.25%.
  4. The steel according to any of claims 1 to 3, characterized in that it contains Cr = 2 - 4%.
  5. The steel according to any of claims 1 to 4, characterized in that it contains Al = 1 - 1.6%, preferably 1.4 - 1.6%.
  6. The steel according to any of claims 1 to 5, characterized in that it contains Mo ≥ 1%.
  7. The steel according to any of claims 1 to 6, characterized in that it contains Mo + W/2 = 1 - 2%.
  8. The steel according to any of claims 1 to 7, characterized in that it contains V = 0.2 - 0.3%.
  9. The steel according to any of claims 1 to 8, characterized in that it contains Ni = 12 - 14%, with Ni ≥ 7 + 3.5 Al.
  10. The steel according to any of claims 1 to 9, characterized in that it contains Nb = traces - 0.05%.
  11. The steel according to any of claims 1 to 10, characterized in that it contains Si = traces - 0.25%, preferably traces - 0.10%.
  12. The steel according to any of claims 1 to 11, characterized in that it contains O = traces - 10 ppm.
  13. The steel according to any of claims 1 to 12, characterized in that it contains N = traces - 10 ppm.
  14. The steel according to any of claims 1 to 13, characterized in that it contains S = traces - 10 ppm, preferably traces - 5 ppm.
  15. The steel according to any of claims 1 to 14, characterized in that it contains P = traces - 100 ppm.
  16. The steel according to any of claims 1 to 15, characterized in that its measured martensitic transformation temperature Ms is greater than or equal to 100°C.
  17. The steel according to claim 16, characterized in that its measured martensitic transformation temperature Ms is greater than or equal to 140°C.
  18. A method for manufacturing a steel part, characterized in that it includes the following steps preceding the finishing of the part providing it with its definitive shape:
    - preparation of a steel having the composition according to any of claims 1 to 17;
    - at least one operation for shaping this steel;
    - softening tempering at 600-675°C for 4 to 20hrs by cooling in air;
    - solution heat treatment at 900-1,000°C for at least 1hr, followed by sufficiently fast cooling in oil or air in order to avoid precipitation of intergranular carbides in the austenite matrix;
    - age hardening at 475-600°C, preferably at 490-525°C for 5-20hrs.
  19. A method for manufacturing a steel part according to claim 18, characterized in that it further includes a cryogenic treatment at -50°C or lower, preferably between -80°C and -100°C or lower but not below -110°C, in order to transform all the austenite into martensite, the temperature being less than the measured Ms by 150°C or more at, at least one of said treatments lasting between 4hrs and 50hrs and preferably between 4hrs and 10hrs.
  20. The method for manufacturing a steel part according to any of claims 18 or 19, characterized in that it further includes a treatment for softening the crude quenched martensite carried out at 150-250°C for 4-16hrs, followed by quiet air cooling.
  21. The method for manufacturing a steel part according to any of claims 18 to 20, characterized in that the part also undergoes carburization or nitridation or carbonitridation.
  22. The method for manufacturing a steel part according to claim 21, characterized in that nitridation or carburization or carbonitridation is carried out during an ageing cycle.
  23. The method for manufacturing a steel part according to claim 22, characterized in that nitridation is carried out between 475 et 600°C.
  24. The method for manufacturing a steel part according to any of claims 21 to 23, characterized in that said nitridation or carburization or carbonitridation is carried out during a thermal cycle before or simultaneously with said solution heat treatment.
  25. A mechanical part or part for a structural member, characterized in that it is manufactured by the method according to any of claims 18 to 24.
  26. The mechanical part according to claim 25, characterized in that this is an engine transmission shaft, or an engine suspension device or a landing gear member or a gearbox member or a bearing axle.
EP09784484.9A 2008-07-15 2009-07-08 Hardened martensitic steel having a low cobalt content, process for manufacturing a part from this steel, and part thus obtained Active EP2310546B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09784484T PL2310546T3 (en) 2008-07-15 2009-07-08 Hardened martensitic steel having a low cobalt content, process for manufacturing a part from this steel, and part thus obtained

