EP2164998B1 - Gehärteter martensitischer stahl mit geringem oder ohne kobaltanteil, verfahren zur herstellung eines teils aus diesem stahl und in diesem verfahren hergestelltes teil - Google Patents

Gehärteter martensitischer stahl mit geringem oder ohne kobaltanteil, verfahren zur herstellung eines teils aus diesem stahl und in diesem verfahren hergestelltes teil Download PDF

Info

Publication number
EP2164998B1
EP2164998B1 EP08806015A EP08806015A EP2164998B1 EP 2164998 B1 EP2164998 B1 EP 2164998B1 EP 08806015 A EP08806015 A EP 08806015A EP 08806015 A EP08806015 A EP 08806015A EP 2164998 B1 EP2164998 B1 EP 2164998B1
Authority
EP
European Patent Office
Prior art keywords
traces
ppm
steel
steel according
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08806015A
Other languages
English (en)
French (fr)
Other versions
EP2164998A1 (de
Inventor
Jacques Montagnon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aubert and Duval SA
Original Assignee
Aubert and Duval SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aubert and Duval SA filed Critical Aubert and Duval SA
Priority to SI200830116T priority Critical patent/SI2164998T1/sl
Priority to PL08806015T priority patent/PL2164998T3/pl
Publication of EP2164998A1 publication Critical patent/EP2164998A1/de
Application granted granted Critical
Publication of EP2164998B1 publication Critical patent/EP2164998B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils

Definitions

  • the invention relates to a martensitic steel hardened by a duplex system, that is to say by a precipitation of intermetallic compounds and carbides obtained by means of a suitable steel composition and heat aging treatment.
  • maraging steels contain quite consistently high levels of nickel, cobalt and molybdenum, all of which are expensive and subject to significant changes in their rating in the commodity market. They also contain titanium, used for its strong contribution to secondary hardening, but which is mainly involved in lowering the fatigue strength of maraging steels due to TiN nitride, which it is almost impossible to avoid training during the making of steels even contains only a few tenths of a percent.
  • This steel is said to be "duplex-hardening" because its hardening is achieved by simultaneous hardening precipitation of intermetallic compounds and M 2 C carbides.
  • the object of the invention is to provide a usable steel, in particular, for manufacturing mechanical parts such as transmission shafts, or structural elements, having a further improved mechanical resistance to heat but also fatigue properties and fragility. always adapted to these uses.
  • This steel should also have a lower production cost than the best performing steels currently known for these uses, thanks, in particular, to a significantly lower cobalt content.
  • It preferably contains C 0.20 - 0.25%.
  • It preferably contains Cr 2 - 4%.
  • It preferably contains Al 1 - 1.6%, better 1.4 - 1.6%.
  • It preferably contains Mo + W / 2 1 - 2%.
  • It preferably contains V 0.2 - 0.3%.
  • It preferably contains Ni 12-14%, with Ni ⁇ 7 + 3.5 Al.
  • Nb traces - 0.05%.
  • It preferably contains Si traces - 0.25%, better traces - 0.10%.
  • It preferably contains O traces - 10 ppm.
  • N traces - 10 ppm.
  • It preferably contains S traces - 10 ppm, better traces - 5 ppm.
  • It preferably contains P traces - 100 ppm.
  • Its measured martensitic transformation temperature Ms is preferably greater than or equal to 100 ° C.
  • Its martensitic transformation temperature Ms measured may be greater than or equal to 140 ° C.
  • It further preferably comprises a cryogenic treatment at -50 ° C or lower, preferably at -80 ° C or lower, to convert all the austenite to martensite, the temperature being lower by 150 ° C or more to Measured ms, at least one of said treatments lasting at least 4 hours and at most 50 hours.
  • It also preferably comprises a softening treatment of the rough quenching martensite carried out at 150-250 ° C for 4-16h, followed by cooling with still air.
  • the part also preferably undergoes carburizing or nitriding or carbonitriding.
  • Nitriding can be performed during an aging cycle.
  • Said nitriding or carburising or carbonitriding can be carried out during a thermal cycle prior to or simultaneously with said dissolution.
  • the invention also relates to a mechanical part or component for structural element, characterized in that it is manufactured according to the preceding method.
  • It may be in particular a motor transmission shaft, or a motor suspension device or a landing gear element or a gearbox element or a bearing axis.
  • the invention is based first of all on a steel composition which differs from the prior art represented by WO-2006/114499 in particular by a very low content of Co, not exceeding 1%, and can be typically limited to traces inevitably resulting from the elaboration.
  • the contents of the other most commonly present significant alloying elements are only slightly modified, but certain levels of impurities must be carefully controlled.
  • These steels have a plastic gap (gap between breaking strength R m and resistance to elongation R p0,2 ) intermediate between those carbon steels and maragings. For the latter, the difference is very small, providing a high elastic limit, but a quick break as soon as it is crossed.
  • the steels of the invention have, from this point of view, properties that can be adjusted by the proportion of hardening phases and / or carbon.
  • the steel of the invention can be machined in the quenched state, with tools adapted to a hardness of 45HRC. It is intermediate between the maragings (rough machining quench since they have a mild low carbon martensite) and carbon steels that must be machined essentially in the annealed state.
  • a "duplex" curing is carried out, that is to say obtained jointly by intermetallics of ⁇ -NiAl type and carbides of M 2 C type, in the presence of reversion austenite formed / stabilized by diffusion-enriched nickel enrichment during curing aging, which gives ductility to the structure by forming a sandwich structure (a few% of stable and ductile austenite between the slats of hardened martensite).
  • nitrides Ti, Zr and Al in particular, which are weakening: they deteriorate the tenacity and fatigue resistance. Since these nitrides can precipitate from 1 to a few ppm of N in the presence of Ti, Zr and / or Al, and the conventional elaboration means make it difficult to achieve less than 5 ppm of N, the steel of the invention respects the following rules.
  • any addition of Ti (maximum allowed: 100 ppm) is limited, and N is limited as much as possible.
  • the N content should not exceed 20 ppm and more preferably 10 ppm, and the Ti content should not exceed 10 times the N content.
  • Ti and Zr are to be regarded as impurities to be avoided, and the sum Ti + Zr / 2 must not exceed 150 ppm.
