EP2164998A1 - Gehärteter martensitischer stahl mit geringem oder ohne kobaltanteil, verfahren zur herstellung eines teils aus diesem stahl und in diesem verfahren hergestelltes teil - Google Patents
Gehärteter martensitischer stahl mit geringem oder ohne kobaltanteil, verfahren zur herstellung eines teils aus diesem stahl und in diesem verfahren hergestelltes teilInfo
- Publication number
- EP2164998A1 EP2164998A1 EP08806015A EP08806015A EP2164998A1 EP 2164998 A1 EP2164998 A1 EP 2164998A1 EP 08806015 A EP08806015 A EP 08806015A EP 08806015 A EP08806015 A EP 08806015A EP 2164998 A1 EP2164998 A1 EP 2164998A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- traces
- steel
- ppm
- manufacturing
- steel according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 114
- 239000010959 steel Substances 0.000 title claims abstract description 114
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title claims abstract description 9
- 229910000734 martensite Inorganic materials 0.000 title claims description 26
- 229910017052 cobalt Inorganic materials 0.000 title description 13
- 239000010941 cobalt Substances 0.000 title description 13
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title description 13
- 230000008569 process Effects 0.000 title description 4
- 239000000203 mixture Substances 0.000 claims abstract description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 238000011282 treatment Methods 0.000 claims description 24
- 238000001816 cooling Methods 0.000 claims description 21
- 230000032683 aging Effects 0.000 claims description 18
- 229910001566 austenite Inorganic materials 0.000 claims description 18
- 150000001247 metal acetylides Chemical class 0.000 claims description 15
- 238000010791 quenching Methods 0.000 claims description 12
- 230000000171 quenching effect Effects 0.000 claims description 12
- 238000001556 precipitation Methods 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 10
- 238000005121 nitriding Methods 0.000 claims description 9
- 238000004090 dissolution Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000005256 carbonitriding Methods 0.000 claims description 4
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 3
- 238000007493 shaping process Methods 0.000 claims description 3
- 238000005255 carburizing Methods 0.000 claims description 2
- 230000002045 lasting effect Effects 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims description 2
- 230000001131 transforming effect Effects 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 7
- 229910052804 chromium Inorganic materials 0.000 abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 abstract description 5
- 229910052791 calcium Inorganic materials 0.000 abstract description 2
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 229910052758 niobium Inorganic materials 0.000 abstract description 2
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 43
- 239000010936 titanium Substances 0.000 description 27
- 238000007792 addition Methods 0.000 description 18
- 229910052759 nickel Inorganic materials 0.000 description 15
- 239000012071 phase Substances 0.000 description 14
- 229910052719 titanium Inorganic materials 0.000 description 14
- 239000000523 sample Substances 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 150000004767 nitrides Chemical class 0.000 description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 238000005242 forging Methods 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000009931 harmful effect Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910052726 zirconium Inorganic materials 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 229910001338 liquidmetal Inorganic materials 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910000943 NiAl Inorganic materials 0.000 description 2
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 2
- -1 TiN nitride Chemical class 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000011265 semifinished product Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007571 dilatometry Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910001068 laves phase Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000007425 progressive decline Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000005480 shot peening Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/02—Hardening by precipitation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/04—Hardening by cooling below 0 degrees Celsius
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
- C21D1/58—Oils
Definitions
- Hardened martensitic steel with low or no cobalt content process for producing a workpiece from this steel, and workpiece thus obtained.
- the invention relates to a martensitic steel hardened by a duplex system, that is to say by a precipitation of intermetallic compounds and carbides obtained by means of a suitable steel composition and heat aging treatment.
- This steel is said to be “duplex-hardening” because its hardening is achieved by simultaneous hardening precipitation of intermetallic compounds and M 2 C carbides.
- this steel still contains relatively large amounts of cobalt.
- this element is in any case expensive and its price is likely to undergo significant fluctuations on the raw materials market, it would be important to find ways to reduce its presence even more significantly, particularly in materials intended for more common mechanical applications. than aeronautical applications.
- the object of the invention is to provide a usable steel, in particular, for manufacturing mechanical parts such as transmission shafts, or structural elements, having a further improved mechanical resistance to heat but also fatigue properties and fragility. always adapted to these uses.