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0854810A FR2933990B1 (en) 2008-07-15 2008-07-15 LOW-COBALT HARDENED CURED MARTENSITIC STEEL, METHOD FOR MANUFACTURING A WORKPIECE THEREFROM, AND PIECE THUS OBTAINED
PCT/FR2009/051351 WO2010007297A1 (en) 2008-07-15 2009-07-08 Hardened martensitic steel having a low cobalt content, process for manufacturing a part from this steel, and part thus obtained

Publications (2)

Publication Number Publication Date
EP2310546A1 EP2310546A1 (en) 2011-04-20
EP2310546B1 true EP2310546B1 (en) 2017-03-22

Family

ID=40122328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09784484.9A Active EP2310546B1 (en) 2008-07-15 2009-07-08 Hardened martensitic steel having a low cobalt content, process for manufacturing a part from this steel, and part thus obtained

Country Status (10)

Country Link
US (1) US9175370B2 (en)
EP (1) EP2310546B1 (en)
JP (1) JP5710478B2 (en)
CN (1) CN102131947B (en)
CA (1) CA2730520C (en)
ES (1) ES2624912T3 (en)
FR (1) FR2933990B1 (en)
PL (1) PL2310546T3 (en)
RU (1) RU2497974C2 (en)
WO (1) WO2010007297A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009031576A1 (en) * 2008-07-23 2010-03-25 V&M Deutschland Gmbh Steel alloy for a ferritic steel with excellent creep rupture strength and oxidation resistance at elevated service temperatures
FR2947565B1 (en) 2009-07-03 2011-12-23 Snecma CRYOGENIC TREATMENT OF A MARTENSITIC STEEL WITH MIXED CURING
FR2947566B1 (en) * 2009-07-03 2011-12-16 Snecma PROCESS FOR PRODUCING A MARTENSITIC STEEL WITH MIXED CURING
CN102337494B (en) * 2011-09-26 2013-08-28 台州学院 Method for processing wear-resisting corrosion-resisting nitriding layer on surface of Fe-Mn series stainless steel
CA2848348A1 (en) 2011-10-24 2013-05-02 Total Raffinage France Process for preparing a hydroconversion catalyst, catalyst thus obtained and use thereof in a hydroconversion process
FR2987372B1 (en) * 2012-02-24 2014-11-14 Messier Bugatti Dowty PROCESS FOR MANUFACTURING A STAINLESS STEEL WORKPIECE
US9410220B2 (en) * 2012-06-19 2016-08-09 Buffalo Armory Llc Method and apparatus for treating a steel article
US9410222B2 (en) 2012-06-19 2016-08-09 Buffalo Armory Llc Method and apparatus for treating a steel article
FR2994195A1 (en) * 2012-07-31 2014-02-07 Peugeot Citroen Automobiles Sa Thermochemical treatment of steel mechanical parts such as gear box of an automobile, comprises carrying out thermochemical enrichment of carbon steel in a nitrogen line and then structural refining and quenching
FR2999607B1 (en) * 2012-12-13 2015-04-17 Peugeot Citroen Automobiles Sa STEEL TREATMENT PROCESS COMPRISING GRAIN REFINING PRETREATMENT
CN103981455B (en) * 2014-05-09 2016-04-06 南安市国高建材科技有限公司 A kind of superstrength die steel with good corrosion resistance and toughness
RU2600467C1 (en) * 2015-06-25 2016-10-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") High-strength beryllium-containing steel
CN105420611A (en) * 2015-12-07 2016-03-23 苏州市神龙门窗有限公司 Corrosion-resistant steel for door and window and thermal treatment method for corrosion-resistant steel
CN106216969A (en) * 2016-07-26 2016-12-14 路望培 A kind of mechanical drive shaft and preparation method thereof
JP2019532816A (en) * 2016-08-03 2019-11-14 アペラム Method of manufacturing a steel part including adding molten metal on a support part, and part obtained thereby
RU2627529C1 (en) * 2016-12-06 2017-08-08 Юлия Алексеевна Щепочкина Steel
CN107177798A (en) * 2017-07-15 2017-09-19 滁州凯旋模具制造有限公司 A kind of auto parts and components automatic welding die