  • rare earths at the end of the process, can also help to fix a fraction of N, besides the S and O. In this case, it must be ensured that the residual rare earth content remains below 100. ppm, and preferably less than 50 ppm, because these elements weaken the steel when they are present beyond these values. It is believed that rare earth (eg La) oxynitrides are less harmful than Ti or Al nitrides because of their globular form which would make them less likely to constitute fatigue fracture primers. It is nevertheless advantageous to leave as few of these inclusions as possible in the steel, thanks to the classic techniques of careful elaboration.
  • Calcium treatment may be practiced to complete the deoxidation / desulfurization of the liquid metal. This treatment is preferably conducted with the possible additions of Ti, Zr or rare earths.
  • M 2 C carbide of Cr, Mo, W and V containing very little Fe is preferred for its hardening and non-embrittling properties.
  • M 2 C carbide is metastable with regard to equilibrium carbides M 7 C 3 and / or M 6 C and / or M 23 C 6 . It is stabilized by Mo and W.
  • Mo + W / 2 is between 1 and 2%. It is also to prevent the formation of non-hardening Ti carbides which may weaken the grain boundaries that a 100 ppm imperative limitation of the Ti content of the steels according to the invention is required.
  • Cr and V are elements that activate the formation of "metastable" carbides.
  • V also forms carbides of MC type, stable up to the dissolution temperatures, which "block" the grain boundaries and limit the magnification of grains during heat treatments at high temperatures.
  • V 0.3% must not be exceeded in order not to fix too much C in carbides of V, during the dissolution cycle, to the detriment of the M 2 C carbide of Cr, Mo, W, V which is sought precipitation during the subsequent aging cycle.
  • the V content is between 0.2 and 0.3%.
  • the presence of C favors the appearance of M 2 C with respect to the ⁇ phase.
  • an excessive content causes segregations, a lowering of Ms and causes difficulties in manufacturing on an industrial scale: sensitivity to the taps (superficial cracking during rapid cooling), difficult machinability of martensite too hard to l quenching condition ...
  • Its content must be between 0.20 and 0.30%, preferably 0.20-0.25% so as not to give the part too hard a hardness which could require machining in the annealed state.
  • the surface layer of the parts can be enriched in C by cementation, nitriding or carbonitriding if a very high surface hardness is required in the intended applications.
  • Co delays the restoration of dislocations and, therefore, slows the mechanisms of hot survivability in martensite. It was thought that this made it possible to maintain high tensile strength at high temperature. But on the other hand, it was suspected that, since the Co promotes the formation of the aforementioned ⁇ phase which is the one that hardens the maraging steels of the prior art to Fe-Ni-Co-Mo, its massive presence contributed to reducing the quantity of Mo and / or W available to form M 2 C carbides which contribute to the hardening according to the mechanism that is to be promoted.
  • the cobalt somewhat raises the ductile / brittle transition temperature, which is not favorable, particularly in compositions with low nickel contents, whereas, contrary to what could be found in cobalt does not clearly show the transformation point Ms of the compositions of the invention and therefore has no obvious interest either in this respect.
  • Ni and Al are bonded in the invention, where Ni must be ⁇ 7 + 3.5 Al.
  • These are the two essential elements which participate in a good part of aging hardening, thanks to the precipitation of the nanometric intermetallic phase of type B2 (NiAl for example). It is this phase which gives a large part of the mechanical strength when hot, up to about 400 ° C.
  • Nickel is also the element which reduces brittleness by cleavage because it lowers the ductile / brittle transition temperature of martensites. If Al is too high relative to Ni, the martensitic matrix is too strongly depleted of nickel as a result of the precipitation of the NiAl curing precipitate during aging.
  • martensitic transformation start temperature Ms which, according to the invention, should preferably remain equal to or greater than 140 ° C. if no cryogenic cycle is used, and should preferably be equal to or greater than 100 ° C. if we practice a cryogenic cycle.
  • this formula is only very approximate, in particular because the effects of Co and Al are highly variable type of steel to another. To know whether a steel is or not according to the invention, it is therefore necessary to rely on measurements of the actual temperature Ms, made for example by dilatometry as is conventional. Ni content is one of Ms.'s possible adjustment variables
  • the end-of-cooling temperature after quenching must be less than the actual Ms -150.degree. C., preferably less than the actual Ms -200.degree. to ensure a full martensitic transformation of steel.
  • this end-of-cooling temperature can be obtained as a result of a cryogenic treatment applied immediately following cooling to ambient temperature from the solution temperature. It is also possible to apply the cryogenic treatment not from ambient temperature, but after isothermal quenching ending at a temperature slightly greater than Ms, preferably between Ms and Ms + 50 ° C.