- This steel should also have a lower production cost than the best performing steels currently known for these uses, thanks, in particular, to a significantly lower cobalt content.
- the invention relates to a steel characterized in that its composition is, in percentages by weight:
- Ti + Zr / 2 traces - 100 ppm with Ti + Zr / 2 ⁇ 10 N
- It preferably contains C 0.20 - 0.25%.
- It preferably contains Cr 2 - 4%.
- It preferably contains Al 1 - 1, 6%, better 1, 4 - 1, 6%.
- It preferably contains Mo + W / 2 1 - 2%.
- It preferably contains V 0.2 - 0.3%.
- It preferably contains Ni 12-14%, with Ni> 7 + 3.5 Al.
- Nb traces - 0.05%.
- It preferably contains Si traces - 0.25%, better traces - 0.10%.
- It preferably contains O traces - 10 ppm.
- N traces - 10 ppm.
- It preferably contains S traces - 10 ppm, better traces - 5 ppm.
- It preferably contains P traces - 100 ppm.
- Its martensitic transformation temperature Ms measured is preferably greater than or equal to 100O.
- Its martensitic transformation temperature Ms measured may be greater than or equal to 140 ° C.
- the invention also relates to a method for manufacturing a steel part, characterized in that it comprises the following steps preceding the completion of the part giving it its final shape:
- curing aging at 475-600 ° C, preferably 490-525 ° C for 5-2 h. It further preferably comprises a cryogenic treatment at -50 ° C or lower, preferably at -80 ° C or lower, to convert all the austenite to martensite, the temperature being less than or equal to 150 ° C. Measured ms, at least one of said treatments lasting at least 4h and at most 50h.
- It further preferably comprises a softening treatment of the rough quenching martensite carried out at 150-250 ° C during 4-16h, followed by cooling with still air.
- the workpiece is preferably also carburized or nitrided or carbonitrided.
- Nitriding can be performed during an aging cycle.
- Said nitriding or carburising or carbonitriding can be carried out during a thermal cycle prior to or simultaneously with said dissolution.
- the invention also relates to a mechanical part or component for structural element, characterized in that it is manufactured according to the preceding method.
- It may be in particular a motor transmission shaft, or a motor suspension device or a landing gear element or a gearbox element or a bearing axis.
- the invention is based first of all on a steel composition which differs from the prior art represented by WO-A-2006/114499 in particular by a very low content of Co, not exceeding 1 %, and can be typically limited to the traces inevitably resulting from the elaboration.
- the contents of the other most commonly present significant alloying elements are only slightly modified, but certain levels of impurities must be carefully controlled.
- steels have a plastic gap (difference between breaking strength R m and resistance to elongation R p o, 2) intermediate between those of carbon steels and maragings. For the latter, the difference is very small, providing a high elastic limit, but a quick break as soon as it is crossed.
- the steels of the invention have, from this point of view, properties that can be adjusted by the proportion of hardening phases and / or carbon.
- the steel of the invention can be machined in the quenched state, with tools adapted to a hardness of 45HRC. It is intermediate between the maragings (rough processors of quenching since they have a mild low carbon martensite) and the carbon steels which must be machined essentially in the annealed state.
- a "duplex" curing is carried out, that is to say obtained jointly by intermetallics of ⁇ -NiAI type and by carbides of M 2 C type, in the presence of of reversion austenite formed / stabilized by diffusion-enriched nickel enrichment during curing aging, which gives ductility to the structure by forming a sandwich structure (a few% of stable and ductile austenite between the slats of hardened martensite).
- nitrides Ti, Zr and AI in particular, which are weakening: they deteriorate the tenacity and fatigue resistance. Since these nitrides can precipitate from 1 to a few ppm of N in the presence of Ti, Zr and / or Al, and the conventional elaboration means make it difficult to achieve less than 5 ppm of N, the steel of the invention respects the following rules.
- any addition of Ti (maximum allowed: 100 ppm) is limited, and N is limited as much as possible.
- the N content should not exceed 20 ppm and more preferably 10 ppm, and the Ti content should not exceed 10 times the N content. Nevertheless, a proportionate addition of titanium at the end of elaboration in a vacuum furnace is conceivable with a view to fixing the residual nitrogen and thus avoiding the harmful precipitation of the nitride AlN.