RU2696302C1 (en) * 2018-07-31 2019-08-01 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Treatment method of heat-resistant martensite steel
FR3095659B1 (en) * 2019-05-02 2022-04-15 Safran Helicopter Engines CASED STEEL PARTS FOR AERONAUTICS
RU2748448C1 (en) * 2020-06-03 2021-05-25 Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") Case-harden heat-resistant steel
CN111593260B (en) * 2020-06-17 2021-09-24 大连理工大学 B2 nanoparticle coherent precipitation strengthened ultrahigh-strength maraging stainless steel and preparation method thereof
CN116926442B (en) * 2023-07-24 2024-02-23 北京理工大学 Nanophase synergistic precipitation strengthening low yield ratio ultrahigh strength steel and preparation method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB371334A (en) * 1929-10-11 1932-04-13 Commentry Fourchambault Et Dec Process for improving the mechanical properties of ferro-nickelchromium alloys
GB1089934A (en) * 1964-10-28 1967-11-08 Republic Steel Corp High strength steel alloy composition
GB1089935A (en) * 1964-10-28 1967-11-08 Republic Steel Corp Method of strengthening alloy steel
JPS5423328B2 (en) * 1973-11-27 1979-08-13
JPS5635750A (en) * 1979-08-29 1981-04-08 Kobe Steel Ltd Alloy steel with superior strength and toughness and its manufacture
US4605321A (en) * 1983-03-23 1986-08-12 Skf Kugellagerfbriken Gmbh Roller bearing for seating a pedal bearing shaft
US4832525A (en) * 1988-03-25 1989-05-23 Morrison Donald R Double-bearing shaft for a vibrating screed
FR2706489B1 (en) * 1993-06-14 1995-09-01 Ugine Savoie Sa Martensitic stainless steel with improved machinability.
US5393488A (en) * 1993-08-06 1995-02-28 General Electric Company High strength, high fatigue structural steel
US5447800A (en) * 1993-09-27 1995-09-05 Crucible Materials Corporation Martensitic hot work tool steel die block article and method of manufacture
JP3580891B2 (en) * 1995-03-28 2004-10-27 Ntn株式会社 Machining method for axle bearing outer ring
JP2002285290A (en) * 2001-03-27 2002-10-03 Daido Steel Co Ltd High strength and highly fatigue resistant steel for structural purpose and production method therefor
US6715921B2 (en) * 2001-10-24 2004-04-06 Victor Company Of Japan, Ltd. Shaft bearing structure of spindle motor
US6890393B2 (en) * 2003-02-07 2005-05-10 Advanced Steel Technology, Llc Fine-grained martensitic stainless steel and method thereof
CN100526493C (en) * 2004-07-27 2009-08-12 新日本制铁株式会社 High young's modulus steel plate, zinc hot dip galvanized steel sheet using the same, alloyed zinc hot dip galvanized steel sheet, high young's modulus steel pipe, and method for production thereof
FR2885141A1 (en) * 2005-04-27 2006-11-03 Aubert & Duval Soc Par Actions Hardened martensitic steel contains amounts of carbon, cobalt, chrome and aluminum with traces of other minerals
FR2885142B1 (en) * 2005-04-27 2007-07-27 Aubert & Duval Soc Par Actions CURED MARTENSITIC STEEL, METHOD FOR MANUFACTURING A WORKPIECE THEREFROM, AND PIECE THUS OBTAINED

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA2730520A1 (en) 2010-01-21
FR2933990B1 (en) 2010-08-13
US9175370B2 (en) 2015-11-03
CN102131947B (en) 2013-03-27
CA2730520C (en) 2016-11-22
JP2011528068A (en) 2011-11-10
JP5710478B2 (en) 2015-04-30
ES2624912T3 (en) 2017-07-18
EP2310546A1 (en) 2011-04-20
RU2011105417A (en) 2012-08-20
RU2497974C2 (en) 2013-11-10
FR2933990A1 (en) 2010-01-22
WO2010007297A1 (en) 2010-01-21
US20110226386A1 (en) 2011-09-22
PL2310546T3 (en) 2017-08-31
CN102131947A (en) 2011-07-20