  • the overall rate of cooling should be as high as possible to avoid the mechanisms of stabilization of the carbon-rich residual austenite.
  • the Ms value of the steel is greater than or equal to 100 ° C if a cryogenic cycle is applied, and greater than or equal to 140 ° C in the absence of this cryogenic cycle.
  • the duration of the cryogenic cycle is between 4 and 50 hours, preferably from 4 to 16 hours, and more preferably from 4 to 8 hours. It is possible to practice several cryogenic cycles, the essential being that at least one of them has the aforementioned characteristics.
  • the steels of the class of the invention prefer the presence of the hardening phases B2, in particular NiAl, in order to obtain a high mechanical strength when hot. Compliance with the conditions on Ni and Al that have been given ensures a sufficient potential content of reversion austenite to maintain ductility and toughness suitable for the intended applications.
  • Nb to control the grain size during forging or other hot processing, at a content not exceeding 0.1%, preferably not exceeding 0.05% for avoid segregations that may be excessive.
  • the steel according to the invention therefore accepts raw materials that can contain significant residual contents in Nb.
  • a characteristic of the steels of the class of the invention is also the possibility of replacing at least a portion of Mo by W.
  • W segregates less at solidification than Mo and provides an increase in mechanical strength when hot. It has the disadvantage of being expensive and we can optimize this cost by associating it with Mo.
  • Mo + W / 2 must be between 1 and 4%, preferably between 1 and 2% . It is preferred to maintain a minimum content of 1% Mo to limit the cost of steel, especially as the high temperature withstand is not a priority objective of the steel of the invention.
  • Cu can be up to 1%. It is likely to participate in the hardening with the help of its epsilon phase, and the presence of Ni makes it possible to limit its harmful effects, in particular the appearance of superficial cracks during the forging of the pieces, which one observes during additions of copper in steels not containing nickel. But its presence is not essential and it may be present only in the state of residual traces, resulting from the pollution of raw materials.
  • Manganese is not a priori useful for obtaining the properties of steel, but it has no recognized adverse effect; in addition, its low vapor pressure at the temperatures of the liquid steel makes it difficult to control its concentration in vacuum and vacuum remelting: its content may vary depending on the radial and axial location in a remelted ingot. As it is often present in the raw materials, and for the reasons above, its content will preferably be at most 0.25%, and in any case limited to 2% at the most because of too great variations of its concentration in a same product will interfere with the repeatability of the properties.
  • Silicon is known to have a hardening effect in solid solution of ferrite and, like cobalt, to decrease the solubility of some elements or certain phases in ferrite. Nevertheless, the steel of the invention requires a significant addition of cobalt, and the same is true of the addition of silicon, especially since, moreover, silicon generally promotes the precipitation of intermetallic phases. harmful in complex steels (Laves phase, silicides ). Its content will be limited to 1%, preferably less than 0.25% and still more preferably less than 0.1%.
  • S traces - 20ppm, preferably traces - 10ppm, better traces - 5ppm
  • P traces - 200ppm, preferably -100ppm traces, better traces-50ppm.
  • Ca can be used as a deoxidizer and as a sulfur sensor, finding it in the end ( ⁇ 20ppm).
  • rare earth residues may ultimately remain ( ⁇ 100ppm) following a refining treatment of the liquid metal where they would have been used to capture O, S and / or N.
  • the use of Ca and rare earths for these effects not being mandatory, these elements may be present only in the form of traces in the steels of the invention.
  • the acceptable oxygen content is 50 ppm maximum, preferably 10 ppm maximum.
  • Table 1 Composition and Measured Temperatures of the Samples Tested A (ref.) B (ref.) C (ref.) D (ref.) E (ref.) F (ref.) G (ref.) H (invention) VS% 0.233 0.247 0.239 0.244 0.247 0.19 0.22 0.21 Yes% 0.082 0.031 0.031 0,037 0,030 0.05 0.04 0.05 mn% 0,026 0,030 0.033 0.033 0,030 0.02 ⁇ 0.03 0.04 S ppm 1.0 7.3 3.8 6.1 6.7 7 7 6 P ppm 54 ⁇ 30 ⁇ 30 ⁇ 30 ⁇ 30 28 ⁇ 50 29 Or% 13,43 13,31 12.67 12.71 13.08 13,00 14.70 12.95 Cr% 2.76 3.08 3.38 3.38 3.29 3.66 3.19 3.17 Mo% 1.44 1.53 1.52 1.53 1.53 1.50 1.
  • Reference steel A corresponds to a steel according to US-A-5,393,488 , thus having a high Co content.
  • Reference steel B corresponds to a steel comparable to steel A, to which V was added without modifying the content of Co.
  • Reference steel C corresponds to a steel according to WO-2006/114499 especially in that, with respect to steels A and B, its Al content has been increased and its Co content decreased.
  • the reference steel D has undergone a C addition of B.
  • the reference steel E has undergone a Nb addition to C.
  • the reference steel F differs from C mainly by the absence of a significant addition of V, compensated by a lower C content, and a higher purity of residual elements.