- the addition of titanium can be practiced only for a residual maximum nitrogen content of 10 ppm in the liquid metal, and still not exceed 10 times this residual value of nitrogen.
- the limiting content of the optional addition of titanium is 80 ppm.
- Ti and Zr are to be regarded as impurities to be avoided, and the sum Ti + Zr / 2 must not exceed 150 ppm.
- rare earths at the end of the process, can also help to fix a fraction of N, besides the S and O. In this case, it must be ensured that the residual rare earth content remains below 100. ppm, and preferably less than 50 ppm, because these elements weaken the steel when they are present beyond these values. It is believed that rare earth (eg La) oxynitrides are less harmful than Ti or Al nitrides because of their globular form which would make them less likely to constitute fatigue fracture primers. It is nevertheless advantageous to leave as few of these inclusions as possible in the steel, thanks to the classic techniques of careful elaboration.
- Calcium treatment may be practiced to complete the deoxidation / desulfurization of the liquid metal. This treatment is preferably conducted with the possible additions of Ti, Zr or rare earths.
- M 2 C carbide of Cr, Mo, W and V containing very little Fe is preferred for its hardening and non-embrittling properties.
- M 2 C carbide is tastable against equilibrium carbides M 7 C 3 and / or M 6 C and / or M 2 3C 6 . It is stabilized by Mo and W.
- Mo + W / 2 is between 1 and 2%. It is also to prevent the formation of non-hardening Ti carbides which may weaken the grain boundaries that a 100 ppm imperative limitation of the Ti content of the steels according to the invention is required.
- Cr and V are elements that activate the formation of "metastable" carbides.
- V also forms carbides of MC type, stable up to the dissolution temperatures, which "block" the grain boundaries and limit the magnification of grains during heat treatments at high temperatures.
- V 0.3% must not be exceeded in order not to fix too much C in carbides of V, during the dissolution cycle, to the detriment of the M 2 C carbide of Cr, Mo, W, V which is sought precipitation during the subsequent aging cycle.
- the V content is between 0.2 and 0.3%.
- the presence of C favors the appearance of M 2 C with respect to the ⁇ phase.
- an excessive content causes segregations, a lowering of Ms and causes difficulties in manufacturing on an industrial scale: sensitivity to the taps (superficial cracking during rapid cooling), difficult machinability of martensite too hard to l quenching condition ...
- Its content must be between 0.20 and 0.30%, preferably 0.20-0.25% so as not to give the part too hard a hardness which could require machining in the annealed state.
- the surface layer of the parts can be enriched in C by cementation, nitriding or carbonitriding if a very high surface hardness is required in the intended applications.
- Co delays the restoration of dislocations and, therefore, slows the mechanisms of hot survivability in martensite. It was thought that this made it possible to maintain high tensile strength at high temperature. But on the other hand, it was suspected that, since the Co promotes the formation of the aforementioned ⁇ phase which is the one that hardens the maraging steels of the prior art to Fe-Ni-Co-Mo, its massive presence contributed to reducing the quantity of Mo and / or W available to form M 2 C carbides which contribute to the hardening according to the mechanism that is to be promoted.
- the cobalt somewhat raises the ductile / brittle transition temperature, which is not favorable, particularly in compositions with low nickel contents, whereas, contrary to what could be found in cobalt does not clearly show the transformation point Ms of the compositions of the invention and therefore has no obvious interest either in this respect.
- Ni and Al are linked in the invention, where Ni must be> 7 + 3.5 Al. These are the two essential elements which participate in a good part of aging hardening, thanks to the precipitation of the nanometric-type intermetallic phase.
- B2 NiAI for example. It is this phase which confers a large part of the mechanical strength to hot, up to about 400 0 C.
- the nickel is also the element which reduces brittleness by cleavage because it lowers the ductile / brittle transition temperature of martensites. If Al is too high with respect to Ni, the martensitic matrix is too strongly depleted of nickel as a result of the precipitation of the NiAI hardening precipitate during aging.
- martensitic transformation start temperature Ms which, according to the invention, should preferably remain equal to or greater than 140 ° C. if no cryogenic cycle is used, and should preferably be equal to or greater than 100 ° C. if we practice a cryogenic cycle.
- the end-of-cooling temperature after quenching should be less than the actual Ms -150 ° C, preferably less than the actual Ms -200 ° C, so to ensure a full martensitic transformation of steel.