Similar Documents

Publication Publication Date Title
EP2310546B1 (en) Hardened martensitic steel having a low cobalt content, process for manufacturing a part from this steel, and part thus obtained
EP2164998B1 (en) Hardened martensitic steel having a low or zero content of cobalt, process for manufacturing a part from this steel, and part thus obtained
CA2607446C (en) Tempered martensitic steel, method of producing a part from said steel and part thus obtained
EP1896624B1 (en) Martensitic stainless steel composition, method for making a mechanical part from said steel and resulting part
JP5530763B2 (en) Carburized steel parts with excellent low cycle bending fatigue strength
EP1426453B1 (en) Process for the production of a steel forged part
CA2335911C (en) Case hardened steel with high tempering temperature, method for obtaining same and parts formed with said steel
CA2984131C (en) Steel, product made of said steel, and manufacturing method thereof
EP1979583B1 (en) Method for making a combustion engine valve, and valve thus obtained
WO2015098106A1 (en) Carburized-steel-component production method, and carburized steel component
CA3001158C (en) Steel, product created from said steel, and manufacturing method thereof
FR2885141A1 (en) Hardened martensitic steel contains amounts of carbon, cobalt, chrome and aluminum with traces of other minerals
JP4688691B2 (en) Case-hardened steel with excellent low cycle fatigue strength
CA2559562C (en) Steel for mechanical parts, method for producing mechanical parts from said steel and the thus obtainable mechanical parts
EP3378957B1 (en) Steel, method for manufacturning mechanical pieces made of the steel, and parts thus manufactured
CA2312034C (en) Nitriding steel, method for obtaining same and parts formed with said steel
JP2011179048A (en) Steel for carburizing having excellent cold workability
WO2022253912A1 (en) Hot-formed steel part and manufacturing method
JP2008223064A (en) High proof strength carburized steel and component for machine structure using the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROCH, FRANCOIS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160309

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602009044964

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0038520000

Ipc: C21D0001320000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/02 20060101ALI20160923BHEP

Ipc: C22C 38/52 20060101ALI20160923BHEP

Ipc: C22C 38/54 20060101ALI20160923BHEP

Ipc: C21D 9/00 20060101ALI20160923BHEP

Ipc: C21D 9/28 20060101ALI20160923BHEP

Ipc: C22C 38/06 20060101ALI20160923BHEP

Ipc: C22C 38/00 20060101ALI20160923BHEP

Ipc: C22C 38/42 20060101ALI20160923BHEP

Ipc: C22C 38/48 20060101ALI20160923BHEP

Ipc: C21D 6/00 20060101ALI20160923BHEP

Ipc: C22C 38/44 20060101ALI20160923BHEP

Ipc: C21D 1/32 20060101AFI20160923BHEP

Ipc: C22C 38/46 20060101ALI20160923BHEP

Ipc: C21D 6/04 20060101ALI20160923BHEP

Ipc: C22C 38/04 20060101ALI20160923BHEP

INTG Intention to grant announced

Effective date: 20161020

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 877837

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009044964

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2624912

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170718

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009044964

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

26N No opposition filed

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170708

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 877837

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 15

Ref country code: GB

Payment date: 20230720

Year of fee payment: 15

Ref country code: ES

Payment date: 20230926

Year of fee payment: 15

Ref country code: CZ

Payment date: 20230703

Year of fee payment: 15

Ref country code: AT

Payment date: 20230720

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230719

Year of fee payment: 15

Ref country code: PL

Payment date: 20230703

Year of fee payment: 15

Ref country code: FR

Payment date: 20230725

Year of fee payment: 15

Ref country code: DE

Payment date: 20230719

Year of fee payment: 15

Ref country code: BE

Payment date: 20230719

Year of fee payment: 15