  • the reference steel G is distinguished from F by a very low content of Co which would be in accordance with the invention, the presence of V at a level comparable to that of C, D and E, and a higher Ni content, but which, taken in isolation, would nonetheless conform to the invention. But its contents in Ti and N are slightly higher than the invention tolerates. Experience also shows that its measured temperature Ms is substantially too low compared to the requirements of the invention, the relatively high Ni content is not compensated by relatively low levels of Cr, Mo, Al and V.
  • the steel H is in accordance with the invention in all respects, in particular its very low Co content and its high N and Ti purity. Also, its O content is very low. Finally, its measured temperature Ms is entirely in accordance with the invention.
  • the samples were softened at a temperature of at least 600 ° C.
  • this softening income was carried out at 650 ° C. for 8 hours and followed by cooling in air. Thanks to this, the raw products of thermomechanical transformations can undergo without particular problems the finishing operations (straightening, peeling, machining ...) giving the piece its final form.
  • the reference samples C, D and E have a tensile strength that is much greater than that of the reference samples A and B.
  • the elastic limit is at least of the same order of magnitude.
  • the properties of ductility (necking and elongation at break), toughness and resilience are lowered, in the case of heat treatments described and applied.
  • the desired resistance / toughness compromise can be adjusted by changing the aging conditions.
  • Reference sample B shows that the mere addition of V to steel A gives only an improvement in certain properties, and in proportions that are often less important than in the case of steels with reduced or no Co content.
  • the increase of Al in steels C to H combined with the maintenance of a high Ni content, renders the NiAl hardening phase more present. and is an essential factor in improving the tensile strength or keeping it at a suitably high value.
  • Sample G shows that the large decrease, up to the total removal, of cobalt, can still allow to maintain a high tensile strength.
  • the ductility properties are also improved.
  • the elastic limit is, however, quite substantially deteriorated in the case of the sample G, in relation to a larger amount of austenite dispersed in the structure, due to the high Ni content of this sample. This contributes to an excessive lowering of the measured Ms which is not compensated by adjustments of the contents of the other elements.
  • N and Ti a little too high in the sample G compared to the requirements of the invention, and also its slightly higher oxygen content, also contribute in part to its poorer performance than that of the sample.
  • H Another factor to consider for this sample G is an S content which is not particularly low, and which tends to degrade toughness if it is not offset by other characteristics that would be favorable to this property.
  • this sample G has a fairly high Ni content (although remaining within the range of the invention), which lowers Ms and thus promotes the maintenance of a possibly too high residual austenite level. , even after the cryogenic treatment more particularly pushed (to -80 ° C and then -120 ° C) which was undergone by c and sample.
  • the sample H according to the invention which has been cryogenically treated only at -80 ° C., but which has a judiciously adjusted Ni content, minimum impurity contents in all points of view and a temperature Ms measured high enough, responds very well to the problems posed.
  • thermomechanical heat-forming treatments may be performed in addition to or in place of this forging, depending on the type of end product that is desired (stamped parts, bars, semi-finished products. ..).
  • the preferred applications of the steel according to the invention are the endurance parts for mechanics and structural elements, for which a tensile strength of between 2000 MPa and 2350 MPa or more must be cold, combined with values ductility and resilience at least equivalent to those of the best high strength and hot (400 ° C) steels a tensile strength of the order of 1800 MPa, as well as optimal fatigue properties.
  • the steel according to the invention also has the advantage of being cementable, nitrurable and carbonitrurable.
  • the parts that use it can therefore be given high abrasion resistance without affecting its core properties. This is particularly advantageous in the intended applications that have been cited.
  • Other surface treatments, such as mechanical treatments that limit the initiation of fatigue cracking from superficial defects, are conceivable. Shot peening is an example of such treatment.
  • nitriding is carried out, this can be carried out during the aging cycle, preferably at a temperature of 490 to 525 ° C and for a period of time ranging from 5 to 100 hours, the longest ages causing progressive structural softening and, as a result, a progressive decrease in the maximum tensile strength.
  • Another possibility is to perform carburizing, nitriding or carbonitriding during a thermal cycle prior to or simultaneously with the dissolution, the steel substrate of the invention retaining in this case all its potential mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Claims (25)