- this end-of-cooling temperature can be obtained as a result of a cryogenic treatment applied immediately following cooling to ambient temperature from the solution temperature.
- the cryogenic treatment can also be applied not from room temperature, but after isothermal quenching ending at a temperature slightly greater than Ms, preferably between Ms and Ms + 50 ° C.
- the overall cooling rate must be the highest.
- the Ms value of the steel is greater than or equal to 100O if a cryogenic cycle is applied, and greater than or equal to 140O in the absence of this cryogenic cycle.
- the duration of the cryogenic cycle is between 4 and 50 hours, preferably from 4 to 16 hours, and more preferably from 4 to 8 hours. It is possible to practice several cryogenic cycles, the essential being that at least one of them has the aforementioned characteristics.
- the elastic limit R p o, 2 is influenced in the same way as R m .
- the steels of the class of the invention prefer the presence of the hardening phases B2. , especially NiAI, to obtain a high mechanical strength when hot. Compliance with the conditions on Ni and Al that have been given ensures a sufficient potential content of reversion austenite to maintain ductility and toughness suitable for the intended applications. It is possible to add B, but not more than 30ppm not to degrade the properties of the steel.
- Nb to control the grain size during forging or other hot processing, at a content not exceeding 0.1%, preferably not exceeding 0.05% for avoid segregations that may be excessive.
- the steel according to the invention therefore accepts raw materials that can contain significant residual contents in Nb.
- a characteristic of the steels of the class of the invention is also the possibility of replacing at least a portion of Mo by W.
- W segregates less at solidification than Mo and provides an increase in mechanical strength when hot. It has the disadvantage of being expensive and we can optimize this cost by associating it with Mo.
- Mo + W / 2 must be between 1 and 4%, preferably between 1 and 2% . It is preferred to maintain a minimum content of 1% Mo to limit the cost of steel, especially as the high temperature withstand is not a priority objective of the steel of the invention.
- Cu can be up to 1%. It is likely to participate in the hardening with the help of its epsilon phase, and the presence of Ni makes it possible to limit its harmful effects, in particular the appearance of superficial cracks during the forging of the pieces, which one observes during additions of copper in steels not containing nickel. But its presence is not essential and it may be present only in the state of residual traces, resulting from the pollution of raw materials.
- Manganese is not a priori useful for obtaining the properties of steel, but it has no recognized adverse effect; in addition, its low vapor pressure at the temperatures of the liquid steel makes it difficult to control its concentration in vacuum and vacuum remelting: its content may vary depending on the radial and axial location in a remelted ingot. As it is often present in the raw materials, and for the reasons above, its content will preferably be at most 0.25%, and in any case limited to 2% at the most because of too great variations of its concentration in a same product will interfere with the repeatability of the properties.
- Silicon is known to have a hardening effect in solid solution of ferrite and, like cobalt, to decrease the solubility of some elements or certain phases in ferrite. Nevertheless, the steel of the invention requires a significant addition of cobalt, and the same is true of the addition of silicon, especially since, moreover, silicon generally promotes the precipitation of intermetallic phases. harmful in complex steels (Laves phase, silicides ...) - Its content will be limited to 1%, preferably less than 0.25% and more preferably less than 0.1%.
- S traces - 20ppm, preferably traces - 10ppm, better traces - 5ppm
- P traces - 200ppm, preferably -100ppm traces, better traces-50ppm.
- Ca can be used as a deoxidizer and as a sulfur sensor, finding it in the end ( ⁇ 20ppm).
- rare earth residues may ultimately remain ( ⁇ 100ppm) as a result of liquid metal refining treatment where they would have been used to capture O, S and / or N.
- the use of Ca and rare earths for these effects not being mandatory, these elements may be present only in the form of traces in the steels of the invention.
- the acceptable oxygen content is 50 ppm maximum, preferably 10 ppm maximum.
- the reference steel A corresponds to a steel according to US-A-5 393 388, thus having a high Co content.
- Reference steel B corresponds to a steel comparable to steel A, to which V was added without modifying the content of Co.
- the reference steel C corresponds to a steel according to WO-A-2006/114499, in particular in that, with respect to the steels A and B, its Al content has been increased and its Co content has been increased.
- the reference steel D has undergone a C addition of B.