  1. Stahl, dadurch gekennzeichnet, dass seine Zusammensetzung in Gewichtsprozenten ist:
    - C = 0,20 - 0,30%
    - Co = Spuren - 1%
    - Cr = 2 - 5%
    - Al = 1 - 2%
    - Mo + W/2 = 1 - 4%
    - V = Spuren - 0,3%
    - Nb = Spuren - 0,1%
    - B = Spuren - 30 ppm
    - Ni = 11 - 16% mit Ni ≥ 7 + 3,5 Al
    - Si = Spuren - 1,0%
    - Mn = Spuren - 2,0%
    - Ca = Spuren - 20 ppm
    - Seltene Erden = Spuren - 100 ppm
    - wenn N ≤ 10 ppm, dann Ti + Zr/ 2 = Spuren - 100 ppm mit Ti + Zr/2 ≤ 10 N
    - wenn 10 ppm < N ≤ 20 ppm, dann Ti + Zr/ 2 = Spuren - 150 ppm
    - O = Spuren - 50 ppm
    - N = Spuren - 20 ppm
    - S = Spuren - 20 ppm
    - Cu = Spuren - 1%
    - P = Spuren - 200 ppm
    wobei der Rest Eisen und unvermeidbare, sich aus der Herstellung ergebende Verunreinigungen sind.
  2. Stahl nach Anspruch 1, dadurch gekennzeichnet, dass er C = 0,20 - 0,25% enthält.
  3. Stahl nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass er Cr = 2 - 4% enthält.
  4. Stahl nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass er Al = 1 - 1,6%, vorzugsweise 1,4 - 1,6%, enthält.
  5. Stahl nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass er Mo ≥ 1% enthält.
  6. Stahl nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass er Mo + W/2 = 1 - 2% enthält.
  7. Stahl nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass er V = 0,2 - 0,3% enthält.
  8. Stahl nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass er Ni = 12 - 14% mit Ni ≥ 7 + 3,5 Al enthält.
  9. Stahl nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass er Nb = Spuren - 0,05% enthält.
  10. Stahl nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass er Si = Spuren - 0,25%, vorzugsweise Spuren - 0,10%, enthält.
  11. Stahl nach einem er Ansprüche 1 bis 10, dadurch gekennzeichnet, dass er O = Spuren - 10 ppm enthält.
  12. Stahl nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass er N = Spuren - 10 ppm enthält.
  13. Stahl nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass er S = Spuren - 10 ppm, vorzugsweise Spuren - 5 ppm, enthält.
  14. Stahl nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass er P = Spuren - 100 ppm enthält.
  15. Stahl nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass seine gemessene Martensitumwandlungstemperatur Ms höher als oder gleich 100°C ist.
  16. Stahl nach Anspruch 15, dadurch gekennzeichnet, dass seine gemessene Martensitumwandlungstemperatur Ms höher als oder gleich 140°C ist.
  17. Verfahren zur Herstellung eines Teils aus martensitischem Stahl, dadurch gekennzeichnet, dass es die folgenden Schritte umfasst, die der Fertigstellung des Teils, die ihm seine endgültige Form verleiht, vorhergehen:
    - die Herstellung eines Stahls, der die Zusammensetzung nach einem der Ansprüche 1 bis 16 besitzt;
    - mindestens einen Arbeitsgang der Formung dieses Stahls;
    - mindestens ein Enthärtungs-Anlassen bei 600-675°C während 4 bis 20h, worauf eine Abkühlung an der Luft folgt;
    - eine Auflösung bei 900-1000°C während mindestens 1h, worauf eine Abkühlung an Öl oder Luft folgt, die ausreichend schnell ist, um die Ausfällung von intergranularen Karbiden in der Austenitmatrix zu vermeiden;
    - ein Härtungsaltern bei 475-600°C, vorzugsweise 490-525°C, während 5-20h.
  18. Verfahren zur Herstellung eines Teils aus Stahl nach Anspruch 17, dadurch gekennzeichnet, dass es außerdem eine Kryogenbehandlung bei -50°C oder darunter, vorzugsweise bei -80°C oder darunter, vor dem Schritt des Alterns umfasst, um den gesamten Austenit in Martensit umzuwandeln, wobei die Temperatur um 150°C oder mehr niedriger als das gemessene Ms ist, wobei mindestens eine dieser Behandlungen mindestens 4h und höchstens 50h dauert.
  19. Verfahren zur Herstellung eines Teils aus Stahl nach einem der Ansprüche 17 oder 18, dadurch gekennzeichnet, dass es außerdem eine Behandlung zur Enthärtung des rohen Härtungsmartensits umfasst, die bei 150-250°C während 4-16h durchgeführt wird, worauf eine Abkühlung an unbewegter Luft folgt.
  20. Verfahren zur Herstellung eines Teils aus Stahl nach einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, dass das Teil auch einer Aufkohlung oder einer Nitrierung oder einer Karbonitrierung unterzogen wird.
  21. Verfahren zur Herstellung eines Teils aus Stahl nach Anspruch 20, dadurch gekennzeichnet, dass die Nitrierung bei einem Alterungszyklus durchgeführt wird.
  22. Verfahren zur Herstellung eines Teils aus Stahl nach Anspruch 21, dadurch gekennzeichnet, dass die Nitrierung zwischen 490 und 525°C während 5 bis 100h durchgeführt wird.
  23. Verfahren zur Herstellung eines Teils aus Stahl nach einem der Ansprüche 20 bis 22, dadurch gekennzeichnet, dass die Nitrierung oder Aufkohlung bei einem thermischen Zyklus durchgeführt wird, der der Auflösung vorhergeht oder gleichzeitig mit dieser stattfindet.
  24. Mechanisches Teil oder Teil für ein Bauelement, dadurch gekennzeichnet, dass es nach dem Verfahren eines der Ansprüche 17 bis 23 hergestellt ist.
  25. Mechanisches Teil nach Anspruch 24, dadurch gekennzeichnet, dass es sich um eine Motor-Übertragungswelle oder um eine Motor-Aufhängungsvorrichtung oder um ein Landeelement oder um ein Getriebeelement oder um eine Lagerachse handelt.
EP08806015A 2007-07-10 2008-06-18 Gehärteter martensitischer stahl mit geringem oder ohne kobaltanteil, verfahren zur herstellung eines teils aus diesem stahl und in diesem verfahren hergestelltes teil Active EP2164998B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200830116T SI2164998T1 (sl) 2007-07-10 2008-06-18 Utrjeno martenzitno jeklo z majhno vsebnostjo ali brez kobalta, postopek izdelave dela iz tovrstnega jekla ter po tovrstnem postopku izdelan del
PL08806015T PL2164998T3 (pl) 2007-07-10 2008-06-18 Stal martenzytyczna hartowana, mająca niską lub zerową zawartość kobaltu, sposób wytwarzania części z tej stali, oraz część uzyskana tym sposobem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0756379 2007-07-10
PCT/FR2008/051080 WO2009007562A1 (fr) 2007-07-10 2008-06-18 Acier martensitique durci à teneur faible ou nulle en cobalt, procédé de fabrication d'une pièce à partir de cet acier, et pièce ainsi obtenue

Publications (2)

Publication Number Publication Date
EP2164998A1 EP2164998A1 (de) 2010-03-24
EP2164998B1 true EP2164998B1 (de) 2010-12-01

Family

ID=39156307

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08806015A Active EP2164998B1 (de) 2007-07-10 2008-06-18 Gehärteter martensitischer stahl mit geringem oder ohne kobaltanteil, verfahren zur herstellung eines teils aus diesem stahl und in diesem verfahren hergestelltes teil

Country Status (13)

Country Link
US (1) US9045806B2 (de)
EP (1) EP2164998B1 (de)
JP (1) JP5328785B2 (de)
CN (1) CN101815797B (de)
AT (1) ATE490347T1 (de)
CA (1) CA2694844C (de)
DE (1) DE602008003811D1 (de)
DK (1) DK2164998T3 (de)
ES (1) ES2352788T3 (de)
PL (1) PL2164998T3 (de)
RU (1) RU2456367C2 (de)
SI (1) SI2164998T1 (de)
WO (1) WO2009007562A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109604957A (zh) * 2018-12-14 2019-04-12 中国航空工业集团公司北京航空精密机械研究所 一种高精度结构开放式薄壁钛合金零件的加工方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2947566B1 (fr) 2009-07-03 2011-12-16 Snecma Procede d'elaboration d'un acier martensitique a durcissement mixte
FR2947565B1 (fr) 2009-07-03 2011-12-23 Snecma Traitement cryogenique d'un acier martensitique a durcissement mixte
FR2964668B1 (fr) * 2010-09-14 2012-10-12 Snecma Optimisation de l'usinabilite d'aciers martensitiques inoxydables
RU2502822C1 (ru) * 2012-12-18 2013-12-27 Юлия Алексеевна Щепочкина Сталь
US9303295B2 (en) * 2012-12-28 2016-04-05 Terrapower, Llc Iron-based composition for fuel element
US10157687B2 (en) 2012-12-28 2018-12-18 Terrapower, Llc Iron-based composition for fuel element
CN103667964B (zh) * 2013-11-07 2016-06-15 安徽省智汇电气技术有限公司 一种泵轴承用中碳钢材料及其制备方法
CN104372260B (zh) * 2014-11-07 2017-03-08 佛山市南海区华恭金属加工有限公司 高强度钢拉杆及其热处理方法
CN104911499B (zh) * 2015-06-29 2017-12-26 钢铁研究总院 Cu强化Co‑free二次硬化超高强度钢及制备方法
RU2611250C1 (ru) * 2015-11-25 2017-02-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Инструментальная сталь
CN110257718B (zh) * 2019-08-01 2020-10-16 邵东智能制造技术研究院有限公司 一种耐磨损的不锈钢结构合金及其制备方法
CN111440929B (zh) * 2020-04-10 2021-11-12 合肥通用机械研究院有限公司 一种高压临氢自紧式组合密封件设计制造方法
CN116926442B (zh) * 2023-07-24 2024-02-23 北京理工大学 纳米相协同析出强化低屈强比超高强度钢及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1089934A (en) * 1964-10-28 1967-11-08 Republic Steel Corp High strength steel alloy composition
JPS5161B1 (de) 1967-09-18 1976-01-05
US4004920A (en) * 1975-05-05 1977-01-25 United States Steel Corporation Method of producing low nitrogen steel
FR2307879A1 (fr) * 1975-04-18 1976-11-12 Siderurgie Fse Inst Rech Toles en acier au nickel pour utilisation a basse temperature
DE3070501D1 (en) * 1979-06-29 1985-05-23 Nippon Steel Corp High tensile steel and process for producing the same
JPS5635750A (en) * 1979-08-29 1981-04-08 Kobe Steel Ltd Alloy steel with superior strength and toughness and its manufacture
US4605321A (en) * 1983-03-23 1986-08-12 Skf Kugellagerfbriken Gmbh Roller bearing for seating a pedal bearing shaft
US4832525A (en) * 1988-03-25 1989-05-23 Morrison Donald R Double-bearing shaft for a vibrating screed
US5393488A (en) * 1993-08-06 1995-02-28 General Electric Company High strength, high fatigue structural steel
SE520169C2 (sv) * 1999-08-23 2003-06-03 Sandvik Ab Metod för tillverkning av stålprodukter av utskiljningshärdat martensitiskt stål, samt användning av dessa stålprodukter
FR2823226B1 (fr) * 2001-04-04 2004-02-20 V & M France Acier et tube en acier pour usage a haute temperature
US6715921B2 (en) * 2001-10-24 2004-04-06 Victor Company Of Japan, Ltd. Shaft bearing structure of spindle motor
RU2218445C2 (ru) * 2001-11-28 2003-12-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт неорганических материалов им. акад. А.А.Бочвара" Жаропрочная радиационно-стойкая сталь
US6890393B2 (en) * 2003-02-07 2005-05-10 Advanced Steel Technology, Llc Fine-grained martensitic stainless steel and method thereof
FR2885142B1 (fr) 2005-04-27 2007-07-27 Aubert & Duval Soc Par Actions Acier martensitique durci, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue
JP2007063658A (ja) * 2005-09-02 2007-03-15 Daido Steel Co Ltd マルテンサイト系ステンレス鋼