- the reference steel E has undergone a Nb addition to C.
- the reference steel F differs from C mainly by the absence of a significant addition of V, compensated by a lower C content, and a higher purity of residual elements.
- the reference steel G is distinguished from F by a very low content of Co which would be in accordance with the invention, the presence of V at a level comparable to that of C, D and E, and a higher Ni content, but which, taken in isolation, would nonetheless conform to the invention. But its contents in Ti and N are slightly higher than the invention tolerates. Experience also shows that its measured temperature Ms is substantially too low compared to the requirements of the invention, the relatively high Ni content is not compensated by relatively low levels of Cr, Mo, Al and V.
- the steel H is in accordance with the invention in all respects, in particular its very low Co content and its high N and Ti purity. Also, its O content is very low. Finally, its measured temperature Ms is entirely in accordance with the invention.
- the samples were softened at a temperature of at least 600 ° C.
- this softening income was made at 650 ° C for 8 hours and followed by cooling in the air. Thanks to this, the raw products of thermomechanical transformations can undergo without particular problems the finishing operations (straightening, peeling, machining ...) giving the piece its final form.
- cryogenic treatment at 80 ° C. for 8 hours; Specifically for sample H, another cryogenic treatment was added at -120 ° C for 2 h;
- the reference samples C, D and E have a tensile strength that is much greater than that of the reference samples A and B.
- the elastic limit is at least of the same order of magnitude.
- the properties of ductility (necking and elongation at break), toughness and resilience are lowered, in the case of heat treatments described and applied.
- the desired resistance / toughness compromise can be adjusted by changing the aging conditions.
- Reference sample B shows that the mere addition of V to steel A gives only an improvement in certain properties, and in proportions that are often less important than in the case of steels with reduced or no Co content.
- Sample G shows that the large decrease, up to the total removal, of cobalt, can still allow to maintain a high tensile strength.
- the ductility properties are also improved.
- the elastic limit is, however, quite substantially deteriorated in the case of the sample G, in relation to a larger amount of austenite dispersed in the structure, due to the high Ni content of this sample. This contributes to an excessive lowering of the measured Ms which is not compensated by adjustments of the contents of the other elements.
- sample H which conforms in every respect to the composition according to the invention, and whose temperature Ms is sufficiently high, we obtain: - a tensile strength which remains high, and could be, if necessary, further improved by an increase in the C content which would promote hardening by quenching and formation of secondary carbides; a tensile strength of the order of 2300 MPa would thus be accessible for a C content of about 0.25%;
- N and Ti a little too high in the sample G compared to the requirements of the invention, and also its slightly higher oxygen content, also contribute in part to its poorer performance than that of the sample.
- H Another factor to consider for this sample G is an S content which is not particularly low, and which tends to degrade toughness if it is not offset by other characteristics that would be favorable to this property.
- this sample G has a fairly high Ni content (although remaining within the range of the invention), which lowers Ms and thus promotes the maintenance of a possibly too high residual austenite level. , even after the cryogenic treatment more particularly pushed (at -80 "C and then at -120" C) which was undergone by c and sample.
- the sample H according to the invention which has been cryogenically treated only at -80.degree. C., but which has a junctionally adjusted Ni content, has minimal impurity contents in all respects. and a sufficiently high temperature Ms, responds very well to the problems posed.
- an optimized heat treatment mode of the steel according to the invention for finally obtaining a part having the desired properties is, after forming the blank of the part and before the completion. giving the piece its final form:
- a cryogenic treatment at -50O or lower, preferably at -80 ° C or lower, to convert all the austenite to martensite, the temperature being lower by 150 ° C or more at Ms, preferably lower than At least about 200 ° C, at least one of said cryogenic processes for at least 4 hours and at most 50 hours, for compositions having, in particular, a relatively low Ni content which leads to a relatively high MS temperature, this cryogenic treatment is less useful.
- thermomechanical heat-forming treatments may be performed in addition to or in place of this forging, depending on the type of end product that is desired (stamped parts, bars, semi-finished products. ..) - There may be mentioned one or more rolling, stamping, stamping ... and a combination of several such treatments.
- the preferred applications of the steel according to the invention are the endurance parts for mechanics and structural elements, for which a tensile strength of between 2000 MPa and 2350 MPa or more must be cold, combined with values ductility and resilience at least equivalent to those of the best high-strength and hot (400 ° C) steels a tensile strength of the order of 1800 MPa, as well as optimal fatigue properties.
- the steel according to the invention also has the advantage of being cementable, nitrurable and carbonitrurable.
- the parts that use it can therefore be given high abrasion resistance without affecting its core properties. This is particularly advantageous in the intended applications that have been cited.
- Other surface treatments, such as mechanical treatments that limit the initiation of fatigue cracking from superficial defects, are conceivable. Shot peening is an example of such treatment.
- nitriding is carried out, this can be carried out during the aging cycle, preferably at a temperature of 490 to 525 ° C and for a period of time ranging from 5 to 100 hours, the longest ages causing progressive structural softening and, as a result, a progressive decrease in the maximum tensile strength.
- Another possibility is to carry out carburizing, nitriding or carbonitriding during a thermal cycle prior to or simultaneously with the dissolution, the steel substrate of the invention retaining in this case all its potential mechanical properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL08806015T PL2164998T3 (pl) | 2007-07-10 | 2008-06-18 | Stal martenzytyczna hartowana, mająca niską lub zerową zawartość kobaltu, sposób wytwarzania części z tej stali, oraz część uzyskana tym sposobem |
SI200830116T SI2164998T1 (sl) | 2007-07-10 | 2008-06-18 | Utrjeno martenzitno jeklo z majhno vsebnostjo ali brez kobalta, postopek izdelave dela iz tovrstnega jekla ter po tovrstnem postopku izdelan del |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0756379 | 2007-07-10 | ||
PCT/FR2008/051080 WO2009007562A1 (fr) | 2007-07-10 | 2008-06-18 | Acier martensitique durci à teneur faible ou nulle en cobalt, procédé de fabrication d'une pièce à partir de cet acier, et pièce ainsi obtenue |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2164998A1 true EP2164998A1 (de) | 2010-03-24 |
EP2164998B1 EP2164998B1 (de) | 2010-12-01 |
Family
ID=39156307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08806015A Active EP2164998B1 (de) | 2007-07-10 | 2008-06-18 | Gehärteter martensitischer stahl mit geringem oder ohne kobaltanteil, verfahren zur herstellung eines teils aus diesem stahl und in diesem verfahren hergestelltes teil |
Country Status (13)
Country | Link |
---|---|
US (1) | US9045806B2 (de) |
EP (1) | EP2164998B1 (de) |
JP (1) | JP5328785B2 (de) |
CN (1) | CN101815797B (de) |
AT (1) | ATE490347T1 (de) |
CA (1) | CA2694844C (de) |
DE (1) | DE602008003811D1 (de) |
DK (1) | DK2164998T3 (de) |
ES (1) | ES2352788T3 (de) |
PL (1) | PL2164998T3 (de) |
RU (1) | RU2456367C2 (de) |
SI (1) | SI2164998T1 (de) |
WO (1) | WO2009007562A1 (de) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2947565B1 (fr) * | 2009-07-03 | 2011-12-23 | Snecma | Traitement cryogenique d'un acier martensitique a durcissement mixte |
FR2947566B1 (fr) * | 2009-07-03 | 2011-12-16 | Snecma | Procede d'elaboration d'un acier martensitique a durcissement mixte |
FR2964668B1 (fr) * | 2010-09-14 | 2012-10-12 | Snecma | Optimisation de l'usinabilite d'aciers martensitiques inoxydables |
RU2502822C1 (ru) * | 2012-12-18 | 2013-12-27 | Юлия Алексеевна Щепочкина | Сталь |
US10157687B2 (en) | 2012-12-28 | 2018-12-18 | Terrapower, Llc | Iron-based composition for fuel element |
US9303295B2 (en) * | 2012-12-28 | 2016-04-05 | Terrapower, Llc | Iron-based composition for fuel element |
CN103667964B (zh) * | 2013-11-07 | 2016-06-15 | 安徽省智汇电气技术有限公司 | 一种泵轴承用中碳钢材料及其制备方法 |
CN104372260B (zh) * | 2014-11-07 | 2017-03-08 | 佛山市南海区华恭金属加工有限公司 | 高强度钢拉杆及其热处理方法 |
CN104911499B (zh) * | 2015-06-29 | 2017-12-26 | 钢铁研究总院 | Cu强化Co‑free二次硬化超高强度钢及制备方法 |
RU2611250C1 (ru) * | 2015-11-25 | 2017-02-21 | федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) | Инструментальная сталь |
CN109604957A (zh) * | 2018-12-14 | 2019-04-12 | 中国航空工业集团公司北京航空精密机械研究所 | 一种高精度结构开放式薄壁钛合金零件的加工方法 |
CN110257718B (zh) * | 2019-08-01 | 2020-10-16 | 邵东智能制造技术研究院有限公司 | 一种耐磨损的不锈钢结构合金及其制备方法 |