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109604957A (zh) * 2018-12-14 2019-04-12 中国航空工业集团公司北京航空精密机械研究所 一种高精度结构开放式薄壁钛合金零件的加工方法

Also Published As

Publication number Publication date
PL2164998T3 (pl) 2011-05-31
JP2010533240A (ja) 2010-10-21
CN101815797A (zh) 2010-08-25
DK2164998T3 (da) 2011-03-14
CA2694844A1 (fr) 2009-01-15
RU2010104452A (ru) 2011-08-20
SI2164998T1 (sl) 2011-01-31
RU2456367C2 (ru) 2012-07-20
ES2352788T3 (es) 2011-02-23
EP2164998A1 (de) 2010-03-24
DE602008003811D1 (de) 2011-01-13
WO2009007562A1 (fr) 2009-01-15
ATE490347T1 (de) 2010-12-15
CA2694844C (fr) 2015-07-28
JP5328785B2 (ja) 2013-10-30
US9045806B2 (en) 2015-06-02
CN101815797B (zh) 2012-05-16
US20100200119A1 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
EP2164998B1 (de) Gehärteter martensitischer stahl mit geringem oder ohne kobaltanteil, verfahren zur herstellung eines teils aus diesem stahl und in diesem verfahren hergestelltes teil
EP2310546B1 (de) Angelassener martensitischer stahl, verfahren zur herstellung eines teils aus dem stahl und dadurch erhaltenes teil
EP1874973B1 (de) Angelassener martensitischer stahl, verfahren zur herstellung eines teils aus dem stahl und so erhaltenes teil
EP1896624B1 (de) Zusammensetzung von martensitischem nichtrostendem stahl, verfahren zur herstellung eines mechanischen teils daraus und resultierendes teil
EP1426453B1 (de) Verfahren zur Herstellung von einem geschmiedeten Teil aus Stahl
CA2335911C (fr) Acier de cementation a temperature de revenu elevee, procede pour son obtention et pieces formees avec cet acier
EP1979583B1 (de) Verfahren zur herstellung von einem ventil für einen verbrennungsmotor und dadurch hergestelltes ventil
FR2885141A1 (fr) Acier martensitique durci, procede de fabrication d&#39;une piece a partir de cet acier, et piece ainsi obtenue
CA2984131C (fr) Acier, produit realise en cet acier, et son procede de fabrication
CA3001158C (fr) Acier, produit realise en cet acier, et son procede de fabrication
EP3765646B1 (de) Stahlzusammensetzung
WO2017216500A1 (fr) Composition d&#39;acier
JP4688691B2 (ja) 低サイクル疲労強度に優れた肌焼鋼
CA2559562C (fr) Acier pour pieces mecaniques, procede de fabrication de pieces mecaniques l&#39;utilisant et pieces mecaniques ainsi realisees
JP5381171B2 (ja) 高強度肌焼鋼部品の製造方法
CA2312034C (fr) Acier de nitruration, procede pour son obtention et pieces formees avec cet acier
WO2022253912A1 (fr) Pièce en acier mise en forme à chaud et procédé de fabrication
FR2784692A1 (fr) Acier de construction cementable, procede pour son obtention et pieces formees avec cet acier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602008003811

Country of ref document: DE

Date of ref document: 20110113

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110211

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE S.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110301

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110301

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110401

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110902

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008003811

Country of ref document: DE

Effective date: 20110902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20140516

Year of fee payment: 7

Ref country code: CH

Payment date: 20140612

Year of fee payment: 7

Ref country code: NL

Payment date: 20140520

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20140519

Year of fee payment: 7

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20150630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150701

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20160223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150619

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230627

Year of fee payment: 16

Ref country code: DE

Payment date: 20230620

Year of fee payment: 16

Ref country code: CZ

Payment date: 20230612

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230620

Year of fee payment: 16

Ref country code: PL

Payment date: 20230612

Year of fee payment: 16

Ref country code: AT

Payment date: 20230621

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230619

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 16

Ref country code: GB

Payment date: 20230620

Year of fee payment: 16

Ref country code: ES

Payment date: 20230828

Year of fee payment: 16