CN111440929B (zh) * | 2020-04-10 | 2021-11-12 | 合肥通用机械研究院有限公司 | 一种高压临氢自紧式组合密封件设计制造方法 |
CN116926442B (zh) * | 2023-07-24 | 2024-02-23 | 北京理工大学 | 纳米相协同析出强化低屈强比超高强度钢及其制备方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1089934A (en) * | 1964-10-28 | 1967-11-08 | Republic Steel Corp | High strength steel alloy composition |
JPS5161B1 (de) * | 1967-09-18 | 1976-01-05 | ||
US4004920A (en) * | 1975-05-05 | 1977-01-25 | United States Steel Corporation | Method of producing low nitrogen steel |
FR2307879A1 (fr) * | 1975-04-18 | 1976-11-12 | Siderurgie Fse Inst Rech | Toles en acier au nickel pour utilisation a basse temperature |
EP0021349B1 (de) * | 1979-06-29 | 1985-04-17 | Nippon Steel Corporation | Hochzugfester Stahl und Verfahren zu seiner Herstellung |
JPS5635750A (en) * | 1979-08-29 | 1981-04-08 | Kobe Steel Ltd | Alloy steel with superior strength and toughness and its manufacture |
US4605321A (en) * | 1983-03-23 | 1986-08-12 | Skf Kugellagerfbriken Gmbh | Roller bearing for seating a pedal bearing shaft |
US4832525A (en) * | 1988-03-25 | 1989-05-23 | Morrison Donald R | Double-bearing shaft for a vibrating screed |
US5393488A (en) | 1993-08-06 | 1995-02-28 | General Electric Company | High strength, high fatigue structural steel |
SE520169C2 (sv) * | 1999-08-23 | 2003-06-03 | Sandvik Ab | Metod för tillverkning av stålprodukter av utskiljningshärdat martensitiskt stål, samt användning av dessa stålprodukter |
FR2823226B1 (fr) * | 2001-04-04 | 2004-02-20 | V & M France | Acier et tube en acier pour usage a haute temperature |
US6715921B2 (en) * | 2001-10-24 | 2004-04-06 | Victor Company Of Japan, Ltd. | Shaft bearing structure of spindle motor |
RU2218445C2 (ru) * | 2001-11-28 | 2003-12-10 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт неорганических материалов им. акад. А.А.Бочвара" | Жаропрочная радиационно-стойкая сталь |
US6890393B2 (en) * | 2003-02-07 | 2005-05-10 | Advanced Steel Technology, Llc | Fine-grained martensitic stainless steel and method thereof |
FR2885142B1 (fr) | 2005-04-27 | 2007-07-27 | Aubert & Duval Soc Par Actions | Acier martensitique durci, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue |
JP2007063658A (ja) * | 2005-09-02 | 2007-03-15 | Daido Steel Co Ltd | マルテンサイト系ステンレス鋼 |
-
2008
- 2008-06-18 DE DE602008003811T patent/DE602008003811D1/de active Active
- 2008-06-18 CA CA2694844A patent/CA2694844C/fr active Active
- 2008-06-18 PL PL08806015T patent/PL2164998T3/pl unknown
- 2008-06-18 RU RU2010104452/02A patent/RU2456367C2/ru active
- 2008-06-18 US US12/668,297 patent/US9045806B2/en active Active
- 2008-06-18 WO PCT/FR2008/051080 patent/WO2009007562A1/fr active Application Filing
- 2008-06-18 DK DK08806015.7T patent/DK2164998T3/da active
- 2008-06-18 EP EP08806015A patent/EP2164998B1/de active Active
- 2008-06-18 ES ES08806015T patent/ES2352788T3/es active Active
- 2008-06-18 JP JP2010515557A patent/JP5328785B2/ja active Active
- 2008-06-18 AT AT08806015T patent/ATE490347T1/de active
- 2008-06-18 SI SI200830116T patent/SI2164998T1/sl unknown
- 2008-06-18 CN CN2008801032873A patent/CN101815797B/zh active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2009007562A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN101815797A (zh) | 2010-08-25 |
PL2164998T3 (pl) | 2011-05-31 |
JP5328785B2 (ja) | 2013-10-30 |
SI2164998T1 (sl) | 2011-01-31 |
WO2009007562A1 (fr) | 2009-01-15 |
CN101815797B (zh) | 2012-05-16 |
RU2010104452A (ru) | 2011-08-20 |
CA2694844C (fr) | 2015-07-28 |
EP2164998B1 (de) | 2010-12-01 |
JP2010533240A (ja) | 2010-10-21 |
DK2164998T3 (da) | 2011-03-14 |
US20100200119A1 (en) | 2010-08-12 |
US9045806B2 (en) | 2015-06-02 |
ATE490347T1 (de) | 2010-12-15 |
DE602008003811D1 (de) | 2011-01-13 |
ES2352788T3 (es) | 2011-02-23 |
CA2694844A1 (fr) | 2009-01-15 |
RU2456367C2 (ru) | 2012-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2164998B1 (de) | Gehärteter martensitischer stahl mit geringem oder ohne kobaltanteil, verfahren zur herstellung eines teils aus diesem stahl und in diesem verfahren hergestelltes teil | |
EP2310546B1 (de) | Angelassener martensitischer stahl, verfahren zur herstellung eines teils aus dem stahl und dadurch erhaltenes teil | |
CA2607446C (fr) | Acier martensitique durci, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue | |
EP1896624B1 (de) | Zusammensetzung von martensitischem nichtrostendem stahl, verfahren zur herstellung eines mechanischen teils daraus und resultierendes teil | |
EP1426453B1 (de) | Verfahren zur Herstellung von einem geschmiedeten Teil aus Stahl | |
CA2984131C (fr) | Acier, produit realise en cet acier, et son procede de fabrication | |
CA2335911C (fr) | Acier de cementation a temperature de revenu elevee, procede pour son obtention et pieces formees avec cet acier | |
FR2885141A1 (fr) | Acier martensitique durci, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue | |
CA3001158C (fr) | Acier, produit realise en cet acier, et son procede de fabrication | |
JP4964063B2 (ja) | 冷間鍛造性および結晶粒粗大化防止特性に優れた肌焼鋼およびそれから得られる機械部品 | |
WO2017216500A1 (fr) | Composition d'acier | |
WO2007085720A1 (fr) | Procédé de fabrication d'une soupape de moteur à explosion, et soupape ainsi obtenue | |
WO2019186016A1 (fr) | Composition d'acier | |
JP4688691B2 (ja) | 低サイクル疲労強度に優れた肌焼鋼 | |
CA2559562C (fr) | Acier pour pieces mecaniques, procede de fabrication de pieces mecaniques l'utilisant et pieces mecaniques ainsi realisees | |
JP5381171B2 (ja) | 高強度肌焼鋼部品の製造方法 | |
JP2006028568A (ja) | 高温浸炭用鋼およびその製造方法 | |
JP2002348636A (ja) | 浸炭用鋼 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100107 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602008003811 Country of ref document: DE Date of ref document: 20110113 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Effective date: 20110211 Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR Ref country code: CH Ref legal event code: NV Representative=s name: KIRKER & CIE S.A. |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110301 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101201 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20101201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101201 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101201 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101201 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110301 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101201 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101201 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110401 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101201 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101201 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101201 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110902 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008003811 Country of ref document: DE Effective date: 20110902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SI Payment date: 20140516 Year of fee payment: 7 Ref country code: CH Payment date: 20140612 Year of fee payment: 7 Ref country code: NL Payment date: 20140520 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20140519 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20150630 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20150701 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20160223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150701 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150619 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230828 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240619 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240620 Year of fee payment: 17 Ref country code: CZ Payment date: 20240611 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240628 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240607 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240619 Year of fee payment: 17 Ref country code: BE Payment date: 20240619 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240625 Year of fee payment: 17 |